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Chapter 1

Introduction

1.1 Motivation

Is eating chocolate good for our health?

Effects of chocolate

◦ it has been suggested that chocolate consumption

. is beneficial to cardiovascular health (effects on “bad” cholesterol, blood pres-
sure, stroke, . . . )

. lowers the risk of diabetes

. improves cognitive function & reduces memory decline

. . . .

◦ but it has also been suggested that chocolate consumption

. leads to obesity (risk for cardiovascular problems, diabetes)

. leads to dental problems

. decreases bone density

. . . .

◦ should be eaten in moderation . . .

It’s an uncertain world . . .

◦ How much of

. chocolate and other goodies is good for our health?

. levels of bacteria, fertilizers, chemicals, . . . is safe?
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◦ What is the right size for

. the height of a dam?

. insurance premium?

. mortgage interest?

◦ What is

. the average salary?

. public opinion on . . . ?

. results in upcoming elections?

Sources of uncertainty

◦ we do not fully understand the phenomenon

. human body

. nature

◦ we do not know the future

. occurrence and size of a flood

. occurrence and size of insurance claims

. level of inflation

◦ we do not collect complete data

. average salary

. public opinion

◦ measurement error, human factor, . . .

Statistics is all around us

◦ statistics is used to quantify the uncertainty

◦ Strategy

1. build a mathematical model, i.e. define

. what is known

. what is uncertain

2. build a probabilistic model for what is uncertain

3. use probability calculus to draw conclusions
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4. “translate” back to the original problem (interpret the results)

◦ uncertainty at the beginning 99K imperfect answers at the end

◦ statistics is used for quantifying uncertainty,

not for getting rid of it

Notation

◦ random variable X, Y

. (náhodná veličina)

◦ random vector/matrix X, Y

. (náhodný vektor/matice)

◦ density/probability mass function f

. (hustota/pravděpodobnostńı funkce)

◦ parameters θ, β, normal distribution N(µ, σ2)

. (parametry, normálńı rozděleńı)

◦ expectation EX, EX

. (středńı hodnota)

◦ variance/covariance/variance-covariance matrix

VarX, Cov(X, Y ), VarX

. (rozptyl/kovariance/kovariančńı matice)

VarX =


VarX1 Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X1, X2) VarX2 . . . Cov(X2, Xn)
. . . . . . . . . . . .

Cov(X1, Xn) Cov(X2, Xn) . . . VarXn


Statistician’s TODO list

1. identify right questions

2. collect relevant data x1, . . . , xn

3. think of them as realisations of random variables X1, . . . , Xn

with distributions (densities/frequency functions) f1, . . . , fn
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where fi is in fact fi(x, θ)

4. estimate θ/make inference about θ

5. use the results to answer the questions

Example

1. Does consuming [amount of] chocolate decrease blood pressure [type, measurement]?

◦ Is chocolate good for our health?

2. design a trial, collect participants’ blood pressures x1, . . . , xn

3. suppose e.g. that Xi ∼ N(µi, σ
2)

◦ µi: function of eating [amount of] chocolate, age, gender, . . .

◦ e.g. µi = β0 + β1xi,1 + . . .+ βkxi,k

◦ xi,1 =

{
1 if the person eats [amount of] chocolate

0 otherwise

4. test H0 : β1 ≥ 0 versus H1 : β1 < 0

5. if we reject H0 in favour of H1 at α% level, we have shown that at α% level consuming
[amount of] chocolate is associated with a lower blood pressure [type, measurement]

◦ if we do not reject H0 in favour of H1 at α% level, we have not shown that
at α% level consuming [amount of] chocolate is associated with a lower blood
pressure [type, measurement]

Linear model

◦ model: Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi

. matrix notation: Y = Xβ + ε

. assumptions: E ε = 0, Var ε = σ2I

∗ then EY = Xβ, VarY = σ2I

. we often assume that ε ∼ N(0, σ2I)

∗ then Y ∼ N(Xβ, σ2I)

◦ parameter: θ = (β0, . . . , βk, σ
2)> = (β>, σ2)>

. estimation (point, interval)

. testing

. interpretation
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1.2 Statistics

Example

1. Does consuming [amount of] chocolate decrease blood pressure [type, measurement]?

◦ Is chocolate good for our health?

2. design a trial, collect participants’ blood pressures x1, . . . , xn

3. suppose e.g. that Xi ∼ N(µi, σ
2)

◦ µi: function of eating [amount of] chocolate, age, gender, . . .

◦ µi = β0 + β1xi,1 + . . .+ βkxi,k

◦ xi,1 =

{
1 if the person eats [amount of] chocolate

0 otherwise

4. test H0 : β1 ≥ 0 versus H1 : β1 < 0

5. if we reject H0 in favour of H1 at α% level, we have shown that at α% level consuming
[amount of] chocolate is associated with a lower blood pressure [type, measurement]

◦ if we do not reject H0 in favour of H1 at α% level, we have not shown that
at α% level consuming [amount of] chocolate is associated with a lower blood
pressure [type, measurement]

Linear model

◦ model: Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi

. matrix notation: Y = Xβ + ε

. assumptions: E ε = 0, Var ε = σ2I

∗ then EY = Xβ, VarY = σ2I

. we often assume that ε ∼ N(0, σ2I)

∗ then Y ∼ N(Xβ, σ2I)

◦ parameter: θ = (β0, . . . , βk, σ
2)> = (β>, σ2)>

. estimation (point, interval)

. testing

. interpretation

Parameter estimation
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◦ we observe data with a distribution depending on a parameter

◦ we would like to use the data to estimate the value of the parameter

◦ estimator is a function of data (only!)

◦ for a one-dimensional parameter θ

. point estimator θ̂

. confidence interval (θ̂L, θ̂U)

◦ for a vector parameter θ

. point estimator θ̂

. confidence region

Methods of point estimation

1. method of moments

◦ “equate” theoretical and empirical moments

. ÊY = 1
n

∑n
i=1 Yi

. ÊY 2 = 1
n

∑n
i=1 Y

2
i

. . . .

2. maximum likelihood estimation

◦ maximize the likelihood with respect to θ

◦ likelihood

. probability of observing the data at hand under a given model

◦ very popular thanks to certain asymptotic optimality properties

3. other methods exist and we will see some

Maximum likelihood estimation

◦ Y1, . . . , Yn
ind.∼ fi(y,θ)

◦ likelihood L(y1, . . . , yn; θ) =
∏n

i=1 fi(yi; θ)

◦ log-likelihood `(y1, . . . , yn; θ) =
∑n

i=1 log{fi(yi; θ)}

◦ MLE θ̂MLE = argmaxθ `(y1, . . . , yn; θ)
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◦ usual computation

. score function U(y1, . . . , yn; θ) =
∑n

i=1
∂
∂θ

log{fi(yi; θ)}
. score equation U(y1, . . . , yn; θ) = 0

. find the solution θ̂MLE of the score equation

. observed Fisher information matrix J(y1, . . . , yn; θ) = −
∑n

i=1
∂2

∂θ∂θ
log{fi(yi; θ)}

. show that J(y1, . . . , yn; θ̂MLE) is positive definite

. Fisher information matrix (under regularity conditions) I(y1, . . . , yn; θ) = Eθ J(y1, . . . , yn; θ)

Properties of estimators

◦ parameter θ is a number but estimator θ̂ is a random variable

. θ̂ has a distribution

. important distribution summaries: E θ̂,Var θ̂

Low variance High variance

Low variance High variance

H
ig

h
bi

as
Lo

w
bi

as

H
ig

h
bi

as
Lo

w
bi

as

◦ ideally, estimation improves with sample size

◦ let θ̂n be an estimator of θ based on n data points

◦ we define desirable properties for the sequence {θ̂n}n∈N

◦ for a sequence of estimators θ̂n of a parameter θ

1. unbiasedness

. Eθ θ̂n = θ ∀θ
2. consistency

. θ̂n → θ as n→∞ in Pθ ∀θ or a.s.
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3. usual asymptotic normality

.
√
n(θ̂n − θ)→ N(0, V (θ)) as n→∞ in distribution

4. efficiency

. “small” Var θ̂

Properties of MLE

◦ under regularity conditions

. consistency

∗ θ̂MLE,n → θ a.s. as n→∞
. asymptotic normality

∗
√
n(θ̂MLE,n − θ)→ N(0, V (θ)) as n→∞ in distribution

. asymptotic efficiency

∗ V (θ) is the smallest possible

. bias

∗ θ̂MLE is often biased, with bias decreasing with n

Interval estimation

◦ parameter θ is a number but estimator θ̂ is a random variable

◦ confidence interval (θ̂L, θ̂U) is a pair of random variables

◦ (1− α) % confidence interval satisfies that

. Pθ{θ ∈ (θ̂L, θ̂U)} = 1− α ∀θ

◦ note that randomness is in the borders, not in θ

µ

Confidence interval for µ in N(µ, σ2) with σ2 unknown

◦ properties

. coverage 1− α

. length θ̂U − θ̂L
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. ideally: a short interval with high coverage

Testing hypotheses

◦ we observe data with a distribution depending on a parameter

◦ we would like to use the data to answer questions about the parameter

. is θ > 0, θ < 0, θ = 1, . . . ?

◦ to do so, we can test hypotheses about the parameter

. H0 : θ ≥ 0 vs. H1 : θ < 0

. H0 : θ = 1 vs. H1 : θ 6= 1

. . . .

◦ testing has two possible results

1. we reject H0 in favour of H1

. we can say we have shown H1 (at the level α)

2. we do not reject H0 in favour of H1

. we can say we have not shown H1 (at the level α)

. !!!we cannot say we have shown H0!!!

◦ the roles of H0 and H1 are not symmetric

◦ testing has two possible results

1. we reject H0 in favour of H1

2. we do not reject H0 in favour of H1

◦ we can reach a wrong conclusion in two ways

1. when H0 is true and we reject H0 in favour of H1

. “PH0(reject H0) = α”

. α: type I. error, level of the test

2. when H1 is true and we do not reject H0 in favour of H1

. “1− PH1(reject H0) = β”

. β: type II. error

. 1− β: power of the test

◦ often impossible to keep both errors low at the same time



◦ when choosing a test, we keep the level α fixed and try to maximize the power β

◦ the roles of H0 and H1 are not symmetric

◦ the roles of H0 and H1 are not symmetric

◦ it is important to choose a good H0, H1 pair

◦ testing

. H0 : θ ≥ 0 vs. H1 : θ < 0

. H0 : θ ≤ 0 vs. H1 : θ > 0

. H0 : θ = 0 vs. H1 : θ 6= 0

answer different questions

1.3 Data analysis in practice

Example: fev data

◦ from: http://www.statsci.org/data/general/fev.html

◦ question: association between the FEV[l] and Smoking,

corrected for Age[years], Height[cm] and Gender

◦ data:

FEV Age Height Gender Smoking
1.708 9 144.8 Female Non
1.724 8 171.5 Female Non
1.720 7 138.4 Female Non
1.558 9 134.6 Male Non
. . . . . . . . . . . . . . .
3.727 15 172.7 Male Current
2.853 18 152.4 Female Non
2.795 16 160.0 Female Current
3.211 15 168.9 Female Non

Getting the data to R

◦ data fev.txt

◦ for *.txt files:

. read.table(...)

◦ for *.csv files (from Excel)

http://www.statsci.org/data/general/fev.html
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. read.csv(...)

◦ read the data and look at them

> fev <- read.table("fev.txt", header=TRUE)

>

> class(fev)

[1] "data.frame"

> dim(fev)

[1] 654 6

> names(fev)

[1] "ID" "Age" "FEV" "Height" "Sex" "Smoker"

>

> fev[1:3, ]

ID Age FEV Height Sex Smoker

1 301 9 1.708 57.0 Female Non

2 451 8 1.724 67.5 Female Non

3 501 7 1.720 54.5 Female Non

>

> fev <- fev[, -1]

Before we fit a model to data

◦ before we do the analysis, we need to

. get to know the variables

. get to understand the relationships among the variables

. identify possible problems for the analysis

. possibly spot obvious mistakes in data

⇒ first step in applied data analysis: descriptive statistics

. informal data descriptions (no model, no inference)

∗ numerical and graphical

∗ their choice depends on the type of variable(s) of interest

First look at the variables

> summary(fev)

Age FEV Height Sex

Min. : 3.000 Min. :0.791 Min. :46.00 Female:318

1st Qu.: 8.000 1st Qu.:1.981 1st Qu.:57.00 Male :336

Median :10.000 Median :2.547 Median :61.50

Mean : 9.931 Mean :2.637 Mean :61.14

3rd Qu.:12.000 3rd Qu.:3.119 3rd Qu.:65.50

Max. :19.000 Max. :5.793 Max. :74.00

Smoker

Current: 65

Non :589
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First look at the relationships between the variables

> pairs(fev, col="deepskyblue", pch=19)

Age
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1.4 Descriptive statistics

1.4.1 Types of variables

Types of variables

1. in mathematical statistics:

◦ continuous (uncountably many possible values)

◦ discrete (at most countably many possible values)

2. in applied statistics:

◦ quantitative

◦ categorical

. nominal

. ordinal

3. in :
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◦ numeric

◦ . factor

. ordered factor

Quantitative variable

◦ distribution

◦ characteristics of location

. mean

. maximum, minimum

. quantiles, in particular quartiles and median

> summary(fev$FEV)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.791 1.981 2.548 2.637 3.118 5.793

◦ characteristics of dispersion

. standard deviation

. interquartile range

> sd(fev$FEV)

[1] 0.8670591

> IQR(fev$FEV)

[1] 1.1375

Graphics for quantitative variable

> hist(fev$FEV, , freq=FALSE,

+ main="FEV", xlab="FEV [l]",

+ col="gold", border="navyblue")

>

> boxplot(fev$FEV, horizontal=TRUE,

+ main="FEV", xlab="FEV [l]",

+ col="gold", border="navyblue", pch=19)
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Categorical variable

◦ distribution

. counts of observations per category

. percentage of observations per category

. cumulative percentage of observations per category (for ordinal variables)

◦ characteristics

. modus

> summary(fev$Sex)

Female Male

318 336

> prop.table(table(fev$Sex))

Female Male

0.4862385 0.5137615

> cumsum(prop.table(table(fev$Sex)))

Female Male

0.4862385 1.0000000

> # not so interesting for a nominal variable

Graphics for categorical variable

> barplot(100*prop.table(table(fev$Sex)),

+ main="Gender distribution", ylab="Percentage",

+ col=c("gold", "navyblue"), border="navyblue")

>

> barplot(100*matrix(prop.table(table(fev$Sex)), nrow=2, ncol=1),

+ main="Gender distribution", ylab="(Cumulative) percentage",

+ col=c("gold", "navyblue"), border="navyblue")
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> text(x=0.7, y=4, labels="F",

+ cex=2, pos=3)

> text(x=0.7, y=55, labels="M",

+ cex=2, pos=3)

>

> pie(summary(fev$Sex),

+ main="Gender distribution",

+ col=c("gold", "navyblue"), border="navyblue")
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1.4.2 Relationships between variables

Quantitative vs quantitative

> plot(fev$FEV~fev$Age,

+ main="FEV by age",

+ ylab="FEV [l]", xlab="Age [y]",

+ pch=19, col="deepskyblue")

> lines(lowess(fev$FEV~fev$Age),

+ lwd=3, col="navyblue")
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Quantitative vs categorical

> boxplot(fev$FEV~fev$Sex,

+ main="FEV", ylab="FEV [l]",

+ col="gold", border="navyblue", pch=19)

>

> par(mfrow=c(1, 2))

> hist(fev$FEV[fev$Sex=="Female"], freq=FALSE,

+ xlim=c(min(fev$FEV)-1, max(fev$FEV)+1), ylim=c(0, 0.48),

+ main="FEV", xlab="FEV [l]",

+ col="gold", border="navyblue")

> hist(fev$FEV[fev$Sex=="Male"], freq=FALSE,

+ xlim=c(min(fev$FEV)-1, max(fev$FEV)+1), ylim=c(0, 0.48),

+ main="FEV", xlab="FEV [l]",

+ col="gold", border="navyblue")
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Categorical vs categorical

> table(fev$Smoker, fev$Sex)

Female Male

Current 39 26

Non 279 310

>

> prop.table(table(fev$Smoker, fev$Sex),

+ margin=1

+ )

