

**central european institute of technology** BRNO | CZECH REPUBLIC



# Detection and extraction of key structural regions (patterns)

#### Lukáš Pravda

@WebchemTools

ncbr.muni.cz/webchemistry



# Outline

- Variety of structural patterns
  - How can we find them?
  - Software tools
  - PatternQuery
- Channels/tunnels/pores
  - Identification of channels and their properties
  - Software tools
  - MOLE
- Practical session with examples





**central european institute of technology** BRNO | CZECH REPUBLIC



#### Variety of structural patterns

## Lukáš Pravda

@WebchemTools

ncbr.muni.cz/webchemistry



# Variety of structural patterns





# Detection

- The goal is to identify and possibly extract biological regions of ones interest within biomolecular structure.
- Including but not limited to:
  - Active/binding/interaction sites
  - Sequences of amino acids or nucleic acids
  - Pockets/channels or void.
  - Super secondary motifs.



# OK, but wait why do we need them?

- Database wide detection enables us to carry out experiments which not has been feasible before.
- Output of these searches are often an input for further analyses:
  - Structural and functional assignment of newly determined structures.
  - Comparative analyses
  - Design and engineering of novel functional sites
  - Study of binding modes of certain atoms/residues



# Software tools

- A plethora of different software tools these are usually a single purpose:
  - Detection of ligands
  - Binding site identification
  - Pockets/cavities
  - Channels
  - In house scripts and tools
- The question is, can we do any better?



# PatternQuery

- Web-based application designed for detection and extraction of molecular (sub)structures - patterns of user interest.
- Uses unique python like query language to define composition, topology and connectivity of these patterns.
- Allows querying single structures as well as the entire PDB or its subset based on a number of criteria (organism of origin, resolution, date of release, ...)



# How does it look like?



Rings(5 \* ['C'] + ['O']). ConnectedResidues(0). AmbientResidues(4)

# http://ncbr.muni.cz/PatternQuery



# PatternQuery – Structure of language

- Generator queries
  - Atoms(), Residues(), RegularMotifs()
- Modifier queries
  - ConnectedResidues(), AmbientAtoms(), Filter()
- Combinatory queries
  - or(), Near(), Cluster()
- So far some 50 different queries, which can be readily used!



# PatternQuery – Thinking in queries

Find binding pocket of all ligands in the protein structure (distance  $\leq 4$ Å)

```
temp = List()
2
3
   for residue in molecule.Residues():
4
            if residue.lsHet():
                    temp.Add(residue)
5
6
7
   neighborhoodLookup = NeighborhoodLookup(molecule.Atoms())
   result = List()
8
   for residue in temp:
            surroundings = neiborhoodLookup.Find(residue.Atoms, <= 4.0)</pre>
            result.Add(union(residue, surroundings))
   return result
```



1

# PatternQuery – Thinking in queries

 Find binding pocket of all ligands in the protein structure (distance <= 4Å)</li>





HetResidues().AmbientAtoms(4.0)



1

# Build a query I





Atoms("Ca"). AmbientResidues(4)



# Build a query II



Atoms("Ca") . AmbientResidues(4) . Filter(lambda l: l.Count(Atoms() > 6))



Biologically interesting queries I.

- Post-translationaly modified aminoacids
  - NotAminoAcids() . Filter(lambda l: HetResidues() == 6))

ModifiedResidues()

Het atoms not covalently bound to protein

HetResidues() . Filter(lambda I: I.IsNotConnectedTo(AminoAcids()))

Residues with a sugar moiety

 $\label{eq:constraint} \begin{array}{l} Or(Rings(4 \ ^* \ ["C"] + \ ["O"]).ConnectedResidues(0), \\ Rings(4 \ ^* \ ["C"] + \ ["O"]).ConnectedResidues(0)) \end{array}$ 



Biologically interesting queries II.

#### PA Lec-B sugar binding site

```
\begin{array}{l} Near(4, Atoms("Ca"), Atoms("Ca"))\\ .AmbientResidues(3)\\ .Filter(lambda \ |:\\ l.Count(Or(Rings(5 * ["C"] + ["O"]), Rings(4 * ["C"] + ["O"]))) > 0)\\ .Filter(lambda \ |: l.Count(Atoms("P")) == 0) \end{array}
```







# Questions?





OK, let's move ON!







