Linear Models in Statistics

Lecture notes

BY
Andrea Kraus, Ph.D.

These lecture notes are intended for students of the 3rd year bachelor course M5120 Linear Models in Statistics I. This is a one-semester course offering an overview of linear statistical models as the fundamental tool of statistical analysis. The students encounter theory, software implementation, applications and interpretation. After the course the students are expected to recognize the situations that can be addressed by linear models, formulate and implement the model, and interpret the results. At the same time, the students are made aware of the limitations of the model and should be able to recognize and possibly avoid problems in a given situation.

The lecture notes are based primarily on the following texts:
Julian J. Faraway (2014). Linear Models with R. Second edition.
Chapman\& Hall/CRC.
Simon N. Wood (2006). Generalized Additive Models; An introduction with R.
Chapman\& Hall/CRC.
Jiří Anděl (2005). Základy matematické statistiky.
Matfyzpress.

I would like to thank Professor Victor Panaretos for kindly sharing his teaching experience and course materials for his course on Regression at the Swiss Federal Institute of Technology in Lausanne. I would also like to thank my students for their feedback on various bits and pieces of these notes.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Statistics. 5
1.3 Data analysis in practice 10
1.4 Descriptive statistics 12
1.4.1 Types of variables 12
1.4.2 Relationships between variables 15
2 Linear algebra essentials 20
2.1 The problem 20
2.1.1 Linear model 20
2.1.2 Task for this chapter 22
2.2 Linear mapping 23
2.2.1 Associated subspaces 24
2.2.2 Orthogonality 25
2.3 Matrix decompositions 26
2.3.1 Eigen-decomposition 26
2.3.2 Singular value decomposition 28
2.3.3 QR decomposition 32
2.4 Pseudoinverse 32
2.4.1 Moore-Penrose pseudoinverse 32
2.5 Orthogonal projection 33
2.6 Application 35
3 Normal distribution 37
3.1 The problem 37
3.1.1 Linear model 37
3.1.2 Task for this chapter 38
3.2 Univariate normal distribution 39
3.2.1 Definition 39
3.2.2 Properties 39
3.2.3 Related distributions 40
3.3 Multivariate normal distribution 42
3.3.1 Definition 42
3.3.2 Properties 43
3.3.3 Related distributions 46
4 Linear model 47
4.1 The problem 47
4.1.1 Linear model 47
4.1.2 Task for this chapter 48
4.2 Estimating $\boldsymbol{\beta}$ 49
4.2.1 Orthogonal projection 49
4.2.2 Least squares 50
4.2.3 Computing $\boldsymbol{\beta}$ 51
4.3 Quality of estimation 53
4.3.1 Gauss-Markov theorem 53
4.4 Estimating σ^{2} 54
4.4.1 Estimating σ^{2} 54
4.5 Quality of model fit 54
4.5.1 Coefficient of determination 54
5 Normal linear model 56
5.1 The problem 56
5.1.1 Normal linear model 56
5.1.2 Task for this chapter 57
5.2 Estimating $\boldsymbol{\beta}$ and σ^{2} 58
5.2.1 Likelihood 58
5.2.2 Matrix derivatives 59
5.2.3 Maximizing the likelihood 60
5.3 Distribution 61
5.3.1 Distribution of the MLE 61
5.4 Summary 63
5.4.1 Estimation in the normal linear model 63
6 Inference in normal linear model 64
6.1 The problem 64
6.1.1 Normal linear model 64
6.1.2 Task for this chapter 65
6.2 Estimators \& distributions 66
6.2.1 Estimators 66
6.2.2 Distributions 66
6.3 Confidence intervals 67
6.4 Prediction 68
6.5 Confidence bands 70
6.6 Testing hypotheses 70
6.6.1 Simple hypothesis 70
6.6.2 Composite hypothesis 71
6.7 Interpretation 72
7 Model selection 75
7.1 The problem 75
7.1.1 Normal linear model 75
7.1.2 Task for this chapter 77
7.2 Why consider various models? 77
7.2.1 Should we leave out covariates that appear unnecessary? 77
7.2.2 What is the right form of the dependence on covariates? 79
7.3 Nested models 81
7.4 Selecting the model 85
7.4.1 Model selection tools 85
7.4.2 Model selection strategies 87
8 Model diagnostics 90
8.1 The problem 90
8.1.1 Normal linear model 90
8.1.2 Task for this chapter 91
8.2 Random errors and residuals 92
8.3 Checking the assumptions 94
8.3.1 General principles 94
8.3.2 Assumptions on the expectation 95
8.3.3 Assumptions on the variance 97
8.3.4 Assumptions on the distribution 102
8.4 Influential and unusual observations 103
8.4.1 Observations to look at 103
9 Reduced-rank design matrix and multicolllinearity 106
9.1 The problem 106
9.1.1 Normal linear model 106
9.1.2 Task for this chapter 108
9.2 Rank-deficient design matrix 108
9.2.1 Rank-deficient design matrix 108
9.2.2 Identifiability 111
9.2.3 Choice of the solution 112
9.3 Multicollinearity 115
10 Miscellanea and recap 119
10.1 The problem 119
10.1.1 Normal linear model 119
10.1.2 Task for this chapter 121
10.2 Linear regression in practice 121
10.2.1 Linear regression in practice 121
10.3 Notes on interpretation 122
10.3.1 Notes on the explanation 122
10.3.2 Notes on the prediction. 124
10.4 Transformations 125
10.4.1 Transformations 125
10.5 Concluding remarks 126
10.5.1 Reflection 126

Chapter 1

Introduction

1.1 Motivation

Is eating chocolate good for our health?

Effects of chocolate

- it has been suggested that chocolate consumption
\triangleright is beneficial to cardiovascular health (effects on "bad" cholesterol, blood pressure, stroke, ...)
\triangleright lowers the risk of diabetes
\triangleright improves cognitive function \& reduces memory decline
$\triangleright \ldots$
- but it has also been suggested that chocolate consumption
\triangleright leads to obesity (risk for cardiovascular problems, diabetes)
\triangleright leads to dental problems
\triangleright decreases bone density
$\triangleright \ldots$
- should be eaten in moderation ...

It's an uncertain world ...

- How much of
\triangleright chocolate and other goodies is good for our health?
\triangleright levels of bacteria, fertilizers, chemicals, ... is safe?
- What is the right size for
\triangleright the height of a dam?
\triangleright insurance premium?
\triangleright mortgage interest?
- What is
\triangleright the average salary?
\triangleright public opinion on ...?
\triangleright results in upcoming elections?

Sources of uncertainty

- we do not fully understand the phenomenon
\triangleright human body
\triangleright nature
- we do not know the future
\triangleright occurrence and size of a flood
\triangleright occurrence and size of insurance claims
\triangleright level of inflation
- we do not collect complete data
\triangleright average salary
\triangleright public opinion
- measurement error, human factor, ...

Statistics is all around us

- statistics is used to quantify the uncertainty
- Strategy

1. build a mathematical model, i.e. define
\triangleright what is known
\square what is uncertain
2. build a probabilistic model for what is uncertain
3. use probability calculus to draw conclusions
4. "translate" back to the original problem (interpret the results)

- uncertainty at the beginning \rightarrow imperfect answers at the end
- statistics is used for quantifying uncertainty,
not for getting rid of it

Notation

- random variable X, Y
\triangleright (náhodná veličina)
- random vector/matrix \mathbf{X}, \mathbf{Y}
\triangleright (náhodný vektor/matice)
- density/probability mass function f
\triangleright (hustota/pravděpodobnostní funkce)
- parameters θ, β, normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$
\triangleright (parametry, normální rozdělení)
- expectation E X, E X
\triangleright (střední hodnota)
- variance/covariance/variance-covariance matrix
$\operatorname{Var} X, \operatorname{Cov}(X, Y), \operatorname{Var} \mathbf{X}$
$\triangleright($ rozptyl/kovariance/kovarianční matice)

$$
\operatorname{Var} \mathbf{X}=\left(\begin{array}{cccc}
\operatorname{Var} X_{1} & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var} X_{2} & \ldots & \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\operatorname{Cov}\left(X_{1}, X_{n}\right) & \operatorname{Cov}\left(X_{2}, X_{n}\right) & \ldots & \operatorname{Var} X_{n}
\end{array}\right)
$$

Statistician's TODO list

1. identify right questions
2. collect relevant data x_{1}, \ldots, x_{n}
3. think of them as realisations of random variables X_{1}, \ldots, X_{n} with distributions (densities/frequency functions) f_{1}, \ldots, f_{n}
where f_{i} is in fact $f_{i}(x, \theta)$
4. estimate θ /make inference about θ
5. use the results to answer the questions

Example

1. Does consuming [amount of] chocolate decrease blood pressure [type, measurement]?

- Is chocolate good for our health?

2. design a trial, collect participants' blood pressures x_{1}, \ldots, x_{n}
3. suppose e.g. that $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma^{2}\right)$

- μ_{i} : function of eating [amount of] chocolate, age, gender, ...
- e.g. $\mu_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}$
- $x_{i, 1}= \begin{cases}1 & \text { if the person eats [amount of] chocolate } \\ 0 & \text { otherwise }\end{cases}$

4. test $H_{0}: \beta_{1} \geq 0$ versus $H_{1}: \beta_{1}<0$
5. if we reject H_{0} in favour of H_{1} at $\alpha \%$ level, we have shown that at $\alpha \%$ level consuming [amount of] chocolate is associated with a lower blood pressure [type, measurement]

- if we do not reject H_{0} in favour of H_{1} at $\alpha \%$ level, we have not shown that at $\alpha \%$ level consuming [amount of] chocolate is associated with a lower blood pressure [type, measurement]

Linear model

- model: $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}$
\triangleright matrix notation: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright assumptions: $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}, \operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$
* then $\mathbf{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}, \operatorname{Var} \mathbf{Y}=\sigma^{2} \mathbf{I}$
\triangleright we often assume that $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* then $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$

० parameter: $\boldsymbol{\theta}=\left(\beta_{0}, \ldots, \beta_{k}, \sigma^{2}\right)^{\top}=\left(\boldsymbol{\beta}^{\top}, \sigma^{2}\right)^{\top}$
\triangleright estimation (point, interval)
\triangleright testing
\triangleright interpretation

1.2 Statistics

Example

1. Does consuming [amount of] chocolate decrease blood pressure [type, measurement]? - Is chocolate good for our health?
2. design a trial, collect participants' blood pressures x_{1}, \ldots, x_{n}
3. suppose e.g. that $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma^{2}\right)$

- μ_{i} : function of eating [amount of] chocolate, age, gender, \ldots
- $\mu_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}$
- $x_{i, 1}= \begin{cases}1 & \text { if the person eats [amount of] chocolate } \\ 0 & \text { otherwise }\end{cases}$

4. test $H_{0}: \beta_{1} \geq 0$ versus $H_{1}: \beta_{1}<0$
5. if we reject H_{0} in favour of H_{1} at $\alpha \%$ level, we have shown that at $\alpha \%$ level consuming [amount of] chocolate is associated with a lower blood pressure [type, measurement]

- if we do not reject H_{0} in favour of H_{1} at $\alpha \%$ level, we have not shown that at $\alpha \%$ level consuming [amount of] chocolate is associated with a lower blood pressure [type, measurement]

Linear model

- model: $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}$
\triangleright matrix notation: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright assumptions: $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}, \operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$
* then $\mathbf{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}, \operatorname{Var} \mathbf{Y}=\sigma^{2} \mathbf{I}$
\triangleright we often assume that $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* then $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
- parameter: $\boldsymbol{\theta}=\left(\beta_{0}, \ldots, \beta_{k}, \sigma^{2}\right)^{\top}=\left(\boldsymbol{\beta}^{\top}, \sigma^{2}\right)^{\top}$
\triangleright estimation (point, interval)
\triangleright testing
\triangleright interpretation
Parameter estimation
- we observe data with a distribution depending on a parameter
- we would like to use the data to estimate the value of the parameter
- estimator is a function of data (only!)
- for a one-dimensional parameter θ
\triangleright point estimator $\hat{\theta}$
\triangleright confidence interval $\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$
- for a vector parameter $\boldsymbol{\theta}$
\triangleright point estimator $\hat{\boldsymbol{\theta}}$
\triangleright confidence region

Methods of point estimation

1. method of moments

- "equate" theoretical and empirical moments

$$
\begin{aligned}
& \triangleright \widehat{\mathrm{EY}}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \\
& \triangleright \widehat{\mathrm{E} Y^{2}}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2} \\
& \triangleright \ldots
\end{aligned}
$$

2. maximum likelihood estimation

- maximize the likelihood with respect to θ
- likelihood
\triangleright probability of observing the data at hand under a given model
- very popular thanks to certain asymptotic optimality properties

3. other methods exist and we will see some

Maximum likelihood estimation

- $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind. }}{\sim} f_{i}(y, \boldsymbol{\theta})$
- likelihood $L\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f_{i}\left(y_{i} ; \boldsymbol{\theta}\right)$
- \log-likelihood $\ell\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=\sum_{i=1}^{n} \log \left\{f_{i}\left(y_{i} ; \boldsymbol{\theta}\right)\right\}$
- MLE $\hat{\boldsymbol{\theta}}_{\text {MLE }}=\operatorname{argmax}_{\boldsymbol{\theta}} \ell\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)$
- usual computation
\triangleright score function $\mathbf{U}\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=\sum_{i=1}^{n} \frac{\partial}{\partial \boldsymbol{\theta}} \log \left\{f_{i}\left(y_{i} ; \boldsymbol{\theta}\right)\right\}$
\triangleright score equation $\mathbf{U}\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=\mathbf{0}$
\triangleright find the solution $\hat{\boldsymbol{\theta}}_{\text {MLE }}$ of the score equation
\triangleright observed Fisher information matrix $\mathbf{J}\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}} \log \left\{f_{i}\left(y_{i} ; \boldsymbol{\theta}\right)\right\}$
\triangleright show that $\mathbf{J}\left(y_{1}, \ldots, y_{n} ; \hat{\boldsymbol{\theta}}_{\text {MLE }}\right)$ is positive definite
\triangleright Fisher information matrix (under regularity conditions) $\mathbf{I}\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)=\mathrm{E}_{\theta} \mathbf{J}\left(y_{1}, \ldots, y_{n} ; \boldsymbol{\theta}\right)$

Properties of estimators

- parameter θ is a number but estimator $\hat{\theta}$ is a random variable
$\triangleright \hat{\theta}$ has a distribution
\triangleright important distribution summaries: $\mathrm{E} \hat{\theta}, \operatorname{Var} \hat{\theta}$

- ideally, estimation improves with sample size
- let $\hat{\theta}_{n}$ be an estimator of θ based on n data points
- we define desirable properties for the sequence $\left\{\hat{\theta}_{n}\right\}_{n \in \mathbb{N}}$
- for a sequence of estimators $\hat{\theta}_{n}$ of a parameter θ

1. unbiasedness

$$
\triangleright \mathrm{E}_{\theta} \hat{\theta}_{n}=\theta \forall \theta
$$

2. consistency
$\triangleright \hat{\theta}_{n} \rightarrow \theta$ as $n \rightarrow \infty$ in $\mathrm{P}_{\theta} \forall \theta$ or a.s.
3. usual asymptotic normality
$\triangleright \sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightarrow \mathrm{N}(0, V(\theta))$ as $n \rightarrow \infty$ in distribution
4. efficiency
\triangleright "small" $\operatorname{Var} \hat{\theta}$

Properties of MLE

- under regularity conditions
\triangleright consistency
* $\hat{\theta}_{\text {MLE }, n} \rightarrow \theta$ a.s. as $n \rightarrow \infty$
\triangleright asymptotic normality
* $\sqrt{n}\left(\hat{\theta}_{\mathrm{MLE}, n}-\theta\right) \rightarrow \mathrm{N}(0, V(\theta))$ as $n \rightarrow \infty$ in distribution
$\triangleright \underline{\text { asymptotic efficiency }}$
* $V(\theta)$ is the smallest possible
\triangleright bias
* $\hat{\theta}_{M L E}$ is often biased, with bias decreasing with n

Interval estimation

- parameter θ is a number but estimator $\hat{\theta}$ is a random variable
- confidence interval $\left(\hat{\theta}_{\mathrm{L}}, \hat{\theta}_{\mathrm{U}}\right)$ is a pair of random variables
- $(1-\alpha) \%$ confidence interval satisfies that
$\triangleright \mathrm{P}_{\theta}\left\{\theta \in\left(\hat{\theta}_{\mathrm{L}}, \hat{\theta}_{\mathrm{U}}\right)\right\}=1-\alpha \forall \theta$
- note that randomness is in the borders, not in θ

- properties
\triangleright coverage $1-\alpha$
\triangleright length $\hat{\theta}_{\mathrm{U}}-\hat{\theta}_{\mathrm{L}}$
\triangleright ideally: a short interval with high coverage

Testing hypotheses

- we observe data with a distribution depending on a parameter
- we would like to use the data to answer questions about the parameter
\triangleright is $\theta>0, \theta<0, \theta=1, \ldots$?
- to do so, we can test hypotheses about the parameter
$\triangleright H_{0}: \theta \geq 0$ vs. $H_{1}: \theta<0$
$\triangleright H_{0}: \theta=1$ vs. $H_{1}: \theta \neq 1$
$\triangleright \ldots$
- testing has two possible results

1. we reject H_{0} in favour of H_{1}
\triangleright we can say we have shown H_{1} (at the level α)
2. we do not reject H_{0} in favour of H_{1}
\triangleright we can say we have not shown H_{1} (at the level α)
$\triangleright!!!$ we cannot say we have shown $H_{0}!!!$

- the roles of H_{0} and H_{1} are not symmetric
- testing has two possible results

1. we reject H_{0} in favour of H_{1}
2. we do not reject H_{0} in favour of H_{1}

- we can reach a wrong conclusion in two ways

1. when H_{0} is true and we reject H_{0} in favour of H_{1}
$\triangleright{ }^{\prime} \mathrm{P}_{H_{0}}\left(\right.$ reject $\left.H_{0}\right)=\alpha$ "
$\triangleright \alpha$: type I. error, level of the test
2. when H_{1} is true and we do not reject H_{0} in favour of H_{1}
$\triangleright " 1-\mathrm{P}_{H_{1}}\left(\right.$ reject $\left.H_{0}\right)=\beta$ "
$\triangleright \beta$: type II. error
$\triangleright 1-\beta$: power of the test

- often impossible to keep both errors low at the same time
- when choosing a test, we keep the level α fixed and try to maximize the power β
- the roles of H_{0} and H_{1} are not symmetric
- the roles of H_{0} and H_{1} are not symmetric
- it is important to choose a good H_{0}, H_{1} pair
- testing
$\triangleright H_{0}: \theta \geq 0$ vs. $H_{1}: \theta<0$
$\triangleright H_{0}: \theta \leq 0$ vs. $H_{1}: \theta>0$
$\triangleright H_{0}: \theta=0$ vs. $H_{1}: \theta \neq 0$
answer different questions

1.3 Data analysis in practice

Example: fev data

- from: http://www.statsci.org/data/general/fev.html
- question: association between the FEV[1] and Smoking, corrected for Age[years], Height[cm] and Gender

	FEV	Age	Height	Gender	Smoking
- data:	1.708	9	144.8	Female	Non
1.724	8	171.5	Female	Non	
	1.720	7	138.4	Female	Non
1.558	9	134.6	Male	Non	
\ldots	\ldots	\ldots	\ldots	\ldots	
	3.727	15	172.7	Male	Current
2.853	18	152.4	Female	Non	
2.795	16	160.0	Female	Current	
3.211	15	168.9	Female	Non	

Getting the data to R

- data fev.txt
- for *.txt files:
\triangleright read.table(...)
- for *.csv files (from Excel)

```
\triangleright read.csv(...)
```

- read the data and look at them

```
> fev <- read.table("fev.txt", header=TRUE)
>
> class(fev)
[1] "data.frame"
> dim(fev)
[1] 654 6
> names(fev)
[1] "ID" "Age" "FEV" "Height" "Sex" "Smoker"
>
> fev[1:3, ]
    ID Age FEV Height Sex Smoker
1 301 9 1.708 57.0 Female Non
2451 8 1.724 67.5 Female Non
3501 7 1.720 54.5 Female Non
>
> fev <- fev[, -1]
```


Before we fit a model to data

- before we do the analysis, we need to
\triangleright get to know the variables
\triangleright get to understand the relationships among the variables
\triangleright identify possible problems for the analysis
\triangleright possibly spot obvious mistakes in data
\Rightarrow first step in applied data analysis: descriptive statistics
\triangleright informal data descriptions (no model, no inference)
* numerical and graphical
* their choice depends on the type of variable(s) of interest

First look at the variables

Age	FEV	Height	Sex
Min. : 3.000	Min. 00.791	Min. $: 46.00$	Female:318
1st Qu.: 8.000	1st Qu.:1.981	1st Qu.:57.00	Male :336
Median : 10.000	Median :2.547	Median :61.50	
Mean : 9.931	Mean $: 2.637$	Mean : 61.14	
3rd Qu.:12.000	3rd Qu.:3.119	3rd Qu.:65.50	
Max. :19.000	Max. :5.793	Max. :74.00	
Smoker			
Current: 65			
Non :589			

First look at the relationships between the variables

```
> pairs(fev, col="deepskyblue", pch=19)
```


1.4 Descriptive statistics

1.4.1 Types of variables

Types of variables

1. in mathematical statistics:

- continuous (uncountably many possible values)
- discrete (at most countably many possible values)

2. in applied statistics:

- quantitative
- categorical
\triangleright nominal
\triangleright ordinal

3. in R :

- numeric
- \triangleright factor
\triangleright ordered factor

Quantitative variable

- distribution
- characteristics of location
\triangleright mean
\triangleright maximum, minimum
\triangleright quantiles, in particular quartiles and median

```
> summary(fev$FEV)
            Min. 1st Qu. Median Mean 3rd Qu. Max.
\begin{tabular}{llllll}
0.791 & 1.981 & 2.548 & 2.637 & 3.118 & 5.793
\end{tabular}
```

- characteristics of dispersion
\triangleright standard deviation
\triangleright interquartile range
> sd(fev\$FEV)
[1] 0.8670591
> IQR(fev\$FEV)
[1] 1.1375

Graphics for quantitative variable

> hist (fev\$FEV, , freq=FALSE,

+ main="FEV", xlab="FEV [l]",
+ col="gold", border="navyblue")
$>$
> boxplot(fev\$FEV, horizontal=TRUE,
+ main="FEV", xlab="FEV [l]",
+ col="gold", border="navyblue", pch=19)

Categorical variable

- distribution
\triangleright counts of observations per category
\triangleright percentage of observations per category
\triangleright cumulative percentage of observations per category (for ordinal variables)
- characteristics
\triangleright modus

```
> summary(fev$Sex)
```

Female Male
$318 \quad 336$
> prop.table(table(fev\$Sex))
Female Male
0.48623850 .5137615
> cumsum(prop.table(table(fev\$Sex)))
Female Male
0.48623851 .0000000
> \# not so interesting for a nominal variable

Graphics for categorical variable

```
> barplot(100*prop.table(table(fev$Sex)),
+ main="Gender distribution", ylab="Percentage",
+ col=c("gold", "navyblue"), border="navyblue")
>
> barplot(100*matrix(prop.table(table(fev$Sex)), nrow=2, ncol=1),
+ main="Gender distribution", ylab="(Cumulative) percentage",
+ col=c("gold", "navyblue"), border="navyblue")
```

```
text(x=0.7, y=4, labels="F",
+ cex=2, pos=3)
> text(x=0.7, y=55, labels="M",
+ cex=2, pos=3)
>
> pie(summary(fev$Sex),
+ main="Gender distribution",
+ col=c("gold", "navyblue"), border="navyblue")
```


Gender distribution

1.4.2 Relationships between variables

Quantitative vs quantitative

```
> plot(fev$FEV~}\mp@subsup{f}{ev$Age,}{
+ main="FEV by age",
+ ylab="FEV [l]", xlab="Age [y]",
+ pch=19, col="deepskyblue")
> lines(lowess(fev$FEV~fev$Age),
+ lwd=3, col="navyblue")
```


Quantitative vs categorical

```
    boxplot(fev$FEV~}\mp@subsup{|}{}{~
+ main="FEV", ylab="FEV [l]",
+ col="gold", border="navyblue", pch=19)
>
> par(mfrow=c(1, 2))
> hist(fev$FEV[fev$Sex=="Female"], freq=FALSE,
+ xlim=c(min(fev$FEV)-1, max(fev$FEV)+1), ylim=c(0, 0.48),
+ main="FEV", xlab="FEV [l]",
+ col="gold", border="navyblue")
> hist(fev$FEV[fev$Sex=="Male"], freq=FALSE,
+ xlim=c(min(fev$FEV)-1, max(fev$FEV)+1), ylim=c(0, 0.48),
+ main="FEV", xlab="FEV [l]",
+ col="gold", border="navyblue")
```


Categorical vs categorical

```
> table(fev$Smoker, fev$Sex)
        Female Male
    Current 39 26
    Non 279 310
>
> prop.table(table(fev$Smoker, fev$Sex),
+ margin=1
+ )
        Female Male
    Current 0.6000000 0.4000000
    Non 0.4736842 0.5263158
>
> prop.table(table(fev$Smoker, fev$Sex),
+ margin=2
+ )
    Female Male
    Current 0.12264151 0.07738095
    Non 0.87735849 0.92261905
```

```
> prop.table(table(fev$Smoker, fev$Sex),
+ margin=2
+ )
                    Female Male
    Current 0.12264151 0.07738095
    Non 0.87735849 0.92261905
>
> barplot(height=prop.table(table(fev$Smoker, fev$Sex),
                margin=2), beside=F,
        ylab="Percentage", xlab="Gender", main="Smoking by gender",
        col=c("gold", "navyblue")
        )
> text(x=1.2*c(0:2)+0.7, y=0, labels="Current",
+ col="navyblue", cex=2, pos=3)
> text(x=1.2*c(0:2)+0.7, y=0.8, labels="Non",
+ col="gold", cex=2, pos=3)
```



```
> prop.table(table(fev$Smoker, fev$Sex),
```