Female Male

Current 0.6000000 0.4000000

Non 0.4736842 0.5263158

>

> prop.table(table(fev$Smoker, fev$Sex),

+ margin=2

+ )

Female Male

Current 0.12264151 0.07738095

Non 0.87735849 0.92261905
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> prop.table(table(fev$Smoker, fev$Sex),

+ margin=2

+ )

Female Male

Current 0.12264151 0.07738095

Non 0.87735849 0.92261905

>

> barplot(height=prop.table(table(fev$Smoker, fev$Sex),

+ margin=2), beside=F,

+ ylab="Percentage", xlab="Gender", main="Smoking by gender",

+ col=c("gold", "navyblue")

+ )

> text(x=1.2*c(0:2)+0.7, y=0, labels="Current",

+ col="navyblue", cex=2, pos=3)

> text(x=1.2*c(0:2)+0.7, y=0.8, labels="Non",

+ col="gold", cex=2, pos=3)

Female Male

Smoking by gender
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0

Current Current

Non Non

> prop.table(table(fev$Smoker, fev$Sex),

+ margin=2

+ )

Female Male

Current 0.12264151 0.07738095

Non 0.87735849 0.92261905

>

> barplot(height=prop.table(table(fev$Smoker, fev$Sex),

+ margin=2), beside=T,

+ ylab="Percentage", xlab="Gender", main="Smoking by gender",

+ col=c("gold", "navyblue")

+ )

>

> legend(x=3.3, y=0.8, legend=c("Current", "Non"),

+ col=c("gold", "navyblue"), pch=15)
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Female Male
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> prop.table(table(fev$Sex, fev$Smoker),

+ margin=2

+ )

Current Non

Female 0.6000000 0.4736842

Male 0.4000000 0.5263158

>

> barplot(height=prop.table(table(fev$Sex, fev$Smoker),

+ margin=2), beside=F,

+ ylab="Percentage", xlab="Smoking", main="Gender by smoking",

+ col=c("gold", "navyblue")

+ )

> text(x=1.2*c(0:2)+0.7, y=0.2, labels="Female", col="navyblue",

+ cex=2, pos=3)

> text(x=1.2*c(0:2)+0.7, y=0.75, labels="Male", col="gold",

+ cex=2, pos=3)
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8
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0
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Male Male

> prop.table(table(fev$Sex, fev$Smoker),

+ margin=2

+ )

Current Non

Female 0.6000000 0.4736842

Male 0.4000000 0.5263158

>

> barplot(height=prop.table(table(fev$Sex, fev$Smoker),
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+ margin=2), beside=T,

+ ylab="Percentage", xlab="Smoking", main="Gender by smoking",

+ col=c("gold", "navyblue")

+ )

>

> legend(x=3, y=0.6, legend=c("Female", "Male"),

+ col=c("gold", "navyblue"), pch=15)
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Chapter 2

Linear algebra essentials

2.1 The problem

2.1.1 Linear model

Chocolatey example

◦ Does consuming [amount of] chocolate decrease blood pressure [type, measurement]?

◦ collect blood pressures x1, . . . , xn

◦ suppose that Xi ∼ N(µi, σ
2)

. µi = β0 + β1xi,1 + . . .+ βkxi,k

. xi,1 =

{
1 if the person eats [amount of] chocolate

0 otherwise

. xi,j, j ∈ {2, . . . , k}: age, gender, BMI, . . .

◦ test H0 : β1 ≥ 0 versus H1 : β1 < 0 to answer the question

Linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known
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∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ (0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

◦ we often assume that εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

Linear model in the matrix form

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

◦ let

Y =


Y1
Y2
. . .
Yn

 , X =


1 x1,1 . . . x1,k
1 x2,1 . . . x2,k
. . . . . . . . . . . .
1 xn,1 . . . xn,k

 , β =


β0
β1
. . .
βk

 , ε =


ε1
ε2
. . .
εn


◦ then Y = Xβ + ε, ε ∼ (0, σ2I) and often ε ∼ N(0, σ2I)

. X: design matrix

∗ (regresńı matice, matice plánu)

◦ let p = k + 1

◦ then Y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ ε︸︷︷︸
n×1

◦ we assume that n > p (and often think about n→∞, p fixed)

Example: bloodpress data

◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress
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◦ data:
BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


2.1.2 Task for this chapter

Design matrix

◦ model: 
Y1
Y2
. . .
Yn

 =


1 x1,1 . . . x1,k
1 x2,1 . . . x2,k
. . . . . . . . . . . .
1 xn,1 . . . xn,k

×
β0. . .
βk

+


ε1
ε2
. . .
εn



◦ design matrix:

X =


1 x1,1 . . . x1,k
1 x2,1 . . . x2,k
. . . . . . . . . . . .
1 xn,1 . . . xn,k

 = (1 | x,1 | x,2 | . . . | x,k) =


x1,

x2,

. . .
xn,


. k covariates and 1 are the p columns of X

. n observations are the n rows of X

Matrix algebra in a linear model

◦ model: Y = Xβ + ε

◦ coefficient vector β

. fixed but unknown

. p× 1 matrix

. β> defines a mapping β> : Rp 7→ R
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xi, ∈ Rp  EYi ∈ R

◦ design matrix X

. fixed and known

. n× p matrix

. defines a mapping X : Rp 7→ Rn

β ∈ Rp  EY ∈ Rn

. idea: when estimating β, how about choosing β̂ so that X maps β̂ as close to
Y as possible?

2.2 Linear mapping

Linear mapping from Rp to Rn

◦ function f : Rp 7→ Rn such that

. f(x + y) = f(x) + f(y) . . . additivity

. f(αx) = αf(x) . . . homogeneity

◦ described by an n× p matrix A: f(x) = Ax

↪→ idea:

. ∀ x ∈ Rp can be written as x =
∑p

i=1 civi,

where V = {v1, . . . ,vp} is a basis of Rp

↪→ f(x) is determined by {f(v1), . . . , f(vp)}
because f(x) = f(

∑p
i=1 civi) =

∑p
i=1 cif(vi)

. ∀ y ∈ Rn can be written as y =
∑n

i=1 ciwi,

where W = {w1, . . . ,wn} is a basis of Rn

↪→ just need to write each f(vi) in terms of W
. free choice of (W ,V) → various A’s representing the same f

◦ operations f1 ◦ f2, f1 + f2, αf

. result into linear mappings

represented by A1A2, A1 + A2, αA
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2.2.1 Associated subspaces

Kernel and image

◦ kernel (nullspace)

. ker(A) = ker(f) = {x ∈ Rp; Ax = 0}
= {x ∈ Rp; f(x) = 0}

. subspace of Rp, dim(ker(A)): nullity of A

◦ image (range, column space)

. im(A) = im(f) = {y ∈ Rn; ∃x ∈ Rp : Ax = y}
= {y ∈ Rn; ∃x ∈ Rp : f(x) = y}

. subspace of Rn, dim(im(A)): rank of A

◦ schematically

0 0

A : Rp → Rn
Rp Rn

ker(A) im(A)

◦ rank nullity theorem: dim(ker(A)) + dim(im(A)) = p

Four fundamental subspaces associated to A

◦ kernel and image of A

. column space of A: im(A) = {y ∈ Rn; ∃x ∈ Rp : Ax = y}
∗ dim(im(A)) = rank(A)

. kernel of A: ker(A) = {x ∈ Rp; Ax = 0}
∗ dim(ker(A)) = p− rank(A)

◦ kernel and image of A>

. column space of A>: im(A>): coimage of A

∗ dim(im(A>)) = rank(A>) = rank(A)

∗ row space of A

. kernel of A>: ker(A>): cokernel, left nullspace of A

∗ dim(ker(A>)) = n− rank(A): corank of A
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2.2.2 Orthogonality

Inner product on Rn

◦ dot product:

. < x,y >= y>x =
∑n

i=1 xiyi

◦ associated norm (length of x):

. ||x|| = √< x,y > =
√∑n

i=1 x
2
i

◦ angle θ between x and y:

. cos θ = <x,y>
||x|| ||y||

◦ orthogonality for x 6= 0 and y 6= 0:

. < x,y >= 0

◦ orthogonal complement W⊥ of a subspace W of Rn:

. W⊥ = {y ∈ Rn; < x,y >= 0 for every x ∈ W}
∗ W⊥ is a subspace of Rn

∗ W⊥ ∩W = {0}
∗ dim(W ) + dim(W⊥) = n

◦ orthogonality between fundamental subspaces associated to A

. ker(A) = (im(A>))⊥ (in Rp)

. ker(A>) = (im(A))⊥ (in Rn)

Orthogonal columns

◦ matrix with orthogonal columns:

. U = (u,1 |u,2 | . . . |u,p)
< u,i,u,j >= 0 for i 6= j

◦ matrix with orthonormal columns:

. U = (u,1 |u,2 | . . . |u,p)

< u,i,u,j >= 0 for i 6= j

||u,i|| = 1 for i ∈ {1, . . . , p}

. U>U = I ⇒ mapping U : x 7→ Ux preserves



CHAPTER 2. LINEAR ALGEBRA ESSENTIALS 26

∗ inner product

∗ norm

∗ angles

∗ distances

Orthogonal matrix

◦ square matrix R with orthonormal columns (and rows)

. R>R = RR> = I

i.e. R> = R−1

◦ R−1 = R> is also an orthogonal matrix

◦ product of orthogonal matrices is also an orthogonal matrix

◦ geometrically

. change of orthonormal basis (coordinate transformation)

. mapping R: x 7→ Rx . . . rotation

∗ preserves the origin

∗ preserves angles

∗ preserves distances

∗ proper rotation

if det R = 1

R

R>

2.3 Matrix decompositions

2.3.1 Eigen-decomposition

Spectral decomposition (eigen-decomposition)

◦ let A be a symmetric p× p matrix

. eigenvalues λ1, . . . , λp

. eigenvectors u.,1, . . . ,u.,p

. everything real

. Au.,i = λiu.,i

. f elongates/shrinks u.,i by λi

A
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◦ eigen-decomposition: A = UΛU>, where

. U = (u.,1 |u.,2 | . . . |u.,p)
∗ U is p× p orthogonal matrix

. Λ = diag{λ1, . . . , λp}
∗ Λ is p× p diagonal matrix

. convention

∗ λi is the ith largest eigenvalue of A

∗ u.,i is the eigenvector corresponding to λi

Geometry for A � 0

U
>

Λ

U

A = UΛU>
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2.3.2 Singular value decomposition

Singular value decomposition (SVD)

◦ let A be an n× p (n ≥ p) rectangular matrix

. singular values σ1, . . . , σp

. left singular vectors u.,1, . . . ,u.,p

. right singular vectors v.,1, . . . ,v.,p

. Av.,i = σiu.,i & A>u.,i = σiv.,i

. everything real, singular values non-negative

◦ SVD: A = UΣV>, where

. U is (n× n) orthogonal

∗ first p columns of U: u.,1, . . . ,u.,p

. Σ (n× p) diagonal

∗ σ1, . . . , σp on the diagonal of Σ

. V is (p× p) orthogonal

∗ columns of V: v.,1, . . . ,v.,p

. convention : singular values in the descending order

Geometry for a square A
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V
>

Σ
U

A = UΣV>

SVD and spectral decomposition

◦ SVD: rectangular matrix A (n× p, n ≥ p)

. singular values and vectors (σ1,u.,1,v.,1), . . . , (σp,u.,p,v.,p)

. A = UΣV>, where

∗ U is (n× n) and V is (p× p), both orthogonal

∗ Σ (n× p) diagonal with non-negative diagonal

◦ Spec. dec.: square symmetric matrix A (p× p)

. eigenvalues and eigenvectors (λ1,u.,1), . . . , (λp,u.,p)
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. A = UΛU>, where

∗ U is (p× p) orthogonal

∗ Λ (p× p) diagonal

◦ for a square symmetric A, A � 0: UΣV> = UΛU>

◦ for a rectangular matrix A (n× p, n ≥ p), A = UΣV>

. A>A = VΣ>ΣV> (p× p) ⇒ v.,i’s are eigenvectors of A>A

. AA> = UΣΣ>U> (n× n) ⇒ u.,i’s are eigenvectors of AA>

. σi’s are square roots of non-zero λi’s of A>A and AA>

Reduced SVD’s

◦ SVD: rectangular matrix A (n× p, n ≥ p)

. singular values and vectors (σ1,u.,1,v.,1), . . . , (σp,u.,p,v.,p)

. A = UΣV>, where

∗ U is (n× n) and V is (p× p), both orthogonal

∗ Σ (n× p) diagonal with non-negative diagonal

◦ if n > p

. A =
(
U1 |U2

)(Σ1

0

)
V>

↪→ A = UΣV> = U1Σ1V
>, where

∗ U1 (n× p) with orthogonal columns

∗ Σ1 is (p× p)
∗ thin SVD: A = U1Σ1V

>

. if r = rank(A) < p, Σ1 is (r × r) . . . compact SVD

◦ SVD writes A as a sum of multiples of rank-one matrices:

A =
∑p

i=1 σiu.,iv
>
.,i =

∑r
i=1 σiu.,iv

>
.,i

Geometry
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V
>

Σ
U

A = UΣV>

SVD and linear mapping

◦ SVD: rectangular matrix A (n× p, n ≥ p)

. singular values and vectors (σ1,u.,1,v.,1), . . . , (σp,u.,p,v.,p)

. A = UΣV>, where

∗ U and V: orthonormal bases of Rn and Rp such that A maps the ith basis
vector of Rp to a non-negative multiple of the ith basis vector of Rn, and
sends the left-over basis vectors to zero

◦ ker(A)

. spanned by the v.,i corresponding to the null σi
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◦ im(A)

. spanned by the u.,i corresponding to the positive σi

◦ dim(ker(A)) + dim(im(A)) = p

2.3.3 QR decomposition

QR decomposition (factorization)

◦ let A be a p× p matrix  A = QR, where

. Q is p× p orthogonal

. R is p× p upper triangular

◦ let A be an n× p (n ≥ p) matrix  A = QR, where

. Q is n× n orthogonal

. R is n× p upper triangular

◦ if n > p

. A = (Q1 |Q2)

(
R1

0

)
= Q1 R1, where

∗ Q1 is n× p with orthogonal columns

∗ R1 is p× p upper triangular

. rank(A) = p ⇒ rank(R1) = p

2.4 Pseudoinverse

2.4.1 Moore–Penrose pseudoinverse

Moore–Penrose pseudoinverse

◦ let A be a p× p matrix, rank(A) = p

◦ inverse A−1 is the p× p matrix satisfying

. AA−1 = I

. A−1A = I

◦ let A be an n× p (n ≥ p) matrix

◦ Moore–Penrose pseudoinverse A+ is the p× n matrix satisfying
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. AA+A = A (generalized inverse)

. A+AA+ = A+ (generalized reflexive inverse)

. (AA+)> = AA+

. (A+A)> = A+A

◦ A+ exists and is unique

Construction of A+

◦ let A be an n× p (n ≥ p) matrix

. if rank(A) = p

∗ A = UΣV> (thin SVD, i.e. U is n× p & Σ is p× p)
∗ A+ = VΣ−1U>

. if rank(A) = r < p

∗ A = UΣV> (compact SVD, i.e. U is n× r & Σ is r × r)
∗ A+ = VΣ−1U>

◦ let A be a p× p symmetric matrix

. A = UΛU> (spectral decomposition)

. A+ = UΛ+U>, where

∗ Λ+: diagonal with 1/λi on diagonal if λi 6= 0, 0 otherwise

2.5 Orthogonal projection

Orthogonal projection

Projection on Rn

◦ projection: linear mapping P : Rn 7→ Rn such that PP = P

. P idempotent

. P is identity on im(P)

◦ ∀ x ∈ Rn : x = Px︸︷︷︸
u

+ (I−P)x︸ ︷︷ ︸
v

. u ∈ im(P) & v ∈ ker(P): unique decomposition

◦ (I−P) is a projection on ker(P) and ker(I−P) = im(P)
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p1

p2 u = Px

xv = (I−P)x

x(I−P)x

u Px

u1

u2
Px

x(I−P)x

◦ orthogonal projection: projection with a symmetric P

. P is symmetric iff im(P) = ( im(I−P) )⊥

. ∃!Px ∈ im(P) and ||x−Px||2 = miny∈im(P) ||x− y||2

. if P and P1 are orthogonal projections and im(P1) ≤ im(P)