**central european institute of technology** BRNO | CZECH REPUBLIC



#### Channels

#### Lukáš Pravda

@WebchemTools

ncbr.muni.cz/webchemistry



# Protein empty voids







# What are the channels/tunnels?

- A type of protein empty void.
- Connects active/binding site with the bulk solvent.
- Spans through membrane
- They greatly influence protein specificity, selectivity and rate of chemical processes.
- They look pretty(-ish <sup>(C)</sup>)





# How can we find them?

- Over the time a number of approaches has been developed.
- Presently the most successful one relies on Delaunay Triangulation and Dijkstra's algorithm.
- Other approaches involves:
  - Grid search
  - Slice and optimization algorithms
  - Sphere-filling methods



# Software tools

- MOLE
- CAVER
- MolAxis
- ChexVis
- BetaVoid
- HOLE
- And others...





#### Use case – aquaporin 0

- Large family of proteins permitting permeation of various molecules – mainly water.
- Channel is a tight fit for water molecules.
- How can water permeate through the channel, while protons don't?
- ar/R region in blue



## Use case – bunyavirus

- Negative-strand RNA viruses are serious human pathogens (Crimean-congo fever, Lassa fever, influenza).
- How one can kill a virus?
- Design a channel inhibitor!





# Physicochemical properties – channel duality







# **MOLE** computation

- Input: Protein structure + set of parameters
- Output: Channel profile, properties and lining r.





# **Result analysis - properties**

- Channel length vs channel radius
- Check presence of bottlenecks and local narrowings.
- Channel flexibility





# **Result analysis - properties**

- Hydropathy, polarity, mutability, formal charge
- Evaluate independent layers as well as entire channel.

| Tunnel 1 in Cavity 1 (1TQN)                                                                                                                                                                                                                                                                   |   |   |   |   |   |   |   |   |   |   |      |      |       |       |       |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|------|------|-------|-------|-------|-------|--|
| 1TQN: Tunnel 1 in cavity 1. Copy Profile   Lining   Props   PDB   XML                                                                                                                                                                                                                         |   |   |   |   |   |   |   |   |   |   | XML  |      |       |       |       |       |  |
| Profile Lining and Properties                                                                                                                                                                                                                                                                 |   |   |   |   |   |   |   |   |   |   |      |      |       |       |       |       |  |
| Physicochemical properties of lining side-chains<br>Charge: 1 (2-1) Hydropathy: -2.00 Hydrophobicity: -0.70 Polarity: 24.21 Mutability: 81.00<br>Layer-weighted Physicochemical properties of lining side-chains<br>Hydropathy: -2.38 Hydrophobicity: -0.85 Polarity: 25.11 Mutability: 89.00 |   |   |   |   |   |   |   |   |   |   |      |      |       |       |       |       |  |
|                                                                                                                                                                                                                                                                                               | R | E | s | L | Q | K | s | G | К | Y | Rad  | FRad | Dist  | Hdry  | Hdph  | Pol   |  |
| 1                                                                                                                                                                                                                                                                                             | R | E |   |   |   |   |   |   |   |   | 1.56 | 1.56 | 0.60  | -4.00 | -0.78 | 50.95 |  |
| 2                                                                                                                                                                                                                                                                                             | R | E | S |   |   |   |   |   |   |   | 1.92 | 1.98 | 2.00  | -2.93 | -0.84 | 34.52 |  |
| 3                                                                                                                                                                                                                                                                                             | R | E | s | L |   |   |   |   |   |   | 2.37 | 3.06 | 2.44  | -1.25 | -0.35 | 25.93 |  |
| 4                                                                                                                                                                                                                                                                                             |   | E | S | L |   |   |   |   |   |   | 2.13 | 2.97 | 3.38  | -0.17 | -0.32 | 17.23 |  |
| 5                                                                                                                                                                                                                                                                                             |   | E | S | L | Q |   |   |   |   |   | 2.12 | 2.98 | 3.98  | -1.00 | -0.52 | 13.81 |  |
| 6                                                                                                                                                                                                                                                                                             |   | E | s |   | Q |   |   |   |   |   | 1.38 | 3.00 | 8.57  | -2.60 | -1.07 | 18.37 |  |
|                                                                                                                                                                                                                                                                                               |   | E | s |   | Q | K |   |   |   |   | 2.39 | 3.30 | 9.61  | -2.93 | -0.91 | 26.15 |  |
| 8                                                                                                                                                                                                                                                                                             |   | E | S |   |   | к | S |   |   |   | 2.23 | 2.84 | 11.40 | -2.25 | -0.87 | 25.69 |  |
| 9                                                                                                                                                                                                                                                                                             |   | E |   |   |   | K | S |   |   |   | 2.17 | 2.44 | 13.34 | -2.73 | -0.84 | 33.69 |  |
| 10                                                                                                                                                                                                                                                                                            |   | E |   |   |   | K | S | G |   |   | 2.46 | 2.46 | 13.56 | -2.15 | -0.83 | 26.11 |  |
| 11                                                                                                                                                                                                                                                                                            |   | E |   |   |   |   | s | G | K | Y | 2.51 | 2.51 | 13.79 | -1.28 | -0.52 | 11.99 |  |
|                                                                                                                                                                                                                                                                                               |   |   |   |   |   |   |   |   |   |   |      |      |       |       |       |       |  |