> prop.table(table(fev$Smoker, fev$Sex),

+ margin=2
+ margin=2
+)
+)
Female Male
Female Male
Current 0.12264151 0.07738095
Current 0.12264151 0.07738095
Non 0.87735849 0.92261905
Non 0.87735849 0.92261905
>
>
> barplot(height=prop.table(table(fev$Smoker, fev$Sex),
> barplot(height=prop.table(table(fev$Smoker, fev$Sex),
margin=2), beside=T,
margin=2), beside=T,
+ ylab="Percentage", xlab="Gender", main="Smoking by gender",
+ ylab="Percentage", xlab="Gender", main="Smoking by gender",
+ col=c("gold", "navyblue")
+ col=c("gold", "navyblue")
+)
+)
>
>
> legend(x=3.3, y=0.8, legend=c("Current", "Non"),
> legend(x=3.3, y=0.8, legend=c("Current", "Non"),
col=c("gold", "navyblue"), pch=15)

```
    col=c("gold", "navyblue"), pch=15)
```



```
> prop.table(table(fev$Sex, fev$Smoker),
+ margin=2
+ )
            Current Non
    Female 0.6000000 0.4736842
    Male 0.4000000 0.5263158
>
> barplot(height=prop.table(table(fev$Sex, fev$Smoker),
+ margin=2), beside=F,
+ ylab="Percentage", xlab="Smoking", main="Gender by smoking",
+ col=c("gold", "navyblue")
+ )
> text(x=1.2*c(0:2)+0.7, y=0.2, labels="Female", col="navyblue",
+ cex=2, pos=3)
> text(x=1.2*c(0:2)+0.7, y=0.75, labels="Male", col="gold",
+ cex=2, pos=3)
```



```
> prop.table(table(fev$Sex, fev$Smoker),
+ margin=2
+ )
    Current Non
    Female 0.6000000 0.4736842
    Male 0.4000000 0.5263158
>
> barplot(height=prop.table(table(fev$Sex, fev$Smoker),
```

```
+ margin=2), beside=T,
+ ylab="Percentage", xlab="Smoking", main="Gender by smoking",
+ col=c("gold", "navyblue")
+ )
>
> legend(x=3, y=0.6, legend=c("Female", "Male"),
+ col=c("gold", "navyblue"), pch=15)
```


Chapter 2

Linear algebra essentials

2.1 The problem

2.1.1 Linear model

Chocolatey example

- Does consuming [amount of] chocolate decrease blood pressure [type, measurement]?
- collect blood pressures x_{1}, \ldots, x_{n}
- suppose that $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma^{2}\right)$
$\triangleright \mu_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}$
$\triangleright x_{i, 1}= \begin{cases}1 & \text { if the person eats [amount of] chocolate } \\ 0 & \text { otherwise }\end{cases}$
$\triangleright x_{i, j}, j \in\{2, \ldots, k\}$: age, gender, BMI, \ldots
- test $H_{0}: \beta_{1} \geq 0$ versus $H_{1}: \beta_{1}<0$ to answer the question

Linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision
- we often assume that $\varepsilon_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$

Linear model in the matrix form

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
- let

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{n}
\end{array}\right), \mathbf{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, k} \\
1 & x_{2,1} & \ldots & x_{2, k} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, k}
\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\ldots \\
\beta_{k}
\end{array}\right), \boldsymbol{\varepsilon}=\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{n}
\end{array}\right)
$$

- then $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$ and often $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
$\triangleright \mathrm{X}$: design matrix
* (regresní matice, matice plánu)
- let $p=k+1$
o then $\underbrace{\mathbf{Y}}_{n \times 1}=\underbrace{\mathbf{X}}_{n \times p} \underbrace{\boldsymbol{\beta}}_{p \times 1}+\underbrace{\boldsymbol{\varepsilon}}_{n \times 1}$
- we assume that $n>p$ (and often think about $n \rightarrow \infty, p$ fixed)

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure[mmHg] and age[years], weight $[\mathrm{kg}]$, body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats $/ \mathrm{min}$], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

\circ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

2.1.2 Task for this chapter

Design matrix

- model:

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, k} \\
1 & x_{2,1} & \ldots & x_{2, k} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, k}
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{n}
\end{array}\right)
$$

- design matrix:

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, k} \\
1 & x_{2,1} & \ldots & x_{2, k} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, k}
\end{array}\right)=\left(\mathbf{1}\left|\mathbf{x}_{, 1}\right| \mathbf{x}_{, 2}|\ldots| \mathbf{x}_{, k}\right)=\left(\begin{array}{c}
\mathbf{x}_{1,} \\
\mathbf{x}_{2} \\
\ldots \\
\mathbf{x}_{n,}
\end{array}\right)
$$

$\triangleright k$ covariates and $\mathbf{1}$ are the p columns of \mathbf{X}
$\triangleright n$ observations are the n rows of \mathbf{X}

Matrix algebra in a linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- coefficient vector $\boldsymbol{\beta}$
\triangleright fixed but unknown
$\triangleright p \times 1$ matrix
$\triangleright \boldsymbol{\beta}^{\top}$ defines a mapping $\boldsymbol{\beta}^{\top}: \mathbb{R}^{p} \mapsto \mathbb{R}$

$$
\mathbf{x}_{i,} \in \mathbb{R}^{p} \rightsquigarrow \mathrm{E} \mathbf{Y}_{i} \in \mathbb{R}
$$

- design matrix \mathbf{X}
\triangleright fixed and known
$\triangleright n \times p$ matrix
\triangleright defines a mapping $\mathbf{X}: \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$

$$
\boldsymbol{\beta} \in \mathbb{R}^{p} \rightsquigarrow \mathrm{E} \mathbf{Y} \in \mathbb{R}^{n}
$$

\triangleright idea: when estimating $\boldsymbol{\beta}$, how about choosing $\widehat{\boldsymbol{\beta}}$ so that \mathbf{X} maps $\hat{\boldsymbol{\beta}}$ as close to Y as possible?

2.2 Linear mapping

Linear mapping from \mathbb{R}^{p} to \mathbb{R}^{n}

- function $f: \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$ such that
$\triangleright f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y}) \ldots$ additivity
$\triangleright f(\alpha \mathbf{x})=\alpha f(\mathbf{x}) \ldots$ homogeneity
- described by an $n \times p$ matrix $\mathbf{A}: f(\mathbf{x})=\mathbf{A x}$
\hookrightarrow idea:
$\triangleright \forall \mathbf{x} \in \mathbb{R}^{p}$ can be written as $\mathbf{x}=\sum_{i=1}^{p} c_{i} \mathbf{v}_{i}$,
where $\mathcal{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a basis of \mathbb{R}^{p}
$\hookrightarrow f(\mathbf{x})$ is determined by $\left\{f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{p}\right)\right\}$
because $f(\mathbf{x})=f\left(\sum_{i=1}^{p} c_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{p} c_{i} f\left(\mathbf{v}_{i}\right)$
$\triangleright \forall \mathbf{y} \in \mathbb{R}^{n}$ can be written as $\mathbf{y}=\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$,
where $\mathcal{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a basis of \mathbb{R}^{n}
\hookrightarrow just need to write each $f\left(\mathbf{v}_{i}\right)$ in terms of \mathcal{W}
\triangleright free choice of $(\mathcal{W}, \mathcal{V}) \rightarrow$ various \mathbf{A} 's representing the same f
- operations $f_{1} \circ f_{2}, f_{1}+f_{2}, \alpha f$
\triangleright result into linear mappings
represented by $\mathbf{A}_{1} \mathbf{A}_{2}, \mathbf{A}_{1}+\mathbf{A}_{2}, \alpha \mathbf{A}$

2.2.1 Associated subspaces

Kernel and image

- kernel (nullspace)
$\triangleright \operatorname{ker}(\mathbf{A})=\operatorname{ker}(f)=\left\{\mathbf{x} \in \mathbb{R}^{p} ; \mathbf{A x}=\mathbf{0}\right\}$

$$
=\left\{\mathbf{x} \in \mathbb{R}^{p} ; f(\mathbf{x})=\mathbf{0}\right\}
$$

\triangleright subspace of $\mathbb{R}^{p}, \operatorname{dim}(\operatorname{ker}(\mathbf{A}))$: nullity of \mathbf{A}

- image (range, column space)
$\triangleright \operatorname{im}(\mathbf{A})=\operatorname{im}(f)=\left\{\mathbf{y} \in \mathbb{R}^{n} ; \exists \mathbf{x} \in \mathbb{R}^{p}: \mathbf{A} \mathbf{x}=\mathbf{y}\right\}$
$=\left\{\mathbf{y} \in \mathbb{R}^{n} ; \exists \mathbf{x} \in \mathbb{R}^{p}: f(\mathbf{x})=\mathbf{y}\right\}$
\triangleright subspace of $\mathbb{R}^{n}, \operatorname{dim}(\mathrm{im}(\mathbf{A}))$: rank of \mathbf{A}
- schematically

- rank nullity theorem: $\operatorname{dim}(\operatorname{ker}(\mathbf{A}))+\operatorname{dim}(\operatorname{im}(\mathbf{A}))=p$

Four fundamental subspaces associated to A

- kernel and image of \mathbf{A}
\triangleright column space of $\mathbf{A}: \operatorname{im}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{n} ; \exists \mathbf{x} \in \mathbb{R}^{p}: \mathbf{A x}=\mathbf{y}\right\}$
* $\operatorname{dim}(\operatorname{im}(\mathbf{A}))=\operatorname{rank}(\mathbf{A})$
\triangleright kernel of $\mathbf{A}: \operatorname{ker}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{p} ; \mathbf{A x}=\mathbf{0}\right\}$
* $\operatorname{dim}(\operatorname{ker}(\mathbf{A}))=p-\operatorname{rank}(\mathbf{A})$
- kernel and image of \mathbf{A}^{\top}
\triangleright column space of $\mathbf{A}^{\top}: \operatorname{im}\left(\mathbf{A}^{\top}\right):$ coimage of \mathbf{A}
$* \operatorname{dim}\left(\operatorname{im}\left(\mathbf{A}^{\top}\right)\right)=\operatorname{rank}\left(\mathbf{A}^{\top}\right)=\operatorname{rank}(\mathbf{A})$
* row space of A
\triangleright kernel of $\mathbf{A}^{\top}: \operatorname{ker}\left(\mathbf{A}^{\top}\right)$: cokernel, left nullspace of \mathbf{A}
$* \operatorname{dim}\left(\operatorname{ker}\left(\mathbf{A}^{\top}\right)\right)=n-\operatorname{rank}(\mathbf{A}):$ corank of \mathbf{A}

2.2.2 Orthogonality

Inner product on \mathbb{R}^{n}

- dot product:

$$
\triangleright\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{\top} \mathbf{x}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- associated norm (length of \mathbf{x}):
$\triangleright\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{y}\rangle}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- angle θ between \mathbf{x} and \mathbf{y} :

$$
\triangleright \cos \theta=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{v}\|}
$$

- orthogonality for $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$:
$\triangleright\langle\mathbf{x}, \mathbf{y}\rangle=0$
- orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^{n} :
$\triangleright W^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{n} ;\langle\mathbf{x}, \mathbf{y}\rangle=0\right.$ for every $\left.\mathbf{x} \in W\right\}$
* W^{\perp} is a subspace of \mathbb{R}^{n}
* $W^{\perp} \cap W=\{\mathbf{0}\}$
* $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n$
- orthogonality between fundamental subspaces associated to A
$\triangleright \operatorname{ker}(\mathbf{A})=\left(\operatorname{im}\left(\mathbf{A}^{\top}\right)\right)^{\perp}\left(\right.$ in $\left.\mathbb{R}^{p}\right)$
$\triangleright \operatorname{ker}\left(\mathbf{A}^{\top}\right)=(\operatorname{im}(\mathbf{A}))^{\perp}\left(\right.$ in $\left.\mathbb{R}^{n}\right)$

Orthogonal columns

- matrix with orthogonal columns:
$\triangleright \mathbf{U}=\left(\mathbf{u}_{, 1}\left|\mathbf{u}_{, 2}\right| \ldots \mid \mathbf{u}_{, p}\right)$ $<\mathbf{u}_{, i}, \mathbf{u}_{, j}>=0$ for $i \neq j$
- matrix with orthonormal columns:
$\triangleright \mathbf{U}=\left(\mathbf{u}_{, 1}\left|\mathbf{u}_{, 2}\right| \ldots \mid \mathbf{u}_{, p}\right)$
$<\mathbf{u}_{i,}, \mathbf{u}_{, j}>=0$ for $i \neq j$
$\left\|\mathbf{u}_{, i}\right\|=1$ for $i \in\{1, \ldots, p\}$
$\triangleright \mathbf{U}^{\top} \mathbf{U}=\mathbf{I} \Rightarrow$ mapping $\mathbf{U}: \mathbf{x} \mapsto \mathbf{U x}$ preserves
* inner product
* norm
* angles
* distances

Orthogonal matrix

- square matrix \mathbf{R} with orthonormal columns (and rows)
$\triangleright \mathbf{R}^{\top} \mathbf{R}=\mathbf{R R}^{\top}=\mathbf{I}$
i.e. $\mathbf{R}^{\top}=\mathbf{R}^{-1}$
- $\mathbf{R}^{-1}=\mathbf{R}^{\top}$ is also an orthogonal matrix
- product of orthogonal matrices is also an orthogonal matrix
- geometrically
\triangleright change of orthonormal basis (coordinate transformation)
\triangleright mapping \mathbf{R} : $\mathbf{x} \mapsto \mathbf{R x} \ldots$ rotation
* preserves the origin
* preserves angles
* preserves distances
* proper rotation
 if $\operatorname{det} \mathbf{R}=1$

2.3 Matrix decompositions

2.3.1 Eigen-decomposition
 Spectral decomposition (eigen-decomposition)

- let \mathbf{A} be a symmetric $p \times p$ matrix
\triangleright eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$
\triangleright eigenvectors $\mathbf{u}_{., 1}, \ldots, \mathbf{u}_{r, p}$
\triangleright everything real
$\triangleright \mathbf{A u}_{\mathrm{\rightharpoonup}, i}=\lambda_{i} \mathbf{u}_{\mathrm{r}, i}$
$\triangleright f$ elongates/shrinks $\mathbf{u}_{., i}$ by λ_{i}

- eigen-decomposition: $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$, where
$\triangleright \mathbf{U}=\left(\mathbf{u}_{., 1}\left|\mathbf{u}_{., 2}\right| \ldots \mid \mathbf{u}_{\imath, p}\right)$
* \mathbf{U} is $p \times p$ orthogonal matrix
$\triangleright \boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$
* $\boldsymbol{\Lambda}$ is $p \times p$ diagonal matrix
\triangleright convention
$* \lambda_{i}$ is the $i^{\text {th }}$ largest eigenvalue of \mathbf{A}
* $\mathbf{u}_{., i}$ is the eigenvector corresponding to λ_{i}

Geometry for $\mathbf{A} \succ 0$

2.3.2 Singular value decomposition Singular value decomposition (SVD)

- let \mathbf{A} be an $n \times p(n \geq p)$ rectangular matrix
\triangleright singular values $\sigma_{1}, \ldots, \sigma_{p}$
\triangleright left singular vectors $\mathbf{u}_{., 1}, \ldots, \mathbf{u}_{,, p}$
\triangleright right singular vectors $\mathbf{v}_{., 1}, \ldots, \mathbf{v}_{., p}$
$\triangleright \mathbf{A}_{., i}=\sigma_{i} \mathbf{u}_{, i i} \& \mathbf{A}^{\top} \mathbf{u}_{., i}=\sigma_{i} \mathbf{v}_{., i}$
\triangleright everything real, singular values non-negative
- SVD: $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, where
$\triangleright \mathbf{U}$ is $(n \times n)$ orthogonal
* first p columns of $\mathbf{U}: \mathbf{u}_{., 1}, \ldots, \mathbf{u}_{., p}$
$\triangleright \boldsymbol{\Sigma}(n \times p)$ diagonal * $\sigma_{1}, \ldots, \sigma_{p}$ on the diagonal of $\boldsymbol{\Sigma}$
$\triangleright \mathbf{V}$ is $(p \times p)$ orthogonal
* columns of $\mathbf{V}: \mathbf{v}_{., 1}, \ldots, \mathbf{v}_{\cdot, p}$
\triangleright convention: singular values in the descending order

Geometry for a square A

SVD and spectral decomposition

- SVD: rectangular matrix $\mathbf{A}(n \times p, n \geq p)$
\triangleright singular values and vectors $\left(\sigma_{1}, \mathbf{u}_{., 1}, \mathbf{v}_{., 1}\right), \ldots,\left(\sigma_{p}, \mathbf{u}_{., p}, \mathbf{v}_{., p}\right)$
$\triangleright \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, where
* \mathbf{U} is $(n \times n)$ and \mathbf{V} is $(p \times p)$, both orthogonal
* $\boldsymbol{\Sigma}(n \times p)$ diagonal with non-negative diagonal
- Spec. dec.: square symmetric matrix $\mathbf{A}(p \times p)$
\triangleright eigenvalues and eigenvectors $\left(\lambda_{1}, \mathbf{u}_{., 1}\right), \ldots,\left(\lambda_{p}, \mathbf{u}_{., p}\right)$
$\triangleright \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$, where
* \mathbf{U} is $(p \times p)$ orthogonal
* $\boldsymbol{\Lambda}(p \times p)$ diagonal
- for a square symmetric $\mathbf{A}, \mathbf{A} \succeq 0: \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- for a rectangular matrix $\mathbf{A}(n \times p, n \geq p), \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$
$\triangleright \mathbf{A}^{\top} \mathbf{A}=\mathbf{V} \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}^{\top} \mathbf{V}^{\top}(p \times p) \Rightarrow \mathbf{v}_{., i}$'s are eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$
$\triangleright \mathbf{A A}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \mathbf{U}^{\top}(n \times n) \Rightarrow \mathbf{u}_{\mathrm{t}, i}$'s are eigenvectors of $\mathbf{A} \mathbf{A}^{\top}$
$\triangleright \sigma_{i}$'s are square roots of non-zero λ_{i} 's of $\mathbf{A}^{\top} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\top}$

Reduced SVD's

- SVD: rectangular matrix $\mathbf{A}(n \times p, n \geq p)$
\triangleright singular values and vectors $\left(\sigma_{1}, \mathbf{u}_{., 1}, \mathbf{v}_{., 1}\right), \ldots,\left(\sigma_{p}, \mathbf{u}_{., p}, \mathbf{v}_{., p}\right)$
$\triangleright \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, where
* \mathbf{U} is $(n \times n)$ and \mathbf{V} is $(p \times p)$, both orthogonal
* $\boldsymbol{\Sigma}(n \times p)$ diagonal with non-negative diagonal
- if $n>p$
$\triangleright \mathbf{A}=\left(\mathbf{U}_{1} \mid \mathbf{U}_{2}\right)\left(\frac{\boldsymbol{\Sigma}_{1}}{\mathbf{0}}\right) \mathbf{V}^{\top}$
$\hookrightarrow \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}^{\top}$, where
* $\mathbf{U}_{1}(n \times p)$ with orthogonal columns
* $\boldsymbol{\Sigma}_{1}$ is $(p \times p)$
* thin SVD: $\mathbf{A}=\mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}^{\top}$
\triangleright if $r=\operatorname{rank}(\mathbf{A})<p, \boldsymbol{\Sigma}_{1}$ is $(r \times r) \ldots$ compact SVD
- SVD writes A as a sum of multiples of rank-one matrices:

$$
\mathbf{A}=\sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{., i} \mathbf{v}_{\cdot, i}^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{\cdot, i} \mathbf{v}_{\cdot, i}^{\top}
$$

Geometry

SVD and linear mapping

- SVD: rectangular matrix $\mathbf{A}(n \times p, n \geq p)$
\triangleright singular values and vectors $\left(\sigma_{1}, \mathbf{u}_{., 1}, \mathbf{v}_{., 1}\right), \ldots,\left(\sigma_{p}, \mathbf{u}_{., p}, \mathbf{v}_{., p}\right)$
$\triangleright \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, where
* \mathbf{U} and \mathbf{V} : orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{p} such that \mathbf{A} maps the $i^{\text {th }}$ basis vector of \mathbb{R}^{p} to a non-negative multiple of the $i^{\text {th }}$ basis vector of \mathbb{R}^{n}, and sends the left-over basis vectors to zero
- $\operatorname{ker}(\mathbf{A})$
\triangleright spanned by the $\mathbf{v}_{., i}$ corresponding to the null σ_{i}
- $\operatorname{im}(\mathbf{A})$
\triangleright spanned by the $\mathbf{u}_{., i}$ corresponding to the positive σ_{i}
- $\operatorname{dim}(\operatorname{ker}(\mathbf{A}))+\operatorname{dim}(\operatorname{im}(\mathbf{A}))=p$

2.3.3 QR decomposition

QR decomposition (factorization)

\circ let \mathbf{A} be a $p \times p$ matrix $\rightsquigarrow \mathbf{A}=\mathbf{Q R}$, where
$\triangleright \mathbf{Q}$ is $p \times p$ orthogonal
$\triangleright \mathbf{R}$ is $p \times p$ upper triangular

- let \mathbf{A} be an $n \times p(n \geq p)$ matrix $\rightsquigarrow \mathbf{A}=\mathbf{Q R}$, where
$\triangleright \mathbf{Q}$ is $n \times n$ orthogonal
$\triangleright \mathbf{R}$ is $n \times p$ upper triangular
- if $n>p$
$\triangleright \mathbf{A}=\left(\mathbf{Q}_{1} \mid \mathbf{Q}_{2}\right)\left(\frac{\mathbf{R}_{1}}{0}\right)=\mathbf{Q}_{1} \mathbf{R}_{1}$, where
* \mathbf{Q}_{1} is $n \times p$ with orthogonal columns
* \mathbf{R}_{1} is $p \times p$ upper triangular
$\triangleright \operatorname{rank}(\mathbf{A})=p \Rightarrow \operatorname{rank}\left(\mathbf{R}_{1}\right)=p$

2.4 Pseudoinverse

2.4.1 Moore-Penrose pseudoinverse

Moore-Penrose pseudoinverse

- let \mathbf{A} be a $p \times p$ matrix, $\operatorname{rank}(\mathbf{A})=p$
- inverse \mathbf{A}^{-1} is the $p \times p$ matrix satisfying
$\triangleright \mathbf{A A}^{-1}=\mathbf{I}$
$\triangleright \mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
- let A be an $n \times p(n \geq p)$ matrix
- Moore-Penrose pseudoinverse \mathbf{A}^{+}is the $p \times n$ matrix satisfying
$\triangleright \mathbf{A A}^{+} \mathbf{A}=\mathbf{A}$ (generalized inverse)
$\triangleright \mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+}=\mathbf{A}^{+}$(generalized reflexive inverse)
$\triangleright\left(\mathbf{A A}^{+}\right)^{\top}=\mathbf{A} \mathbf{A}^{+}$
$\triangleright\left(\mathbf{A}^{+} \mathbf{A}\right)^{\top}=\mathbf{A}^{+} \mathbf{A}$
- \mathbf{A}^{+}exists and is unique

Construction of A^{+}

- let A be an $n \times p(n \geq p)$ matrix
\triangleright if $\operatorname{rank}(\mathbf{A})=p$
* $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}($ thin SVD, i.e. \mathbf{U} is $n \times p \& \boldsymbol{\Sigma}$ is $p \times p$)
* $\mathbf{A}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top}$
\triangleright if $\operatorname{rank}(\mathbf{A})=r<p$
* $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ (compact SVD, i.e. \mathbf{U} is $n \times r \& \boldsymbol{\Sigma}$ is $r \times r$)
* $\mathbf{A}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top}$
- let \mathbf{A} be a $p \times p$ symmetric matrix
$\triangleright \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ (spectral decomposition)
$\triangleright \mathbf{A}^{+}=\mathbf{U} \boldsymbol{\Lambda}^{+} \mathbf{U}^{\top}$, where
* $\boldsymbol{\Lambda}^{+}$: diagonal with $1 / \lambda_{i}$ on diagonal if $\lambda_{i} \neq 0,0$ otherwise

2.5 Orthogonal projection

Orthogonal projection

Projection on $\mathbb{R}^{\mathbf{n}}$

- projection: linear mapping $\mathbf{P}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ such that $\mathbf{P P}=\mathbf{P}$
$\triangleright \mathbf{P}$ idempotent
$\triangleright \mathbf{P}$ is identity on $\mathrm{im}(\mathbf{P})$
$\circ \forall \mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}=\underbrace{\mathbf{P} \mathbf{x}}_{\mathbf{u}}+\underbrace{(\mathbf{I}-\mathbf{P}) \mathbf{x}}_{\mathbf{v}}$
$\triangleright \mathbf{u} \in \operatorname{im}(\mathbf{P}) \& \mathbf{v} \in \operatorname{ker}(\mathbf{P}):$ unique decomposition
- $(\mathbf{I}-\mathbf{P})$ is a projection on $\operatorname{ker}(\mathbf{P})$ and $\operatorname{ker}(\mathbf{I}-\mathbf{P})=\operatorname{im}(\mathbf{P})$

- orthogonal projection: projection with a symmetric \mathbf{P}
$\triangleright \mathbf{P}$ is symmetric iff $\operatorname{im}(\mathbf{P})=(\operatorname{im}(\mathbf{I}-\mathbf{P}))^{\perp}$
$\triangleright \exists!\mathbf{P x} \in \operatorname{im}(\mathbf{P})$ and $\|\mathrm{x}-\mathrm{Px}\|^{2}=\min _{\mathrm{y} \in \mathrm{im}(\mathbf{P})}\|\mathrm{x}-\mathrm{y}\|^{2}$
\triangleright if \mathbf{P} and $\mathbf{P}_{\mathbf{1}}$ are orthogonal projections and $\operatorname{im}\left(\mathbf{P}_{1}\right) \leq \operatorname{im}(\mathbf{P})$
* $\mathbf{P P}_{1}=\mathbf{P}_{1}=\mathbf{P}_{1} \mathbf{P}$