∗ PP1 = P1 = P1P

Construction of P

1. orth. projection on im(u):

◦ P = 1
||u||2 uu>

◦ Px = <u,x>
||u||2 u ∈ im(u)

. leaves cu unchanged

. annihilates the complemen-
tary basis

2. {u1, . . . ,up} orthonormal, orth. pro-
jection on im(U), U = (u1|u2| . . . |up)

◦ P = UU>

◦ Px =
∑p

i=1 < ui,x > ui ∈ im(U)

. leaves
∑p

i=1 ciui unchanged

. annihilates the complemen-
tary basis

p1

p2 u = Px

xv = (I−P)x

x(I−P)x

u Px

u1

u2
Px

x(I−P)x

p1

p2 u = Px

xv = (I−P)x

x(I−P)x

u Px

u1

u2
Px

x(I−P)x

Orthogonal projection onto a column space

◦ let A be an n× p (n ≥ p) matrix

1. rank(A) = p

◦ columns a.,1, . . . , a.,p linearly independent

◦ P = A(A>A)−1A>
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◦ A = UΣV> (thin SVD, i.e. U is n× p & Σ is p× p)
. (A>A)−1 = VΣ−2V>

. P = UU>

2. rank(A) = r < p

◦ P = A(A>A)+A>

◦ A = UΣV> (compact SVD, i.e. U is n× r & Σ is r × r)
. (A>A)+ = V Σ−2V>

. P = UU>

2.6 Application to linear regression

Application to linear regression

Estimation in linear regression (theory)

◦ linear regression: Y = Xβ + ε, E ε = 0, Var ε = σ2I

◦ we want to estimate β

◦ start with estimating µ = E(Y) = Xβ ∈ im(X)

. we look for µ̂ ∈ im(X) closest to Y

∗ we look to minimize ||µ̂−Y||2

⇒ µ̂ is the orthogonal projection of Y onto im(X)

. µ̂ =

{
X(X>X)−1X>Y = UU>Y if rank(X) = p,

X(X>X)+X>Y = UU>Y if rank(X) < p,

∗ where X = UΣV> (thin/compact SVD)

◦ µ̂ ∈ im(X) ⇒ ∃ β̂ such that µ̂ = Xβ̂

◦ if rank(X) = p ⇒ ∃ ! β̂ such that µ̂ = Xβ̂

Estimation in linear regression (practice in )

◦ aim: minimize ||Y −Xβ||2 w.r.t. β

◦ use that X = QR

. Q is n× n orthogonal
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. R is n× p upper triangular

. Q and Q> rotations

◦ ||Y −Xβ||2 = ||Q>(Y −QRβ) ||2

=

∣∣∣∣∣∣∣∣(Q>1
Q>2

)
Y −

(
R1

0

)
β

∣∣∣∣∣∣∣∣2
=
∣∣∣∣Q>1 Y −R1 β

∣∣∣∣2 +
∣∣∣∣Q>2 Y

∣∣∣∣2
. minimize ||Y −Xβ||2 ⇔ minimize ||Q>1 Y −R1β||2

◦ if rank(X) = p

. R1 invertible

. β̂ = R−1
1 Q>1 Y



Chapter 3

Normal distribution

3.1 The problem

3.1.1 Linear model

Linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ (0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

◦ we often assume that εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}
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Example: bloodpress data

◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


3.1.2 Task for this chapter

Normal distribution in a linear model

◦ model: Y = Xβ + ε

◦ assumptions of the normal linear model:

. X fixed and known

. β fixed unknown

. ε ∼ N(0, σ2I)

⇒ Y ∼ N(Xβ, σ2I)

◦ estimators of β and σ2

. functions of Y

◦ test statistics concerning β and σ2

. functions of Y

⇒ to make inference in normal linear model, we need to study

. multivariate normal distribution N(µ,Σ)

. distributions of functions of N(µ,Σ)
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3.2 Univariate normal distribution

3.2.1 Definition

Normal distribution N(µ, σ2)

◦ let µ ∈ R and σ2 > 0

. density f(x) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

. for the standard normal distribution (µ = 0, σ2 = 1):

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

◦ if σ2 = 0 then X = µ a.s.

3.2.2 Properties

Properties of N(µ, σ2)

◦ µ ∈ R and σ2 > 0

◦ Let a, b ∈ R, X ∼ N(µ, σ2). Then aX + b ∼ N(aµ+ b, a2σ2).

◦ Let Z ∼ N(0, 1) and X = µ+ σ Z. Then X ∼ N(µ, σ2).
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◦ Let ai, bi ∈ R, Xi
ind.∼ N(µi, σ

2
i ) for i ∈ {1, . . . , n}.

Then
∑n

i=1(aiXi + bi) ∼ N(
∑n

i=1(aiµi + bi),
∑

i=1 a
2
iσ

2
i ).

3.2.3 Related distributions

χ2(n) distribution

◦ let Z ∼ N(0, 1)  Z2 ∼ χ2(1)

◦ let Zi
ind.∼ N(0, 1) for i ∈ {1, . . . , n}  X =

∑n
i=1 Z

2
i ∼ χ2(n)

◦ density
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◦ EX = n,VarX = 2n

Student’s t-distribution

◦ let Z ∼ N(0, 1) and X ∼ χ2(n), Z ⊥⊥ X

. T = Z√
X/n
∼ t(n)

◦ density
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◦ ET = 0 for n > 1, Var T = n/(n− 2) for n > 2

Fisher–Snedecor distribution

◦ let X1 ∼ χ2(n1) and X2 ∼ χ2(n2), X1 ⊥⊥ X2

. F = X1/n1√
X2/n2

∼ F (n1, n2)

◦ density
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◦ EF = n2/(n2 − 2) for n2 > 2
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3.3 Multivariate normal distribution

3.3.1 Definition

Multivariate normal distribution N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n positive semidefinite matrix

Definition. A random vector X : (Ω,A) 7→ (Rn,B(Rn)) has multivariate normal distribu-
tion N(µ,Σ) if and only if a>X ∼ N(a>µ, a>Σ a) for every a ∈ Rn.

◦ if rank(Σ) = n then N(µ,Σ) is non-degenerate

. has density

f(x) =
1√

(2π)n det(Σ)
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

◦ if rank(Σ) = r < n then N(µ,Σ) is degenerate

. a.s. “lives” in a subspace of Rn of dimension r

. no density w.r.t. Lebesgue measure on B(Rn)

Non-degenerate multivariate normal distribution

◦ density

f(x) =
1√

(2π)n det(Σ)
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
◦ Σ: square symmetric positive definite matrix

. spectral decomposition Σ = UΛU>

. λ1 ≥ λ2 ≥ . . . ≥ λn > 0

. Σ−1 = UΛ−1U>

◦ quadratic form (x− µ)>Σ−1(x− µ) can be written as

. (x− µ)>UΛ−1U>(x− µ) = {U>(x− µ)}>Λ−1{U>(x− µ)}

◦ level sets of f(x), Ic = {x ∈ Rn; f(x) = c} for c > 0:

. ellipsoids centred at µ

. directions of principal axes: u1,, . . . ,un,

. lengths of principal semi-axes:
√
dλ1, . . . ,

√
dλn



Non-degenerate bivariate normal distribution

◦ N

((
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3.3.2 Properties

Properties of N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (MVN 1). Let X ∼ N(µ,Σ). Then EX = µ and VarX = Σ.

Theorem (MVN 2). Let Z1, . . . , Zn
iid∼ N(0, 1) and Z = (Z1, . . . , Zn)>. Then Z ∼ N(0, I).
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Theorem (MVN 3). Let X ∼ N(µ,Σ) and let A be an m × n real matrix and b ∈ Rm.
Then AX + b ∼ N(Aµ+ b,AΣA>).

◦ proofs are given during the lectures and can also be found in Jǐŕı Anděl: Základy
matematické statistiky

N(µ,Σ) seen through N(0, I)

◦ µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

1. if rank(Σ) = n

◦ spectral decomposition Σ = UΛU>

◦ λ1 ≥ λ2 ≥ . . . ≥ λn > 0

◦ Σ = UΛU> = UΛ1/2︸ ︷︷ ︸
Σ̃

Λ1/2U> = Σ̃Σ̃
>

◦ let Z = Σ̃
−1

(X− µ) = Λ−1/2 U>(X− µ)

⇒ Z ∼ N(0, I) (n-dimensional), X = µ+ Σ̃Z and X ∼ N(µ,Σ)

2. if rank(Σ) = r < n

◦ spectral decomposition Σ = UΛU>

◦ λ1 ≥ λ2 ≥ . . . ≥ λr > 0, λr+1 = λr+2 = . . . = λn = 0

Σ = UΛU> = Un×r︸ ︷︷ ︸
(u,1 |u,2 | ... |u,r)

Λr×r︸︷︷︸
diag{λ1,λ2,...,λr}

U>n×r = Un×rΛ
1/2
r×r︸ ︷︷ ︸

Σ̃

Λ
1/2
r×rU

>
n×r = Σ̃Σ̃

>
◦

◦ let Z = Σ̃
+

(X− µ) = Λ
−1/2
r×r U>n×r(X− µ)

⇒ Z ∼ N(0, I) (r-dimensional), X = µ+ Σ̃Z and X ∼ N(µ,Σ)

Density of N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n symmetric positive definite matrix

Theorem (MVN 4). Let X ∼ N(µ,Σ) where rank(Σ) = n. Then X has density f(x)
w.r.t. Lebesgue measure on B(Rn) and

f(x) =
1√

(2π)n det(Σ)
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
.

◦ a proof is given during the lectures and can also be found in Jǐŕı Anděl: Základy
matematické statistiky
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Characteristic function (reminder)

Definition (Characteristic function of a random variable). Let X be a random variable.
The function ψX : R 7→ C defined by ψX(t) = E exp{i tX}, t ∈ R, is the characteristic
function of X.

Definition (Characteristic function of a random vector). Let X be an n-dimensional ran-
dom vector. The function ψX : Rn 7→ C defined by ψX(t) = E exp{i t>X}, t ∈ Rn, is the
characteristic function of X.

Properties of characteristic function (reminder)

Theorem (ChF 1). Let X ∼ N(µ, σ2). Then ψX(t) = exp
{
i t µ− 1

2
σ2t2

}
.

Theorem (ChF 2). Let X be an n-dimensional random vector and X1 and X2 its subvec-
tors such that X = (X>1 ,X

>
2 )>. Then X1 ⊥⊥ X2 iff ψX(t) = ψX1(t1) × ψX2(t2) for every

t = (t>1 , t
>
2 )> ∈ Rn.

◦ a proof can be found in Petr Lachout: Teorie pravděpodobnosti (1998). Nakladatelstv́ı
Univerzity Karlovy

Characteristic function of N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (MVN 5). Let X ∼ N(µ,Σ). Then

ψX(t) = exp

{
i t>µ− 1

2
t>Σ t

}
.

◦ a proof is given during the lectures and can also be found in Jǐŕı Anděl: Základy
matematické statistiky

Subvectors of N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (MVN 6). Let X ∼ N(µ,Σ) and let k ∈ {1, . . . , n}. Then
X1

X2

. . .
Xk

 ∼ N



µ1

µ2

. . .
µk

 ,


σ1,1 σ1,2 . . . σ1,k

σ2,1 σ2,2 . . . σ2,k

. . . . . . . . . . . .
σk,1 σk,2 . . . σk,k


 .

◦ a proof is given during the lectures and can also be found in Jǐŕı Anděl: Základy
matematické statistiky
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◦ analogous statement is true for any sub-vector of X

◦ converse is not true

(In)dependence in N(µ,Σ)

◦ µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (MVN 7). Let X ∼ N(µ,Σ) and let k ∈ {1, . . . , n − 1}. Denote X1 =
(X1, . . . , Xk)

>, X2 = (Xk+1, . . . , Xn)> and X1 ∼ N(µ1,Σ1,1), X2 ∼ N(µ2,Σ2,2). If

Σ =

(
Σ1,1 0
0 Σ2,2

)
then X1 ⊥⊥ X2.

◦ a proof is given during the lectures and can also be found in Jǐŕı Anděl: Základy
matematické statistiky

◦ AX ⊥⊥ BX iff AΣB> = 0

3.3.3 Related distributions

Quadratic forms

◦ Let X ∼ N(µ,Σ), µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (QF 1). Let Z ∼ N(0, I). Then Z>Z ∼ χ2(n).

Theorem (QF 2). Let X ∼ N(µ,Σ) where rank(Σ) = n. Then (X − µ)>Σ−1(X − µ) ∼
χ2(n).

Theorem (QF 3). Let X ∼ N(µ,Σ) where rank(Σ) = r < n. Then (X−µ)>Σ+(X−µ) ∼
χ2(r).

◦ proofs are given during the lectures and analogous statements are proved in Jǐŕı
Anděl: Základy matematické statistiky

Quadratic forms

◦ Let X ∼ N(µ,Σ), µ ∈ Rn, Σ is an n× n symmetric positive semidefinite matrix

Theorem (QF 4). Let Z ∼ N(0, I) and let P be an n × n projection matrix of rank r.
Then Z>P Z ∼ χ2(r).

◦ a proof is given during the lectures and analogous statements are proved in Jǐŕı Anděl:
Základy matematické statistiky
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Linear model

4.1 The problem

4.1.1 Linear model

Linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ (0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

◦ we often assume that εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}
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Example: bloodpress data

◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


4.1.2 Task for this chapter

Estimation in linear model

◦ model: Y = Xβ + ε

. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ (0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: given the observed data y and known matrix X, find estimators β̂ (and σ̂2) of
β (and σ2) with desirable properties
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4.2 Estimating β

4.2.1 Orthogonal projection

β̂ motivated by orthogonal projection

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ idea: set ε
!

= 0 and solve Y = Xβ w.r.t. β

. then Y︸︷︷︸
n×1

!
= X︸︷︷︸

n×p

β︸︷︷︸
p×1

. n linear equations with p unknowns and n > p

⇒ a solution exists only if Y ∈ im(X)

◦ modified idea: find Ŷ ∈ im(X) such that ||Y−Ŷ||2 is the smallest possible and solve
Ŷ = Xβ w.r.t. β

. then Ŷ is the orthogonal projection of Y onto im(X)

. projection matrix onto im(X) is H︸︷︷︸
hat matrix

= X(X>X)+X>

. solving Ŷ = Xβ is solving X (X>X)+X>Y = Xβ

. estimate β by β̂ = (X>X)+X>Y

. but β̂ is the unique solution of Ŷ = Xβ iff rank(X) = p

∗ and then β̂ = (X>X)−1X>Y

Geometric intuition

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ fitted model: Y︸︷︷︸
observed value

= H Y︸︷︷︸
fitted value Ŷ

+ (I−H) Y︸ ︷︷ ︸
residual e

x,1

x,2
Ŷ

Ye

◦ < Ŷ, e >= e>Ŷ = Y>(I−H)>H Y = 0, i.e. Ŷ ⊥ e
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4.2.2 Least squares

β̂ as least squares estimator

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ idea: make the residuals as small as possible

. minimize ||ε||2 =
∑n

i=1 ε
2
i w.r.t. β

 Least Squares Estimator (LSE) β̂ = arg minβ

∑n
i=1 ε

2
i

. also called the OLS (Ordinary Least Squares) solution

◦ computation:

. ε = Y −Xβ

. β̂ = arg minβ ||Y −Xβ||2 = arg minβ(Y −Xβ)>(Y −Xβ)

◦ look for the minimum by differentiating:

. ∂
∂β (Y −Xβ)>(Y −Xβ)

!
= 0

. −2 X>Y + 2 X>Xβ
!

= 0

. X>Xβ
!