| 1 Uni<br>212<br>A, 3<br>SER<br>Uni          | Unique lining residues set - all<br>212 ARG A, 308 GLU A, 312 SER A, 308 GLU A, 369 ILE A, 309 THR A, 482 LEU A, 483 LEU A, 369 ILE<br>A, 371 MET A, 213 PHE A, 215 PHE A, 370 ALA A, 372 ARG A, 370 ALA A, 105 ARG A, 108 PHE A, 119<br>SER A, 106 ARG A, 120 ILE A, 120 ILE A, 120 IRE A, 107 PR0 A, 122 GLU A, 107 PR0 A, 111 VAL A<br>Unique lining residues set - sidechains |                                                                                                        |       |         |         |        |               |     |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|---------|---------|--------|---------------|-----|--|--|
| 212<br>A, 1                                 | ARG<br>08 PI                                                                                                                                                                                                                                                                                                                                                                      | A, 308 GLU A, 312 SER A, 369 ILE A, 482 LEU A, 371<br>HE A, 120 ILE A, 122 GLU A, 107 PRO A, 111 VAL A | MET A | , 215 P | HE A, 3 | 70 ALA | A, 105        | 1   |  |  |
| Phy<br>Chai<br>Hydi<br>Hydi<br>Pola<br>Muta | rge:<br>ropal<br>roph<br>arity:<br>abilit                                                                                                                                                                                                                                                                                                                                         | chemical properties of lining side-chains<br>0 (2-2)<br>thy:-0.1<br>objcity: 0.15<br>16.52 2<br>2      |       |         |         |        |               |     |  |  |
| Lini<br>show                                | ing r<br>w all                                                                                                                                                                                                                                                                                                                                                                    | esidues<br>  <u>hide all</u>                                                                           |       |         |         |        |               | 2   |  |  |
| #                                           |                                                                                                                                                                                                                                                                                                                                                                                   | Res                                                                                                    | Btn   | Dist    | Hpa     | Hpb    | Pol           | Mut |  |  |
| 1 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 308 GLU A                                                                                   | 1.56  | 0.84    | -4      | -0.78  | <b>50.9</b> 5 | 80  |  |  |
| 2 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 308 GLU A, 312 SER A                                                                        | 1.99  | 1.36    | -2.93   | -0.84  | 34.52         | 92  |  |  |
| 3 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 308 GLU A, 369 ILE A                                                             | 2.21  | 1.51    | -0.3    | -0,1   | 14.3          | 101 |  |  |
| 4 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, $308~\text{GLU}$ A, 369 ILE A, 309 THR A                                         | 2.26  | 1.97    | -0.32   | -0.24  | 12.11         | 101 |  |  |
| 5 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 308 GLU A, 369 ILE A                                                             | 2.34  | 2.26    | -0.3    | -0.1   | 14.3          | 101 |  |  |
| 6 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 369 ILE A                                                                        | Z.49  | 2.49    | -0.27   | 0.14   | 17.93         | 101 |  |  |
| 7 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 369 ILE A, 482 LEU A                                                             | 2.61  | 2.69    | 0.75    | 0.39   | 13.48         | 89  |  |  |
| 8 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 369 ILE A, 482 LEU A, <b>483</b><br>LEU A                                        | 2.7   | 2.81    | 0.52    | 0.15   | 11.46         | 89  |  |  |
| 9 [                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 212 ARG A, 312 SER A, 369 ILE A, 482 LEU A                                                             | 2.66  | 3.01    | 0.75    | 0.39   | 13.48         | 89  |  |  |

# Where are my channels - I?

- - A: Wrong set up of ProbeRadius, InteriorThreshold or Filtering criteria.
  - A: Substrate is blocking channel



- Cyclooxygenase-2 (PDB ID: 4cox) complexed with non-selective inhibitor indomethacin



# Where are my channels - II?

- Q: No channel has been identified <sup>(3)</sup> Why?
  - A: Active site is located on the surface on its vicinity



Pocket-like channel found in tyrosine kinase EPh4 (PDB ID 2vwx)



# Where are my channels - III?

- Q: No channel has been identified <sup>(2)</sup> Why?
  - A: No channel is there whatsoever



# Where are my channels - IV?

- Q: None of the found channels is relevant to me?
  - A: Multiple reasons. Usually wrong set up of ProbeRadius or InteriorThreshold parameters











# Questions?



After a break we can continue with the hands-on experience!

# https://goo.gl/f5YrcE



ncbr.muni.cz/webchemistry