Construction of \mathbf{P}

1. orth. projection on $\operatorname{im}(\mathbf{u})$:

- $\mathbf{P}=\frac{1}{\|\mathbf{u}\|^{2}} \mathbf{u} \mathbf{u}^{\top}$
- $\mathbf{P x}=\frac{\langle\mathbf{u}, \mathbf{x}>}{\|\mathbf{u}\|^{2}} \mathbf{u} \in \operatorname{im}(\mathbf{u})$
\triangleright leaves $c \mathbf{u}$ unchanged
\triangleright annihilates the complementary basis

2. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ orthonormal, orth. projection on $\operatorname{im}(\mathbf{U}), \mathbf{U}=\left(\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \ldots \mid \mathbf{u}_{p}\right)$

- $\mathbf{P}=\mathbf{U U}^{\top}$
- $\mathbf{P x}=\sum_{i=1}^{p}<\mathbf{u}_{i}, \mathbf{x}>\mathbf{u}_{i} \in \operatorname{im}(\mathbf{U})$
\triangleright leaves $\sum_{i=1}^{p} c_{i} \mathbf{u}_{i}$ unchanged
\triangleright annihilates the complementary basis

Orthogonal projection onto a column space

- let \mathbf{A} be an $n \times p(n \geq p)$ matrix

1. $\operatorname{rank}(\mathbf{A})=p$

- columns $\mathbf{a}_{., 1}, \ldots, \mathbf{a}_{., p}$ linearly independent
- $\mathbf{P}=\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$
- $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ (thin SVD, i.e. \mathbf{U} is $n \times p \& \boldsymbol{\Sigma}$ is $p \times p$)
$\triangleright\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}=\mathbf{V} \mathbf{\Sigma}^{-2} \mathbf{V}^{\top}$
$\triangleright \mathbf{P}=\mathbf{U U}^{\top}$

2. $\operatorname{rank}(\mathbf{A})=r<p$

- $\mathbf{P}=\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{+} \mathbf{A}^{\top}$
- $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ (compact SVD, i.e. \mathbf{U} is $n \times r \& \boldsymbol{\Sigma}$ is $r \times r$)
$\triangleright\left(\mathbf{A}^{\top} \mathbf{A}\right)^{+}=\mathbf{V} \boldsymbol{\Sigma}^{-2} \mathbf{V}^{\top}$
$\triangleright \mathbf{P}=\mathbf{U U}^{\top}$

2.6 Application to linear regression

Application to linear regression

Estimation in linear regression (theory)

- linear regression: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}, \operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$
- we want to estimate $\boldsymbol{\beta}$
- start with estimating $\boldsymbol{\mu}=\mathrm{E}(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta} \in \operatorname{im}(\mathbf{X})$
\triangleright we look for $\hat{\boldsymbol{\mu}} \in \operatorname{im}(\mathbf{X})$ closest to \mathbf{Y}
* we look to minimize $\|\hat{\boldsymbol{\mu}}-\mathbf{Y}\|^{2}$
$\Rightarrow \hat{\boldsymbol{\mu}}$ is the orthogonal projection of \mathbf{Y} onto $\operatorname{im}(\mathbf{X})$
$\triangleright \hat{\boldsymbol{\mu}}= \begin{cases}\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{U U}^{\top} \mathbf{Y} & \text { if } \operatorname{rank}(\mathbf{X})=p, \\ \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{U U}^{\top} \mathbf{Y} & \text { if } \operatorname{rank}(\mathbf{X})<p,\end{cases}$
* where $\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ (thin/compact SVD)
- $\hat{\boldsymbol{\mu}} \in \operatorname{im}(\mathbf{X}) \Rightarrow \exists \hat{\boldsymbol{\beta}}$ such that $\hat{\boldsymbol{\mu}}=\mathbf{X} \hat{\boldsymbol{\beta}}$
- if $\operatorname{rank}(\mathbf{X})=p \Rightarrow \exists!\hat{\boldsymbol{\beta}}$ such that $\hat{\boldsymbol{\mu}}=\mathbf{X} \hat{\boldsymbol{\beta}}$

Estimation in linear regression (practice in \mathbb{R})

- aim: minimize $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ w.r.t. $\boldsymbol{\beta}$
- use that $\mathbf{X}=\mathbf{Q R}$
$\triangleright \mathbf{Q}$ is $n \times n$ orthogonal
$\triangleright \mathbf{R}$ is $n \times p$ upper triangular
$\triangleright \mathbf{Q}$ and \mathbf{Q}^{\top} rotations
- $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}=\left\|\mathbf{Q}^{\top}(\mathbf{Y}-\mathbf{Q R} \boldsymbol{\beta})\right\|^{2}$

$$
\begin{aligned}
& =\left\|\left(\frac{\mathbf{Q}_{1}^{\top}}{\mathbf{Q}_{2}^{\top}}\right) \mathbf{Y}-\left(\frac{\mathbf{R}_{1}}{\mathbf{0}}\right) \boldsymbol{\beta}\right\|^{2} \\
& =\left\|\mathbf{Q}_{1}^{\top} \mathbf{Y}-\mathbf{R}_{1} \boldsymbol{\beta}\right\|^{2}+\left\|\mathbf{Q}_{2}^{\top} \mathbf{Y}\right\|^{2}
\end{aligned}
$$

\triangleright minimize $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \Leftrightarrow$ minimize $\left\|\mathbf{Q}_{1}^{\top} \mathbf{Y}-\mathbf{R}_{1} \boldsymbol{\beta}\right\|^{2}$

- if $\operatorname{rank}(\mathbf{X})=p$
$\triangleright \mathbf{R}_{1}$ invertible
$\triangleright \hat{\boldsymbol{\beta}}=\mathbf{R}_{1}^{-1} \mathbf{Q}_{1}^{\top} \mathbf{Y}$

Chapter 3

Normal distribution

3.1 The problem

3.1.1 Linear model

Linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision
- we often assume that $\varepsilon_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure[mmHg] and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

3.1.2 Task for this chapter

Normal distribution in a linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- assumptions of the normal linear model:
$\triangleright \mathbf{X}$ fixed and known
$\triangleright \boldsymbol{\beta}$ fixed unknown
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
$\Rightarrow \mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
- estimators of $\boldsymbol{\beta}$ and σ^{2}
\triangleright functions of \mathbf{Y}
- test statistics concerning $\boldsymbol{\beta}$ and σ^{2}
\triangleright functions of \mathbf{Y}
\Rightarrow to make inference in normal linear model, we need to study
\triangleright multivariate normal distribution $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
\triangleright distributions of functions of $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

3.2 Univariate normal distribution

3.2.1 Definition

Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$

- let $\mu \in \mathbb{R}$ and $\sigma^{2}>0$
\triangleright density $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}$
\triangleright for the standard normal distribution $\left(\mu=0, \sigma^{2}=1\right)$:

- if $\sigma^{2}=0$ then $X=\mu$ a.s.

3.2.2 Properties

Properties of $\mathrm{N}\left(\mu, \sigma^{2}\right)$

- $\mu \in \mathbb{R}$ and $\sigma^{2}>0$
- Let $a, b \in \mathbb{R}, X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Then $a X+b \sim \mathrm{~N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.
- Let $Z \sim \mathrm{~N}(0,1)$ and $X=\mu+\sigma Z$. Then $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

- Let $a_{i}, b_{i} \in \mathbb{R}, X_{i} \stackrel{\text { ind. }}{\sim} \mathrm{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i \in\{1, \ldots, n\}$.

Then $\sum_{i=1}^{n}\left(a_{i} X_{i}+b_{i}\right) \sim \mathrm{N}\left(\sum_{i=1}^{n}\left(a_{i} \mu_{i}+b_{i}\right), \sum_{i=1} a_{i}^{2} \sigma_{i}^{2}\right)$.

3.2.3 Related distributions

$\chi^{2}(n)$ distribution

- let $Z \sim \mathrm{~N}(0,1) \rightsquigarrow Z^{2} \sim \chi^{2}(1)$
- let $Z_{i} \stackrel{\text { ind. }}{\sim} \mathrm{N}(0,1)$ for $i \in\{1, \ldots, n\} \rightsquigarrow X=\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n)$
- density
$\chi^{2}(1)$
$\chi^{2}(5)$

$\chi^{2}(10)$
$\chi^{2}(20)$

- $\mathrm{E} X=n, \operatorname{Var} X=2 n$

Student's t-distribution

- let $Z \sim \mathrm{~N}(0,1)$ and $X \sim \chi^{2}(n), Z \Perp X$
$\triangleright T=\frac{Z}{\sqrt{X / n}} \sim t(n)$
- density

- $\mathrm{E} T=0$ for $n>1, \operatorname{Var} T=n /(n-2)$ for $n>2$

Fisher-Snedecor distribution

- let $X_{1} \sim \chi^{2}\left(n_{1}\right)$ and $X_{2} \sim \chi^{2}\left(n_{2}\right), X_{1} \Perp X_{2}$
$\triangleright F=\frac{X_{1} / n_{1}}{\sqrt{X_{2} / n_{2}}} \sim F\left(n_{1}, n_{2}\right)$
- density
$F(1,5)$

$F(5,5)$

$F(5,1)$

$F(10,5)$

- $\mathrm{E} F=n_{2} /\left(n_{2}-2\right)$ for $n_{2}>2$

3.3 Multivariate normal distribution

3.3.1 Definition

Multivariate normal distribution $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ positive semidefinite matrix

Definition. A random vector $\mathbf{X}:(\Omega, \mathcal{A}) \mapsto\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$ has multivariate normal distribution $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if and only if $\mathbf{a}^{\top} \mathbf{X} \sim \mathrm{N}\left(\mathbf{a}^{\top} \boldsymbol{\mu}, \mathbf{a}^{\top} \boldsymbol{\Sigma} \mathbf{a}\right)$ for every $\mathbf{a} \in \mathbb{R}^{n}$.

- if $\operatorname{rank}(\boldsymbol{\Sigma})=n$ then $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is non-degenerate
\triangleright has density

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- if $\operatorname{rank}(\boldsymbol{\Sigma})=r<n$ then $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is degenerate
\triangleright a.s. "lives" in a subspace of \mathbb{R}^{n} of dimension r
\triangleright no density w.r.t. Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{n}\right)$

Non-degenerate multivariate normal distribution

- density

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- $\boldsymbol{\Sigma}$: square symmetric positive definite matrix
\triangleright spectral decomposition $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
$\triangleright \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>0$
$\triangleright \boldsymbol{\Sigma}^{-1}=\mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{\top}$
- quadratic form $(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$ can be written as

$$
\triangleright(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{\top}(\mathbf{x}-\boldsymbol{\mu})=\left\{\mathbf{U}^{\top}(\mathbf{x}-\boldsymbol{\mu})\right\}^{\top} \boldsymbol{\Lambda}^{-1}\left\{\mathbf{U}^{\top}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- level sets of $f(\mathbf{x}), I_{c}=\left\{\mathbf{x} \in \mathbb{R}^{n} ; f(\mathbf{x})=c\right\}$ for $c>0$:
\triangleright ellipsoids centred at $\boldsymbol{\mu}$
\triangleright directions of principal axes: $\mathbf{u}_{1,}, \ldots, \mathbf{u}_{n}$,
\triangleright lengths of principal semi-axes: $\sqrt{d \lambda_{1}}, \ldots, \sqrt{d \lambda_{n}}$

Non-degenerate bivariate normal distribution

。

$$
\mathrm{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

- $\quad N\left(\binom{-1}{2},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$
$N\left(\binom{0}{0},\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\right)$

$\circ \quad \mathrm{N}\left(\binom{0}{0},\left(\begin{array}{cc}1 & 0.2 \\ 0.2 & 1\end{array}\right)\right) \quad \mathrm{N}\left(\binom{0}{0},\left(\begin{array}{cc}1 & -0.8 \\ -0.8 & 1\end{array}\right)\right)$

3.3.2 Properties

Properties of $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (MVN 1). Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\mathrm{EX}=\boldsymbol{\mu}$ and $\operatorname{Var} \mathbf{X}=\boldsymbol{\Sigma}$.
Theorem (MVN 2). Let $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathrm{N}(0,1)$ and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\top}$. Then $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$.

Theorem (MVN 3). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A X}+\mathbf{b} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$.

- proofs are given during the lectures and can also be found in Jiří Anděl: Základy matematické statistiky

$\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ seen through $\mathrm{N}(\mathbf{0}, \mathbf{I})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

1. if $\operatorname{rank}(\boldsymbol{\Sigma})=n$

- spectral decomposition $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>0$

○ $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}=\underbrace{\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}}_{\tilde{\boldsymbol{\Sigma}}} \boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\top}=\tilde{\boldsymbol{\Sigma}} \tilde{\boldsymbol{\Sigma}}^{\top}$
\circ let $\mathbf{Z}=\widetilde{\boldsymbol{\Sigma}}^{-1}(\mathbf{X}-\boldsymbol{\mu})=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{\top}(\mathbf{X}-\boldsymbol{\mu})$
$\Rightarrow \mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})(n$-dimensional), $\mathbf{X}=\boldsymbol{\mu}+\widetilde{\boldsymbol{\Sigma}} \mathbf{Z}$ and $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
2. if $\operatorname{rank}(\boldsymbol{\Sigma})=r<n$

- spectral decomposition $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0, \lambda_{r+1}=\lambda_{r+2}=\ldots=\lambda_{n}=0$
$\circ \boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}=\underbrace{\mathbf{U}_{n \times r}}_{(\mathbf{u}, 1|\mathbf{u}, 2| \ldots \mid \mathbf{u}, r)} \underbrace{\boldsymbol{\Lambda}_{r \times r}}_{\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right\}} \mathbf{U}_{n \times r}^{\top}=\underbrace{\mathbf{U}_{n \times r} \boldsymbol{\Lambda}_{r \times r}^{1 / 2}}_{\widetilde{\boldsymbol{\Sigma}}} \boldsymbol{\Lambda}_{r \times r}^{1 / 2} \mathbf{U}_{n \times r}^{\top}=\widetilde{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{\Sigma}}^{\top}$
- let $\mathbf{Z}=\widetilde{\boldsymbol{\Sigma}}^{+}(\mathbf{X}-\boldsymbol{\mu})=\boldsymbol{\Lambda}_{r \times r}^{-1 / 2} \mathbf{U}_{n \times r}^{\top}(\mathbf{X}-\boldsymbol{\mu})$
$\Rightarrow \mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})(r$-dimensional $), \mathbf{X}=\boldsymbol{\mu}+\widetilde{\boldsymbol{\Sigma}} \mathbf{Z}$ and $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Density of $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive definite matrix

Theorem (MVN 4). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\operatorname{rank}(\boldsymbol{\Sigma})=n$. Then \mathbf{X} has density $f(\mathbf{x})$ w.r.t. Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{n}\right)$ and

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} .
$$

- a proof is given during the lectures and can also be found in Jiří Anděl: Základy matematické statistiky

Characteristic function (reminder)

Definition (Characteristic function of a random variable). Let X be a random variable. The function $\psi_{X}: \mathbb{R} \mapsto \mathbb{C}$ defined by $\psi_{X}(t)=\mathrm{E} \exp \{\mathrm{i} t X\}, t \in \mathbb{R}$, is the characteristic function of X.

Definition (Characteristic function of a random vector). Let \mathbf{X} be an n-dimensional random vector. The function $\psi_{\mathbf{X}}: \mathbb{R}^{n} \mapsto \mathbb{C}$ defined by $\psi_{\mathbf{X}}(\mathbf{t})=\mathrm{E} \exp \left\{\mathrm{i} \mathbf{t}^{\top} \mathbf{X}\right\}, \mathbf{t} \in \mathbb{R}^{n}$, is the characteristic function of \mathbf{X}.

Properties of characteristic function (reminder)

Theorem (ChF 1). Let $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Then $\psi_{X}(t)=\exp \left\{\right.$ it $\left.\mu-\frac{1}{2} \sigma^{2} t^{2}\right\}$.
Theorem (ChF 2). Let \mathbf{X} be an n-dimensional random vector and \mathbf{X}_{1} and \mathbf{X}_{2} its subvectors such that $\mathbf{X}=\left(\mathbf{X}_{1}^{\top}, \mathbf{X}_{2}^{\top}\right)^{\top}$. Then $\mathbf{X}_{1} \Perp \mathbf{X}_{2}$ iff $\psi_{\mathbf{X}}(\mathbf{t})=\psi_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) \times \psi_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)$ for every $\mathbf{t}=\left(\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}\right)^{\top} \in \mathbb{R}^{n}$.

- a proof can be found in Petr Lachout: Teorie pravděpodobnosti (1998). Nakladatelství Univerzity Karlovy

Characteristic function of $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (MVN 5). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$
\psi_{\mathbf{X}}(\mathbf{t})=\exp \left\{\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right\} .
$$

- a proof is given during the lectures and can also be found in Jiří Anděl: Základy matematické statistiky

Subvectors of $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (MVN 6). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let $k \in\{1, \ldots, n\}$. Then

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
\ldots \\
X_{k}
\end{array}\right) \sim \mathrm{N}\left(\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\ldots \\
\mu_{k}
\end{array}\right), \quad\left(\begin{array}{cccc}
\sigma_{1,1} & \sigma_{1,2} & \ldots & \sigma_{1, k} \\
\sigma_{2,1} & \sigma_{2,2} & \ldots & \sigma_{2, k} \\
\ldots & \ldots & \ldots & \ldots \\
\sigma_{k, 1} & \sigma_{k, 2} & \ldots & \sigma_{k, k}
\end{array}\right)\right)
$$

- a proof is given during the lectures and can also be found in Jiří Anděl: Základy matematické statistiky
- analogous statement is true for any sub-vector of \mathbf{X}
- converse is not true
(In)dependence in $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (MVN 7). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let $k \in\{1, \ldots, n-1\}$. Denote $\mathbf{X}_{1}=$ $\left(X_{1}, \ldots, X_{k}\right)^{\top}, \mathbf{X}_{2}=\left(X_{k+1}, \ldots, X_{n}\right)^{\top}$ and $\mathbf{X}_{1} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1,1}\right), \mathbf{X}_{2} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2,2}\right)$. If

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1,1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{2,2}
\end{array}\right)
$$

then $\mathbf{X}_{1} \Perp \mathbf{X}_{2}$.

- a proof is given during the lectures and can also be found in Jiří Anděl: Základy matematické statistiky
- $\mathbf{A X} \Perp \mathbf{B X}$ iff $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\top}=\mathbf{0}$

3.3.3 Related distributions

Quadratic forms

- Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (QF 1). Let $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$. Then $\mathbf{Z}^{\top} \mathbf{Z} \sim \chi^{2}(n)$.
Theorem (QF 2). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\operatorname{rank}(\boldsymbol{\Sigma})=n$. Then $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim$ $\chi^{2}(n)$.

Theorem (QF 3). Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\operatorname{rank}(\boldsymbol{\Sigma})=r<n$. Then $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{+}(\mathbf{X}-\boldsymbol{\mu}) \sim$ $\chi^{2}(r)$.

- proofs are given during the lectures and analogous statements are proved in Jiří Anděl: Základy matematické statistiky

Quadratic forms

- Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}$ is an $n \times n$ symmetric positive semidefinite matrix

Theorem (QF 4). Let $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$ and let \mathbf{P} be an $n \times n$ projection matrix of rank r. Then $\mathbf{Z}^{\top} \mathbf{P} \mathbf{Z} \sim \chi^{2}(r)$.

- a proof is given during the lectures and analogous statements are proved in Jiří Anděl: Základy matematické statistiky

Chapter 4

Linear model

4.1 The problem

4.1.1 Linear model

Linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision
- we often assume that $\varepsilon_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight $[\mathrm{kg}]$, body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats $/ \mathrm{min}$], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

4.1.2 Task for this chapter
 Estimation in linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization \mathbf{y}
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
$\triangleright \operatorname{error} \boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathbf{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \varepsilon=0$: no systematic errors
* $\operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$: independence and same precision
- task: given the observed data \mathbf{y} and known matrix \mathbf{X}, find estimators $\widehat{\boldsymbol{\beta}}$ (and $\widehat{\sigma^{2}}$) of $\boldsymbol{\beta}$ (and σ^{2}) with desirable properties

4.2 Estimating $\boldsymbol{\beta}$

4.2.1 Orthogonal projection

$\widehat{\boldsymbol{\beta}}$ motivated by orthogonal projection

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
- idea: set $\boldsymbol{\varepsilon} \stackrel{!}{=} \mathbf{0}$ and solve $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$ w.r.t. $\boldsymbol{\beta}$
\triangleright then $\underbrace{\mathbf{Y}}_{n \times 1} \stackrel{!}{=} \underbrace{\mathbf{X}}_{n \times p} \underbrace{\boldsymbol{\beta}}_{p \times 1}$
$\triangleright n$ linear equations with p unknowns and $n>p$
\Rightarrow a solution exists only if $\mathbf{Y} \in \operatorname{im}(\mathbf{X})$
- modified idea: find $\hat{\mathbf{Y}} \in \operatorname{im}(\mathbf{X})$ such that $\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}$ is the smallest possible and solve $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ w.r.t. $\boldsymbol{\beta}$
\triangleright then $\hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto $\operatorname{im}(\mathbf{X})$
\triangleright projection matrix onto im (\mathbf{X}) is $\underbrace{\mathbf{H}}_{\text {hat matrix }}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top}$
\triangleright solving $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ is solving $\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$
\triangleright estimate $\boldsymbol{\beta}$ by $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top} \mathbf{Y}$
\triangleright but $\widehat{\boldsymbol{\beta}}$ is the unique solution of $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ iff $\operatorname{rank}(\mathbf{X})=p$
$*$ and then $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$

Geometric intuition

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon, \varepsilon$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
- fitted model: $\underbrace{\mathbf{Y}}_{\text {observed value }}=\underbrace{\mathbf{H Y}}_{\text {fitted value } \hat{\mathbf{Y}}}+\underbrace{(\mathbf{I}-\mathbf{H}) \mathbf{Y}}_{\text {residual } \mathrm{e}}$

$\circ<\hat{\mathbf{Y}}, \mathbf{e}>=\mathbf{e}^{\top} \hat{\mathbf{Y}}=\mathbf{Y}^{\top}(\mathbf{I}-\mathbf{H})^{\top} \mathbf{H} \mathbf{Y}=0$, i.e. $\hat{\mathbf{Y}} \perp \mathbf{e}$

4.2.2 Least squares

$\widehat{\boldsymbol{\beta}}$ as least squares estimator

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
- idea: make the residuals as small as possible
\triangleright minimize $\|\varepsilon\|^{2}=\sum_{i=1}^{n} \varepsilon_{i}^{2}$ w.r.t. $\boldsymbol{\beta}$
\rightsquigarrow Least Squares Estimator (LSE) $\widehat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{i=1}^{n} \varepsilon_{i}^{2}$
\triangleright also called the OLS (Ordinary Least Squares) solution
- computation:
$\triangleright \varepsilon=\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}$
$\triangleright \widehat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}=\arg \min _{\boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})$
- look for the minimum by differentiating:
$\triangleright \frac{\partial}{\partial \boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) \stackrel{!}{=} 0$
$\triangleright \frac{\partial^{2}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) \stackrel{?}{\succ} 0$
$\triangleright-2 \mathbf{X}^{\top} \mathbf{Y}+2 \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0$ at $\boldsymbol{\beta}=\widehat{\boldsymbol{\beta}}$
$\triangleright \underbrace{\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} \mathbf{X}^{\top} \mathbf{Y}}_{\text {normal equations }}$
$\triangleright 2 \mathbf{X}^{\top} \mathbf{X} \succ 0$ for all $\boldsymbol{\beta}$
\triangleright convex function \Rightarrow minimum
- normal equations have unique solution iff $\operatorname{rank}(\mathbf{X})=p$
\triangleright and then $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$

Geometric intuition

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
- fitted model: $\underbrace{\mathbf{Y}}_{\text {observed value }}=\underbrace{\mathbf{X} \widehat{\boldsymbol{\beta}}}_{\text {fitted value } \hat{\mathbf{Y}}}+\underbrace{(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})}_{\text {residual } \mathbf{e}}$
- least squares estimator minimizes the sum of squared vertical distances between the fitted and observed values

4.2.3 Computing $\widehat{\boldsymbol{\beta}}$

$\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$

- we have seen two approaches give the same $\widehat{\boldsymbol{\beta}}$
- both approaches give unique $\widehat{\boldsymbol{\beta}}$ iff $\operatorname{rank}(\mathbf{X})=p$
- both approaches would give infinitely many $\widehat{\boldsymbol{\beta}}_{\mathbf{S}}$ if $\operatorname{rank}(\mathbf{X})<p$
- a rank-deficient design matrix means a problem in design/model formulation
- we need to fix that problem to obtain reasonable conclusions from our model
- from now on we assume that $\operatorname{rank}(\mathbf{X})=p$
- we will get back to (nearly) rank-deficient \mathbf{X} in Chapter 9