= X>Y︸ ︷︷ ︸
normal equations

. ∂2

∂β∂β (Y −Xβ)>(Y −Xβ)
?
� 0

at β = β̂

. 2 X>X � 0 for all β

. convex function ⇒ minimum

◦ normal equations have unique solution iff rank(X) = p

. and then β̂ = (X>X)−1X>Y

Geometric intuition

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ fitted model: Y︸︷︷︸
observed value

= Xβ̂︸︷︷︸
fitted value Ŷ

+ (Y −Xβ̂)︸ ︷︷ ︸
residual e

◦ least squares estimator minimizes the sum of squared vertical distances between the
fitted and observed values
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4.2.3 Computing β̂

β̂ = (X>X)−1X>Y

◦ we have seen two approaches give the same β̂

◦ both approaches give unique β̂ iff rank(X) = p

◦ both approaches would give infinitely many β̂s if rank(X) < p

◦ a rank-deficient design matrix means a problem in design/model formulation

◦ we need to fix that problem to obtain reasonable conclusions from our model

◦ from now on we assume that rank(X) = p

◦ we will get back to (nearly) rank-deficient X in Chapter 9

β̂ the way it is computed in

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ β̂ minimizes ||Y −Xβ||2 w.r.t. β

◦ uses that X = QR (QR decomposition from Chapter 2)

. Q (n× n) orthogonal

. R (n× p) upper triangular

. X = Q R = (Q1 |Q2)

(
R1

0

)
= Q1 R1
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. does not allow rank(X) < p

⇒ rank(R1) = p

. Q and Q> are rotations

∗ ||Y −Xβ||2 = ||Q>(Y −Q Rβ) ||2 =

∣∣∣∣∣∣∣∣(Q>1
Q>2

)
Y −

(
R1

0

)
β

∣∣∣∣∣∣∣∣2
=
∣∣∣∣Q>1 Y −R1 β

∣∣∣∣2 +
∣∣∣∣Q>2 Y

∣∣∣∣2
. minimize ||Y −Xβ||2 ⇔ minimize ||Q>1 Y −R1β||2

. β̂ = R−1
1 Q>1 Y (compare with β̂ = (X>X)−1X>Y)

Geometric intuition

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ Y︸︷︷︸
observed value

= Xβ̂︸︷︷︸
fitted value Ŷ

+ (Y −Xβ̂)︸ ︷︷ ︸
residual e

. Ŷ = Xβ̂

= Q
(
Q>QR β̂

)
= Q

((
R1

0

)
β̂

)
= Q

(
R1β̂

0

)

. e = (Y −Xβ̂)

= Q
(
Q>(Y −QR β̂)

)
= Q

((
Q>1
Q>2

)
Y −

(
R1

0

)
β̂

)

= Q

(
0

Q>2 Y

)

◦ Q> conveniently rotates Y and im(X) and Q rotates back

◦ Ŷ ⊥ e

Geometric intuition

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ Y︸︷︷︸
observed value

= Xβ̂︸︷︷︸
fitted value Ŷ

+ (Y −Xβ̂)︸ ︷︷ ︸
residual e

= Q

(
R1β̂

0

)
+ Q

(
0

Q>2 Y

)

◦ see Figure 1.5 on page 20 in Simon Wood’s Generalized additive models for a nice
illustration
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4.3 Quality of estimation

4.3.1 Gauss–Markov theorem

Linear transformation of a random vector

◦ we want to study β̂ = (X>X)−1X>Y

Theorem. Let X be an n-dimensional random vector with a finite variance-covariance
matrix and let A be an m× n matrix. Then

◦ E(A X) = AEX;

◦ Var(A X) = A(VarX)A>;

◦ E(X>X) = (EX)>(EX) + tr(VarX).

◦ proof is a simple exercise

Is β̂ a reasonable estimator?

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ β̂ = (X>X)−1X>Y

◦ has a nice motivation but how about properties?

. E β̂ = E(X>X)−1X>Y = (X>X)−1X> EY

= (X>X)−1X>Xβ = β

⇒ unbiased

. Var β̂ = Var
(
(X>X)−1X>Y

)
= (X>X)−1X> VarY

(
(X>X)−1X>

)>
= σ2(X>X)−1X>X (X>X)−1

= σ2(X>X)−1

◦ how good is Var β̂?

. β̂ is a linear estimator, i.e. β̂ = AY for a matrix A

. β̂ is an unbiased estimator, i.e. Eβ β̂ = β for all β

. in fact, β̂ is the best linear unbiased estimator of β, i.e. β̂ has the smallest
variance among all linear unbiased estimators of β

Gauss–Markov theorem
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Theorem (Gauss–Markov). Let Y = Xβ + ε where X is an n × p matrix, rank(X) = p,
β ∈ Rp, and ε is an n-dimensional random vector with E ε = 0 and Var ε = σ2I. Then
β̂ = (X>X)−1X>Y is the best linear unbiased estimator of β, i.e. if β̃ is a linear unbiased

estimator of β then Var β̃ − Var β̂ � 0.

◦ see the blackboard for a proof

. main steps

∗ show that if β̃ = AY then AX = I

∗ show that Var β̃ − Var β̂ = σ2A(I−H)(I−H)>A>

4.4 Estimating σ2

4.4.1 Estimating σ2

Estimating σ2

◦ model: Y = Xβ + ε, ε unknown, E ε = 0, Var ε = σ2I

◦ fitted model: Y = H Y︸︷︷︸
Ŷ

+ (I−H) Y︸ ︷︷ ︸
e

= Xβ̂︸︷︷︸
Ŷ

+ (Y −Xβ̂)︸ ︷︷ ︸
e

◦ idea: estimate ε by e

. some care is needed . . .

∗ E e = E(Y −Xβ̂) = EY −XE β̂ = Xβ −Xβ = 0

∗ Var e = Var((I−H) Y) = (I−H)VarY (I−H)> = σ2(I−H)

∗ rank((I−H)) = n− rank(X) = n− p < n ⇒ dependence

. E(e>e) = (E e)>(E e) + tr(Var e)

= tr(σ2(I−H))
∗
= σ2(n− rank(X)) = σ2(n− p)

∗ ∗: tr(P) = rank(P) for orthogonal projection matrices

. σ̂2 = 1
n−p e>e = 1

n−p
∑n

i=1 e
2
i = 1

n−p
∑n

i=1(Yi − Ŷi)2

∗ unbiased estimator of σ2

4.5 Quality of model fit

4.5.1 Coefficient of determination

Sums of squares
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◦ for β̂ we obtain the minimal ||e||2 = ||Y − Ŷ||2 = ||Y −Xβ̂||2

◦ we have seen properties of β̂ but how about Ŷ?

◦ a question: how close Ŷ actually is to Y?

. how well do the covariates in X explain what we see in Y?

◦ an answer:

. there is some variability in Yis for different i

∗ Total Sum of Squares TSS:
∑n

i=1(Yi − Ȳ )2

∗ also called SST

. the model explains a part of the variability in Yis

∗ for different is there are different xi,s and so different Ŷis

∗ Explained Sum of Squares ESS:
∑n

i=1(Ŷi − ¯̂
Y )2 =∑n

i=1(Ŷi − Ȳ )2

∗ also called Sum of Squares due to Regression

. but some variability remained unexplained by the model

∗ Residual Sum of Squares RSS:
∑n

i=1(Yi − Ŷi)2

∗ also called Sum of Squared Residuals or Sum of Squared Errors

Coefficient of determination R2

◦ relationship among the sums of squares

. TSS = RSS + ESS

∗ ||Y − Ȳ 1||2 = ||Y ± Ŷ − Ȳ 1||2 = ||Y − Ŷ||2 + ||Ŷ − Ȳ 1||2

∗ because < Y−Ŷ, Ŷ >= 0 =< Y−Ŷ,1 > as Ŷ is the orthogonal projection
of Y onto im(X) and 1 ∈ im(X)

. variability: total = unexplained + explained

◦ so how well do the covariates in X explain what we see in Y?

. coefficient of determination R2 = ESS
TSS

= 1− RSS
TSS

∗ proportion of variability explained by the model

∗ 0 ≤ R2 ≤ 1 and bigger is better

. adjusted coefficient of determination R2
adj = 1− RSS/(n−p)

TSS/(n−1)

∗ an alternative that takes the number of predictors into account

∗ RSS/(n− p) = σ̂2 from the linear regression,

TSS/(n− 1) = σ̂2 without the linear regression
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Normal linear model

5.1 The problem

5.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

Example: bloodpress data
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◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


5.1.2 Task for this chapter

Estimation in normal linear model

◦ model: Y = Xβ + ε

. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: given the observed data y and known matrix X, find estimators β̂ and σ̂2 of β
and σ2 with desirable properties
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5.2 Estimating β and σ2

5.2.1 Likelihood

Likelihood

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2I)

. ε ∼ N(0, σ2I)⇒ Y ∼ N(Xβ, σ2I)

. density of Y:

f(y; β, σ2) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2
(y −Xβ)>(y −Xβ)

}
. density is a function of y (parameters are fixed)

◦ likelihood:

L(β, σ2; y) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2
(y −Xβ)>(y −Xβ)

}
◦ likelihood is a function of the parameters (y is fixed)

◦ log-likelihood:

`(β, σ2; y) = −n
2

log(2π)− n

2
log(σ2)−

{
1

2σ2
(y −Xβ)>(y −Xβ)

}

Log-likelihood

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2I)

◦ log-likelihood:

`(β, σ2; y) = −n
2

log(2π)− n

2
log(σ2)−

{
1

2σ2
(y −Xβ)>(y −Xβ)

}
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5.2.2 Matrix derivatives

Matrix derivatives: definition

◦ let x ∈ Rn and y ∈ Rm

◦ denominator-layout notation:

∂

∂x
y =

 ∂
∂x1

y1 . . . ∂
∂x1

ym
. . . . . . . . .
∂
∂xn

y1 . . . ∂
∂xn

ym


◦ if n = 1

∂

∂x
y =

(
∂

∂x
y1, . . . ,

∂

∂x
ym

)
◦ if m = 1

∂

∂x
y =

 ∂
∂x1

y

. . .
∂
∂xn

y


Matrix derivatives: useful formulae

◦ let A ∈ Rm×n and x ∈ Rn

.
∂

∂x
A x = A>

.
∂

∂x
x>A = A
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.
∂

∂x
x>A x = (A + A>) x

5.2.3 Maximizing the likelihood

Score function

◦ log-likelihood

`(β, σ2; y) = −n
2

log(2π)− n

2
log(σ2)−

{
1

2σ2
(y −Xβ)>(y −Xβ)

}
◦ score function (β-related part):

U1:p(β, σ
2; y) =

∂

∂β

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
=

∂

∂β

(
− 1

2σ2

(
y>y − y>Xβ − β>X>y + β>X>Xβ

))
= − 1

2σ2

(
−X>y −X>y + (X>X + X>X)β

)
=

1

σ2

(
X>y −X>Xβ

)
Score function ctd.

◦ log-likelihood

`(β, σ2; y) = −n
2

log(2π)− n

2
log(σ2)−

{
1

2σ2
(y −Xβ)>(y −Xβ)

}
◦ score function (σ2-related part):

Up+1(β, σ2; y) =
∂

∂σ2

(
−n

2
log(σ2)− 1

2σ2
(y −Xβ)>(y −Xβ)

)
= − n

2σ2
+

1

2σ4
(y −Xβ)>(y −Xβ)

=
1

2σ2

(
−n+

1

σ2
(y −Xβ)>(y −Xβ)

)
Score equation

◦ score equation:

U(β, σ2; y) =

(
1
σ2

(
X>y −X>Xβ

)
1

2σ2

(
−n+ 1

σ2 (y −Xβ)>(y −Xβ)
)) = 0
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◦ score equation for β

.
1

σ2

(
X>y −X>Xβ

) !
= 0

. actually the normal equations

. β̂MLE = (X>X)−1X>Y

◦ score equation for σ2

.
1

2σ2

(
−n+

1

σ2
(y −Xβ)>(y −Xβ)

)
!

= 0

. σ̂2
MLE = 1

n
(Y −X β̂MLE)>(Y −X β̂MLE)

Fisher information

◦ observed Fisher information matrix:

J(β, σ2; y) =
1

σ2

(
X>X 1

σ2

(
X>y −X>Xβ

)
1
σ2 (X>y −X>Xβ) − 1

σ2

(
n
2 −

1
σ2 (y −Xβ)>(y −Xβ)

))

◦ J(β̂MLE, σ̂
2

MLE):

1

σ̂2
MLE

(
X>X 0

0 n

2 σ̂2
MLE

)
� 0

◦ Fisher information matrix:

I(β, σ2) =
1

σ2

(
X>X 0

0 n
2σ2

)

5.3 Distribution

5.3.1 Distribution of the MLE

Distribution of β̂MLE

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2I)

◦ Y ∼ N(Xβ, σ2 I)

◦ distribution of β̂MLE = (X>X)−1X>Y?

◦ MVN 3:

Let X ∼ N(µ,Σ) and let A be an m × n real matrix and b ∈ Rm. Then
AX + b ∼ N(Aµ+ b,AΣA>).
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◦ β̂MLE ∼ N(β, σ2 (X>X)−1)

Distribution of σ̂2
MLE

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2I)

◦ Y ∼ N(Xβ, σ2 I)

◦ distribution of σ̂2
MLE = 1

n
(Y −X β̂MLE)>(Y −X β̂MLE)?

◦ recall that

. Ŷ = Xβ̂ = HY = X (X>X)
−1

X>Y

. (Y − Ŷ) = e = (I−H) Y

∗ e ∼ N(0, σ2(I−H)) (by MVN 3)

◦ QF 3:

Let X ∼ N(µ,Σ) where rank(Σ) = r < n. Then (X−µ)>Σ+(X−µ) ∼ χ2(r).

◦ (I−H)+ = (I−H)

⇒ 1
σ2 e>(I−H) e ∼ χ2(n− p)

◦ e>(I−H) e = Y>(I−H)>(I−H)(I−H) Y = e>e

◦ n
σ2 σ̂2

MLE ∼ χ2(n− p)

Relationship between β̂MLE and σ̂2
MLE

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2I)

◦ Y ∼ N(Xβ, σ2 I)

◦ β̂MLE ∼ N(β, σ2 (X>X)−1)

◦ n σ̂2
MLE ∼ χ2(n− p)

◦ joint distribution of β̂MLE and σ̂2
MLE?

◦ recall that

. β̂ = (X>X)
−1

X>Y

. (Y − Ŷ) = e = (I−H) Y
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◦ Corollary of MVN 7:

Let X ∼ N(µ,Σ). Then AX ⊥⊥ BX iff AΣB> = 0.

◦
(X>X)

−1
X>(I−H)> =

(X>X)
−1

X> − (X>X)
−1

X>X (X>X)
−1

X> = 0

◦ β̂ ⊥⊥ e and β̂ ⊥⊥ σ̂2
MLE

5.4 Summary

5.4.1 Estimation in the normal linear model

Estimation in the normal linear model

Theorem. Let Y = Xβ + ε where X is an n × p matrix, rank(X) = p, β ∈ Rp, and
ε ∼ N(0, σ2 I).

Then the maximum likelihood estimators of β and σ2 are given by β̂MLE = (X>X)−1X>Y

and σ̂2
MLE = 1

n
(Y −X β̂MLE)>(Y −X β̂MLE).

Their distributions are β̂MLE ∼ N(β, σ2 (X>X)−1) and n
σ2 σ̂2

MLE ∼ χ2(n−p), and β̂MLE

and σ̂2
MLE are independent.

◦ unbiased estimator of σ2: σ̂2 = 1
n−p(Y −X β̂MLE)>(Y −X β̂MLE)

◦ its distribution: (n−p)
σ2 σ̂2 ∼ χ2(n− p) and β̂ ⊥⊥ σ̂2
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Inference in normal linear model

6.1 The problem

6.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

Example: bloodpress data
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◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


6.1.2 Task for this chapter

Inference in normal linear model

◦ model: Y = Xβ + ε

. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: given the observed data y and known matrix X, draw conclusions about Y
and the relationship between Y and X
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6.2 Estimators and distributions

6.2.1 Estimators

Point estimation in the normal linear model

◦ model: Y = Xβ + ε

. X is an n× p matrix, rank(X) = p

. β ∈ Rp

. ε ∼ N(0, σ2 I)

◦ estimating β

. β̂MLE = β̂OLS = β̂MOM = β̂ = (X>X)−1X>Y

∗ BLUE

∗ distribution: β̂ ∼ N(β, σ2 (X>X)−1)

◦ estimating σ2

. σ̂2
MLE = 1

n
(Y −X β̂)>(Y −X β̂)

∗ distribution: n
σ2 σ̂2

MLE ∼ χ2(n− p)

. σ̂2 = 1
n−p(Y −X β̂)>(Y −X β̂)

∗ unbiased

∗ distribution: (n−p)
σ2 σ̂2 ∼ χ2(n− p)

◦ β̂ ⊥⊥ σ̂2
MLE and β̂ ⊥⊥ σ̂2

6.2.2 Distributions

Distributions in normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ distributions of point estimators

. β̂ ∼ N(β, σ2 (X>X)−1)

. (n−p)
σ2 σ̂2 ∼ χ2(n− p)

. β̂ ⊥⊥ σ̂2

◦ let a ∈ Rp and A ∈ Rm×p
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. a>β̂ ∼ N(a>β, σ2 a>(X>X)−1a)

. A β̂ ∼ N(Aβ, σ2 A(X>X)−1A>)

∗ proofs: use MVN 3:

Let X ∼ N(µ,Σ) and let A be an m × n real matrix and b ∈ Rm. Then
AX + b ∼ N(Aµ+ b,AΣA>).