$\widehat{\boldsymbol{\beta}}$ the way it is computed in \mathbb{R}

○ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$

- $\widehat{\boldsymbol{\beta}}$ minimizes $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ w.r.t. $\boldsymbol{\beta}$
- \mathbf{R} uses that $\mathbf{X}=\mathbf{Q R}$ (QR decomposition from Chapter 2)
$\triangleright \mathbf{Q}(n \times n)$ orthogonal
$\triangleright \mathbf{R}(n \times p)$ upper triangular
$\triangleright \mathbf{X}=\mathbf{Q} \mathbf{R}=\left(\mathbf{Q}_{1} \mid \mathbf{Q}_{2}\right)\binom{\mathbf{R}_{1}}{\mathbf{0}}=\mathbf{Q}_{1} \mathbf{R}_{1}$
$\triangleright \mathbb{R}$ does not allow $\operatorname{rank}(\mathbf{X})<p$

$$
\Rightarrow \operatorname{rank}\left(\mathbf{R}_{1}\right)=p
$$

$\triangleright \mathbf{Q}$ and \mathbf{Q}^{\top} are rotations

$$
\begin{gathered}
*\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}=\left\|\mathbf{Q}^{\top}(\mathbf{Y}-\mathbf{Q} \mathbf{R} \boldsymbol{\beta})\right\|^{2}=\left\|\binom{\mathbf{Q}_{1}^{\top}}{\mathbf{Q}_{2}^{\top}} \mathbf{Y}-\left(\frac{\mathbf{R}_{1}}{\mathbf{0}}\right) \boldsymbol{\beta}\right\|^{2} \\
=\left\|\mathbf{Q}_{1}^{\top} \mathbf{Y}-\mathbf{R}_{1} \boldsymbol{\beta}\right\|^{2}+\left\|\mathbf{Q}_{2}^{\top} \mathbf{Y}\right\|^{2}
\end{gathered}
$$

\triangleright minimize $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \Leftrightarrow$ minimize $\left\|\mathbf{Q}_{1}^{\top} \mathbf{Y}-\mathbf{R}_{1} \boldsymbol{\beta}\right\|^{2}$
$\triangleright \hat{\boldsymbol{\beta}}=\mathbf{R}_{1}^{-1} \mathbf{Q}_{1}^{\top} \mathbf{Y}$ (compare with $\left.\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}\right)$

Geometric intuition

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
$\circ \underbrace{\mathbf{Y}}_{\text {observed value }}=\underbrace{\mathbf{X} \widehat{\boldsymbol{\beta}}}_{\text {fitted value } \hat{\mathbf{Y}}}+\underbrace{(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})}_{\text {residual } \mathbf{e}}$

$$
\begin{aligned}
\triangleright \widehat{\mathbf{Y}} & =\mathbf{X} \widehat{\boldsymbol{\beta}} & \triangleright \mathbf{e} & =(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}) \\
& =\mathbf{Q}\left(\mathbf{Q}^{\top} \mathbf{Q R} \widehat{\boldsymbol{\beta}}\right) & & =\mathbf{Q}\left(\mathbf{Q}^{\top}(\mathbf{Y}-\mathbf{Q R} \widehat{\boldsymbol{\beta}})\right) \\
& =\mathbf{Q}\left(\left(\frac{\mathbf{R}_{1}}{\mathbf{0}}\right) \widehat{\boldsymbol{\beta}}\right) & & =\mathbf{Q}\left(\left(\frac{\mathbf{Q}_{1}^{\top}}{\mathbf{Q}_{2}^{2}}\right) \mathbf{Y}-\left(\frac{\mathbf{R}_{1}}{\mathbf{0}}\right) \widehat{\boldsymbol{\beta}}\right) \\
& =\mathbf{Q}\left(\frac{\mathbf{R}_{1} \widehat{\boldsymbol{\beta}}}{\mathbf{0}}\right) & & =\mathbf{Q}\binom{\mathbf{0}}{\mathbf{Q}_{2}^{\top} \mathbf{Y}}
\end{aligned}
$$

- \mathbf{Q}^{\top} conveniently rotates \mathbf{Y} and $\mathrm{im}(\mathbf{X})$ and \mathbf{Q} rotates back
- $\widehat{\mathbf{Y}} \perp \mathbf{e}$

Geometric intuition

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
$\circ \underbrace{\mathbf{Y}}_{\text {observed value }}=\underbrace{\mathbf{X} \widehat{\boldsymbol{\beta}}}_{\text {fitted value } \hat{\mathbf{Y}}}+\underbrace{(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})}_{\text {residual } \mathbf{e}}=\mathbf{Q}\left(\frac{\mathbf{R}_{1} \widehat{\boldsymbol{\beta}}}{\mathbf{0}}\right)+\mathbf{Q}\binom{\mathbf{0}}{\mathbf{Q}_{2}^{\top} \mathbf{Y}}$
- see Figure 1.5 on page 20 in Simon Wood's Generalized additive models for a nice illustration

4.3 Quality of estimation

4.3.1 Gauss-Markov theorem

Linear transformation of a random vector

- we want to study $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$

Theorem. Let \mathbf{X} be an n-dimensional random vector with a finite variance-covariance matrix and let \mathbf{A} be an $m \times n$ matrix. Then

- $\mathrm{E}(\mathbf{A X})=\mathbf{A E X}$;
- $\operatorname{Var}(\mathbf{A X})=\mathbf{A}(\operatorname{Var} \mathbf{X}) \mathbf{A}^{\top}$;
- $\mathbf{E}\left(\mathbf{X}^{\top} \mathbf{X}\right)=(\mathbf{E X})^{\top}(\mathbf{E} \mathbf{X})+\operatorname{tr}(\operatorname{Var} \mathbf{X})$.
- proof is a simple exercise

Is $\widehat{\boldsymbol{\beta}}$ a reasonable estimator?

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
- $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
- has a nice motivation but how about properties?

$$
\begin{aligned}
& \triangleright \mathrm{E} \widehat{\boldsymbol{\beta}}=\mathrm{E}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathrm{E} \mathbf{Y} \\
&=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}=\boldsymbol{\beta} \\
& \Rightarrow \text { unbiased } \\
& \triangleright \operatorname{Var} \widehat{\boldsymbol{\beta}}=\operatorname{Var}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}\right) \\
&=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \operatorname{Var} \mathbf{Y}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right)^{\top} \\
&=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
&=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

- how good is $\operatorname{Var} \widehat{\boldsymbol{\beta}}$?
$\triangleright \widehat{\boldsymbol{\beta}}$ is a linear estimator, i.e. $\widehat{\boldsymbol{\beta}}=\mathbf{A Y}$ for a matrix \mathbf{A}
$\triangleright \widehat{\boldsymbol{\beta}}$ is an unbiased estimator, i.e. $\mathrm{E}_{\boldsymbol{\beta}} \widehat{\boldsymbol{\beta}}=\boldsymbol{\beta}$ for all $\boldsymbol{\beta}$
\triangleright in fact, $\widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator of $\boldsymbol{\beta}$, i.e. $\widehat{\boldsymbol{\beta}}$ has the smallest variance among all linear unbiased estimators of $\boldsymbol{\beta}$

Gauss-Markov theorem

Theorem (Gauss-Markov). Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \mathbf{X} is an $n \times p$ matrix, $\operatorname{rank}(\mathbf{X})=p$, $\boldsymbol{\beta} \in \mathbb{R}^{p}$, and $\boldsymbol{\varepsilon}$ is an n-dimensional random vector with $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$ and $\operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$. Then $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$ is the best linear unbiased estimator of $\boldsymbol{\beta}$, i.e. if $\widetilde{\boldsymbol{\beta}}$ is a linear unbiased estimator of $\boldsymbol{\beta}$ then $\operatorname{Var} \widetilde{\boldsymbol{\beta}}-\operatorname{Var} \widehat{\boldsymbol{\beta}} \succeq 0$.

- see the blackboard for a proof
\triangleright main steps
* show that if $\widetilde{\boldsymbol{\beta}}=\mathbf{A Y}$ then $\mathbf{A X}=\mathbf{I}$
* show that $\operatorname{Var} \widetilde{\boldsymbol{\beta}}-\operatorname{Var} \widehat{\boldsymbol{\beta}}=\sigma^{2} \mathbf{A}(\mathbf{I}-\mathbf{H})(\mathbf{I}-\mathbf{H})^{\top} \mathbf{A}^{\top}$

4.4 Estimating σ^{2}

4.4.1 Estimating σ^{2}

Estimating σ^{2}

○ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}, \operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$
○ fitted model: $\mathbf{Y}=\underbrace{\mathbf{H} \mathbf{Y}}_{\hat{\mathbf{Y}}}+\underbrace{(\mathbf{I}-\mathbf{H}) \mathbf{Y}}_{\mathbf{e}}=\underbrace{\mathbf{X} \widehat{\boldsymbol{\beta}}}_{\hat{\mathbf{Y}}}+\underbrace{(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})}_{\mathbf{e}}$

- idea: estimate $\boldsymbol{\varepsilon}$ by \mathbf{e}
\triangleright some care is needed \ldots

$$
\begin{aligned}
& * \mathrm{E} \mathbf{e}=\mathbf{E}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})=\mathbf{E} \mathbf{Y}-\mathbf{X} \mathbf{E} \widehat{\boldsymbol{\beta}}=\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}=\mathbf{0} \\
& \quad * \operatorname{Var} \mathbf{e}=\operatorname{Var}((\mathbf{I}-\mathbf{H}) \mathbf{Y})=(\mathbf{I}-\mathbf{H}) \operatorname{Var} \mathbf{Y}(\mathbf{I}-\mathbf{H})^{\top}=\sigma^{2}(\mathbf{I}-\mathbf{H}) \\
& \quad * \operatorname{rank}((\mathbf{I}-\mathbf{H}))=n-\operatorname{rank}(\mathbf{X})=n-p<n \Rightarrow \text { dependence } \\
& \triangleright \mathrm{E}\left(\mathbf{e}^{\top} \mathbf{e}\right)=(\mathbf{E} \mathbf{e})^{\top}(\mathbf{E} \mathbf{e})+\operatorname{tr}(\operatorname{Var} \mathbf{e}) \\
& \quad=\operatorname{tr}\left(\sigma^{2}(\mathbf{I}-\mathbf{H})\right) \\
& \quad \stackrel{*}{=} \sigma^{2}(n-\operatorname{rank}(\mathbf{X}))=\sigma^{2}(n-p) \\
& \quad * *: \operatorname{tr}(\mathbf{P})=\operatorname{rank}(\mathbf{P}) \text { for orthogonal projection matrices } \\
& \triangleright \widehat{\sigma^{2}}=\frac{1}{n-p} \mathbf{e}^{\top} \mathbf{e}=\frac{1}{n-p} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& \quad * \text { unbiased estimator of } \sigma^{2}
\end{aligned}
$$

4.5 Quality of model fit

4.5.1 Coefficient of determination
 Sums of squares

- for $\widehat{\boldsymbol{\beta}}$ we obtain the minimal $\|\mathbf{e}\|^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}=\|\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}\|^{2}$
- we have seen properties of $\widehat{\boldsymbol{\beta}}$ but how about $\hat{\mathbf{Y}}$?
- a question: how close $\hat{\mathbf{Y}}$ actually is to \mathbf{Y} ?
\triangleright how well do the covariates in \mathbf{X} explain what we see in \mathbf{Y} ?
- an answer:
- there is some variability in $Y_{i} \mathrm{~S}$ for different i
* Total Sum of Squares TSS: $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$
* also called SST
\triangleright the model explains a part of the variability in $Y_{i} \mathrm{~S}$
* for different i s there are different $\mathbf{x}_{i, \mathrm{~S}}$ and so different $\hat{Y}_{i} \mathrm{~S}$
* Explained Sum of Squares ESS: $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\overline{\hat{Y}}\right)^{2}=$ $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
* also called Sum of Squares due to Regression
\triangleright but some variability remained unexplained by the model
* Residual Sum of Squares RSS: $\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
* also called Sum of Squared Residuals or Sum of Squared Errors

Coefficient of determination \mathbf{R}^{2}

- relationship among the sums of squares
$\triangleright \mathrm{TSS}=\mathrm{RSS}+\mathrm{ESS}$
* $\|\mathbf{Y}-\bar{Y} \mathbf{1}\|^{2}=\|\mathbf{Y} \pm \hat{\mathbf{Y}}-\bar{Y} \mathbf{1}\|^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}+\|\hat{\mathbf{Y}}-\bar{Y} \mathbf{1}\|^{2}$
* because $<\mathbf{Y}-\hat{\mathbf{Y}}, \hat{\mathbf{Y}}>=0=<\mathbf{Y}-\hat{\mathbf{Y}}, \mathbf{1}>$ as $\hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto $\mathrm{im}(\mathbf{X})$ and $\mathbf{1} \in \operatorname{im}(\mathbf{X})$
\triangleright variability: total $=$ unexplained + explained
- so how well do the covariates in \mathbf{X} explain what we see in \mathbf{Y} ?
\triangleright coefficient of determination $R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}$
* proportion of variability explained by the model
* $0 \leq R^{2} \leq 1$ and bigger is better
\triangleright adjusted coefficient of determination $R_{a d j}^{2}=1-\frac{R S S /(n-p)}{T S S /(n-1)}$
* an alternative that takes the number of predictors into account
* $R S S /(n-p)=\widehat{\sigma^{2}}$ from the linear regression, $T S S /(n-1)=\widehat{\sigma^{2}}$ without the linear regression

Chapter 5

Normal linear model

5.1 The problem

5.1.1 Normal linear model

Normal linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

5.1.2 Task for this chapter Estimation in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization y
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error ε
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathbf{E Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \varepsilon=0$: no systematic errors
* $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence and same precision
- task: given the observed data \mathbf{y} and known matrix \mathbf{X}, find estimators $\widehat{\boldsymbol{\beta}}$ and $\widehat{\sigma^{2}}$ of $\boldsymbol{\beta}$ and σ^{2} with desirable properties

5.2 Estimating $\boldsymbol{\beta}$ and σ^{2}

5.2.1 Likelihood

Likelihood

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \Rightarrow \mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
\triangleright density of \mathbf{Y} :

$$
f\left(\mathbf{y} ; \boldsymbol{\beta}, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

\triangleright density is a function of \mathbf{y} (parameters are fixed)

- likelihood:

$$
L\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

- likelihood is a function of the parameters (\mathbf{y} is fixed)
- log-likelihood:

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\left\{\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

Log-likelihood

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- log-likelihood:

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\left\{\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

5.2.2 Matrix derivatives

Matrix derivatives: definition

- let $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$
- denominator-layout notation:

$$
\frac{\partial}{\partial \mathbf{x}} \mathbf{y}=\left(\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} y_{1} & \ldots & \frac{\partial}{\partial x_{1}} y_{m} \\
\cdots & \cdots & \cdots \\
\frac{\partial}{\partial x_{n}} y_{1} & \cdots & \frac{\partial}{\partial x_{n}} y_{m}
\end{array}\right)
$$

- if $n=1$

$$
\frac{\partial}{\partial x} \mathbf{y}=\left(\frac{\partial}{\partial x} y_{1}, \ldots, \frac{\partial}{\partial x} y_{m}\right)
$$

- if $m=1$

$$
\frac{\partial}{\partial \mathbf{x}} y=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} y \\
\cdots \\
\frac{\partial}{\partial x_{n}} y
\end{array}\right)
$$

Matrix derivatives: useful formulae

- let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \triangleright \frac{\partial}{\partial \mathbf{x}} \mathbf{A x}=\mathbf{A}^{\top} \\
& \triangleright \frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\top} \mathbf{A}=\mathbf{A}
\end{aligned}
$$

$$
\triangleright \frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x}
$$

5.2.3 Maximizing the likelihood

Score function

- log-likelihood

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\left\{\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

- score function ($\boldsymbol{\beta}$-related part):

$$
\begin{aligned}
\mathbf{U}_{1: p}\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) & =\frac{\partial}{\partial \boldsymbol{\beta}}\left(-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right) \\
& =\frac{\partial}{\partial \boldsymbol{\beta}}\left(-\frac{1}{2 \sigma^{2}}\left(\mathbf{y}^{\top} \mathbf{y}-\mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta}-\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{y}+\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}\right)\right) \\
& =-\frac{1}{2 \sigma^{2}}\left(-\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{y}+\left(\mathbf{X}^{\top} \mathbf{X}+\mathbf{X}^{\top} \mathbf{X}\right) \boldsymbol{\beta}\right) \\
& =\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}\right)
\end{aligned}
$$

Score function ctd.

- log-likelihood

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\left\{\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

- score function (σ^{2}-related part):

$$
\begin{aligned}
U_{p+1}\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) & =\frac{\partial}{\partial \sigma^{2}}\left(-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right) \\
& =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\frac{1}{2 \sigma^{2}}\left(-n+\frac{1}{\sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right)
\end{aligned}
$$

Score equation

- score equation:

$$
\mathbf{U}\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=\binom{\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}\right)}{\frac{1}{2 \sigma^{2}}\left(-n+\frac{1}{\sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right)}=\mathbf{0}
$$

- score equation for $\boldsymbol{\beta}$
$\triangleright \frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}\right) \stackrel{!}{=} \mathbf{0}$
\triangleright actually the normal equations
$\triangleright \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
- score equation for σ^{2}

$$
\begin{aligned}
& \triangleright \frac{1}{2 \sigma^{2}}\left(-n+\frac{1}{\sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right) \stackrel{!}{=} 0 \\
& \triangleright{\widehat{\sigma^{2}}}_{\mathrm{MLE}}=\frac{1}{n}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)^{\top}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)
\end{aligned}
$$

Fisher information

- observed Fisher information matrix:

$$
\mathbf{J}\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
\mathbf{X}^{\top} \mathbf{X} & \frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}\right) \\
-\frac{1}{\sigma^{2}} & \frac{n}{2} \\
\frac{1}{\sigma^{2}} & \left.\frac{1}{\sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right)
\end{array}\right)
$$

- $\mathbf{J}\left(\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}},{\widehat{\sigma^{2}}}_{\mathrm{MLE}}\right)$:

$$
\frac{1}{\widehat{\sigma^{2} \mathrm{MLE}}}\left(\begin{array}{cc}
\mathbf{X}^{\top} \mathbf{X} & \mathbf{0} \\
\mathbf{0} & \frac{n}{2 \widehat{\sigma}^{2} \mathrm{MLE}}
\end{array}\right) \succ 0
$$

- Fisher information matrix:

$$
\mathbf{I}\left(\boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
\mathbf{X}^{\top} \mathbf{X} & \mathbf{0} \\
\mathbf{0} & \frac{n}{2 \sigma^{2}}
\end{array}\right)
$$

5.3 Distribution

5.3.1 Distribution of the MLE

Distribution of $\widehat{\boldsymbol{\beta}}_{\text {MLE }}$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
- distribution of $\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$?
- MVN 3:

Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A X}+\mathbf{b} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$.

$$
\circ \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}} \sim \mathrm{~N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)
$$

Distribution of $\widehat{\sigma^{2}}{ }_{\text {MLE }}$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
- distribution of $\widehat{\sigma^{2}}{ }_{\mathrm{MLE}}=\frac{1}{n}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)^{\top}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)$?
- recall that
$\triangleright \hat{\mathbf{Y}}=\mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{H Y}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
$\triangleright(\mathbf{Y}-\hat{\mathbf{Y}})=\mathbf{e}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}$
* $\mathbf{e} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2}(\mathbf{I}-\mathbf{H})\right)($ by MVN 3)
- QF 3:

Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\operatorname{rank}(\boldsymbol{\Sigma})=r<n$. Then $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{+}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(r)$.

- $(\mathbf{I}-\mathbf{H})^{+}=(\mathbf{I}-\mathbf{H})$
$\Rightarrow \frac{1}{\sigma^{2}} \mathbf{e}^{\top}(\mathbf{I}-\mathbf{H}) \mathbf{e} \sim \chi^{2}(n-p)$
- $\mathbf{e}^{\top}(\mathbf{I}-\mathbf{H}) \mathbf{e}=\mathbf{Y}^{\top}(\mathbf{I}-\mathbf{H})^{\top}(\mathbf{I}-\mathbf{H})(\mathbf{I}-\mathbf{H}) \mathbf{Y}=\mathbf{e}^{\top} \mathbf{e}$
- $\frac{n}{\sigma^{2}} \widehat{\sigma^{2}}{ }_{\mathrm{MLE}} \sim \chi^{2}(n-p)$

Relationship between $\widehat{\boldsymbol{\beta}}_{\text {MLE }}$ and $\widehat{\sigma^{2}}{ }_{\text {MLE }}$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$
- $\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$
- $n \widehat{\sigma^{2}}{ }_{\text {MLE }} \sim \chi^{2}(n-p)$
- joint distribution of $\widehat{\boldsymbol{\beta}}_{\text {MLE }}$ and $\widehat{\sigma^{2}}{ }_{\text {MLE }}$?
- recall that
$\triangleright \widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
$\triangleright(\mathbf{Y}-\hat{\mathbf{Y}})=\mathbf{e}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}$
- Corollary of MVN 7:

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\mathbf{A X} \Perp \mathbf{B X}$ iff $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\top}=\mathbf{0}$.
\circ

$$
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{I}-\mathbf{H})^{\top}=
$$

$$
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}-\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}=\mathbf{0}
$$

- $\widehat{\boldsymbol{\beta}} \Perp \mathbf{e}$ and $\widehat{\boldsymbol{\beta}} \Perp{\widehat{\sigma^{2}}}^{\text {MLE }}$

5.4 Summary

5.4.1 Estimation in the normal linear model

Estimation in the normal linear model
Theorem. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \mathbf{X} is an $n \times p$ matrix, $\operatorname{rank}(\mathbf{X})=p, \boldsymbol{\beta} \in \mathbb{R}^{p}$, and $\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.

Then the maximum likelihood estimators of $\boldsymbol{\beta}$ and σ^{2} are given by $\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$ and $\widehat{\sigma^{2}}{ }_{\mathrm{MLE}}=\frac{1}{n}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)^{\top}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)$.

Their distributions are $\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$ and $\frac{n}{\sigma^{2}} \widehat{\sigma}^{2}{ }_{\mathrm{MLE}} \sim \chi^{2}(n-p)$, and $\widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}$ and $\widehat{\sigma^{2}}{ }_{\text {MLE }}$ are independent.

- unbiased estimator of $\sigma^{2}: \widehat{\sigma^{2}}=\frac{1}{n-p}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)^{\top}\left(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}\right)$
- its distribution: $\frac{(n-p)}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi^{2}(n-p)$ and $\widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}$

Chapter 6

Inference in normal linear model

6.1 The problem

6.1.1 Normal linear model

Normal linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0:$ no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision
Example: bloodpress data
- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats $/ \mathrm{min}$], stress
o data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

6.1.2 Task for this chapter
 Inference in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization y
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error $\boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathbf{E Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \varepsilon=0$: no systematic errors
* $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence and same precision
- task: given the observed data \mathbf{y} and known matrix \mathbf{X}, draw conclusions about \mathbf{Y} and the relationship between \mathbf{Y} and \mathbf{X}

6.2 Estimators and distributions

6.2.1 Estimators

Point estimation in the normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\triangleright \mathbf{X}$ is an $n \times p$ matrix, $\operatorname{rank}(\mathbf{X})=p$
$\triangleright \boldsymbol{\beta} \in \mathbb{R}^{p}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- estimating $\boldsymbol{\beta}$
$\triangleright \widehat{\boldsymbol{\beta}}_{\mathrm{MLE}}=\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}=\widehat{\boldsymbol{\beta}}_{\mathrm{MOM}}=\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
* BLUE
* distribution: $\widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$
- estimating σ^{2}
$\triangleright \widehat{\sigma}^{2}{ }_{\text {MLE }}=\frac{1}{n}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\top}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})$
* distribution: $\frac{n}{\sigma^{2}} \widehat{\sigma^{2}}{ }_{\mathrm{MLE}} \sim \chi^{2}(n-p)$
$\triangleright \widehat{\sigma^{2}}=\frac{1}{n-p}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\top}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})$
* unbiased
* distribution: $\frac{(n-p)}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi^{2}(n-p)$
- $\widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}{ }_{\text {MLE }}$ and $\widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}$

6.2.2 Distributions

Distributions in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- distributions of point estimators
$\triangleright \widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$
$\triangleright \frac{(n-p)}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi^{2}(n-p)$
$\triangleright \widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}$
- let $\mathbf{a} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{m \times p}$
$\triangleright \mathbf{a}^{\top} \widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\mathbf{a}^{\top} \boldsymbol{\beta}, \sigma^{2} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}\right)$
$\triangleright \mathbf{A} \widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\beta}, \sigma^{2} \mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)$
* proofs: use MVN 3:

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A X}+\mathbf{b} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$.

Distributions in normal linear model ctd.

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- distributions of statistics
$\triangleright \mathbf{a}^{\top} \widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\mathbf{a}^{\top} \boldsymbol{\beta}, \sigma^{2} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}\right)$ for $\mathbf{a} \in \mathbb{R}^{p}$
$\triangleright \mathbf{A} \widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\beta}, \sigma^{2} \mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)$ for $\mathbf{A} \in \mathbb{R}^{m \times p}$
$\triangleright \frac{(n-p)}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi^{2}(n-p)$
$\triangleright \widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}$
- for $\mathbf{a} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{m \times p}, \operatorname{rank}(\mathbf{A})=m$
$\triangleright \frac{\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\top} \boldsymbol{\beta}}{\sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}}} \sim t(n-p)$
* proof: verify that the definition of $t(n-p)$ is satisfied
$\triangleright \frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \sim F(m, n-p)$
$\quad *$ proof: use QF2:
$\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \operatorname{rank}(\boldsymbol{\Sigma})=n \Rightarrow(\mathbf{X}-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\mu) \sim \chi^{2}(n)$
and verify that the definition of $F(m, n-p)$ is satisfied

6.3 Confidence intervals

Confidence intervals

Interval estimation in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- let $\mathbf{a} \in \mathbb{R}^{p}$
$\triangleright \frac{\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\top} \boldsymbol{\beta}}{\sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}}} \sim t(n-p)$
$\triangleright(1-\alpha) \times 100 \%$ confidence interval for $\mathbf{a}^{\top} \boldsymbol{\beta}$:

$$
\begin{aligned}
\left(\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}},\right. & \\
& \left.\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}}\right)
\end{aligned}
$$

- $\frac{(n-p)}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi^{2}(n-p)$
$\triangleright(1-\alpha) \times 100 \%$ confidence interval for σ^{2} :

$$
\left(\frac{(n-p) \widehat{\sigma^{2}}}{\chi_{1-\alpha / 2}^{2}(n-p)}, \frac{(n-p) \widehat{\sigma^{2}}}{\chi_{\alpha / 2}^{2}(n-p)}\right)
$$

Confidence intervals for the components of $\boldsymbol{\beta}$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- let $\mathbf{a} \in \mathbb{R}^{p}$ such that $a_{i}=1$ and $a_{j}=0$ for $j \neq i$
$\triangleright(1-\alpha) \times 100 \%$ confidence interval for β_{i} :

$$
\begin{array}{ll}
\left(\hat{\beta}_{i}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i, i}^{-1}},\right. & \\
& \left.\hat{\beta}_{i}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i, i}^{-1}}\right)
\end{array}
$$

- let $\mathbf{a} \in \mathbb{R}^{p}$ such that $a_{1}=1, a_{i}=1$ and $a_{j}=0$ for $j \neq i$
$\triangleright(1-\alpha) \times 100 \%$ confidence interval for $\beta_{1}+\beta_{i}$:

$$
\begin{aligned}
& \left(\hat{\beta}_{1}+\hat{\beta}_{i}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma}^{2}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1,1}^{-1}+2\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1, i}^{-1}+\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i, i}^{-1}\right)},\right. \\
& \\
& \left.\hat{\beta}_{1}+\hat{\beta}_{i}+t_{1-\alpha / 2}(n-p) \sqrt{\sqrt{\sigma^{2}}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1,2}^{-1}+2\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1, i}^{-1}+\left(\mathbf{x}^{\top} \mathbf{X}\right)_{i, i}^{-1}\right)}\right)
\end{aligned}
$$

\triangleright and analogously for other sums of components of $\boldsymbol{\beta}$

6.4 Prediction

Prediction

New covariate combinations

○ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

- what can we say about

$$
Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\varepsilon ?
$$

- let $\mathbf{x} \in \mathbb{R}^{p}$ such that $\mathbf{x}=\left(1, x_{1}, \ldots, x_{k}\right)^{\top}$
- $Y=\mathbf{x}^{\top} \boldsymbol{\beta}+\varepsilon$ and $\mathrm{E} Y=\mathbf{x}^{\top} \boldsymbol{\beta}$
- we may estimate $\mathrm{E} Y$ by $\widehat{\mathrm{EY}}=\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}$
- $(1-\alpha) \times 100 \%$ confidence interval for $\mathrm{E} Y$:

$$
\begin{aligned}
\left(\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}},\right. & \\
& \left.\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}}\right)
\end{aligned}
$$

Prediction in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- how can we estimate

$$
Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\varepsilon=\mathbf{x}^{\top} \boldsymbol{\beta}+\varepsilon ?
$$

i.e. how do we predict new Y for new \mathbf{x} ?

- prediction $\hat{Y}=\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}$
- $(1-\alpha) \times 100 \%$ confidence interval for Y
(prediction interval):

$$
\begin{aligned}
& \left(\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(1+\mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}\right)},\right. \\
& \left.\quad \mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(1+\mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}\right)}\right)
\end{aligned}
$$

6.5 Confidence bands

Confidence bands

Confidence regions in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- let $\mathbf{A} \in \mathbb{R}^{m \times p}, \operatorname{rank}(\mathbf{A})=m$

$$
\triangleright \quad \frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \sim F(m, n-p)
$$

- $(1-\alpha) \times 100 \%$ confidence bands for $\mathbf{A} \boldsymbol{\beta}$:

$$
\left\{\mathbf{A} \boldsymbol{\beta} ; \frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \leq F_{1-\alpha}(m, n-p)\right\}
$$

Confidence bands in normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

Lemma 1. Let $\mathbf{B} \in \mathbb{R}^{m \times m}, \mathbf{B} \succ 0$. Then for every $\mathbf{x} \in \mathbb{R}^{m}$

$$
\mathbf{x}^{\top} \mathbf{B} \mathbf{x} \leq 1 \Leftrightarrow\left(\mathbf{b}^{\top} \mathbf{x}\right)^{2} \leq \mathbf{b}^{\top} \mathbf{B}^{-1} \mathbf{b} \forall \mathbf{b} \in \mathbb{R}^{m} .
$$

- a proof can be found in Jiř̌ Anděl: Základy matematické statistiky (2005). Matfyzpress; see also multiple comparisons and Scheffé's theorem next semester
- for $\mathbf{A} \in \mathbb{R}^{m \times p}, \operatorname{rank}(\mathbf{A})=m$:

$$
\begin{gathered}
1-\alpha= \\
=\mathrm{P}\left(\frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \leq F_{1-\alpha}(m, n-p)\right) \\
=\mathrm{P}\left(\left(\mathbf{b}^{\top}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})\right)^{2} \leq m F_{1-\alpha}(m, n-p) \widehat{\sigma^{2}} \mathbf{b}^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right) \mathbf{b} ; \forall \mathbf{b} \in \mathbb{R}^{m}\right)
\end{gathered}
$$

6.6 Testing hypotheses

6.6.1 Simple hypothesis

Testing $H_{0}: \beta_{i}=0$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- for $\mathbf{a} \in \mathbb{R}^{p}$

$$
\frac{\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\top} \boldsymbol{\beta}}{\sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}}} \sim t(n-p)
$$

- let $\mathbf{a} \in \mathbb{R}^{p}$ such that $a_{i}=1$ and $a_{j}=0$ for $j \neq i$
- testing
$\triangleright H_{0}: \beta_{i}=0$ vs.
$\triangleright H_{1}: \beta_{i} \neq 0$
- test statistic $T_{i}=\frac{\hat{\beta}_{i}}{\sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i, i}^{-1}}} \sim t(n-p)$
- reject H_{0} in favour of H_{1} if $\left|t_{i}\right|>t_{1-\alpha / 2}(n-p)$
- analogously for linear combinations of elements of $\boldsymbol{\beta}$
- analogously for testing $H_{0}: \beta_{i}=\beta_{0, i}$

6.6.2 Composite hypothesis

Testing $H_{0}: \boldsymbol{\beta}_{i: p}=\mathbf{0}$

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- for $\mathbf{A} \in \mathbb{R}^{m \times p}, \operatorname{rank}(\mathbf{A})=m$

$$
\frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \sim F(m, n-p)
$$

- testing
$\triangleright H_{0}: \boldsymbol{\beta}_{i: p}=\mathbf{0}$ vs.
$\triangleright H_{1}: \boldsymbol{\beta}_{i: p} \neq \mathbf{0}$
- test statistic

$$
F_{i: p}=\frac{1}{(p-i+1) \widehat{\sigma}^{2}} \widehat{\boldsymbol{\beta}}_{i: p}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i: p, i: p}^{-1} \widehat{\boldsymbol{\beta}}_{i: p} \sim F(p-i+1, n-p)
$$

- reject H_{0} in favour of H_{1} if $f_{i: p}>F_{1-\alpha}(p-i+1, n-p)$

Testing "the model"

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- for $\mathbf{A} \in \mathbb{R}^{m \times p}, \operatorname{rank}(\mathbf{A})=m$

$$
\frac{1}{m \widehat{\sigma}^{2}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \sim F(m, n-p)
$$

- testing
$\triangleright H_{0}: \boldsymbol{\beta}_{2: p}=\mathbf{0}$ vs.
$\triangleright H_{1}: \boldsymbol{\beta}_{2: p} \neq \mathbf{0}$
- test statistic

$$
F=\frac{1}{k \widehat{\sigma^{2}}} \widehat{\boldsymbol{\beta}}_{2: p}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{2: p, 2: p}^{-1} \widehat{\boldsymbol{\beta}}_{2: p} \sim F(k, n-p)
$$

- reject H_{0} in favour of H_{1} if $f>F_{1-\alpha}(k, n-p)$

6.7 Interpretation

Interpretation of results for normal linear model

A model for fev data

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- data: fev from http://www.statsci.org/data/general/fev.html

A model for fev data ctd.

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- model FEV by Height and Sex

Fitted model for fev data

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- model FEV by Height and Sex
> model.simple <- lm(FEV~Height + Sex, data=fev)
> summary(model.simple)
Call:
$\operatorname{lm}($ formula $=$ FEV \sim Height + Sex, data $=$ fev $)$

```
Residuals:
    Min 1Q Median 3Q Max
-1.6763-0.2505 0.0001 
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -5.390263 $0.180082-29.932<2 e-16 * * *$
$\begin{array}{lllll}\text { Height } & 0.130231 & 0.002964 & 43.933 & <2 e-16 \text { *** }\end{array}$
$\begin{array}{lllrrr}\text { Height } & 0.130231 & 0.002964 & 43.933 & <2 \mathrm{e}-16^{* * *} \\ \text { SexMale } & 0.125123 & 0.033801 & 3.702 & 0.000232^{* * *}\end{array}$
Signif. codes: $0{ }^{\prime * * *} 0.001^{\prime * *} 0.01^{\prime *} 0.05$ ', 0.1 ' 1

Residual standard error: 0.4265 on 651 degrees of freedom
Multiple R-squared: 0.7587 , Adjusted R-squared: 0.758
F-statistic: 1024 on 2 and $651 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$
Fitted model for fev data ctd.

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- model FEV by Height and Sex
> coefficients(model.simple)
(Intercept) Height SexMale
$\begin{array}{lll}-5.3902632 & 0.1302305 & 0.1251234\end{array}$

Chapter 7

Model selection

7.1 The problem

7.1.1 Normal linear model

Normal linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
o data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

- from: http://www.statsci.org/data/general/fev.html
- question: association between the FEV[1] and Smoking,
corrected for Age[years], Height[cm] and Gender
o data:

FEV	Age	Height	Gender	Smoking
1.708	9	144.8	Female	Non
1.724	8	171.5	Female	Non
1.720	7	138.4	Female	Non
1.558	9	134.6	Male	Non
\ldots	\ldots	\ldots	\ldots	\ldots
3.727	15	172.7	Male	Current
2.853	18	152.4	Female	Non
2.795	16	160.0	Female	Current
3.211	15	168.9	Female	Non

\circ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\left(\begin{array}{l}1.708 \\ 1.724 \\ 1.720 \\ 1.558 \\ \cdots \\ 3.727 \\ 2.853 \\ 2.795 \\ 3.211\end{array}\right)=\left(\begin{array}{ccccc}1 & 9 & 144.8 & 0 & 0 \\ 1 & 8 & 171.5 & 0 & 0 \\ 1 & 7 & 138.4 & 0 & 0 \\ 1 & 9 & 134.6 & 1 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 15 & 172.7 & 1 & 1 \\ 1 & 18 & 152.4 & 0 & 0 \\ 1 & 16 & 160.0 & 0 & 1 \\ 1 & 15 & 168.9 & 0 & 0\end{array}\right) \times\left(\begin{array}{c}\beta_{0} \\ \cdots \\ \beta_{5}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \cdots \\ \varepsilon_{651} \\ \varepsilon_{652} \\ \varepsilon_{653} \\ \varepsilon_{654}\end{array}\right)$

7.1.2 Task for this chapter

Model building/selection

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization \mathbf{y}
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error $\boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathbf{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$: no systematic errors
* $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence and same precision
- task: given the observed data \mathbf{y} and values of potential
covariates, construct \mathbf{X}
- Note: X should ideally be known a priori based on background
knowledge and various optimality considerations but ...

7.2 Why consider various models?

7.2.1 Should we leave out covariates that appear unnecessary?

Testing hypotheses about null coefficients

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- testing
$\triangleright H_{0}: \beta_{i}=0$ vs.
$\triangleright H_{1}: \beta_{i} \neq 0$
- test statistic $T_{i}=\frac{\hat{\beta}_{i}}{\sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i, i}^{-1}}} \sim t(n-p)$
- reject H_{0} in favour of H_{1} if $\left|t_{i}\right|>t_{1-\alpha / 2}(n-p)$
- testing
$\triangleright H_{0}: \boldsymbol{\beta}_{i: p}=\mathbf{0}$ vs.
$\triangleright H_{1}: \boldsymbol{\beta}_{i: p} \neq \mathbf{0}$
- test statistic

$$
F_{i: p}=\frac{1}{(p-i+1) \widehat{\sigma}^{2}} \widehat{\boldsymbol{\beta}}_{i: p}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{i: p, i: p}^{-1} \widehat{\boldsymbol{\beta}}_{i: p} \sim F(p-i+1, n-p)
$$

- reject H_{0} in favour of H_{1} if $f_{i: p}>F_{1-\alpha}(p-i+1, n-p)$

What if we do not reject?

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- testing
$\triangleright H_{0}: \beta_{i}=0$ vs. $H_{1}: \beta_{i} \neq 0$
- if $\left|t_{i}\right|<t_{1-\alpha / 2}(n-p)$
\triangleright at $\alpha \%$ level, we do not reject that $\beta_{i}=0$ in favour of $\beta_{i} \neq 0$
- testing
$\triangleright H_{0}: \boldsymbol{\beta}_{i: p}=\mathbf{0}$ vs. $H_{1}: \boldsymbol{\beta}_{i: p} \neq \mathbf{0}$
- if $f_{i: p}<F_{1-\alpha}(p-i+1, n-p)$
\triangleright at $\alpha \%$ level, we do not reject $\boldsymbol{\beta}_{i: p}=\mathbf{0}$ in favour of $\boldsymbol{\beta}_{i: p} \neq \mathbf{0}$
- if we do not reject that some components of $\boldsymbol{\beta}$ are 0 , should we change the model?
\triangleright original model

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon, \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

\triangleright new model

$$
\mathbf{Y}=\mathbf{X}_{1:(i-1)} \boldsymbol{\beta}_{1:(i-1)}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Example: bloodpress data

- original model

$$
\begin{aligned}
Y_{i}=\beta_{0} & +\beta_{1} \times \text { Age }_{i}+\beta_{2} \times \text { Weight }_{i}+\beta_{3} \times \text { BSA }_{i}+ \\
& +\beta_{4} \times \operatorname{Dur}_{i}+\beta_{5} \times \text { Pulse }_{i}+\beta_{6} \times \text { Stress }_{i}+\varepsilon_{i}, 1 \leq i \leq 20
\end{aligned}
$$