Distributions in normal linear model ctd.

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ distributions of statistics

. a>β̂ ∼ N(a>β, σ2 a>(X>X)−1a) for a ∈ Rp

. A β̂ ∼ N(Aβ, σ2 A(X>X)−1A>) for A ∈ Rm×p

. (n−p)
σ2 σ̂2 ∼ χ2(n− p)

. β̂ ⊥⊥ σ̂2

◦ for a ∈ Rp and A ∈ Rm×p, rank(A) = m

.
a>β̂ − a>β√
σ̂2 a>(X>X)−1a

∼ t(n− p)

∗ proof: verify that the definition of t(n− p) is satisfied

. 1

mσ̂2
(Aβ̂ −Aβ)>(A (X>X)−1A>)−1(Aβ̂ −Aβ) ∼ F (m,n− p)

∗ proof: use QF2:

X ∼ N(µ,Σ), rank(Σ) = n ⇒ (X− µ)>Σ−1(X− µ) ∼ χ2(n)

and verify that the definition of F (m,n− p) is satisfied

6.3 Confidence intervals

Confidence intervals

Interval estimation in normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ let a ∈ Rp
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.
a>β̂ − a>β√
σ̂2 a>(X>X)−1a

∼ t(n− p)

. (1− α)× 100 % confidence interval for a>β:(
a>β̂ − t1−α/2(n− p)

√
σ̂2 a>(X>X)−1a ,

a>β̂ + t1−α/2(n− p)
√
σ̂2 a>(X>X)−1a

)
◦ (n−p)

σ2 σ̂2 ∼ χ2(n− p)

. (1− α)× 100 % confidence interval for σ2:(
(n− p) σ̂2

χ2
1−α/2(n− p)

,
(n− p) σ̂2

χ2
α/2(n− p)

)

Confidence intervals for the components of β

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ let a ∈ Rp such that ai = 1 and aj = 0 for j 6= i

. (1− α)× 100 % confidence interval for βi:(
β̂i − t1−α/2(n− p)

√
σ̂2 (X>X)−1

i,i ,

β̂i + t1−α/2(n− p)
√
σ̂2 (X>X)−1

i,i

)
◦ let a ∈ Rp such that a1 = 1, ai = 1 and aj = 0 for j 6= i

. (1− α)× 100 % confidence interval for β1 + βi:

(
β̂1 + β̂i − t1−α/2(n− p)

√
σ̂2
(
(X>X)−1

1,1 + 2(X>X)−1
1,i + (X>X)−1

i,i

)
,

β̂1 + β̂i + t1−α/2(n− p)
√
σ̂2
(
(X>X)−1

1,1 + 2(X>X)−1
1,i + (X>X)−1

i,i

))

. and analogously for other sums of components of β

6.4 Prediction

Prediction

New covariate combinations
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◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ what can we say about

Y = β0 + β1x1 + . . .+ βkxk + ε ?

◦ let x ∈ Rp such that x = (1, x1, . . . , xk)
>

◦ Y = x>β + ε and EY = x>β

◦ we may estimate EY by ÊY = x>β̂

◦ (1− α)× 100 % confidence interval for EY :(
x>β̂ − t1−α/2(n− p)

√
σ̂2 x>(X>X)−1x ,

x>β̂ + t1−α/2(n− p)
√
σ̂2 x>(X>X)−1x

)

Prediction in normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ how can we estimate

Y = β0 + β1x1 + . . .+ βkxk + ε = x>β + ε ?

i.e. how do we predict new Y for new x?

◦ prediction Ŷ = x>β̂

◦ (1− α)× 100 % confidence interval for Y

(prediction interval):(
x>β̂ − t1−α/2(n− p)

√
σ̂2 (1 + x>(X>X)−1x) ,

x>β̂ + t1−α/2(n− p)
√
σ̂2 (1 + x>(X>X)−1x)

)
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6.5 Confidence bands

Confidence bands

Confidence regions in normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ let A ∈ Rm×p, rank(A) = m

. 1

mσ̂2
(A β̂ −Aβ)>(A (X>X)−1A>)−1(A β̂ −Aβ) ∼ F (m,n− p)

◦ (1− α)× 100 % confidence bands for Aβ:{
Aβ;

1

mσ̂2
(A β̂ −Aβ)>(A (X>X)−1A>)−1(A β̂ −Aβ) ≤ F1−α(m,n− p)

}

Confidence bands in normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

Lemma 1. Let B ∈ Rm×m, B � 0. Then for every x ∈ Rm

x>B x ≤ 1⇔ (b>x)2 ≤ b>B−1 b ∀ b ∈ Rm.

◦ a proof can be found in Jiř́ı Anděl: Základy matematické statistiky (2005). Matfyz-
press ; see also multiple comparisons and Scheffé’s theorem next semester

◦ for A ∈ Rm×p, rank(A) = m:

1− α =

= P

(
1

mσ̂2
(A β̂ −Aβ)>(A (X>X)−1A>)−1(A β̂ −Aβ) ≤ F1−α(m,n− p)

)
= P

((
b>(A β̂ −Aβ)

)2 ≤ mF1−α(m,n− p) σ̂2 b>
(
A (X>X)−1A>

)
b; ∀b ∈ Rm

)

6.6 Testing hypotheses

6.6.1 Simple hypothesis

Testing H0 : βi = 0
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◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ for a ∈ Rp

a>β̂ − a>β√
σ̂2 a>(X>X)−1a

∼ t(n− p)

◦ let a ∈ Rp such that ai = 1 and aj = 0 for j 6= i

◦ testing

. H0 : βi = 0 vs.

. H1 : βi 6= 0

◦ test statistic Ti =
β̂i√

σ̂2 (X>X)−1
i,i

∼ t(n− p)

◦ reject H0 in favour of H1 if |ti| > t1−α/2(n− p)

◦ analogously for linear combinations of elements of β

◦ analogously for testing H0 : βi = β0,i

6.6.2 Composite hypothesis

Testing H0 : βi:p = 0

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ for A ∈ Rm×p, rank(A) = m

1

mσ̂2
(Aβ̂ −Aβ)>(A (X>X)−1A>)−1(Aβ̂ −Aβ) ∼ F (m,n− p)

◦ testing

. H0 : βi:p = 0 vs.

. H1 : βi:p 6= 0

◦ test statistic

Fi:p =
1

(p− i+ 1) σ̂2
β̂
>
i:p (X>X)−1

i:p,i:p β̂i:p ∼ F (p− i+ 1, n− p)
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◦ reject H0 in favour of H1 if fi:p > F1−α(p− i+ 1, n− p)

Testing “the model”

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ for A ∈ Rm×p, rank(A) = m

1

mσ̂2
(Aβ̂ −Aβ)>(A (X>X)−1A>)−1(Aβ̂ −Aβ) ∼ F (m,n− p)

◦ testing

. H0 : β2:p = 0 vs.

. H1 : β2:p 6= 0

◦ test statistic

F =
1

k σ̂2
β̂
>
2:p (X>X)−1

2:p,2:p β̂2:p ∼ F (k, n− p)

◦ reject H0 in favour of H1 if f > F1−α(k, n− p)

6.7 Interpretation

Interpretation of results for normal linear model

A model for fev data

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ data: fev from http://www.statsci.org/data/general/fev.html

http://www.statsci.org/data/general/fev.html
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◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ model FEV by Height and Sex
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◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ model FEV by Height and Sex

> model.simple <- lm(FEV~Height + Sex, data=fev)

> summary(model.simple)

Call:

lm(formula = FEV ~ Height + Sex, data = fev)

Residuals:

Min 1Q Median 3Q Max

-1.6763 -0.2505 0.0001 0.2347 2.0722

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.390263 0.180082 -29.932 < 2e-16 ***

Height 0.130231 0.002964 43.933 < 2e-16 ***

SexMale 0.125123 0.033801 3.702 0.000232 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4265 on 651 degrees of freedom

Multiple R-squared: 0.7587,Adjusted R-squared: 0.758

F-statistic: 1024 on 2 and 651 DF, p-value: < 2.2e-16

Fitted model for fev data ctd.

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ model FEV by Height and Sex

> coefficients(model.simple)

(Intercept) Height SexMale

-5.3902632 0.1302305 0.1251234
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Chapter 7

Model selection

7.1 The problem

7.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

Example: bloodpress data
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◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

◦ from: http://www.statsci.org/data/general/fev.html

◦ question: association between the FEV[l] and Smoking,

corrected for Age[years], Height[cm] and Gender

◦ data:

FEV Age Height Gender Smoking
1.708 9 144.8 Female Non
1.724 8 171.5 Female Non
1.720 7 138.4 Female Non
1.558 9 134.6 Male Non
. . . . . . . . . . . . . . .
3.727 15 172.7 Male Current
2.853 18 152.4 Female Non
2.795 16 160.0 Female Current
3.211 15 168.9 Female Non

◦ model: Y = Xβ + ε



1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 9 144.8 0 0
1 8 171.5 0 0
1 7 138.4 0 0
1 9 134.6 1 0
. . . . . . . . . . . . . . .
1 15 172.7 1 1
1 18 152.4 0 0
1 16 160.0 0 1
1 15 168.9 0 0


×

β0. . .
β5

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



7.1.2 Task for this chapter

Model building/selection

◦ model: Y = Xβ + ε

https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html
http://www.statsci.org/data/general/fev.html
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. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: given the observed data y and values of potential

covariates, construct X

◦ Note: X should ideally be known a priori based on background

knowledge and various optimality considerations but . . .

7.2 Why consider various models?

7.2.1 Should we leave out covariates that appear unnecessary?

Testing hypotheses about null coefficients

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ testing

. H0 : βi = 0 vs.

. H1 : βi 6= 0

◦ test statistic Ti =
β̂i√

σ̂2 (X>X)−1
i,i

∼ t(n− p)

◦ reject H0 in favour of H1 if |ti| > t1−α/2(n− p)

◦ testing

. H0 : βi:p = 0 vs.



CHAPTER 7. MODEL SELECTION 78

. H1 : βi:p 6= 0

◦ test statistic

Fi:p =
1

(p− i+ 1) σ̂2
β̂
>
i:p (X>X)−1

i:p,i:p β̂i:p ∼ F (p− i+ 1, n− p)

◦ reject H0 in favour of H1 if fi:p > F1−α(p− i+ 1, n− p)

What if we do not reject?

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ testing

. H0 : βi = 0 vs. H1 : βi 6= 0

◦ if |ti| < t1−α/2(n− p)

. at α% level, we do not reject that βi = 0 in favour of βi 6= 0

◦ testing

. H0 : βi:p = 0 vs. H1 : βi:p 6= 0

◦ if fi:p < F1−α(p− i+ 1, n− p)

. at α% level, we do not reject βi:p = 0 in favour of βi:p 6= 0

◦ if we do not reject that some components of β are 0, should we change the model?

. original model

Y = Xβ + ε, ε ∼ N(0, σ2 I)

. new model

Y = X,1:(i−1)β1:(i−1) + ε, ε ∼ N(0, σ2 I)

Example: bloodpress data

◦ original model

Yi = β0 + β1 × Agei + β2 ×Weighti + β3 × BSAi+

+β4 × Duri + β5 × Pulsei + β6 × Stressi + εi, 1 ≤ i ≤ 20
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -12.870476 2.556650 -5.034 0.000229 ***

Age 0.703259 0.049606 14.177 2.76e-09 ***

Weight 0.969920 0.063108 15.369 1.02e-09 ***

BSA 3.776491 1.580151 2.390 0.032694 *

Dur 0.068383 0.048441 1.412 0.181534

Pulse -0.084485 0.051609 -1.637 0.125594

Stress 0.005572 0.003412 1.633 0.126491

Residual standard error: 0.4072 on 13 degrees of freedom

> coef.table <- summary(model.full)$coefficients

> V <- vcov(model.full)

> A <- diag(rep(1, 7))[5:7, ]

> F.stat <- t(A%*%coef.table[, 1])%*%solve(A%*%V%*%t(A))%*%(A%*%coef.table[, 1])/3

> 1-pf(F.stat, df1=3, df2=13)

[,1]

[1,] 0.1950807

◦ should we rather use the new model?

Yi = β0 + β1 × Agei + β2 ×Weighti + β3 × BSAi + εi, 1 ≤ i ≤ 20

Example: bloodpress data

◦ original model

. Yi = β0 + β1 × Agei + β2 ×Weighti + β3 × BSAi+

+ β4 × Duri + β5 × Pulsei + β6 × Stressi + εi, 1 ≤ i ≤ 20

. Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


◦ new model

. Yi = β0 + β1 × Agei + β2 ×Weighti + β3 × BSAi + εi, 1 ≤ i ≤ 20

. Y = X̃β + ε 
105
115
. . .
110
122

 =


1 47 85.4 1.75
1 49 94.2 2.10
. . . . . . . . . . . .
1 48 90.5 1.88
1 56 95.7 2.09

×

β0
β1
β2
β3

+


ε1
ε2
. . .
ε19
ε20


7.2.2 What is the right form of the dependence on covariates?

Specifying the form of dependence in the fev data

◦ basic model for the dependence of FEV on Height and Sex:

Yi = β0 + β1 × Heighti + β2 × I{the ith person is male}, 1 ≤ i ≤ 654
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◦ does the basic model fit the data well enough?
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FEV by height and gender: a nonparametric fit
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Example: fev data

◦ original model

. Yi = β0 + β1 × Heighti + β2 × I{the ith child is male}+ εi, 1 ≤ i ≤ 654



1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 144.8 0
1 171.5 0
1 138.4 0
1 134.6 1
. . . . . . . . .
1 172.7 1
1 152.4 0
1 160.0 0
1 168.9 0


×

β0β1
β2

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



◦ new model

. Yi = β0 + β1 × Heighti + β2 × Height2i+

+ β3 × I{the ith child is male} + β4 × HeightiI{the i
th child is male}+

+ β5 × Height2i I{the i
th child is male} + εi, 1 ≤ i ≤ 654



1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 144.8 20961.3 0 0 0
1 171.5 29395.1 0 0 0
1 138.4 19162.9 0 0 0
1 134.6 18122.5 1 134.6 18122.5
. . . . . . . . . . . . . . . . . .
1 172.7 29832.2 1 172.7 29832.2
1 152.4 23225.8 0 0 0
1 160.0 25606.4 0 0 0
1 168.9 28530.6 0 0 0


×

β0. . .
β5

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



Example: fev data

◦ fit of the new model
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.194e+00 2.740e+00 -1.895 0.0585 .