```
\begin{tabular}{lrrrrrl} 
Coefficients: & & & & & & \\
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -12.870476 & 2.556650 & -5.034 & 0.000229 & \(* * *\) \\
Age & 0.703259 & 0.049606 & 14.177 & \(2.76 \mathrm{e}-09\) & \(* * *\) \\
Weight & 0.969920 & 0.063108 & 15.369 & \(1.02 \mathrm{e}-09\) & \(* * *\) \\
BSA & 3.776491 & 1.580151 & 2.390 & 0.032694 & \(*\) \\
Dur & 0.068383 & 0.048441 & 1.412 & 0.181534 & \\
Pulse & -0.084485 & 0.051609 & -1.637 & 0.125594 \\
Stress & 0.005572 & 0.003412 & 1.633 & 0.126491
\end{tabular}
Residual standard error: 0.4072 on 13 degrees of freedom
> coef.table <- summary(model.full)\$coefficients
\(>\mathrm{V}\) <- \(\operatorname{vcov}(\) model.full)
\(>A<-\operatorname{diag}(\operatorname{rep}(1,7))[5: 7\),
> F.stat <- t(A\%*\%coef.table[, 1]) \% \% \% solve(A\% \(\% \% \% \% * \% t(A)) \% * \%(A \% * \% c o e f . t a b l e[, 1]) / 3\)
> 1-pf(F.stat, df1=3, df2=13)
[1,] 0.1950807
```

- should we rather use the new model?

$$
Y_{i}=\beta_{0}+\beta_{1} \times \text { Age }_{i}+\beta_{2} \times \text { Weight }_{i}+\beta_{3} \times \mathrm{BSA}_{i}+\varepsilon_{i}, 1 \leq i \leq 20
$$

Example: bloodpress data

- original model
$\triangleright Y_{i}=\beta_{0}+\beta_{1} \times$ Age $_{i}+\beta_{2} \times$ Weight $_{i}+\beta_{3} \times$ BSA $_{i}+$

$$
+\beta_{4} \times \operatorname{Dur}_{i}+\beta_{5} \times \text { Pulse }_{i}+\beta_{6} \times \text { Stress }_{i}+\varepsilon_{i}, 1 \leq i \leq 20
$$

$\triangleright \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\cdots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

- new model
$\triangleright Y_{i}=\beta_{0}+\beta_{1} \times$ Age $_{i}+\beta_{2} \times$ Weight $_{i}+\beta_{3} \times \mathrm{BSA}_{i}+\varepsilon_{i}, 1 \leq i \leq 20$
$\triangleright \mathbf{Y}=\tilde{\mathbf{X}} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{cccc}
1 & 47 & 85.4 & 1.75 \\
1 & 49 & 94.2 & 2.10 \\
\ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 \\
1 & 56 & 95.7 & 2.09
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

7.2.2 What is the right form of the dependence on covariates?

Specifying the form of dependence in the fev data

- basic model for the dependence of FEV on Height and Sex:

$$
Y_{i}=\beta_{0}+\beta_{1} \times \text { Height }_{i}+\beta_{2} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { person is male }\right\}, 1 \leq i \leq 654
$$

- does the basic model fit the data well enough?

Example: fev data

- original model
$\triangleright Y_{i}=\beta_{0}+\beta_{1} \times \operatorname{Height}_{i}+\beta_{2} \times \mathbb{I}\left\{\right.$ the $i^{\text {th }}$ child is male $\}+\varepsilon_{i}, 1 \leq i \leq 654$

$$
\left(\begin{array}{l}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots \\
3.727 \\
2.853 \\
2.795 \\
3.211
\end{array}\right)=\left(\begin{array}{ccc}
1 & 144.8 & 0 \\
1 & 171.5 & 0 \\
1 & 138.4 & 0 \\
1 & 134.6 & 1 \\
\cdots & \cdots & \ldots \\
1 & 172.7 & 1 \\
1 & 152.4 & 0 \\
1 & 160.0 & 0 \\
1 & 168.9 & 0
\end{array}\right) \times\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\cdots \\
\varepsilon_{651} \\
\varepsilon_{652} \\
\varepsilon_{653} \\
\varepsilon_{654}
\end{array}\right)
$$

- new model

$$
\begin{aligned}
& \text { ® } Y_{i}=\beta_{0}+\beta_{1} \times \text { Height }_{i}+\beta_{2} \times \operatorname{Height}_{i}^{2}+ \\
& +\beta_{3} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\beta_{4} \times \text { Height }_{i} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\beta_{5} \times \operatorname{Height}_{i}^{2} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\varepsilon_{i}, 1 \leq i \leq 654 \\
& \left(\begin{array}{l}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots \\
3.727 \\
2.853 \\
2.795 \\
3.211
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 144.8 & 20961.3 & 0 & 0 & 0 \\
1 & 171.5 & 29395.1 & 0 & 0 & 0 \\
1 & 138.4 & 19162.9 & 0 & 0 & 0 \\
1 & 134.6 & 18122.5 & 1 & 134.6 & 18122.5 \\
\cdots & \ldots & \ldots & \cdots & \ldots & \cdots \\
1 & 172.7 & 29832.2 & 1 & 172.7 & 29832.2 \\
1 & 152.4 & 23225.8 & 0 & 0 & 0 \\
1 & 160.0 & 25606.4 & 0 & 0 & 0 \\
1 & 168.9 & 28530.6 & 0 & 0 & 0
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\cdots \\
\beta_{5}
\end{array}\right)+\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\cdots \\
\varepsilon_{651} \\
\varepsilon_{652} \\
\varepsilon_{653} \\
\varepsilon_{654}
\end{array}\right)
\end{aligned}
$$

Example: fev data

- fit of the new model

| Coefficients: | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ | |
| (Intercept) | $-5.194 \mathrm{e}+00$ | $2.740 \mathrm{e}+00$ | -1.895 | 0.0585 | |.

7.3 Nested models

Submodel

Nested models

- Bigger model: $\mathbf{Y}=\mathbf{X}_{\mathrm{b}} \boldsymbol{\beta}_{\mathrm{b}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$,

$$
\mathbf{X}_{\mathrm{b}}=\left(\mathbf{1}\left|\mathbf{x}_{, 1}\right| \mathbf{x}_{, 2}|\ldots| \mathbf{x}_{, k-1} \mid \mathbf{x}_{, k}\right)
$$

$\triangleright \widehat{\boldsymbol{\beta}}_{\mathrm{b}}=\left(\mathbf{X}_{\mathrm{b}}^{\top} \mathbf{X}_{\mathrm{b}}\right)^{-1} \mathbf{X}_{\mathrm{b}}^{\top} \mathbf{Y}$
$\triangleright \hat{\mathbf{Y}}_{\mathrm{b}}=\mathbf{X}_{\mathrm{b}} \widehat{\boldsymbol{\beta}}_{\mathrm{b}}=\mathbf{H}_{\mathrm{b}} \mathbf{Y}$
$\triangleright \mathbf{e}_{\mathrm{b}}=\mathbf{Y}-\widehat{\mathbf{Y}}_{\mathrm{b}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{b}}\right) \mathbf{Y}$
$\triangleright \widehat{\sigma}^{2}{ }_{\mathrm{b}}=\frac{1}{n-p}\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2}$

- Smaller model: $\mathbf{Y}=\mathbf{X}_{\mathrm{s}} \boldsymbol{\beta}_{\mathrm{s}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$,

$$
\mathbf{X}_{\mathrm{s}}=\left(\mathbf{1}\left|\mathbf{x}_{, 1}\right| \mathbf{x}_{, 2}|\ldots| \mathbf{x}_{, k-r}\right)
$$

$\triangleright \widehat{\boldsymbol{\beta}}_{\mathrm{s}}=\left(\mathbf{X}_{\mathrm{s}}^{\top} \mathbf{X}_{\mathrm{s}}\right)^{-1} \mathbf{X}_{\mathrm{s}}^{\top} \mathbf{Y}$
$\triangleright \hat{\mathbf{Y}}_{\mathrm{s}}=\mathbf{X}_{\mathrm{s}} \widehat{\boldsymbol{\beta}}_{\mathrm{s}}=\mathbf{H}_{\mathrm{s}} \mathbf{Y}$
$\triangleright \mathbf{e}_{\mathrm{s}}=\mathbf{Y}-\widehat{\mathbf{Y}}_{\mathrm{s}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}$
$\triangleright{\widehat{\sigma^{2}}}_{\mathrm{s}}=\frac{1}{n-p+r}\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}$

- more generally, any \mathbf{X}_{s} such that $\operatorname{im}\left(\mathbf{X}_{\mathrm{s}}\right) \leq \operatorname{im}\left(\mathbf{X}_{\mathrm{b}}\right)$
$\triangleright \exists \mathbf{A} \in \mathbb{R}^{p \times(p-r)}$ such that $\mathbf{X}_{\mathrm{s}}=\mathbf{X}_{\mathrm{b}} \mathbf{A}$
$\triangleright \mathbf{X}_{\mathrm{s}}=\left(\sum_{i=1}^{p} a_{i, 1} \mathbf{x}_{, i}|\ldots| \sum_{i=1}^{p} a_{i, p-r} \mathbf{x}_{, i}\right)$

Relationship between the two models

- if the smaller model holds, so does the bigger one
- $\exists \mathbf{A} \in \mathbb{R}^{p \times(p-r)}$ such that $\mathbf{X}_{\mathrm{s}}=\mathbf{X}_{\mathrm{b}} \mathbf{A}$
$\triangleright \mathbf{X}_{\mathrm{s}}=\left(\sum_{i=1}^{p} a_{i, 1} \mathbf{x}_{, i}|\ldots| \sum_{i=1}^{p} a_{i, p-r} \mathbf{x}_{, i}\right)$
- bigger model: $\mathbf{Y}=\mathbf{X}_{\mathrm{b}} \boldsymbol{\beta}_{\mathrm{b}}+\boldsymbol{\varepsilon}$

○ smaller model: $\mathbf{Y}=\mathbf{X}_{\mathrm{s}} \boldsymbol{\beta}_{\mathrm{s}}+\boldsymbol{\varepsilon}=\mathbf{X}_{\mathrm{b}} \underbrace{\mathbf{A} \boldsymbol{\beta}_{\mathrm{s}}}_{\boldsymbol{\beta}_{\mathrm{b}}}+\boldsymbol{\varepsilon}$

- smaller model is the bigger model with a condition on $\boldsymbol{\beta}_{\mathrm{b}}$

$$
\triangleright \underbrace{\boldsymbol{\beta}_{\mathrm{b}}}_{p \times 1}=\underbrace{\mathbf{A}}_{p \times(p-r)} \underbrace{\boldsymbol{\beta}_{\mathrm{s}}}_{(p-r) \times 1}=\left(\begin{array}{c}
\sum_{j=1}^{n-p} a_{1, j} \beta_{\mathrm{s}, j} \\
\cdots \\
\sum_{j=1}^{n-p} a_{p, j} \beta_{\mathrm{s}, j}
\end{array}\right)
$$

$\triangleright \exists \mathbf{B} \in \mathbb{R}^{r \times p}$ such that $\mathbf{B} \boldsymbol{\beta}_{\mathrm{b}}=\mathbf{0}$

- in the bigger normal linear model we may test for the validity of the smaller model by testing whether $\mathbf{B} \boldsymbol{\beta}_{\mathrm{b}}=\mathbf{0}$ (see Week 7)

Relationship between the fits of the two models

- difference between the fits
$\triangleright \hat{\mathbf{Y}}_{\mathrm{b}}-\hat{\mathbf{Y}}_{\mathrm{s}}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}$
- difference between the residuals

$$
\triangleright \mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}-\left(\mathbf{I}-\mathbf{H}_{\mathrm{b}}\right) \mathbf{Y}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}
$$

- comparison of the nested models' fits

$$
\triangleright\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}=\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2}+\left\|\mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}\right\|^{2}
$$

* proof: realize that $<\mathbf{e}_{\mathrm{b}}, \mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}>=0$
* note: $\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2} \geq\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} \Rightarrow$ the fit of the bigger model is closer to the observed data
* note: $\left\|\mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}\right\|^{2}=\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}-\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2}$
- in the normal linear model $\left(\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)\right)$

$$
\triangleright \mathbf{e}_{\mathrm{b}} \Perp\left(\mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}\right)
$$

* proof: Corollary of MVN 7:

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\mathbf{A X} \Perp \mathbf{B X}$ iff $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\top}=\mathbf{0}$.

Does the bigger model fit significantly better?

- assume that both models hold (i.e. the smaller model holds) and that $\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$ (normal linear model)
- $\frac{1}{\sigma^{2}}\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} \sim \chi_{n-p}^{2}$
\triangleright proof: see Week 6
- $\frac{1}{\sigma^{2}}\left\|\mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}\right\|^{2} \sim \chi_{r}^{2}$
\triangleright proof: MVN 3:
Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A X}+\mathrm{b} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$.
\triangleright and QF 4:
Let $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I})$ and let \mathbf{P} be an $n \times n$ projection matrix of rank r. Then $\mathbf{Z}^{\top} \mathbf{P} \mathbf{Z} \sim \chi^{2}(r)$.
- \| $\mathbf{e}_{\mathrm{b}}\left\|^{2} \Perp\right\| \mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}} \|^{2}$
\triangleright proof: see the previous slide
$\circ \frac{\left\|\mathbf{e}_{\mathbf{s}}-\mathbf{e}_{\mathrm{b}}\right\|^{2} / r}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)}=\frac{\left(\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}-\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2}\right) / r}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)} \sim F_{r, n-p}$
\triangleright proof: verify that the definition of $F_{r, n-p}$ is satisfied

More submodels

Several models nested within one another

- Big model: $\mathbf{Y}=\mathbf{X}_{\mathrm{b}} \boldsymbol{\beta}_{\mathrm{b}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$,
$\triangleright \hat{\mathbf{Y}}_{\mathrm{b}}=\mathbf{X}_{\mathrm{b}} \widehat{\boldsymbol{\beta}}_{\mathrm{b}}=\mathbf{H}_{\mathrm{b}} \mathbf{Y}$
$\triangleright \mathbf{e}_{\mathrm{b}}=\mathbf{Y}-\widehat{\mathbf{Y}}_{\mathrm{b}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{b}}\right) \mathbf{Y}$
- Small model: $\mathbf{Y}=\mathbf{X}_{\mathrm{s}} \boldsymbol{\beta}_{\mathrm{s}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$,
$\triangleright \hat{\mathbf{Y}}_{\mathrm{s}}=\mathbf{X}_{\mathrm{s}} \widehat{\boldsymbol{\beta}}_{\mathrm{s}}=\mathbf{H}_{\mathrm{s}} \mathbf{Y}$
$\triangleright \mathbf{e}_{\mathrm{s}}=\mathbf{Y}-\widehat{\mathbf{Y}}_{\mathrm{s}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}$
$\triangleright \widehat{\sigma}_{\mathrm{s}}=\frac{1}{n-p+r}\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}$
- Super-small model: $\mathbf{Y}=\mathbf{X}_{\mathrm{ss}} \boldsymbol{\beta}_{\mathrm{ss}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$,
$\triangleright \hat{\mathbf{Y}}_{\mathrm{ss}}=\mathbf{X}_{\mathrm{ss}} \widehat{\boldsymbol{\beta}}_{\mathrm{ss}}=\mathbf{H}_{\mathrm{ss}} \mathbf{Y}$
$\triangleright \mathbf{e}_{\mathrm{ss}}=\mathbf{Y}-\widehat{\mathbf{Y}}_{\mathrm{ss}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}$
$\triangleright{\widehat{\sigma^{2}}}_{\mathrm{ss}}=\frac{1}{n-p+s}\left\|\mathbf{e}_{\mathrm{ss}}\right\|^{2}$
- $\operatorname{im}\left(X_{\text {ss }}\right) \leq i m\left(X_{\mathrm{s}}\right) \leq \operatorname{im}\left(X_{\mathrm{b}}\right)$

Relationship between the fits of the models

- difference between the fits
$\triangleright \hat{\mathbf{Y}}_{\mathrm{b}}-\hat{\mathbf{Y}}_{\mathrm{s}}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}$
$\triangleright \hat{\mathbf{Y}}_{\mathrm{b}}-\hat{\mathbf{Y}}_{\mathrm{ss}}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}$
$\triangleright \hat{\mathbf{Y}}_{\mathrm{s}}-\hat{\mathbf{Y}}_{\mathrm{ss}}=\left(\mathbf{H}_{\mathrm{s}}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}$
- difference between the residuals

$$
\begin{aligned}
& \triangleright \mathbf{e}_{\mathrm{s}}-\mathbf{e}_{\mathrm{b}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}-\left(\mathbf{I}-\mathbf{H}_{\mathrm{b}}\right) \mathbf{Y}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y} \\
& \triangleright \mathbf{e}_{\mathrm{ss}}-\mathbf{e}_{\mathrm{b}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}-\left(\mathbf{I}-\mathbf{H}_{\mathrm{b}}\right) \mathbf{Y}=\left(\mathbf{H}_{\mathrm{b}}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y} \\
& \triangleright \mathbf{e}_{\mathrm{ss}}-\mathbf{e}_{\mathrm{s}}=\left(\mathbf{I}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}-\left(\mathbf{I}-\mathbf{H}_{\mathrm{s}}\right) \mathbf{Y}=\left(\mathbf{H}_{\mathrm{s}}-\mathbf{H}_{\mathrm{ss}}\right) \mathbf{Y}
\end{aligned}
$$

- in the normal linear model $\left(\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)\right)$
$\triangleright \mathrm{e}_{\mathrm{b}} \Perp\left(\mathrm{e}_{\mathrm{s}}-\mathrm{e}_{\mathrm{b}}\right)$
$\triangleright \mathrm{e}_{\mathrm{b}} \Perp\left(\mathrm{e}_{\mathrm{ss}}-\mathrm{e}_{\mathrm{b}}\right)$
$\triangleright \mathrm{e}_{\mathrm{b}} \Perp\left(\mathrm{e}_{\mathrm{ss}}-\mathrm{e}_{\mathrm{s}}\right)$
* proof: Corollary of MVN 7:

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\mathbf{A X} \Perp \mathbf{B X}$ iff $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\top}=\mathbf{0}$.

How about the super-small model's fit?

- assume that all three models hold (i.e. the super-small model holds) and that $\boldsymbol{\varepsilon} \sim$ $\mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$ (normal linear model)
- $\frac{1}{\sigma^{2}}\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} \sim \chi_{n-p}^{2}$
- $\frac{1}{\sigma^{2}}\left\|\mathbf{e}_{\mathrm{ss}}-\mathbf{e}_{\mathrm{s}}\right\|^{2} \sim \chi_{s-r}^{2}$
\triangleright proof: MVN 3:
Let $\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let \mathbf{A} be an $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A X}+\mathbf{b} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$.
\triangleright and QF 4:
Let $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I})$ and let \mathbf{P} be an $n \times n$ projection matrix of rank r. Then $\mathbf{Z}^{\top} \mathbf{P} \mathbf{Z} \sim \chi^{2}(r)$.
- \| $\mathbf{e}_{\mathrm{b}}\left\|^{2} \Perp\right\| \mathbf{e}_{\mathrm{ss}}-\mathbf{e}_{\mathrm{s}} \|^{2}$
- $\frac{\left\|\mathbf{e}_{\mathrm{ss}}-\mathbf{e}_{\mathrm{s}}\right\|^{2} /(s-r)}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)}=\frac{\left(\left\|\mathbf{e}_{\mathrm{ss}}\right\|^{2}-\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}\right) /(s-r)}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)} \sim F_{s-r, n-p}$
\triangleright proof: verify that the definition of $F_{s-r, n-p}$ is satisfied

7.4 Selecting the model

7.4.1 Model selection tools
 Model selection based on sequential testing

- statistical tests
$\triangleright t$ test for testing $\beta_{i}=0$ vs. $\beta_{i} \neq 0$
$\triangleright F$ test for testing $\mathbf{A} \boldsymbol{\beta}=\mathbf{0}$ vs. $\mathbf{A} \boldsymbol{\beta} \neq \mathbf{0}$
\triangleright likelihood ratio test
* $2\left(\max _{\boldsymbol{\theta}_{\mathrm{b}}} \ell(\right.$ Big model $)-\max _{\boldsymbol{\theta}_{\mathrm{s}}} \ell($ Small model $\left.)\right) \stackrel{a s,}{\sim} \chi_{\left|\boldsymbol{\theta}_{\mathrm{b}}\right|-\left|\boldsymbol{\theta}_{\mathbf{s}}\right|}^{2}$
* details next semester
- we may start with a big model and sequentially leave out terms that do not appear significant
\triangleright multiple testing \Rightarrow we do not keep the overall α
* often $\alpha>0.05$ is used at this stage (even $\alpha \approx 0.2$)
* the procedure is an ad-hoc one (rather than valid testing)
* "clean" ways exist (e.g. error-spending function)
\triangleright an approach of this kind is often applied when the interest is in $\boldsymbol{\beta}$ and the model is there to explain the phenomenon
- words of caution
$\triangleright p>0.05$ does not guarantee the absence of the relationship
\triangleright significance of the terms in the final model may be amplified

Model selection based on "criteria"

- model selection criterion
\triangleright a number that describes the overall fit of the model
- often applied when the interest is in prediction
- focus is on $\|\mathbf{e}\|^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}$
- already seen
\triangleright coefficient of determination
$R^{2}=1-\frac{\|\mathbf{e}\|^{2}}{\|\mathbf{Y}-\bar{Y} \mathbf{1}\|^{2}}$
* always bigger for a bigger model
* bigger model is not necessarily better, so is the difference big enough to justify the use of the bigger model?
\triangleright adjusted coefficient of determination
$R_{a d j}^{2}=1-\frac{\|\mathbf{e}\|^{2} /(n-p)}{\|\mathbf{Y}-\bar{Y} \mathbf{1}\|^{2} /(n-1)}$
* penalizes for the model complexity

Likelihood-based information criteria

- model fit versus model complexity trade-off
- Akaike information criterion
$\triangleright A I C=-2 \max _{\boldsymbol{\theta}} \ell($ model $)+2 \times|\boldsymbol{\theta}|$
\triangleright motivation
* information theory
* prediction
\triangleright favours bigger models
- Bayesian information criterion
$\triangleright B I C=-2 \max _{\boldsymbol{\theta}} \ell($ model $)+\log (n) \times|\boldsymbol{\theta}|$
\triangleright motivation
* Bayesian model comparison
* selection of covariates
\triangleright favours smaller models
- smaller is better
- can be used to compare non-nested models
- can be used for more general models (cf. next semester)

Mallows's C_{P}

- criterion specific for linear regression:
\triangleright suppose that the full model has $\boldsymbol{\beta}$ of length p
\triangleright describe the fit (focus on prediction) of its submodel with $\widetilde{\boldsymbol{\beta}}$ of length P
\triangleright estimate the average mean square error of prediction $\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \mathrm{E}\left(\hat{Y}_{i}-\mathrm{E} Y_{i}\right)^{2}$ by

$$
\frac{1}{\widehat{\sigma^{2}}{ }_{\mathrm{b}}} \sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}=\frac{\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)}
$$

- $C_{P}=\frac{\left\|\mathbf{e}_{\mathrm{s}}\right\|^{2}}{\left\|\mathbf{e}_{\mathrm{b}}\right\|^{2} /(n-p)}-n+2 P$
\triangleright for the full model: $C_{p}=p$
\triangleright models with $C_{P} \approx P$ are considered good
\triangleright we may plot C_{P} against P and choose a small model that has $C_{P} \approx P$ (if small is preferred)
\square related to the AIC

7.4.2 Model selection strategies To leave out or not to leave out?

- setting $\beta_{i}=0$ if the true $\beta_{i} \neq 0$
i.e. leaving out a covariate that should have been kept
\triangleright possible bias in the estimators of β_{j} for $i \neq j$
\triangleright possible invalidity of the resulting model (cf. Week 10)
- allowing $\beta_{i} \neq 0$ if the true $\beta_{i} \approx 0$
i.e. keeping unnecessary covariates in the model
\triangleright possibly worse estimation of β_{j} for $i \neq j$ and larger confidence intervals (cf. Week 11)
\triangleright possibility of overfitting
\triangleright sometimes/often simple explanations are preferable
- conclusion
\triangleright avoid blind automatic model selection procedures if possible

Model selection strategies

- step-wise procedures based on p-values of the t / F test
\triangleright backward selection
* start with a biggest model, leave out the covariate with the largest p-value, end when p -values for all included covariates are smaller than $\alpha_{\text {crit }}$
\triangleright forward selection
* start with a smallest model, add the covariate with the smallest p-value, end when p-values of all non-included covariates are larger than $\alpha_{\text {crit }}$
\triangleright step-wise selection
* a combination of forward and backward selection
\triangleright issues
* non-exhaustive search
* multiple testing; tests invalid unless the smaller model is true
* not recommended for prediction
- step-wise procedures with a model selection criterion
- exhaustive search with a model selection criterion
\triangleright e.g. plot C_{P} or R^{2} against the number of predictors

Notes on model selection

- hierarchical modelling
\triangleright powers of lower order should be kept in the model if powers of higher order are present
\triangleright main terms and interactions of lower order should be kept in the model if interactions of higher order are present
\triangleright there may be a good reason for a non-hierarchical model but such a model is not invariant to affine transformations and rotations of covariates
- several models may fit equally well
\triangleright if they give qualitatively different answers, reconsider the use of the data to answer the question
- avoid blind automatic model selection procedures if possible
\triangleright if impossible, choose a selection procedure to fit the purpose of the modelling and carefully examine the final model
- make sure that the models you considered were fitted to the same data

Concluding notes

- there is no best/foolproof way to do the model selection except for common sense and sound understanding of the phenomenon
- A model should be as simple as possible but no simpler.

Albert Einstein

- All models are wrong but some are useful.

George Box

Chapter 8

Model diagnostics

8.1 The problem

8.1.1 Normal linear model

Normal linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

Example: fev data

- from: http://www.statsci.org/data/general/fev.html
- question: association between the FEV[1] and Smoking,
corrected for Age[years], Height[cm] and Gender

- data:	FEV	Age	Height	Gender	Smoking
	1.708	9	144.8	Female	Non
	1.724	8	171.5	Female	Non
	1.720	7	138.4	Female	Non
	1.558	9	134.6	Male	Non
	. 3.727	\cdots	172.7	Male	Current
	2.853	18	152.4	Female	Non
	2.795	16	160.0	Female	Current
	3.211	15	168.9	Female	Non

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots \\
3.727 \\
2.853 \\
2.795 \\
3.211
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 9 & 144.8 & 0 & 0 \\
1 & 8 & 171.5 & 0 & 0 \\
1 & 7 & 138.4 & 0 & 0 \\
1 & 9 & 134.6 & 1 & 0 \\
\ldots & \ldots & \ldots & \cdots & \ldots \\
1 & 15 & 172.7 & 1 & 1 \\
1 & 18 & 152.4 & 0 & 0 \\
1 & 16 & 160.0 & 0 & 1 \\
1 & 15 & 168.9 & 0 & 0
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{5}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\ldots \\
\varepsilon_{651} \\
\varepsilon_{652} \\
\varepsilon_{653} \\
\varepsilon_{654}
\end{array}\right)
$$

8.1.2 Task for this chapter

Checking the model assumptions

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization y
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error $\boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization \triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathrm{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$: no systematic errors
* $\operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$: independence and same precision
- task: do the assumptions appear to be satisfied?
- Note: if they are not, inference is not valid...

8.2 Random errors and residuals

Random errors

Random errors in the normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- assumptions
$\triangleright E \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$: no systematic errors
* $\operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$: independence and the same precision
- we need to verify the assumptions on
\triangleright expectation: $\mathrm{EY}=\mathbf{X} \boldsymbol{\beta}$, i.e. $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$
\triangleright variance: $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$
\triangleright distribution: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- all assumptions are made on unobserved random errors $\boldsymbol{\varepsilon}$
- fitted model: $\mathbf{Y}=\hat{\mathbf{Y}}+(\mathbf{Y}-\hat{\mathbf{Y}})=\mathbf{X} \widehat{\boldsymbol{\beta}}+\mathbf{e}$
- residuals e sometimes seen as "estimates" of $\boldsymbol{\varepsilon}$
$\triangleright \varepsilon$ is an unobserved random vector, not a parameter (constant)
$\triangleright \mathbf{e}$ are not estimates in the usual sense

Residuals

Residuals in the normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- fitted model: $\mathbf{Y}=\hat{\mathbf{Y}}+\mathbf{e}=\mathbf{H} \mathbf{Y}+(\mathbf{I}-\mathbf{H}) \mathbf{Y}$
- $\mathbf{e} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2}(\mathbf{I}-\mathbf{H})\right)$
\triangleright proof: cf. Week 6 or use MVN 3
$\triangleright \operatorname{rank}(\mathbf{I}-\mathbf{H})=n-p$ if $\operatorname{rank}(\mathbf{X})=p$
* $\mathbf{e} \stackrel{d}{=} \mathbf{A} \mathbf{Z}$ for an $(n-p)$-dimensional $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$
$\mathbf{I}-\mathbf{H}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ (spec. dec.) $\Rightarrow \mathbf{A}=\mathbf{U}_{n \times(n-p)} \boldsymbol{\Lambda}_{(n-p) \times(n-p)}^{1 / 2}$ (cf. Week 4 or use MVN 3)
- if the assumptions are satisfied, residuals are
\triangleright zero-mean
\triangleright with unequal variances: $\operatorname{Var} e_{i}=\sigma^{2}\left(1-h_{i, i}\right)$
\triangleright with a degenerate normal distribution
\triangleright correlated: $\operatorname{Cor}\left(e_{i}, e_{j}\right)=-\frac{h_{i, j}}{\sqrt{\left(1-h_{i, i}\right)\left(1-h_{j, j}\right)}}$
- compare to $\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \ldots$

Standardized residuals in the normal linear model

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- fitted model: $\mathbf{Y}=\hat{\mathbf{Y}}+\mathbf{e}=\mathbf{H} \mathbf{Y}+(\mathbf{I}-\mathbf{H}) \mathbf{Y}$

$$
\triangleright \mathbf{e} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2}(\mathbf{I}-\mathbf{H})\right)
$$

- to check the assumptions, we often use

$$
\text { standardized residuals } r_{i}=\frac{e_{i}}{\sqrt{\hat{\sigma}^{2}\left(1-h_{i, i}\right)}}, 1 \leq i \leq n
$$

- if the assumptions are satisfied
\triangleright we expect that $r_{i} \approx \mathrm{~N}(0,1)$
* it can be shown that $\mathrm{E} r_{i}=0$ and $\operatorname{Var} r_{i}=1$
(some technical work needed to prove this)
* we did not derive the distribution of r_{i} 's
* we did not try to get rid of the correlation
- compare to $\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \ldots$

8.3 Model diagnostics I: checking the assumptions

8.3.1 General principles

Checking the assumptions

- Specifying the possible departures
\triangleright need to specify in what sense the assumption might be violated
\triangleright if the assumption is H_{0}, need to specify H_{1}

1. Graphical checking

- plots that allows us to "see" departures from the assumptions
- based on residuals (e or \mathbf{r})

2. Testing the validity of assumptions

- usually by fitting a more general model that allows them not to be satisfied and testing whether the generalization is needed
- useful as numerical indications BUT
- we cannot "prove the null hypothesis"
- problems with the validity of inference:
\triangleright chains of tests and multiple testing
\triangleright assumptions on assumptions
\triangleright we should ${ }^{*}$ know* in advance they are satisfied

Overall check: residuals versus fitted values

- $\mathbf{e} \perp \hat{\mathbf{Y}}$ by definition
- no systematic patterns should appear between \mathbf{e} and $\hat{\mathbf{Y}}$
- example: fev data
\triangleright basic model:
$Y_{i}=\beta_{0}+\beta_{1} \times \operatorname{Height}_{i}+\beta_{2} \times \mathbb{I}\left\{\right.$ the $i^{\text {th }}$ child is male $\}+\varepsilon_{i}, 1 \leq i \leq 654$
\triangleright quadratic model:

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{1} \times \text { Height }_{i}+\beta_{2} \times \text { Height }_{i}^{2}+ \\
+ & \beta_{3} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\beta_{4} \times \text { Height }_{i} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\beta_{5} \times \operatorname{Height}_{i}^{2} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\varepsilon_{i}, \quad 1 \leq i \leq 654
\end{aligned}
$$

8.3.2 Assumptions on the expectation

Checking $\mathrm{E} \varepsilon=0$, i.e. $\mathrm{E} \mathrm{Y}=\mathrm{X} \boldsymbol{\beta}$

- suspected departures from the assumption
\triangleright incorrectly specified form of dependence
* plot e against the included covariates
* $\mathbf{e} \perp \mathbf{x}_{, i}, 1 \leq i \leq p$, by definition
* no systematic patterns should appear between \mathbf{e} and $\mathbf{x}_{, i}$
* a trend indicates a dependence not captured by the model
* a formal test: fit a more complicated dependence and test against the original model
\triangleright missing covariates
* plot e against covariates that are not included in the model
* no systematic patterns should appear
* a trend indicates a dependence not captured by the model
* a formal test: fit a larger model and test the effect of the additional covariate

Incorrectly specified form of dependence

- example: fev data
\triangleright basic model:

$$
Y_{i}=\beta_{0}+\beta_{1} \times \text { Height }_{i}+\beta_{2} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\varepsilon_{i}, 1 \leq i \leq 654
$$

\triangleright quadratic model:

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{1} \times \text { Height }_{i}+\beta_{2} \times \text { Height }_{i}^{2}+ \\
+ & \beta_{3} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\beta_{4} \times \text { Height }_{i} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\beta_{5} \times \text { Height }_{i}^{2} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\varepsilon_{i}, 1 \leq i \leq 654
\end{aligned}
$$

Missing covariates

- example: fev data
- quadratic model:

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{1} \times \operatorname{Height}_{i}+\beta_{2} \times \operatorname{Height}_{i}^{2}+ \\
+ & \beta_{3} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\beta_{4} \times \operatorname{Height}_{i} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\beta_{5} \times \operatorname{Height}_{i}^{2} \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\varepsilon_{i}, 1 \leq i \leq 654
\end{aligned}
$$

8.3.3 Assumptions on the variance

Checking $\operatorname{Var} \varepsilon=\sigma^{2} \mathrm{I}$: homoskedasticity

- suspected departures from the assumption
\triangleright variance changing with fitted values (usually increasing)
* plot standardized residuals (usually square root of the absolute value) against fitted values
* no pattern should appear
\triangleright variance changing with covariates
* plot standardized residuals (usually square root of the absolute value) against covariates
* no pattern should appear
* a formal test: studentized Breusch-Pagan test
\triangleright subgroups with the same within-group variance
* plot boxplots of standardized residuals by groups
* boxes should be of approximately equal sizes
* a formal test: fit a more general model and test against the original model

Breusch-Pagan test

- original model
$\triangleright \mathrm{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- more general model
$\triangleright \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)\right)$
$\triangleright \sigma^{2}=\mathbf{X} \boldsymbol{\alpha}$
- Breusch-Pagan test: test $\boldsymbol{\alpha}_{2: p}=\mathbf{0}$ in the more general model
- studentized Breusch-Pagan test less sensitive to the assumption of normality
- more general versions of the Breusch-Pagan test and more general tests exist

Checking $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: homoskedasticity

- example: fev data
- quadratic model:

```
Y}=\mp@subsup{\beta}{0}{}+\mp@subsup{\beta}{1}{}\times\mp@subsup{\operatorname{Height}}{i}{}+\mp@subsup{\beta}{2}{}\times\mp@subsup{\operatorname{Height}}{i}{2}
        + _}3\times\mathbb{I}{\mathrm{ the }\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ child is male } + }\mp@subsup{\beta}{4}{}\times\mp@subsup{\operatorname{Height }}{i}{}\mathbb{I}{\mathrm{ the }\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ child is male }+
        + _ 
```


Checking $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence

- suspected departures from the assumption
\triangleright clustering
* suspected e.g. when several data points collected from one individual (e.g. same individuals followed over time)
* plot boxplots of residuals by the suspected groups
* no pattern should appear
* a formal test: fit a more general model allowing for the within-group dependence and test against the original model
\triangleright serial correlation
* suspected when data collected over time or space
* plot e_{i} against e_{i-1}
* no pattern should appear
* plot the (partial) autocorrelation function
* a formal test: fit a more general model and test against the original model
* a formal test: Durbin-Watson test

Durbin-Watson test

- original model
$\triangleright \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\triangleright \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- more general model
$\triangleright \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$
$\triangleright \varepsilon_{i}=\rho \varepsilon_{i-1}+w_{i}, w_{i} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right),|\rho|<1$
(autoregression of the first order on the error terms)
- Durbin-Watson test: test $\rho=0$ against $\rho>0$ in the more general model
- also possible to test $\rho=0$ against $\rho<0$ and $\rho=0$ against $\rho \neq 0$
- more general tests available

Time series models

- time series is a random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$
\triangleright stationary if $\mathrm{E} X_{t}=\mu, \operatorname{Var} X_{t}=\sigma^{2}, \operatorname{Cov}\left(X_{t}, X_{t+s}\right)=\gamma(s)$
- The autocovariance function of a stationary random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is defined as $\gamma(h)=\operatorname{Cov}\left(X_{t}, X_{t+h}\right), h \in \mathbb{Z}$.
- The autocorrelation function (ACF) is defined as $\rho(h)=\operatorname{Cor}\left(X_{t}, X_{t+h}\right)=\gamma(h) / \gamma(0)$, $h \in \mathbb{Z}$.
- The partial autocorrelation function (PACF) is defined as $\alpha(1)=\operatorname{Cor}\left(X_{t}, X_{t+1}\right)=$ $\rho(1)$ and $\alpha(h)=\operatorname{Cor}\left(X_{t}-\hat{X}_{t}, X_{t+h}-\hat{X}_{t+h}\right), h=2,3, \ldots$, where \hat{X}_{t} and \hat{X}_{t+h} are the fitted values from the linear regressions $X_{t} \sim X_{t+1}, \ldots, X_{t+h-1}$ and $X_{t+h} \sim$ $X_{t+1}, \ldots, X_{t+h-1}$.

ACF and PACF for ARMA models

- special time series models
- Let $\left\{\epsilon_{t}\right\} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)$. Then $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is
$\triangleright \operatorname{AR}(p)$ if
* $X_{t}=\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t} ;$
$\triangleright \operatorname{MA}(q)$ if
* $X_{t}=\epsilon_{t}+\theta_{1} \epsilon_{t-1}+\cdots+\theta_{q} \epsilon_{t-q} ;$
$\triangleright \operatorname{ARMA}(p, q)$ if
$* X_{t}=\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}+\theta_{1} \epsilon_{t-1}+\cdots+\theta_{q} \epsilon_{t-q}$.
- ACF and PACF for AR/MA

	ACF	PACF
AR (p)	Exponential decay	Cuts off after lag p
MA (q)	Cuts off after lag q	Exponential decay
ARMA (p, q)	Exponential decay	Exponential decay

ACFs and PACFs

- simulated ACFs

White noise

Some other series

- theoretical ACF and PACF for an ARMA

ACFs and PACFs

- theoretical ACF for MA(1)

- theoretical PACF for $\operatorname{AR}(2)$

Other types of dependence

- spatial correlation diagnosed via semivariogram
\triangleright for a stationary isotropic random field $\left\{Z(\mathbf{x}) ; \mathbf{x} \in \mathbb{R}^{2}\right\}$, semivariogram is
- clustering (boxplots of residuals by group)

8.3.4 Assumptions on the distribution

Checking $\varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

- suspected departures from the assumption
\triangleright non-normal distribution
* skewed distribution
* heavy-tailed distribution
- plot a QQ plot for (standardized) residuals
- plot a histogram for (standardized) residuals
- formal tests: Shapiro-Wilk test, Kolmogorov-Smirnov test
\triangleright warning: valid for iid's (and residuals are not iid's)

QQ plot and histogram

- QQ plot (preferred)
\triangleright quantiles of $\mathrm{N}(0,1)$ against empirical quantiles
\triangleright should be near a straight line
\triangleright problems to look for
* S shape (heavy tails)
* an arc (skewness)

Shapiro-Wilk test and Kolmogorov-Smirnov test

- valid for iid's (and residuals are not iid's)
\triangleright Shapiro-Wilk test
* can be seen as a numerical summary of the QQ plot
* rather a strong one
> shapiro.test(rstandard(model.basic.quad))
Shapiro-Wilk normality test
data: rstandard(model.basic.quad)
$\mathrm{W}=0.9865, \mathrm{p}$-value $=9.713 \mathrm{e}-06$
> shapiro.test(rstandard(model.basic.quad)[sample(1:654, 50)])
Shapiro-Wilk normality test
data: rstandard(model.basic.quad) [sample(1:654, 50)]
$\mathrm{W}=0.97011, \mathrm{p}$-value $=0.2338$
\triangleright Kolmogorov-Smirnov test * rather a weak one

Importance of the assumption

- large-sample distribution of $\widehat{\boldsymbol{\beta}}$
\triangleright Let $\mathbf{X}_{n} ; n \in \mathbb{N}$ be a sequence of $n \times p$ design matrices of full rank defining a sequence of linear models $\mathbf{Y}_{n}=\mathbf{X}_{n} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{n}$ with $\boldsymbol{\varepsilon}_{n} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. If $\max _{1 \leq i \leq n} \mathbf{x}_{i,}^{\top}\left(\mathbf{X}_{n}^{\top} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{i}, \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ then

$$
\left(\mathbf{X}_{n}^{\top} \mathbf{X}_{n}\right)^{1 / 2}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow[n \rightarrow \infty]{d} \mathrm{~N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

where $\widehat{\boldsymbol{\beta}}_{n}=\left(\mathbf{X}_{n}^{\top} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{n}^{\top} \mathbf{Y}_{n}$.

- normality not crucial in large samples unless there are special observations

8.4 Model diagnostics II: influential and unusual observations

8.4.1 Observations to look at

Leverage

- $\mathbf{Y}=\hat{\mathbf{Y}}+\mathbf{e}=\mathbf{H} \mathbf{Y}+(\mathbf{I}-\mathbf{H}) \mathbf{Y}$
- $\operatorname{Var} \hat{Y}_{i}=h_{i, i} \ldots$ leverage
- $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ and $\operatorname{rank}(\mathbf{H})=\operatorname{tr}(\mathbf{H})=p$
- $h_{i, i}=\mathbf{x}_{i,}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{i}$, and $\sum_{i=1}^{n} h_{i, i}=p$
- the variance of \hat{Y}_{i} determined by the corresponding covariates
- we want all observations to contribute \approx equally to the fit
\triangleright we want that $h_{i, i} \approx \frac{p}{n}$
- if $h_{i, i}$ much larger for some i, the fit may be influenced by $\left(Y_{i}, \mathbf{x}_{i,}\right)$ much more than by the other observations
- observations with $h_{i, i}>\frac{2 p}{n}$ should be checked

Potentially influential and influential observations

Least squares lines

- both points have a high leverage, but only one is influential

Model with an excluded observation

- consider a model $\mathbf{Y}_{[-i]}=\mathbf{X}_{[-i]} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{[-i]}$ without the $i^{\text {th }}$ observation
- fit the model
\triangleright compute $\widehat{\boldsymbol{\beta}}_{[-i]}$ and $\widehat{\sigma^{2}}{ }_{[-i]}$
- compute $\hat{y}_{[-i]}=\mathbf{x}_{i,}^{\top} \widehat{\boldsymbol{\beta}}_{[-i]}$
\triangleright prediction of y_{i} based on the model without the $i^{\text {th }}$ observation
- if $y_{i}-\hat{y}_{[-i]}$ is large, the $i^{\text {th }}$ observation is an outlier
\triangleright how large is "too large?"
$\triangleright \operatorname{Var}\left(y_{i}-\hat{y}_{[-i]}\right)=\sigma^{2}\left(1+\mathbf{x}_{i,}^{\top}\left(\mathbf{X}_{[-i]}^{\top} \mathbf{X}_{[-i]}\right)^{-1} \mathbf{x}_{i},\right)$
\triangleright define jackknife residuals $t_{i}=\frac{y_{i}-\hat{y}_{[-i]}}{\sqrt{\hat{\sigma}^{2}{ }_{[-i]}\left(1+\mathbf{x}_{i,}^{\top}\left(\mathbf{X}_{[-i]}^{\top} \mathbf{X}_{[-i]}\right)^{-1} \mathbf{X}_{i,}\right)}}$
\triangleright there is a simpler equivalent formula that does not require fitting n models with excluded observations

Influential and unusual observations

- in the normal linear model:
$\triangleright t_{i} \sim t_{n-p-1}$
- we can test whether and observation is an outlier
\triangleright heavy multiple testing \rightsquigarrow Bonferroni correction
* use $t_{n-p-1}(1-\alpha /(2 n))$ instead of $t_{n-p-1}(1-\alpha / 2)$
- to evaluate whether the observation is influential
\triangleright Cook's distance: $d_{i}=\frac{1}{p \hat{\sigma}^{2}}\left\|\hat{\mathbf{Y}}-\hat{\mathbf{Y}}_{[-i]}\right\|^{2}=\frac{1}{p} r_{i}^{2} \frac{h_{i, i}}{1-h_{i, i}}$
\triangleright how large is "too large"?
* rule of thumb: $d_{i} \geq 0.5$ deserve some attention $d_{i} \geq 1 \rightsquigarrow$ highly influential observation

Chapter 9

Reduced-rank design matrix and multicolllinearity

9.1 The problem

9.1.1 Normal linear model

Normal linear model