Height 5.611e-02 3.692e-02 1.520 0.1291

I(Height^2) -3.977e-05 1.238e-04 -0.321 0.7482

SexMale 1.392e+01 3.423e+00 4.067 5.34e-05 ***

Height:SexMale -1.903e-01 4.545e-02 -4.188 3.20e-05 ***

I(Height^2):SexMale 6.471e-04 1.501e-04 4.310 1.89e-05 ***
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7.3 Nested models

Submodel

Nested models

◦ Bigger model: Y = Xb βb + ε, ε ∼ (0, σ2 I),

Xb =
(
1 | x,1 | x,2 | . . . | x,k−1 | x,k

)
. β̂b = (X>b Xb)−1X>b Y

. Ŷb = Xbβ̂b = HbY

. eb = Y − Ŷb = (I−Hb)Y

. σ̂2
b = 1

n−p ||eb||2

◦ Smaller model: Y = Xs βs + ε, ε ∼ (0, σ2 I),

Xs =
(
1 | x,1 | x,2 | . . . | x,k−r

)
. β̂s = (X>s Xs)

−1X>s Y

. Ŷs = Xsβ̂s = HsY

. es = Y − Ŷs = (I−Hs)Y
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. σ̂2
s = 1

n−p+r ||es||2

◦ more generally, any Xs such that im(Xs) ≤ im(Xb)

. ∃ A ∈ Rp×(p−r) such that Xs = Xb A

. Xs =
(∑p

i=1 ai,1 x,i | . . . |
∑p

i=1 ai,p−r x,i
)

Relationship between the two models

◦ if the smaller model holds, so does the bigger one

◦ ∃ A ∈ Rp×(p−r) such that Xs = Xb A

. Xs =
(∑p

i=1 ai,1 x,i | . . . |
∑p

i=1 ai,p−r x,i
)

◦ bigger model: Y = Xb βb + ε

◦ smaller model: Y = Xs βs + ε = Xb Aβs︸︷︷︸
βb

+ ε

◦ smaller model is the bigger model with a condition on βb

. βb︸︷︷︸
p×1

= A︸︷︷︸
p×(p−r)

βs︸︷︷︸
(p−r)×1

=

∑n−p
j=1 a1,j βs,j

. . .∑n−p
j=1 ap,j βs,j


. ∃ B ∈ Rr×p such that Bβb = 0

◦ in the bigger normal linear model we may test for the validity of the smaller model
by testing whether Bβb = 0 (see Week 7)

Relationship between the fits of the two models

◦ difference between the fits

. Ŷb − Ŷs = (Hb −Hs) Y

◦ difference between the residuals

. es − eb = (I−Hs) Y − (I−Hb) Y = (Hb −Hs) Y

◦ comparison of the nested models’ fits

. ||es||2 = ||eb||2 + ||es − eb||2

∗ proof: realize that < eb, es − eb >= 0

∗ note: ||es||2 ≥ ||eb||2 ⇒ the fit of the bigger model is closer to the observed
data
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∗ note: ||es − eb||2 = ||es||2 − ||eb||2

◦ in the normal linear model (ε ∼ N(0, σ2 I))

. eb ⊥⊥ (es − eb)

∗ proof: Corollary of MVN 7:

Let X ∼ N(µ,Σ). Then AX ⊥⊥ BX iff AΣB> = 0.

Does the bigger model fit significantly better?

◦ assume that both models hold (i.e. the smaller model holds) and that ε ∼ N(0, σ2I)
(normal linear model)

◦ 1
σ2 ||eb||2 ∼ χ2

n−p

. proof: see Week 6

◦ 1
σ2 ||es − eb||2 ∼ χ2

r

. proof: MVN 3:

Let X ∼ N(µ,Σ) and let A be an m × n real matrix and b ∈ Rm. Then
AX + b ∼ N(Aµ+ b,AΣA>).

. and QF 4:

Let Z ∼ N(0, I) and let P be an n × n projection matrix of rank r. Then
Z>P Z ∼ χ2(r).

◦ ||eb||2 ⊥⊥ ||es − eb||2

. proof: see the previous slide

◦ ||es − eb||2/r
||eb||2/(n− p)

=
(||es||2 − ||eb||2)/r

||eb||2/(n− p)
∼ Fr,n−p

. proof: verify that the definition of Fr,n−p is satisfied

More submodels

Several models nested within one another

◦ Big model: Y = Xb βb + ε, ε ∼ (0, σ2 I),

. Ŷb = Xbβ̂b = HbY

. eb = Y − Ŷb = (I−Hb)Y

◦ Small model: Y = Xs βs + ε, ε ∼ (0, σ2 I),
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. Ŷs = Xsβ̂s = HsY

. es = Y − Ŷs = (I−Hs)Y

. σ̂2
s = 1

n−p+r ||es||2

◦ Super-small model: Y = Xss βss + ε, ε ∼ (0, σ2 I),

. Ŷss = Xssβ̂ss = HssY

. ess = Y − Ŷss = (I−Hss)Y

. σ̂2
ss = 1

n−p+s ||ess||2

◦ im(Xss) ≤ im(Xs) ≤ im(Xb)

Relationship between the fits of the models

◦ difference between the fits

. Ŷb − Ŷs = (Hb −Hs) Y

. Ŷb − Ŷss = (Hb −Hss) Y

. Ŷs − Ŷss = (Hs −Hss) Y

◦ difference between the residuals

. es − eb = (I−Hs) Y − (I−Hb) Y = (Hb −Hs) Y

. ess − eb = (I−Hss) Y − (I−Hb) Y = (Hb −Hss) Y

. ess − es = (I−Hss) Y − (I−Hs) Y = (Hs −Hss) Y

◦ in the normal linear model (ε ∼ N(0, σ2 I))

. eb ⊥⊥ (es − eb)

. eb ⊥⊥ (ess − eb)

. eb ⊥⊥ (ess − es)

∗ proof: Corollary of MVN 7:

Let X ∼ N(µ,Σ). Then AX ⊥⊥ BX iff AΣB> = 0.

How about the super-small model’s fit?

◦ assume that all three models hold (i.e. the super-small model holds) and that ε ∼
N(0, σ2I) (normal linear model)

◦ 1
σ2 ||eb||2 ∼ χ2

n−p

◦ 1
σ2 ||ess − es||2 ∼ χ2

s−r



CHAPTER 7. MODEL SELECTION 85

. proof: MVN 3:

Let X ∼ N(µ,Σ) and let A be an m × n real matrix and b ∈ Rm. Then
AX + b ∼ N(Aµ+ b,AΣA>).

. and QF 4:

Let Z ∼ N(0, I) and let P be an n × n projection matrix of rank r. Then
Z>P Z ∼ χ2(r).

◦ ||eb||2 ⊥⊥ ||ess − es||2

◦ ||ess − es||2/(s− r)
||eb||2/(n− p)

=
(||ess||2 − ||es||2)/(s− r)

||eb||2/(n− p)
∼ Fs−r,n−p

. proof: verify that the definition of Fs−r,n−p is satisfied

7.4 Selecting the model

7.4.1 Model selection tools

Model selection based on sequential testing

◦ statistical tests

. t test for testing βi = 0 vs. βi 6= 0

. F test for testing Aβ = 0 vs. Aβ 6= 0

. likelihood ratio test

∗ 2(maxθb
` (Big model)−maxθs ` (Small model))

as.∼ χ2
|θb|−|θs|

∗ details next semester

◦ we may start with a big model and sequentially leave out terms that do not appear
significant

. multiple testing ⇒ we do not keep the overall α

∗ often α > 0.05 is used at this stage (even α ≈ 0.2)

∗ the procedure is an ad-hoc one (rather than valid testing)

∗ “clean” ways exist (e.g. error-spending function)

. an approach of this kind is often applied when the interest is in β and the model
is there to explain the phenomenon

◦ words of caution

. p > 0.05 does not guarantee the absence of the relationship
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. significance of the terms in the final model may be amplified

Model selection based on “criteria”

◦ model selection criterion

. a number that describes the overall fit of the model

◦ often applied when the interest is in prediction

◦ focus is on ||e||2 = ||Y − Ŷ||2

◦ already seen

. coefficient of determination

R2 = 1− ||e||2

||Y − Ȳ 1||2

∗ always bigger for a bigger model

∗ bigger model is not necessarily better, so is the difference big enough to
justify the use of the bigger model?

. adjusted coefficient of determination

R2
adj = 1− ||e||2/(n− p)

||Y − Ȳ 1||2/(n− 1)

∗ penalizes for the model complexity

Likelihood-based information criteria

◦ model fit versus model complexity trade-off

◦ Akaike information criterion

. AIC = −2 maxθ ` (model) + 2× |θ|

. motivation

∗ information theory

∗ prediction

. favours bigger models

◦ Bayesian information criterion

. BIC = −2 maxθ ` (model) + log(n)× |θ|

. motivation

∗ Bayesian model comparison
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∗ selection of covariates

. favours smaller models

◦ smaller is better

◦ can be used to compare non-nested models

◦ can be used for more general models (cf. next semester)

Mallows’s CP

◦ criterion specific for linear regression:

. suppose that the full model has β of length p

. describe the fit (focus on prediction) of its submodel with β̃ of length P

. estimate the average mean square error of prediction
1

σ2

n∑
i=1

E(Ŷi − EYi)
2 by

1

σ̂2
b

n∑
i=1

(Ŷi − Yi)2 =
||es||2

||eb||2/(n− p)

◦ CP =
||es||2

||eb||2/(n− p)
− n+ 2P

. for the full model: Cp = p

. models with CP ≈ P are considered good

. we may plot CP against P and choose a small model that has CP ≈ P (if small
is preferred)

. related to the AIC

7.4.2 Model selection strategies

To leave out or not to leave out?

◦ setting βi = 0 if the true βi 6= 0

i.e. leaving out a covariate that should have been kept

. possible bias in the estimators of βj for i 6= j

. possible invalidity of the resulting model (cf. Week 10)

◦ allowing βi 6= 0 if the true βi ≈ 0

i.e. keeping unnecessary covariates in the model
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. possibly worse estimation of βj for i 6= j and larger confidence intervals (cf.
Week 11)

. possibility of overfitting

. sometimes/often simple explanations are preferable

◦ conclusion

. avoid blind automatic model selection procedures if possible

Model selection strategies

◦ step-wise procedures based on p-values of the t/F test

. backward selection

∗ start with a biggest model, leave out the covariate with the largest p-value,
end when p-values for all included covariates are smaller than αcrit

. forward selection

∗ start with a smallest model, add the covariate with the smallest p-value,
end when p-values of all non-included covariates are larger than αcrit

. step-wise selection

∗ a combination of forward and backward selection

. issues

∗ non-exhaustive search

∗ multiple testing; tests invalid unless the smaller model is true

∗ not recommended for prediction

◦ step-wise procedures with a model selection criterion

◦ exhaustive search with a model selection criterion

. e.g. plot CP or R2 against the number of predictors

Notes on model selection

◦ hierarchical modelling

. powers of lower order should be kept in the model if powers of higher order are
present

. main terms and interactions of lower order should be kept in the model if inter-
actions of higher order are present

. there may be a good reason for a non-hierarchical model but such a model is
not invariant to affine transformations and rotations of covariates
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◦ several models may fit equally well

. if they give qualitatively different answers, reconsider the use of the data to
answer the question

◦ avoid blind automatic model selection procedures if possible

. if impossible, choose a selection procedure to fit the purpose of the modelling
and carefully examine the final model

◦ make sure that the models you considered were fitted to the same data

Concluding notes

◦ there is no best/foolproof way to do the model selection except for common sense
and sound understanding of the phenomenon

◦ A model should be as simple as possible but no simpler.

Albert Einstein

◦ All models are wrong but some are useful.

George Box



Chapter 8

Model diagnostics

8.1 The problem

8.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

Example: bloodpress data
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◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


Example: fev data

◦ from: http://www.statsci.org/data/general/fev.html

◦ question: association between the FEV[l] and Smoking,

corrected for Age[years], Height[cm] and Gender

◦ data:

FEV Age Height Gender Smoking
1.708 9 144.8 Female Non
1.724 8 171.5 Female Non
1.720 7 138.4 Female Non
1.558 9 134.6 Male Non
. . . . . . . . . . . . . . .
3.727 15 172.7 Male Current
2.853 18 152.4 Female Non
2.795 16 160.0 Female Current
3.211 15 168.9 Female Non

◦ model: Y = Xβ + ε


1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 9 144.8 0 0
1 8 171.5 0 0
1 7 138.4 0 0
1 9 134.6 1 0
. . . . . . . . . . . . . . .
1 15 172.7 1 1
1 18 152.4 0 0
1 16 160.0 0 1
1 15 168.9 0 0


×

β0. . .
β5

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



8.1.2 Task for this chapter

Checking the model assumptions

◦ model: Y = Xβ + ε

. outcome Y

http://www.statsci.org/data/general/fev.html
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∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: do the assumptions appear to be satisfied?

◦ Note: if they are not, inference is not valid . . .

8.2 Random errors and residuals

Random errors

Random errors in the normal linear model

◦ model: Y = Xβ + ε

◦ assumptions

. EY = Xβ: the expected value of Y is a linear function of β

. ε ∼ N(0, σ2 I)

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and the same precision

◦ we need to verify the assumptions on

. expectation: EY = Xβ, i.e. E ε = 0

. variance: Var ε = σ2 I

. distribution: ε ∼ N(0, σ2 I)

◦ all assumptions are made on unobserved random errors ε

◦ fitted model: Y = Ŷ + (Y − Ŷ) = X β̂ + e
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◦ residuals e sometimes seen as “estimates” of ε

. ε is an unobserved random vector, not a parameter (constant)

. e are not estimates in the usual sense

Residuals

Residuals in the normal linear model

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ fitted model: Y = Ŷ + e = H Y + (I−H) Y

◦ e ∼ N(0, σ2 (I−H))

. proof: cf. Week 6 or use MVN 3

. rank(I−H) = n− p if rank(X) = p

∗ e
d
= A Z for an (n− p)-dimensional Z ∼ N(0, I)

I−H = UΛU> (spec. dec.) ⇒ A = Un×(n−p) Λ
1/2
(n−p)×(n−p)

(cf. Week 4 or use MVN 3)

◦ if the assumptions are satisfied, residuals are

. zero-mean

. with unequal variances: Var ei = σ2 (1− hi,i)

. with a degenerate normal distribution

. correlated: Cor(ei, ej) = − hi,j√
(1−hi,i) (1−hj,j)

◦ compare to ε ∼ N(0, σ2 I) . . .

Standardized residuals in the normal linear model

◦ model: Y = Xβ + ε

. ε ∼ N(0, σ2 I)

◦ fitted model: Y = Ŷ + e = H Y + (I−H) Y

. e ∼ N(0, σ2 (I−H))

◦ to check the assumptions, we often use

standardized residuals ri =
ei√

σ̂2 (1− hi,i)
, 1 ≤ i ≤ n
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◦ if the assumptions are satisfied

. we expect that ri ≈ N(0, 1)

∗ it can be shown that E ri = 0 and Var ri = 1

(some technical work needed to prove this)

∗ we did not derive the distribution of ri’s

∗ we did not try to get rid of the correlation

◦ compare to ε ∼ N(0, σ2 I) . . .