```
- \(Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}\)
    \(\triangleright Y_{i}\) : outcome, response, output, dependent variable
        * random variable, we observe a realization \(y_{i}\)
    * (odezva, závisle proměnná, regresand)
    \(\triangleright x_{i, 1}, \ldots, x_{i, k}\) : covariates, predictors, explanatory variables,
        input, independent variables
        * given, known
    * (nezávisle proměnné, regresory)
    \(\triangleright \beta_{0}, \ldots, \beta_{k}\) : coefficients
        * unknown
    * (regresní koeficienty)
    \(\triangleright \varepsilon_{i}\) : random error
    * random variable, unobserved
- \(\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}\)
    \(\triangleright \mathrm{E} \varepsilon_{i}=0\) : no systematic errors
    \(\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}\) : same precision
```


Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure[mmHg] and age[years], weight $[\mathrm{kg}]$, body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

- from: http://www.statsci.org/data/general/fev.html
- question: association between the FEV[1] and Smoking,
corrected for Age[years], Height[cm] and Gender

	FEV	Age	Height	Gender	Smoking
	1.708	9	144.8	Female	Non
	1.724	8	171.5	Female	Non
	1.720	7	138.4	Female	Non
	data:	1.558	9	134.6	Male

\circ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{l}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots \\
3.727 \\
2.853 \\
2.795 \\
3.211
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 9 & 144.8 & 0 & 0 \\
1 & 8 & 171.5 & 0 & 0 \\
1 & 7 & 138.4 & 0 & 0 \\
1 & 9 & 134.6 & 1 & 0 \\
\cdots & \cdots & \ldots & \cdots & \cdots \\
1 & 15 & 172.7 & 1 & 1 \\
1 & 18 & 152.4 & 0 & 0 \\
1 & 16 & 160.0 & 0 & 1 \\
1 & 15 & 168.9 & 0 & 0
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\cdots \\
\beta_{5}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\ldots \\
\varepsilon_{651} \\
\varepsilon_{652} \\
\varepsilon_{653} \\
\varepsilon_{654}
\end{array}\right)
$$

9.1.2 Task for this chapter
 Rank-deficiency/near-rank deficiency of X

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization y
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error $\boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathrm{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$: no systematic errors
* $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence and same precision
- task: so far we have assumed that $\operatorname{rank}(\mathbf{X})=p$

What happens if $\operatorname{rank}(\mathbf{X})<p$ or "nearly so"?

9.2 Rank-deficient design matrix

9.2.1 Rank-deficient design matrix

Full-rank design matrix X

- design matrix \mathbf{X} is $n \times p, n>p$
- SVD: $\mathbf{X}=\underbrace{\mathbf{U}}_{n \times n} \underbrace{\boldsymbol{\Sigma}}_{n \times p} \underbrace{\mathbf{V}^{\top}}_{p \times p}$
- if all covariates are linearly independent
$\triangleright \operatorname{rank}(\mathbf{X})=p$
$\triangleright \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p}>0$
\triangleright thin SVD: $\mathbf{X}=\underbrace{\mathbf{U}_{1}}_{n \times p} \underbrace{\boldsymbol{\Sigma}_{1}}_{p \times p} \underbrace{\mathbf{V}^{\top}}_{p \times p}$
\triangleright the columns generate a p-dimensional space im (\mathbf{X})
* $\left\{\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, p}\right\}$ is a basis of $\operatorname{im}(\mathbf{X})$
* $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{, p}\right\}$ is an orthonormal basis of $\operatorname{im}(\mathbf{X})$
* $\mathbf{H}=\mathbf{U}_{1} \mathbf{U}_{1}^{\top}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ is a projection matrix on $\mathrm{im}(\mathbf{X})$

Rank-deficient design matrix \mathbf{X}

- design matrix \mathbf{X} is $n \times p, n>p$
- SVD: $\mathbf{X}=\underbrace{\mathbf{U}}_{n \times n} \underbrace{\boldsymbol{\Sigma}}_{n \times p} \underbrace{\mathbf{V}^{\top}}_{p \times p}$
- if covariates are not linearly independent
$\triangleright \operatorname{rank}(\mathbf{X})=r<p$
$\triangleright \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0=\sigma_{r+1}=\ldots=\sigma_{p}$
\triangleright compact SVD: $\mathbf{X}=\underbrace{\mathbf{U}_{1}}_{n \times r} \underbrace{\boldsymbol{\Sigma}_{1}}_{r \times r} \underbrace{\mathbf{V}^{\top}}_{r \times r}$
\triangleright the columns generate an r-dimensional space $\operatorname{im}(\mathbf{X})$
* $\left\{\mathbf{u}_{, 1}, \ldots, \mathbf{u}_{, r}\right\}$ is an orthonormal basis of $\operatorname{im}(\mathbf{X})$
* $\mathbf{H}=\mathbf{U}_{1} \mathbf{U}_{1}^{\top}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top}$ is a projection matrix on $\operatorname{im}(\mathbf{X})$

$\widehat{\boldsymbol{\beta}}$ motivated by orthogonal projection (reminder)

\circ model: $\mathrm{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$

- idea: set $\boldsymbol{\varepsilon} \stackrel{!}{=} \mathbf{0}$ and solve $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$ w.r.t. $\boldsymbol{\beta}$
\triangleright then $\underbrace{\mathbf{Y}}_{n \times 1} \stackrel{!}{=} \underbrace{\mathbf{X}}_{n \times p} \underbrace{\boldsymbol{\beta}}_{p \times 1}$
$\triangleright n$ linear equations with p unknowns and $n>p$
\Rightarrow a solution exists only if $\mathbf{Y} \in \operatorname{im}(\mathbf{X})$
- modified idea: find $\hat{\mathbf{Y}} \in \operatorname{im}(\mathbf{X})$ such that $\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}$ is the smallest possible and solve $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ w.r.t. $\boldsymbol{\beta}$
\triangleright then $\hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto $\operatorname{im}(\mathbf{X})$
\triangleright projection matrix onto im (\mathbf{X}) is $\underbrace{\mathbf{H}}_{\text {hat matrix }}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top}$
\triangleright solving $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ is solving $\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$
\triangleright estimate $\boldsymbol{\beta}$ by $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{X}^{\top} \mathbf{Y}$
\triangleright but $\widehat{\boldsymbol{\beta}}$ is the unique solution of $\hat{\mathbf{Y}}=\mathbf{X} \boldsymbol{\beta}$ iff $\operatorname{rank}(\mathbf{X})=p$
* and then $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$

$\widehat{\boldsymbol{\beta}}$ as least squares estimator (reminder)

○ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}$ unknown, $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$

- idea: make the residuals as small as possible
\triangleright minimize $\|\varepsilon\|^{2}=\sum_{i=1}^{n} \varepsilon_{i}^{2}$ w.r.t. $\boldsymbol{\beta}$
\rightsquigarrow Least Squares Estimator (LSE) $\widehat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{i=1}^{n} \varepsilon_{i}^{2}$
\triangleright also called the OLS (Ordinary Least Squares) solution
- computation:
$\triangleright \varepsilon=\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}$
$\triangleright \widehat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}=\arg \min _{\boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})$
- look for the minimum by differentiating:
$\triangleright \frac{\partial}{\partial \boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) \stackrel{!}{=} 0$
$\triangleright-2 \mathbf{X}^{\top} \mathbf{Y}+2 \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} 0$
$\triangleright \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \stackrel{!}{=} \mathbf{X}^{\top} \mathbf{Y}$: normal equations
- normal equations have unique solution iff $\operatorname{rank}(\mathbf{X})=p$: then
\triangleright the solution is $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
$\triangleright \frac{\partial^{2}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})=2 \mathbf{X}^{\top} \mathbf{X} \succ 0$ for all $\boldsymbol{\beta}$
\Rightarrow the solution is the minimum $\Rightarrow \widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
If $\operatorname{rank}(\mathbf{X})=r<p$
- orthogonal projection approach
$\triangleright \hat{\mathbf{Y}}$ exists and is unique
$\triangleright \hat{\boldsymbol{\beta}}$ such that $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ is a vector of coordinates of $\hat{\mathbf{Y}} \in \operatorname{im}(\mathbf{X})$ w.r.t. $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{, p}\right\}$
* if $\left\{\mathbf{x}_{1,1}, \ldots, \mathbf{x}_{, p}\right\}$ is not a basis of $\operatorname{im}(\mathbf{X}), \hat{\boldsymbol{\beta}}$ is not unique
$\triangleright\{\hat{\boldsymbol{\beta}} ; \hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}\}$ is a linear subspace of \mathbb{R}^{p} of dimension $p-r$
\triangleright neither $\hat{\mathbf{Y}}$ nor $\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}$ depend on the choice of $\hat{\boldsymbol{\beta}}$
- ordinary least squares approach
\triangleright normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\top} \mathbf{Y}$ are consistent
$* \operatorname{rank}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\operatorname{rank}\left(\left(\mathbf{X}^{\top} \mathbf{Y}, \mathbf{X}^{\top} \mathbf{X}\right)\right)$
\triangleright normal equations have infinitely many solutions
* the linear subspace of \mathbb{R}^{p} of dimension $p-r$
\triangleright the minimum $\min _{\boldsymbol{\beta}}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ is attained for each of the solutions and its value is the same for all the solutions
* the $\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}$
\triangleright proofs can be found in Anděl: Základy matematické statistiky

9.2.2 Identifiability

Identifiable parameters

- $\hat{\mathbf{Y}}$ and $\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}=\min _{\boldsymbol{\beta}}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ does not depend on $\hat{\boldsymbol{\beta}}$
- any other quantities with such properties?

Theorem. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \mathbf{X} is an $n \times p$ matrix, $\operatorname{rank}(\mathbf{X})=r<p, \boldsymbol{\beta} \in \mathbb{R}^{p}$, and $\boldsymbol{\varepsilon}$ is an n-dimensional random vector with $\mathrm{E} \boldsymbol{\varepsilon}=\mathbf{0}$ and $\operatorname{Var} \boldsymbol{\varepsilon}=\sigma^{2} \mathbf{I}$. Let $\mathbf{c} \in \mathbb{R}^{p}$ and $\theta=\mathbf{c}^{\top} \boldsymbol{\beta}$.

If $\theta \in \operatorname{im}\left((\mathbf{X} \boldsymbol{\beta})^{\top}\right)$, equivalently if $\mathbf{c} \in \operatorname{im}\left(\mathbf{X}^{\top}\right)$, then
(i) the value of $\hat{\theta}=\mathbf{c}^{\top} \hat{\boldsymbol{\beta}}$ where $\hat{\boldsymbol{\beta}}$ is a solution to the normal equations does not depend on the choice of the solution;
(ii) \exists a linear unbiased estimator of θ;
(iii) $\hat{\theta}=\mathbf{c}^{\top} \hat{\boldsymbol{\beta}}$ is BLUE for θ.

- parameter θ that is a linear combination of EY is identifiable
- a proof can be found in Jiří Anděl: Základy matematické statistiky

Inference for identifiable parameters

○ model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}=\mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right), \operatorname{rank}(\mathbf{X})=r<p$

- EY is identifiable
- $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ is BLUE for EY for any $\hat{\boldsymbol{\beta}}$ that solves the normal equations - it can be shown that

$$
\begin{aligned}
& \triangleright \frac{n-r}{\sigma^{2}} \hat{\sigma^{2}} \sim \chi_{n-r}^{2} \\
& \triangleright \hat{\sigma^{2}}=\frac{1}{n-r}\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2} \text { is an unbiased estimator of } \sigma^{2}
\end{aligned}
$$

$\triangleright \hat{\sigma^{2}} \Perp \hat{\boldsymbol{\beta}}$ for any $\hat{\boldsymbol{\beta}}$ that solves the normal equations
\triangleright proofs are similar to the full-rank case

* can be found in Jiř̌́ Anděl: Základy matematické statistiky (2005). Matfyzpress.
- inference for identifiable parameters and vectors is as in the full-rank model but we need to adjust the degrees of freedom
$\triangleright n-r$ instead of $n-p$

9.2.3 Choice of the solution

Choice of $\hat{\boldsymbol{\beta}}$

- $\hat{\mathbf{Y}}$ and $\hat{\sigma^{2}}$ do not depend on the choice of $\hat{\boldsymbol{\beta}}$
- $\{\hat{\boldsymbol{\beta}} ; \hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}\}$ is a linear subspace of \mathbb{R}^{p} of dimension $p-r$
\triangleright we can choose $\hat{\boldsymbol{\beta}}$ by specifying $p-r$ linear constraints
* choose an $(p-r) \times p$ matrix $\mathbf{D}, \operatorname{rank}(\mathbf{D})=p-r$
* require that $\mathbf{D} \boldsymbol{\beta}=\mathbf{0}$
- for a given \mathbf{D}
$\triangleright \mathrm{QR}$ decompose $\mathbf{D}^{\top}=\left(\mathbf{Q}_{1} \mid \mathbf{Q}_{2}\right)\binom{\mathbf{R}_{1}}{\mathbf{0}}=\mathbf{Q}_{1} \mathbf{R}_{1}$
$\triangleright \mathbf{C}_{\mathbf{D}}=\mathbf{Q}_{2}$ is a $p \times r$ matrix, $\operatorname{rank}\left(\mathbf{C}_{\mathbf{D}}\right)=r$
$\triangleright \mathbf{X}_{\mathbf{D}}=\mathbf{X} \mathbf{C}_{\mathbf{D}}$ is an $n \times r$ matrix, $\operatorname{rank}\left(\mathbf{X}_{\mathbf{D}}\right)=r$
\triangleright fit the (full-rank) model $\mathbf{Y}=\mathbf{X}_{\mathbf{D}} \boldsymbol{\beta}_{\mathrm{D}}+\boldsymbol{\varepsilon}$
$\triangleright \hat{\boldsymbol{\beta}}=\mathbf{C}_{\mathbf{D}} \widehat{\boldsymbol{\beta}}_{\mathbf{D}}$ is the solution to the original normal equations satisfying the constraints given by \mathbf{D}

Common example: factor variables (fev data)

- basic model: FEV ~ Height + Gender
\triangleright naïve parametrization

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{\mathrm{H}} \times \text { Height }_{i}+ \\
& +\beta_{\mathrm{M}} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+\beta_{\mathrm{F}} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is female }\right\}+ \\
& +\varepsilon_{i}, 1 \leq i \leq 654 \\
& \left(\begin{array}{c}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots . \\
3.211
\end{array}\right)=\left(\begin{array}{cccc}
1 & 144.8 & 0 & 1 \\
1 & 171.5 & 0 & 1 \\
1 & 138.4 & 0 & 1 \\
1 & 134.6 & 1 & 0 \\
\cdots & \ldots & \cdots & \cdots \\
1 & 168.9 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\beta_{\mathrm{H}} \\
\beta_{\mathrm{M}} \\
\beta_{\mathrm{F}}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\cdots \\
\varepsilon_{654}
\end{array}\right)
\end{aligned}
$$

\triangleright standard parametrization

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{\mathrm{H}} \times \text { Height }_{i}+ \\
& +\beta_{\mathrm{M}} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\varepsilon_{i}, \quad 1 \leq i \leq 654
\end{aligned}
$$

- basic model with interaction: FEV ~ Height * Gender
\triangleright standard parametrization

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{\mathrm{H}} \times \operatorname{Height}_{i}+ \\
& +\beta_{\mathrm{M}} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\}+ \\
& +\beta_{\mathrm{H}: \mathrm{M}} \times \mathbb{I}\left\{\text { the } i^{\text {th }} \text { child is male }\right\} \times \operatorname{Height}_{i}+\varepsilon_{i}, \quad 1 \leq i \leq 654
\end{aligned}
$$

One-way ANOVA

- $Y_{i, j}=\mu+\alpha_{i}+\varepsilon_{i, j}, \varepsilon_{i, j} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$

$$
i \in\{1, \ldots, I\}, j \in\left\{1, \ldots n_{i}\right\}
$$

- matrix form $\mathbf{Y}=\mathbf{X}(\mu, \boldsymbol{\alpha})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

$$
\left(\begin{array}{c}
Y_{1,1} \\
\ldots \\
Y_{1, n_{1}} \\
Y_{2,1} \\
\cdots \\
Y_{2, n_{2}} \\
\cdots \\
\cdots \\
\cdots \\
Y_{I, 1} \\
\cdots \\
Y_{I, n_{I}}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2} \\
\cdots \\
\alpha_{I}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1,1} \\
\cdots \\
\varepsilon_{1, n_{1}} \\
\varepsilon_{2,1} \\
\cdots \\
\varepsilon_{2, n_{2}} \\
\cdots \\
\cdots \\
\cdots \\
\varepsilon_{I, 1} \\
\cdots \\
\varepsilon_{I, n_{I}}
\end{array}\right)
$$

$\triangleright \mathbf{X}$ is an $n \times(I+1)$ matrix with $\operatorname{rank}(\mathbf{X})=I$

ANOVA

- one-way ANOVA
$\triangleright Y_{i, j}=\mu+\alpha_{i}+\varepsilon_{i, j}, \varepsilon_{i, j} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$
$i \in\{1, \ldots, I\}, j \in\left\{1, \ldots n_{i}\right\}$
\triangleright matrix form $\mathbf{Y}=\left(\mathbf{1} \mid \mathbf{X}_{\boldsymbol{\alpha}}\right)(\mu, \boldsymbol{\alpha})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* \mathbf{X} is an $n \times(I+1)$ matrix with $\operatorname{rank}(\mathbf{X})=I$
$\triangleright Y_{i, j, k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i, j, k}, \varepsilon_{i, j, k} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$
$i \in\{1, \ldots, I\}, j \in\{1, \ldots, J\}, k \in\left\{1, \ldots n_{i, j}\right\}$
\triangleright matrix form $\mathbf{Y}=\left(\mathbf{1}\left|\mathbf{X}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}}\right)(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* \mathbf{X} is an $n \times(I+J+1)$ matrix with $\operatorname{rank}(\mathbf{X})=I+J-1$
- two-way ANOVA with interactions
$\triangleright Y_{i, j, k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i, j}+\varepsilon_{i, j, k}, \varepsilon_{i, j, k} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$
$i \in\{1, \ldots, I\}, j \in\{1, \ldots, J\}, k \in\left\{1, \ldots n_{i, j}\right\}$
$\triangleright \mathbf{Y}=\left(\mathbf{1}\left|\mathbf{X}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}} \mid \mathbf{X}_{\boldsymbol{\alpha}} \cdot \mathbf{X}_{\boldsymbol{\beta}}\right)(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
(. denotes component-wise multiplication in the $n \times(I \times J)$ matrix)
* \mathbf{X} is an $n \times(I+J+(I \times J)+1)$ matrix, $\operatorname{rank}(\mathbf{X})=I \times J$

ANOVA parametrizations

- one-way ANOVA

$$
\begin{aligned}
\triangleright & Y_{i, j}=\mu+\alpha_{i}+\varepsilon_{i, j}, \varepsilon_{i, j} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right) \\
& i \in\{1, \ldots, I\}, j \in\left\{1, \ldots n_{i}\right\}
\end{aligned}
$$

* \mathbb{R} parametrization: $\alpha_{1}=0$
* other parametrizations: e.g. $\sum_{i=1}^{I} n_{i} \alpha_{i}=0$
- two-way ANOVA
$\triangleright Y_{i, j, k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i, j, k}, \varepsilon_{i, j, k} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$
$\quad i \in\{1, \ldots, I\}, j \in\{1, \ldots, J\}, k \in\left\{1, \ldots n_{i, j}\right\}$
* \mathbb{R} parametrization: $\alpha_{1}=0, \beta_{1}=0$
* other: e.g. $\quad \sum_{i=1}^{I} \alpha_{i} \sum_{j=1}^{J} n_{i, j}=0, \sum_{j=1}^{J} \beta_{j} \sum_{i=1}^{I} n_{i, j}=0$
- two-way ANOVA with interactions

$$
\begin{aligned}
\triangleright & Y_{i, j, k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i, j}+\varepsilon_{i, j, k}, \varepsilon_{i, j, k} \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right) \\
& i \in\{1, \ldots, I\}, j \in\{1, \ldots, J\}, k \in\left\{1, \ldots n_{i, j}\right\}
\end{aligned}
$$

* \mathbb{R} parametrization: $\alpha_{1}=0, \beta_{1}=0, \gamma_{1, j}=0 \forall j, \gamma_{i, 1}=0 \forall i$
* other: e.g. $\quad \sum_{i=1}^{I} \alpha_{i} \sum_{j=1}^{J} n_{i, j}=0, \sum_{j=1}^{J} \beta_{j} \sum_{i=1}^{I} n_{i, j}=0, \quad \sum_{i=1}^{I} n_{i, j} \gamma_{i, j}=$ $0 \forall j, \sum_{j=1}^{J} n_{i, j} \gamma_{i, j}=0 \forall i$

ANOVA parametrizations via matrices of contrasts

- one-way ANOVA
$\triangleright \mathbf{Y}=\left(\mathbf{1} \mid \mathbf{X}_{\alpha}\right)(\mu, \boldsymbol{\alpha})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
\triangleright replace $\left(\mathbf{1} \mid \mathbf{X}_{\alpha}\right)$ by $\left(\mathbf{1} \mid \mathbf{X}_{\alpha} \mathbf{C}_{\alpha}\right)$
$* \mathbf{C}_{\alpha} \in \mathbb{R}^{I \times(I-1)}, \operatorname{rank}\left(\left(\mathbf{1} \mid \mathbf{X}_{\alpha} \mathbf{C}_{\alpha}\right)\right)=I$
\triangleright estimate $\boldsymbol{\alpha}$ by $\mathbf{C}_{\alpha} \hat{\boldsymbol{\alpha}}$ from the fitted model
- two-way ANOVA
$\triangleright \mathbf{Y}=\left(\mathbf{1}\left|\mathbf{X}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}}\right)(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
\triangleright replace $\left(\mathbf{1}\left|\mathbf{X}_{\alpha}\right| \mathbf{X}_{\beta}\right)$ by $\left(\mathbf{1}\left|\mathbf{X}_{\alpha} \mathbf{C}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}} \mathbf{C}_{\boldsymbol{\beta}}\right)$
$* \mathbf{C}_{\boldsymbol{\alpha}} \in \mathbb{R}^{I \times(I-1)}, \mathbf{C}_{\boldsymbol{\beta}} \in \mathbb{R}^{J \times(J-1)}$
$* \operatorname{rank}\left(\left(\mathbf{1}\left|\mathbf{X}_{\alpha} \mathbf{C}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}} \mathbf{C}_{\boldsymbol{\beta}}\right)\right)=I+J-1$
\triangleright estimate $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ by $\mathbf{C}_{\boldsymbol{\alpha}} \hat{\boldsymbol{\alpha}}$ and $\mathbf{C}_{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}$ from the fitted model
- two-way ANOVA with interactions
$\triangleright \mathbf{Y}=\left(\mathbf{1}\left|\mathbf{X}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}} \mid \mathbf{X}_{\boldsymbol{\alpha}} \cdot \mathbf{X}_{\boldsymbol{\beta}}\right)(\mu, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})^{\top}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
\triangleright replace $\left(\mathbf{1}\left|\mathbf{X}_{\alpha}\right| \mathbf{X}_{\beta} \mid \mathbf{X}_{\alpha} \cdot \mathbf{X}_{\beta}\right)$ by $\left(\mathbf{1}\left|\mathbf{X}_{\alpha} \mathrm{C}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\beta} \mathrm{C}_{\boldsymbol{\beta}} \mid \mathbf{X}_{\alpha} \mathrm{C}_{\alpha} \cdot \mathbf{X}_{\beta} \mathrm{C}_{\beta}\right)$
* $\mathbf{C}_{\boldsymbol{\alpha}} \in \mathbb{R}^{I \times(I-1)}, \mathbf{C}_{\boldsymbol{\beta}} \in \mathbb{R}^{J \times(J-1)}$
$* \operatorname{rank}\left(\left(\mathbf{1}\left|\mathbf{X}_{\alpha} \mathbf{C}_{\boldsymbol{\alpha}}\right| \mathbf{X}_{\boldsymbol{\beta}} \mathbf{C}_{\boldsymbol{\beta}} \mid \mathbf{X}_{\alpha} \mathbf{C}_{\boldsymbol{\alpha}} \cdot \mathbf{X}_{\boldsymbol{\beta}} \mathbf{C}_{\boldsymbol{\beta}}\right)\right)=I J$
\triangleright estimate $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ by $\mathbf{C}_{\boldsymbol{\alpha}} \hat{\boldsymbol{\alpha}}, \mathbf{C}_{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}$ and $\left(\mathbf{C}_{\boldsymbol{\alpha}} \otimes \mathbf{C}_{\boldsymbol{\beta}}\right) \hat{\boldsymbol{\gamma}}$

9.3 Multicollinearity

Multicollinearity

Multicollinearity

- we have seen that if $\operatorname{rank}(\mathbf{X})=r<p$, we do not lose anything by leaving out $p-r$ columns
- but what if $\operatorname{rank}(\mathbf{X})=p$ but "only nearly so"?
\triangleright the columns of \mathbf{X} linearly independent BUT
$\triangleright \frac{\left\langle\mathbf{x}_{i, i}, \mathbf{x}_{j, j}\right\rangle}{\left\|\mathbf{x}_{, i}\right\|\left\|\mathbf{x}_{, j}\right\|} \approx \pm 1$ for some (i, j)
and/or for some linear combinations of the columns
- we would lose information by leaving out columns but keeping them all is a problem as well
$\triangleright \mathbf{X}^{\top} \mathbf{X}$ is ill-conditioned
* $\widehat{\boldsymbol{\beta}}$ solves $\left(\mathbf{X}^{\top} \mathbf{X}\right) \boldsymbol{\beta}=\mathbf{X}^{\top} \mathbf{Y}$
* small change in $\mathbf{Y} \Rightarrow$ large change in $\widehat{\boldsymbol{\beta}}$
* fit extremely sensitive to errors $\boldsymbol{\varepsilon}$
\triangleright large $\operatorname{Var} \widehat{\boldsymbol{\beta}}$
* imprecise estimation of $\boldsymbol{\beta}$
* wide confidence intervals for β^{\prime} 's
* large p-values of the t -tests (not necessarily of the overall F-test)

Detecting multicollinearity

- pairwise relationships
\triangleright graphically: plot pairs of covariates one against another
\triangleright numerically: compute pairwise correlations
- pairwise and/or higher-order relationships
\triangleright regressing each covariate in turn on all the others
* large values of the corresponding R^{2} problematic
\triangleright compute eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$
* large values of $\sqrt{\lambda_{1} / \lambda_{j}}$ problematic
- other indications
\triangleright large p-values of the individual t-tests but a small p-value of the overall F-test
\triangleright estimates of $\boldsymbol{\beta}$ and $\operatorname{Var}(\widehat{\boldsymbol{\beta}})$ very sensitive to adding/leaving out covariates and/or perturbing \mathbf{Y}

Variance inflation factors

- fit $\operatorname{lm}\left(\mathbf{X}_{, j} \sim \mathbf{X}_{, 1}+\ldots+\mathbf{X}_{, j-1}+\mathbf{X}_{, j+1}+\ldots+\mathbf{X}_{, p}\right)$
$\triangleright R_{j}^{2} \ldots$ the corresponding coefficient of determination
- it can be shown that $\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{s^{2}}{(n-1) s_{X, j}^{2}} \times \frac{1}{1-R_{j}^{2}}$

$$
\text { in } \operatorname{lm}\left(\mathbf{Y} \sim \mathbf{X}_{, 1}+\ldots+\mathbf{X}_{, p}\right)
$$

- variance inflation factor $\mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}$
\triangleright measures linear dependence of the $j^{\text {th }}$ covariate
on the other covariates
\triangleright interpretation
* standard error of $\hat{\beta}_{j}$ is $\approx \sqrt{\mathrm{VIF}_{j}} \times$ larger than it would be were the $j^{\text {th }}$ covariate independent of the other covariates
$\triangleright=1$ for orthogonal covariates, large values indicate problems
\triangleright how big is "too big"?
* some consider VIF >5 problematic
* VIF >10 is definitely considered problematic
- a generalization gVIF exists for categorical variables

Example: fev data

- $\operatorname{Cor}($ Age, Height $)=0.79$

- $R_{\text {Age }}^{2}=0.69$
- $\mathrm{VIF}_{\text {Age }}=3.24$

Ill-conditioned $\mathbf{X}^{\top} \mathbf{X}$

- linear model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

○ model fitting: $\underbrace{\left(\mathbf{X}^{\top} \mathbf{X}\right)}_{(p \times p)} \underbrace{\hat{\boldsymbol{\beta}}}_{(p \times 1)}=\underbrace{\mathbf{X}^{\top} \mathbf{Y}}_{(p \times 1)} \cdots \underbrace{\mathbf{A}}_{(p \times p)(p \times 1)} \underbrace{\mathbf{x}}_{(p \times 1)}$

- solving for $\hat{\boldsymbol{\beta}}$ with machine precision
\triangleright if the error in \mathbf{b} is $\boldsymbol{\epsilon}$, the error in the solution $\mathbf{A}^{-1} \mathbf{b}$ is $\mathbf{A}^{-1} \boldsymbol{\epsilon}$
\triangleright relative error in the solution divided by the relative error in \mathbf{b} :
$* \frac{\left\|\mathbf{A}^{-1} \epsilon\right\| / /\left\|\mathbf{A}^{-1} \mathbf{b}\right\|}{\|\epsilon\| / /\|\mathbf{b}\|}$ for some norm $\|\bullet\|^{2}$
* maximal value: $\frac{\left\|\mathbf{A}^{-1}\right\|}{\|\mathbf{A}\|}$
\triangleright for Euclidean/spectral norm: $\frac{\left\|\mathbf{A}^{-1}\right\|}{\|\mathbf{A}\|}=\sqrt{\frac{\lambda_{1}}{\lambda_{p}}}: \sqrt{ }$ of the ratio of the smallest and largest eigenvalue: condition number
* some consider ≥ 30 problematic
* the condition number depends also on the scales of covariates (not only on their relationships)
* can improve a lot if all covariates are on similar scales

Tackling multicollinearity

- having independent covariates helps a lot but inherent relationships cannot be circumvented
- with collinear covariates, information does not increase as we would expect with the number of covariates
- "solutions"
\triangleright excluding covariates
* we avoid "repeating the same thing" but lose information
* keep covariates that are of interest and/or are easy to measure
* do not misinterpret leaving out a covariate as implying that it has no significant influence on the outcome
\triangleright orthogonalizing and/or standardizing the predictors
* more complicated interpretation
* not a problem for prediction (but then multicollinearity might not have been a big issue unless extrapolation was planned)
\triangleright a different method for estimation (e.g. ridge regression)
* we loose some nice properties of the estimators

Chapter 10

Miscellanea and recap

10.1 The problem

10.1.1 Normal linear model

Normal linear model

- $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}+\varepsilon_{i}, i \in\{1, \ldots, n\}$
$\triangleright Y_{i}$: outcome, response, output, dependent variable
* random variable, we observe a realization y_{i}
* (odezva, závisle proměnná, regresand)
$\triangleright x_{i, 1}, \ldots, x_{i, k}$: covariates, predictors, explanatory variables, input, independent variables
* given, known
* (nezávisle proměnné, regresory)
$\triangleright \beta_{0}, \ldots, \beta_{k}$: coefficients
* unknown
* (regresní koeficienty)
$\triangleright \varepsilon_{i}$: random error
* random variable, unobserved
- $\varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right), i \in\{1, \ldots, n\}$
$\triangleright \mathrm{E} \varepsilon_{i}=0$: no systematic errors
$\triangleright \operatorname{Var} \varepsilon_{i}=\sigma^{2}$: same precision

Example: bloodpress data

- from sites.stat.psu.edu/~1simon/stat501wc/sp05/data/
- association between the mean arterial blood pressure $[\mathrm{mmHg}]$ and age[years], weight[kg], body surface area $\left[m^{2}\right.$], duration of hypertension[years], basal pulse[beats/min], stress
- data:

BP	Age	Weight	BSA	DoH	Pulse	Stress
105	47	85.4	1.75	5.1	63	33
115	49	94.2	2.10	3.8	70	14
\ldots						
110	48	90.5	1.88	9.0	71	99
122	56	95.7	2.09	7.0	75	99

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
105 \\
115 \\
\ldots \\
110 \\
122
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 47 & 85.4 & 1.75 & 5.1 & 63 & 33 \\
1 & 49 & 94.2 & 2.10 & 3.8 & 70 & 14 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 48 & 90.5 & 1.88 & 9.0 & 71 & 99 \\
1 & 56 & 95.7 & 2.09 & 7.0 & 75 & 99
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{6}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{19} \\
\varepsilon_{20}
\end{array}\right)
$$

https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

- from: http://www.statsci.org/data/general/fev.html
- question: association between the FEV[1] and Smoking,
corrected for Age[years], Height[cm] and Gender

- data:	FEV	Age	Height	Gender	Smoking
	1.708	9	144.8	Female	Non
	1.724	8	171.5	Female	Non
	1.720	7	138.4	Female	Non
	1.558	9	134.6	Male	Non
	3.727	15	172.7	Male	Current
	2.853	18	152.4	Female	Non
	2.795	16	160.0	Female	Current
	3.211	15	168.9	Female	Non

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

$$
\left(\begin{array}{c}
1.708 \\
1.724 \\
1.720 \\
1.558 \\
\ldots \\
3.727 \\
2.853 \\
2.795 \\
3.211
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 9 & 144.8 & 0 & 0 \\
1 & 8 & 171.5 & 0 & 0 \\
1 & 7 & 138.4 & 0 & 0 \\
1 & 9 & 134.6 & 1 & 0 \\
\cdots & \ldots & \ldots & \cdots & \ldots \\
1 & 15 & 172.7 & 1 & 1 \\
1 & 18 & 152.4 & 0 & 0 \\
1 & 16 & 160.0 & 0 & 1 \\
1 & 15 & 168.9 & 0 & 0
\end{array}\right) \times\left(\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{5}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\ldots \\
\varepsilon_{651} \\
\varepsilon_{652} \\
\varepsilon_{653} \\
\varepsilon_{654}
\end{array}\right)
$$

10.1.2 Task for this chapter Miscellanea \& recap

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\triangleright outcome \mathbf{Y}
* random vector, we observe a realization y
\triangleright predictors $\mathbf{x}_{, 1}, \ldots, \mathbf{x}_{, k}$
* vector of given (known) constants
\triangleright coefficients $\boldsymbol{\beta}$
* vector of unknown constants
\triangleright error $\boldsymbol{\varepsilon}$
* unknown random vector, we do not observe its realization
\triangleright assumptions: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
* $\mathrm{E} \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$: the expected value of \mathbf{Y} is a linear function of $\boldsymbol{\beta}$
* $\mathrm{E} \varepsilon=0$: no systematic errors
* $\operatorname{Var} \varepsilon=\sigma^{2} \mathbf{I}$: independence and same precision
- task: miscellanea \& recap

10.2 Linear regression in practice

10.2.1 Linear regression in practice Statistical analysis with linear regression

1. build a mathematical model, i.e. define

- what is known
- what is uncertain
linear regression example: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

2. build a probabilistic model for what is uncertain
linear regression example: $\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
3. use probability calculus to draw conclusions
linear regression example:

- $\widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$
- $\frac{n-p}{\sigma^{2}} \widehat{\sigma^{2}} \sim \chi_{n-p}^{2} \quad \rightsquigarrow$ confidence intervals
- $\widehat{\boldsymbol{\beta}} \Perp \widehat{\sigma^{2}}$
\& hypotheses testing

4. "translate back" to the original problem (interpret the results)
linear regression example:

- $\widehat{\boldsymbol{\beta}}, \mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}, \mathbf{A} \widehat{\boldsymbol{\beta}}$,
- confidence intervals
- $\widehat{\mathrm{EY}}, \mathbf{a}^{\top}(\widehat{\mathrm{EY}}), \mathbf{A}(\widehat{\mathrm{EY}})$
- hypotheses testing

Usual additions to the basic analysis

1. find a suitable mathematical model

- propose a suitable functional dependence of \mathbf{Y} on \mathbf{X}
- propose a suitable model for the error
linear regression example: model selection

2. build a probabilistic model for what is uncertain
linear regression example: check the normality, potentially propose a different error distribution
3. use probability calculus to draw conclusions

- might need to adjust for multiple testing, post-hoc testing, poor design, ...

4. "translate back" to the original problem (interpret the results)
linear regression example:

- explanation
- prediction

10.3 Notes on interpretation

10.3.1 Notes on the explanation
 Explanation using linear regression

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- estimate $\boldsymbol{\beta}$ by $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$
- estimate $\mathbf{a}^{\top} \boldsymbol{\beta}$ by $\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}$
- $(1-\alpha) \times 100 \%$ confidence interval for $\mathbf{a}^{\top} \boldsymbol{\beta}$:

$$
\begin{array}{ll}
\left(\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}},\right. & \\
& \left.\mathbf{a}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{a}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{a}}\right)
\end{array}
$$

- estimate $\mathbf{A} \boldsymbol{\beta}$ by $\mathbf{A} \widehat{\boldsymbol{\beta}}$
- $(1-\alpha) \times 100 \%$ confidence bands for $\mathbf{A} \boldsymbol{\beta}$:

$$
\left\{\mathbf{A} \boldsymbol{\beta} ; \frac{1}{m \widehat{\sigma^{2}}}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta})^{\top}\left(\mathbf{A}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{A}^{\top}\right)^{-1}(\mathbf{A} \widehat{\boldsymbol{\beta}}-\mathbf{A} \boldsymbol{\beta}) \leq F_{1-\alpha}(m, n-p)\right\}
$$

Interpretation

- "keeping the values of all the other covariates fixed, a unit increase in x_{i} is associated with a $\hat{\beta}_{i}$ increase in E $Y^{\prime \prime}$
\triangleright suitably adapted for categorical predictors and potentially interactions, and depends on the choice of the identifiability conditions
\triangleright polynomials need a more complex interpretation
- is it meaningful to imagine that a covariate changes while all the other remain fixed?

Be careful with

- confounding: suppose that
\triangleright the truth is $Y_{i}=\beta_{0}+\beta_{E} E_{i}+\beta_{C} C_{i}+\varepsilon_{i}$
\triangleright we do not know about C and use $Y_{i}=\beta_{0}+\beta_{E} E_{i}+\varepsilon_{i}$ instead
$\triangleright C$ and E are connected, e.g. $E_{i}=\gamma_{0}+\gamma_{C} C_{i}+\tilde{\varepsilon}_{i}$
\triangleright then if C has an effect on Y, we will (erroneously) attribute an effect on Y to E
\triangleright may be solved by multiple regression model, provided the confounders and the form of their association to the outcome are known
- causality
\triangleright very hard to be confident about a causal relationship rather that the "association"
- both can be helped by a sound design

10.3.2 Notes on the prediction

Prediction from linear regression

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- what can we say about $Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\varepsilon$

$$
\text { for a new } \mathbf{x}=\left(1, x_{1}, \ldots, x_{k}\right)^{\top} \text { ? }
$$

- $Y=\mathbf{x}^{\top} \boldsymbol{\beta}+\varepsilon$ and $E Y=\mathbf{x}^{\top} \boldsymbol{\beta}$
- estimate $\mathrm{E} Y$ and Y by $\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}$
- $(1-\alpha) \times 100 \%$ confidence interval for $\mathrm{E} Y$:

$$
\left(\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}},\right.
$$

$$
\left.\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}} \mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}}\right)
$$

- $(1-\alpha) \times 100 \%$ confidence interval for Y

$$
\left(\mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}-t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(1+\mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}\right)}, \quad \begin{array}{l}
\left.\quad \mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}+t_{1-\alpha / 2}(n-p) \sqrt{\widehat{\sigma^{2}}\left(1+\mathbf{x}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}\right)}\right)
\end{array}\right.
$$

Be careful with

- extrapolation
\triangleright predicting Y for \mathbf{x} that is far from the \mathbf{x}_{i},'s in \mathbf{X}
\triangleright predicting for different situations/populations than the one satisfying $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+$ ε
- overfitting
\triangleright fitting a model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ that is "too close to the data"
\triangleright estimated σ^{2} is small
- having seen enough data

10.4 Transformations

10.4.1 Transformations

Transformations of variables

- model: $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- we have seen transformations of predictors to find a suitable functional dependence of Y on x
- how about transforming Y ?
\triangleright done in practice to improve the functional dependence or fix heteroskedasticity
\triangleright most common are $\log (Y), \sqrt{Y}$, some use other powers of Y
\triangleright this is a fundamental change to the model
* leaving the simple linear regression framework ...

Log-transformation of the response

- original model: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
- model after the \log transform: $\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
\triangleright on the original scale: $Y_{i}=\exp \left\{\beta_{0}\right\} \times \exp \left\{\beta_{1} x_{i}\right\} \times \exp \left\{\varepsilon_{i}\right\}$
\triangleright the effects of covariates are on the multiplicative scale
\triangleright the error enters multiplicatively and the multiplicative error has log-normal distribution
* $\exp \{x\} \approx 1+x$ for small x
$\Rightarrow Y_{i}=\exp \left\{\beta_{0}\right\} \times \exp \left\{\beta_{1} x_{i}\right\} \times\left(1+\varepsilon_{i}\right)$ for small ε_{i}
non-linear regression model with non-constant variance
$Y_{i}=\exp \left\{\beta_{0}\right\} \times \exp \left\{\beta_{1}\right\} \exp \left\{x_{i}\right\}+\sigma_{i}^{2} \varepsilon_{i}$ for small $\varepsilon_{i} \ldots$
\triangleright prediction on the original scale
* predict by $\exp \{\hat{Y}\}$ with CI $(\exp \{L\}, \exp \{U\})$
\triangleright interpretation of $\boldsymbol{\beta}$ on the \log-scale
\triangleright problems with interpretation on the original scale
* $\log (\mathrm{E} Y) \neq \mathrm{E} \log (Y)$ but the median is preserved
* $\log (1+x) \approx x$ for small $x \ldots$
* e.g. $\hat{\beta}_{1}=0.09$ can be interpreted as a 9% increase in $\operatorname{med} Y$ associated with a unit increase in x

Box-Cox transformation of the response

- original model: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
- looking for a more general transform...
- suppose that $Y>0$
- Box-Cox transformation:
$\triangleright g_{\lambda}(y)=\left\{\begin{array}{ll}\frac{y^{\lambda}-1}{\lambda} & \lambda \neq 0 \\ \log (y) & \lambda=0\end{array} \quad(\right.$ a continuous function of $\lambda)$
$\triangleright \lambda$ can be viewed as a parameter and $\hat{\lambda}$ found by MLE
* also gives a CI
\triangleright for prediction, you may use $y^{\hat{\lambda}}$
\triangleright for interpretation, you had better round $\hat{\lambda}$ to the nearest interpretable value (check the CI)
\triangleright use CI to see if you need a transform at all

10.5 Concluding remarks

10.5.1 Reflection

It's an uncertain world ... use statistics to decide

- How much of
\triangleright chocolate and other goodies is good for our health?
\triangleright levels of bacteria, fertilizers, chemicals, \ldots is safe?
- What is the right size for
\triangleright the height of a dam?
\triangleright insurance premium?
\triangleright mortgage interest?
- What is
\triangleright the average salary?
\triangleright public opinion on ...?
\triangleright results in upcoming elections?
- uncertainty at the beginning \rightarrow imperfect answers at the end
- statistics is used for quantifying uncertainty,
not for getting rid of it

Statistics is collaboration

- The best thing about being a statistician is that you get to play at everyone's backyard.

John Tukey

Statistics does not guarantee the right answers

- if there is no uncertainty, there is no need for statistics
\hookrightarrow statistics might give a wrong answer
!!!but we should not abuse this!!!
- only incompetent statisticians do not know how to lie with statistics
- good statisticians know the pitfalls and know they must be cautious

Ingredients of a statistical analysis

- mathematics, programming, communication...
- but above all: COMMON SENSE