8.3 Model diagnostics I: checking the assumptions

8.3.1 General principles

Checking the assumptions

◦ Specifying the possible departures

. need to specify in what sense the assumption might be violated

. if the assumption is H0, need to specify H1

1. Graphical checking

◦ plots that allows us to “see” departures from the assumptions

◦ based on residuals (e or r)

2. Testing the validity of assumptions

◦ usually by fitting a more general model that allows them not to be satisfied and
testing whether the generalization is needed

◦ useful as numerical indications BUT

◦ we cannot “prove the null hypothesis”

◦ problems with the validity of inference:

. chains of tests and multiple testing

. assumptions on assumptions

. we should *know* in advance they are satisfied

Overall check: residuals versus fitted values

◦ e ⊥ Ŷ by definition
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◦ no systematic patterns should appear between e and Ŷ

◦ example: fev data

. basic model:

Yi = β0 + β1 × Heighti + β2 × I{the ith child is male} + εi, 1 ≤ i ≤ 654

. quadratic model:

Yi = β0 + β1 × Heighti + β2 × Height2i+

+ β3 × I{the ith child is male} + β4 × HeightiI{the i
th child is male}+

+ β5 × Height2i I{the i
th child is male} + εi, 1 ≤ i ≤ 654
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8.3.2 Assumptions on the expectation

Checking E ε = 0, i.e. EY = Xβ

◦ suspected departures from the assumption

. incorrectly specified form of dependence

∗ plot e against the included covariates

∗ e ⊥ x,i, 1 ≤ i ≤ p, by definition

∗ no systematic patterns should appear between e and x,i

∗ a trend indicates a dependence not captured by the model

∗ a formal test: fit a more complicated dependence and test against the orig-
inal model

. missing covariates

∗ plot e against covariates that are not included in the model

∗ no systematic patterns should appear

∗ a trend indicates a dependence not captured by the model

∗ a formal test: fit a larger model and test the effect of the additional covari-
ate
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Incorrectly specified form of dependence

◦ example: fev data

. basic model:

Yi = β0 + β1 × Heighti + β2 × I{the ith child is male} + εi, 1 ≤ i ≤ 654

. quadratic model:

Yi = β0 + β1 × Heighti + β2 × Height2i+

+ β3 × I{the ith child is male} + β4 × HeightiI{the i
th child is male}+

+ β5 × Height2i I{the i
th child is male} + εi, 1 ≤ i ≤ 654
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Missing covariates

◦ example: fev data

◦ quadratic model:

Yi = β0 + β1 × Heighti + β2 × Height2i+

+ β3 × I{the ith child is male} + β4 × HeightiI{the i
th child is male}+

+ β5 × Height2i I{the i
th child is male} + εi, 1 ≤ i ≤ 654
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8.3.3 Assumptions on the variance

Checking Var ε = σ2I: homoskedasticity

◦ suspected departures from the assumption

. variance changing with fitted values (usually increasing)

∗ plot standardized residuals (usually square root of the absolute value) against
fitted values

∗ no pattern should appear

. variance changing with covariates

∗ plot standardized residuals (usually square root of the absolute value) against
covariates

∗ no pattern should appear

∗ a formal test: studentized Breusch–Pagan test

. subgroups with the same within-group variance

∗ plot boxplots of standardized residuals by groups

∗ boxes should be of approximately equal sizes

∗ a formal test: fit a more general model and test against the original model

Breusch–Pagan test

◦ original model

. Y = Xβ + ε
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. ε ∼ N(0, σ2I)

◦ more general model

. Y = Xβ + ε

. ε ∼ N(0, diag(σ2
1, . . . , σ

2
n))

. σ2 = Xα

◦ Breusch–Pagan test: test α2:p = 0 in the more general model

◦ studentized Breusch–Pagan test less sensitive to the assumption of normality

◦ more general versions of the Breusch–Pagan test and more general tests exist

Checking Var ε = σ2I: homoskedasticity

◦ example: fev data

◦ quadratic model:

Yi = β0 + β1 × Heighti + β2 × Height2i+

+ β3 × I{the ith child is male} + β4 × HeightiI{the i
th child is male}+

+ β5 × Height2i I{the i
th child is male} + εi, 1 ≤ i ≤ 654
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Checking Var ε = σ2I: independence

◦ suspected departures from the assumption

. clustering
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∗ suspected e.g. when several data points collected from one individual (e.g.
same individuals followed over time)

∗ plot boxplots of residuals by the suspected groups

∗ no pattern should appear

∗ a formal test: fit a more general model allowing for the within-group de-
pendence and test against the original model

. serial correlation

∗ suspected when data collected over time or space

∗ plot ei against ei−1

∗ no pattern should appear

∗ plot the (partial) autocorrelation function

∗ a formal test: fit a more general model and test against the original model

∗ a formal test: Durbin–Watson test

Durbin–Watson test

◦ original model

. Y = Xβ + ε

. ε ∼ N(0, σ2I)

◦ more general model

. Y = Xβ + ε

. εi = ρ εi−1 + wi, wi
iid∼ (0, σ2), |ρ| < 1

(autoregression of the first order on the error terms)

◦ Durbin–Watson test: test ρ = 0 against ρ > 0 in the more general model

◦ also possible to test ρ = 0 against ρ < 0 and ρ = 0 against ρ 6= 0

◦ more general tests available

Time series models

◦ time series is a random sequence {Xt, t ∈ Z}

. stationary if EXt = µ, VarXt = σ2, Cov(Xt, Xt+s) = γ(s)

◦ The autocovariance function of a stationary random sequence {Xt, t ∈ Z} is defined
as γ(h) = Cov(Xt, Xt+h), h ∈ Z.
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◦ The autocorrelation function (ACF) is defined as ρ(h) = Cor(Xt, Xt+h) = γ(h)/γ(0),
h ∈ Z.

◦ The partial autocorrelation function (PACF) is defined as α(1) = Cor(Xt, Xt+1) =
ρ(1) and α(h) = Cor(Xt − X̂t, Xt+h − X̂t+h), h = 2, 3, . . . , where X̂t and X̂t+h are
the fitted values from the linear regressions Xt ∼ Xt+1, . . . , Xt+h−1 and Xt+h ∼
Xt+1, . . . , Xt+h−1.

ACF and PACF for ARMA models

◦ special time series models

◦ Let {εt}
iid∼ (0, σ2). Then {Xt, t ∈ Z} is

. AR(p) if

∗ Xt = φ1Xt−1 + · · ·+ φpXt−p + εt;

. MA(q) if

∗ Xt = εt + θ1εt−1 + · · ·+ θqεt−q;

. ARMA(p, q) if

∗ Xt = φ1Xt−1 + · · ·+ φpXt−p + εt + θ1εt−1 + · · ·+ θqεt−q.

◦ ACF and PACF for AR/MA

ACF PACF
AR(p) Exponential decay Cuts off after lag p
MA(q) Cuts off after lag q Exponential decay
ARMA(p, q) Exponential decay Exponential decay

ACFs and PACFs

◦ simulated ACFs
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Some other series

◦ theoretical ACF and PACF for an ARMA
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ACFs and PACFs

◦ theoretical ACF for MA(1)
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◦ theoretical PACF for AR(2)
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Other types of dependence

◦ spatial correlation diagnosed via semivariogram

. for a stationary isotropic random field {Z(x); x ∈ R2}, semivariogram is

∗ γ(x,y) = 1
2
Var(Z(x) − Z(y)) = 1

2
E(Z(x) − Z(y))2 = γ(h), where h =

||x− y||2

◦ clustering (boxplots of residuals by group)
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8.3.4 Assumptions on the distribution

Checking ε ∼ N(0, σ2I)

◦ suspected departures from the assumption

. non-normal distribution

∗ skewed distribution

∗ heavy-tailed distribution

◦ plot a QQ plot for (standardized) residuals

◦ plot a histogram for (standardized) residuals

◦ formal tests: Shapiro–Wilk test, Kolmogorov–Smirnov test

. warning: valid for iid’s (and residuals are not iid’s)

QQ plot and histogram

◦ QQ plot (preferred)

. quantiles of N(0, 1) against empirical quantiles

. should be near a straight line

. problems to look for

∗ S shape (heavy tails)

∗ an arc (skewness)
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Shapiro–Wilk test and Kolmogorov–Smirnov test

◦ valid for iid’s (and residuals are not iid’s)
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. Shapiro–Wilk test

∗ can be seen as a numerical summary of the QQ plot

∗ rather a strong one
> shapiro.test(rstandard(model.basic.quad))

Shapiro-Wilk normality test

data: rstandard(model.basic.quad)

W = 0.9865, p-value = 9.713e-06

> shapiro.test(rstandard(model.basic.quad)[sample(1:654, 50)])

Shapiro-Wilk normality test

data: rstandard(model.basic.quad)[sample(1:654, 50)]

W = 0.97011, p-value = 0.2338

. Kolmogorov–Smirnov test

∗ rather a weak one

Importance of the assumption

◦ large-sample distribution of β̂

. Let Xn; n ∈ N be a sequence of n × p design matrices of full rank defin-
ing a sequence of linear models Yn = Xn β + εn with εn ∼ (0, σ2 In). If
max1≤i≤n x>i, (X

>
nXn)−1xi, −−−→

n→∞
0 then

(X>nXn)1/2 (β̂n − β)
d−−−→

n→∞
N(0, σ2 I),

where β̂n = (X>nXn)−1X>nYn.

◦ normality not crucial in large samples unless there are special observations

8.4 Model diagnostics II: influential and unusual ob-

servations

8.4.1 Observations to look at

Leverage

◦ Y = Ŷ + e = H Y + (I−H) Y

◦ Var Ŷi = hi,i . . . leverage

◦ H = X (X>X)−1X> and rank(H) = tr(H) = p

◦ hi,i = x>i, (X>X)−1xi, and
∑n

i=1 hi,i = p
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◦ the variance of Ŷi determined by the corresponding covariates

◦ we want all observations to contribute ≈ equally to the fit

. we want that hi,i ≈ p
n

◦ if hi,i much larger for some i, the fit may be influenced by (Yi,xi,) much more than
by the other observations

◦ observations with hi,i >
2p
n

should be checked

Potentially influential and influential observations
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◦ both points have a high leverage, but only one is influential

Model with an excluded observation

◦ consider a model Y[−i] = X[−i] β + ε[−i] without the ith observation

◦ fit the model

. compute β̂[−i] and σ̂2
[−i]

◦ compute ŷ[−i] = x>i, β̂[−i]

. prediction of yi based on the model without the ith observation

◦ if yi − ŷ[−i] is large, the ith observation is an outlier

. how large is “too large?”
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. Var(yi − ŷ[−i]) = σ2(1 + x>i, (X
>
[−i]X[−i])

−1xi,)

. define jackknife residuals ti =
yi − ŷ[−i]√

σ̂2
[−i](1 + x>i, (X

>
[−i]X[−i])−1xi,)

. there is a simpler equivalent formula that does not require fitting n models with
excluded observations

Influential and unusual observations

◦ in the normal linear model:

. ti ∼ tn−p−1

◦ we can test whether and observation is an outlier

. heavy multiple testing  Bonferroni correction

∗ use tn−p−1(1− α/(2n)) instead of tn−p−1(1− α/2)

◦ to evaluate whether the observation is influential

. Cook’s distance: di =
1

p σ̂2
||Ŷ − Ŷ[−i]||2 =

1

p
r2
i

hi,i
1− hi,i

. how large is “too large”?

∗ rule of thumb: di ≥ 0.5 deserve some attention

di ≥ 1  highly influential observation



Chapter 9

Reduced-rank design matrix and
multicolllinearity

9.1 The problem

9.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision
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Example: bloodpress data

◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

◦ from: http://www.statsci.org/data/general/fev.html

◦ question: association between the FEV[l] and Smoking,

corrected for Age[years], Height[cm] and Gender

◦ data:

FEV Age Height Gender Smoking
1.708 9 144.8 Female Non
1.724 8 171.5 Female Non
1.720 7 138.4 Female Non
1.558 9 134.6 Male Non
. . . . . . . . . . . . . . .
3.727 15 172.7 Male Current
2.853 18 152.4 Female Non
2.795 16 160.0 Female Current
3.211 15 168.9 Female Non

◦ model: Y = Xβ + ε


1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 9 144.8 0 0
1 8 171.5 0 0
1 7 138.4 0 0
1 9 134.6 1 0
. . . . . . . . . . . . . . .
1 15 172.7 1 1
1 18 152.4 0 0
1 16 160.0 0 1
1 15 168.9 0 0


×

β0. . .
β5

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html
http://www.statsci.org/data/general/fev.html
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9.1.2 Task for this chapter

Rank-deficiency/near-rank deficiency of X

◦ model: Y = Xβ + ε

. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: so far we have assumed that rank(X) = p

What happens if rank(X) < p or “nearly so”?

9.2 Rank-deficient design matrix

9.2.1 Rank-deficient design matrix

Full-rank design matrix X

◦ design matrix X is n× p, n > p

◦ SVD: X = U︸︷︷︸
n×n

Σ︸︷︷︸
n×p

V>︸︷︷︸
p×p

◦ if all covariates are linearly independent

. rank(X) = p

. σ1 ≥ σ2 ≥ . . . ≥ σp > 0

. thin SVD: X = U1︸︷︷︸
n×p

Σ1︸︷︷︸
p×p

V>︸︷︷︸
p×p

. the columns generate a p-dimensional space im(X)



CHAPTER 9. REDUCED-RANKDESIGNMATRIX ANDMULTICOLLLINEARITY109

∗ {x,1, . . . ,x,p} is a basis of im(X)

∗ {u,1, . . . ,u,p} is an orthonormal basis of im(X)

∗ H = U1U
>
1 = X (X>X)−1X> is a projection matrix on im(X)

Rank-deficient design matrix X

◦ design matrix X is n× p, n > p

◦ SVD: X = U︸︷︷︸
n×n

Σ︸︷︷︸
n×p

V>︸︷︷︸
p×p

◦ if covariates are not linearly independent

. rank(X) = r < p

. σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σp

. compact SVD: X = U1︸︷︷︸
n×r

Σ1︸︷︷︸
r×r

V>︸︷︷︸
r×r

. the columns generate an r-dimensional space im(X)

∗ {u,1, . . . ,u,r} is an orthonormal basis of im(X)

∗ H = U1U
>
1 = X (X>X)+X> is a projection matrix on im(X)

β̂ motivated by orthogonal projection (reminder)

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ idea: set ε
!

= 0 and solve Y = Xβ w.r.t. β

. then Y︸︷︷︸
n×1

!
= X︸︷︷︸

n×p

β︸︷︷︸
p×1

. n linear equations with p unknowns and n > p

⇒ a solution exists only if Y ∈ im(X)

◦ modified idea: find Ŷ ∈ im(X) such that ||Y−Ŷ||2 is the smallest possible and solve
Ŷ = Xβ w.r.t. β

. then Ŷ is the orthogonal projection of Y onto im(X)

. projection matrix onto im(X) is H︸︷︷︸
hat matrix

= X(X>X)+X>

. solving Ŷ = Xβ is solving X (X>X)+X>Y = Xβ

. estimate β by β̂ = (X>X)+X>Y

. but β̂ is the unique solution of Ŷ = Xβ iff rank(X) = p
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∗ and then β̂ = (X>X)−1X>Y

β̂ as least squares estimator (reminder)

◦ model: Y = Xβ + ε, ε unknown, E ε = 0

◦ idea: make the residuals as small as possible

. minimize ||ε||2 =
∑n

i=1 ε
2
i w.r.t. β

 Least Squares Estimator (LSE) β̂ = arg minβ

∑n
i=1 ε

2
i

. also called the OLS (Ordinary Least Squares) solution

◦ computation:

. ε = Y −Xβ

. β̂ = arg minβ ||Y −Xβ||2 = arg minβ(Y −Xβ)>(Y −Xβ)

◦ look for the minimum by differentiating:

. ∂
∂β

(Y −Xβ)>(Y −Xβ)
!

= 0

. −2 X>Y + 2 X>Xβ
!

= 0

. X>Xβ
!

= X>Y: normal equations

◦ normal equations have unique solution iff rank(X) = p: then

. the solution is (X>X)−1X>Y

. ∂2

∂β∂β
(Y −Xβ)>(Y −Xβ) = 2 X>X � 0 for all β

⇒ the solution is the minimum ⇒ β̂ = (X>X)−1X>Y

If rank(X) = r < p

◦ orthogonal projection approach

. Ŷ exists and is unique

. β̂ such that Ŷ = X β̂ is a vector of coordinates of Ŷ ∈ im(X) w.r.t. {x,1, . . . ,x,p}

∗ if {x,1, . . . ,x,p} is not a basis of im(X), β̂ is not unique

. {β̂; Ŷ = X β̂} is a linear subspace of Rp of dimension p− r

. neither Ŷ nor ||Y − Ŷ||2 depend on the choice of β̂

◦ ordinary least squares approach

. normal equations X>Xβ = X>Y are consistent
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∗ rank(X>X) = rank((X>Y,X>X))

. normal equations have infinitely many solutions

∗ the linear subspace of Rp of dimension p− r
. the minimum minβ ||Y−Xβ||2 is attained for each of the solutions and its value

is the same for all the solutions

∗ the ||Y − Ŷ||2

. proofs can be found in Anděl: Základy matematické statistiky

9.2.2 Identifiability

Identifiable parameters

◦ Ŷ and ||Y − Ŷ||2 = minβ ||Y −Xβ||2 does not depend on β̂

◦ any other quantities with such properties?

Theorem. Let Y = Xβ+ ε where X is an n× p matrix, rank(X) = r < p, β ∈ Rp, and ε is an
n-dimensional random vector with E ε = 0 and Var ε = σ2I. Let c ∈ Rp and θ = c>β.

If θ ∈ im((Xβ)>), equivalently if c ∈ im(X>), then

(i) the value of θ̂ = c>β̂ where β̂ is a solution to the normal equations does not depend on the
choice of the solution;

(ii) ∃ a linear unbiased estimator of θ;

(iii) θ̂ = c>β̂ is BLUE for θ.

◦ parameter θ that is a linear combination of EY is identifiable

◦ a proof can be found in Jiř́ı Anděl: Základy matematické statistiky

Inference for identifiable parameters

◦ model: Y = Xβ + ε, ε = N(0, σ2 I), rank(X) = r < p

◦ EY is identifiable

◦ Ŷ = X β̂ is BLUE for EY for any β̂ that solves the normal equations

◦ it can be shown that

. n−r
σ2 σ̂2 ∼ χ2

n−r

. σ̂2 = 1
n−r ||Y − Ŷ||2 is an unbiased estimator of σ2
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. σ̂2 ⊥⊥ β̂ for any β̂ that solves the normal equations

. proofs are similar to the full-rank case

∗ can be found in Jiř́ı Anděl: Základy matematické statistiky (2005). Mat-
fyzpress.

◦ inference for identifiable parameters and vectors is as in the full-rank model but we
need to adjust the degrees of freedom

. n− r instead of n− p

9.2.3 Choice of the solution

Choice of β̂

◦ Ŷ and σ̂2 do not depend on the choice of β̂

◦ {β̂; Ŷ = X β̂} is a linear subspace of Rp of dimension p− r

. we can choose β̂ by specifying p− r linear constraints

∗ choose an (p− r)× p matrix D, rank(D) = p− r
∗ require that Dβ = 0

◦ for a given D

. QR decompose D> = (Q1 |Q2)

(
R1

0

)
= Q1 R1

. CD = Q2 is a p× r matrix, rank(CD) = r

. XD = X CD is an n× r matrix, rank(XD) = r

. fit the (full-rank) model Y = XD βD + ε

. β̂ = CD β̂D is the solution to the original normal equations satisfying the con-
straints given by D

Common example: factor variables (fev data)

◦ basic model: FEV ∼ Height + Gender

. näıve parametrization

Yi = β0 + βH × Heighti+

+ βM × I{the ith child is male} + βF × I{the ith child is female}+

+ εi, 1 ≤ i ≤ 654 
1.708
1.724
1.720
1.558
. . .

3.211

 =


1 144.8 0 1
1 171.5 0 1
1 138.4 0 1
1 134.6 1 0
. . . . . . . . . . . .
1 168.9 0 1

×

β0
βH
βM
βF

 +


ε1
ε2
ε3
ε4
. . .
ε654





CHAPTER 9. REDUCED-RANKDESIGNMATRIX ANDMULTICOLLLINEARITY113

. standard parametrization

Yi = β0 + βH × Heighti+

+ βM × I{the ith child is male}+

+ εi, 1 ≤ i ≤ 654

◦ basic model with interaction: FEV ∼ Height * Gender

. standard parametrization

Yi = β0 + βH × Heighti+

+ βM × I{the ith child is male}+

+ βH:M × I{the ith child is male} × Heighti + εi, 1 ≤ i ≤ 654

One-way ANOVA

◦ Yi,j = µ+ αi + εi,j, εi,j
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . ni}

◦ matrix form Y = X (µ,α)> + ε, ε ∼ N(0, σ2 I)

Y1,1
. . .
Y1,n1

Y2,1
. . .
Y2,n2

. . .

. . .

. . .
YI,1
. . .
YI,nI



=



1 1 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
1 1 0 0 . . . 0
1 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
1 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
1 0 0 0 . . . 1
. . . . . . . . . . . . . . . . . .
1 0 0 0 . . . 1




µ
α1

α2

. . .
αI

+



ε1,1
. . .
ε1,n1

ε2,1
. . .
ε2,n2

. . .

. . .

. . .
εI,1
. . .
εI,nI


. X is an n× (I + 1) matrix with rank(X) = I

ANOVA

◦ one-way ANOVA

. Yi,j = µ+ αi + εi,j, εi,j
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . ni}
. matrix form Y = (1 |Xα) (µ,α)> + ε, ε ∼ N(0, σ2 I)

∗ X is an n× (I + 1) matrix with rank(X) = I

◦ two-way ANOVA
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. Yi,j,k = µ+ αi + βj + εi,j,k, εi,j,k
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ni,j}
. matrix form Y = (1 |Xα |Xβ) (µ,α,β)> + ε, ε ∼ N(0, σ2 I)

∗ X is an n× (I + J + 1) matrix with rank(X) = I + J − 1

◦ two-way ANOVA with interactions

. Yi,j,k = µ+ αi + βj + γi,j + εi,j,k, εi,j,k
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ni,j}
. Y = (1 |Xα |Xβ |Xα �Xβ) (µ,α,β,γ)> + ε, ε ∼ N(0, σ2 I)

(� denotes component-wise multiplication in the n× (I × J) matrix)

∗ X is an n× (I + J + (I × J) + 1) matrix, rank(X) = I × J

ANOVA parametrizations

◦ one-way ANOVA

. Yi,j = µ+ αi + εi,j, εi,j
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . ni}
∗ parametrization: α1 = 0

∗ other parametrizations: e.g.
∑I

i=1 niαi = 0

◦ two-way ANOVA

. Yi,j,k = µ+ αi + βj + εi,j,k, εi,j,k
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ni,j}
∗ parametrization: α1 = 0, β1 = 0

∗ other: e.g.
∑I
i=1 αi

∑J
j=1 ni,j = 0,

∑J
j=1 βj

∑I
i=1 ni,j = 0

◦ two-way ANOVA with interactions

. Yi,j,k = µ+ αi + βj + γi,j + εi,j,k, εi,j,k
iid∼ N(0, σ2)

i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ni,j}
∗ parametrization: α1 = 0, β1 = 0, γ1,j = 0 ∀ j, γi,1 = 0 ∀ i

∗ other: e.g.
∑I
i=1 αi

∑J
j=1 ni,j = 0,

∑J
j=1 βj

∑I
i=1 ni,j = 0,

∑I
i=1 ni,jγi,j =

0 ∀ j,
∑J
j=1 ni,jγi,j = 0 ∀ i

ANOVA parametrizations via matrices of contrasts
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◦ one-way ANOVA

. Y = (1 |Xα) (µ,α)> + ε, ε ∼ N(0, σ2 I)

. replace (1 |Xα) by (1 |Xα Cα)

∗ Cα ∈ RI×(I−1), rank((1 |Xα Cα)) = I

. estimate α by Cα α̂ from the fitted model

◦ two-way ANOVA

. Y = (1 |Xα |Xβ) (µ,α,β)> + ε, ε ∼ N(0, σ2 I)

. replace (1 |Xα |Xβ) by (1 |Xα Cα |Xβ Cβ)

∗ Cα ∈ RI×(I−1), Cβ ∈ RJ×(J−1)

∗ rank((1 |Xα Cα |Xβ Cβ)) = I + J − 1

. estimate α and β by Cα α̂ and Cβ β̂ from the fitted model

◦ two-way ANOVA with interactions

. Y = (1 |Xα |Xβ |Xα �Xβ) (µ,α,β,γ)> + ε, ε ∼ N(0, σ2 I)

. replace (1 |Xα |Xβ |Xα �Xβ) by (1 |Xα Cα |Xβ Cβ |Xα Cα �Xβ Cβ)

∗ Cα ∈ RI×(I−1), Cβ ∈ RJ×(J−1)

∗ rank((1 |Xα Cα |Xβ Cβ |Xα Cα �Xβ Cβ)) = I J

. estimate α, β and γ by Cα α̂, Cβ β̂ and (Cα ⊗Cβ) γ̂

9.3 Multicollinearity

Multicollinearity

Multicollinearity

◦ we have seen that if rank(X) = r < p, we do not lose

anything by leaving out p− r columns

◦ but what if rank(X) = p but “only nearly so”?

. the columns of X linearly independent BUT

.
<x,i,x,j>

||x,i|| ||x,j || ≈ ±1 for some (i, j)

and/or for some linear combinations of the columns

◦ we would lose information by leaving out columns but keeping them all is a problem
as well
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. X>X is ill-conditioned

∗ β̂ solves (X>X)β = X>Y

∗ small change in Y ⇒ large change in β̂

∗ fit extremely sensitive to errors ε

. large Var β̂

∗ imprecise estimation of β

∗ wide confidence intervals for β’s

∗ large p-values of the t-tests

(not necessarily of the overall F-test)

Detecting multicollinearity

◦ pairwise relationships

. graphically: plot pairs of covariates one against another

. numerically: compute pairwise correlations

◦ pairwise and/or higher-order relationships

. regressing each covariate in turn on all the others

∗ large values of the corresponding R2 problematic

. compute eigenvalues of X>X

∗ large values of
√
λ1/λj problematic

◦ other indications

. large p-values of the individual t-tests but a small p-value of the overall F -test

. estimates of β and Var(β̂) very sensitive to adding/leaving out covariates and/or
perturbing Y

Variance inflation factors

◦ fit lm(X,j ∼ X,1 + . . .+ X,j−1 + X,j+1 + . . .+ X,p)

. R2
j . . . the corresponding coefficient of determination

◦ it can be shown that Var(β̂j) =
s2

(n− 1)s2X,j
× 1

1−R2
j

in lm(Y ∼ X,1 + . . .+ X,p)

◦ variance inflation factor VIFj = 1
1−R2

j
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. measures linear dependence of the jth covariate

on the other covariates

. interpretation

∗ standard error of β̂j is ≈
√

VIFj × larger than it would be were the jth

covariate independent of the other covariates

. = 1 for orthogonal covariates, large values indicate problems

. how big is “too big”?

∗ some consider VIF > 5 problematic

∗ VIF > 10 is definitely considered problematic

◦ a generalization gVIF exists for categorical variables

Example: fev data

◦ Cor(Age,Height) = 0.79
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◦ R2
Age = 0.69

◦ VIFAge = 3.24

Ill-conditioned X>X

◦ linear model: Y = Xβ + ε

◦ model fitting: (X>X)︸ ︷︷ ︸
(p×p)

β̂︸︷︷︸
(p×1)

= X>Y︸ ︷︷ ︸
(p×1)

. . . A︸︷︷︸
(p×p)

x︸︷︷︸
(p×1)

= b︸︷︷︸
(p×1)
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◦ solving for β̂ with machine precision

. if the error in b is ε, the error in the solution A−1b is A−1ε

. relative error in the solution divided by the relative error in b:

∗ ||A
−1ε||/||A−1b||
||ε||/||b|| for some norm || • ||2

∗ maximal value: ||A
−1||
||A||

. for Euclidean/spectral norm: ||A
−1||
||A|| =

√
λ1
λp

:
√

of the ratio of the smallest and

largest eigenvalue: condition number

∗ some consider ≥ 30 problematic

∗ the condition number depends also on the scales of covariates (not only on
their relationships)

∗ can improve a lot if all covariates are on similar scales

Tackling multicollinearity

◦ having independent covariates helps a lot but inherent relationships cannot be cir-
cumvented

◦ with collinear covariates, information does not increase as we would expect with the
number of covariates

◦ “solutions”

. excluding covariates

∗ we avoid “repeating the same thing” but lose information

∗ keep covariates that are of interest and/or are easy to measure

∗ do not misinterpret leaving out a covariate as implying that it has no sig-
nificant influence on the outcome

. orthogonalizing and/or standardizing the predictors

∗ more complicated interpretation

∗ not a problem for prediction (but then multicollinearity might not have
been a big issue unless extrapolation was planned)

. a different method for estimation (e.g. ridge regression)

∗ we loose some nice properties of the estimators

https://onlinecourses.science.psu.edu/stat857/node/155


Chapter 10

Miscellanea and recap

10.1 The problem

10.1.1 Normal linear model

Normal linear model

◦ Yi = β0 + β1xi,1 + . . .+ βkxi,k + εi, i ∈ {1, . . . , n}

. Yi: outcome, response, output, dependent variable

∗ random variable, we observe a realization yi

∗ (odezva, závisle proměnná, regresand)

. xi,1, . . . , xi,k: covariates, predictors, explanatory variables,

input, independent variables

∗ given, known

∗ (nezávisle proměnné, regresory)

. β0, . . . , βk: coefficients

∗ unknown

∗ (regresńı koeficienty)

. εi: random error

∗ random variable, unobserved

◦ εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}

. E εi = 0: no systematic errors

. Var εi = σ2: same precision

Example: bloodpress data
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◦ from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

◦ association between the mean arterial blood pressure[mmHg] and age[years], weight[kg],
body surface area[m2], duration of hypertension[years], basal pulse[beats/min], stress

◦ data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

◦ model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html

Example: fev data

◦ from: http://www.statsci.org/data/general/fev.html

◦ question: association between the FEV[l] and Smoking,

corrected for Age[years], Height[cm] and Gender

◦ data:

FEV Age Height Gender Smoking
1.708 9 144.8 Female Non
1.724 8 171.5 Female Non
1.720 7 138.4 Female Non
1.558 9 134.6 Male Non
. . . . . . . . . . . . . . .
3.727 15 172.7 Male Current
2.853 18 152.4 Female Non
2.795 16 160.0 Female Current
3.211 15 168.9 Female Non

◦ model: Y = Xβ + ε


1.708
1.724
1.720
1.558
. . .

3.727
2.853
2.795
3.211


=



1 9 144.8 0 0
1 8 171.5 0 0
1 7 138.4 0 0
1 9 134.6 1 0
. . . . . . . . . . . . . . .
1 15 172.7 1 1
1 18 152.4 0 0
1 16 160.0 0 1
1 15 168.9 0 0


×

β0. . .
β5

 +



ε1
ε2
ε3
ε4
. . .
ε651
ε652
ε653
ε654



https://ww2.amstat.org/publications/jse/v13n2/datasets.kahn.html
http://www.statsci.org/data/general/fev.html
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10.1.2 Task for this chapter

Miscellanea & recap

◦ model: Y = Xβ + ε

. outcome Y

∗ random vector, we observe a realization y

. predictors x,1, . . . ,x,k

∗ vector of given (known) constants

. coefficients β

∗ vector of unknown constants

. error ε

∗ unknown random vector, we do not observe its realization

. assumptions: ε ∼ N(0, σ2 I)

∗ EY = Xβ: the expected value of Y is a linear function of β

∗ E ε = 0: no systematic errors

∗ Var ε = σ2 I: independence and same precision

◦ task: miscellanea & recap

10.2 Linear regression in practice

10.2.1 Linear regression in practice

Statistical analysis with linear regression

1. build a mathematical model, i.e. define

◦ what is known

◦ what is uncertain

linear regression example: Y = Xβ + ε

2. build a probabilistic model for what is uncertain

linear regression example: ε ∼ N(0, σ2I)

3. use probability calculus to draw conclusions

linear regression example:
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◦ β̂ ∼ N(β, σ2(X>X)−1)

◦ n−p
σ2 σ̂2 ∼ χ2

n−p

◦ β̂ ⊥⊥ σ̂2

 confidence intervals

& hypotheses testing

4. “translate back” to the original problem (interpret the results)

linear regression example:

◦ β̂, a>β̂, Aβ̂,

◦ ÊY, a>(ÊY), A(ÊY)

◦ confidence intervals

◦ hypotheses testing

Usual additions to the basic analysis

1. find a suitable mathematical model

◦ propose a suitable functional dependence of Y on X

◦ propose a suitable model for the error

linear regression example: model selection

2. build a probabilistic model for what is uncertain

linear regression example: check the normality, potentially propose a different error
distribution

3. use probability calculus to draw conclusions

◦ might need to adjust for multiple testing, post-hoc testing, poor design, . . .

4. “translate back” to the original problem (interpret the results)

linear regression example:

◦ explanation

◦ prediction

10.3 Notes on interpretation

10.3.1 Notes on the explanation

Explanation using linear regression

◦ model: Y = Xβ + ε
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◦ estimate β by β̂ = (X>X)−1X>Y

◦ estimate a>β by a>β̂

◦ (1− α)× 100 % confidence interval for a>β:(
a>β̂ − t1−α/2(n− p)

√
σ̂2 a>(X>X)−1a ,

a>β̂ + t1−α/2(n− p)
√
σ̂2 a>(X>X)−1a

)
◦ estimate Aβ by A β̂

◦ (1− α)× 100 % confidence bands for Aβ:{
Aβ;

1

mσ̂2
(A β̂ −Aβ)>(A (X>X)−1A>)−1(A β̂ −Aβ) ≤ F1−α(m,n− p)

}

Interpretation

◦ “keeping the values of all the other covariates fixed, a unit increase in xi is associated
with a β̂i increase in EY ”

. suitably adapted for categorical predictors and potentially interactions, and de-
pends on the choice of the identifiability conditions

. polynomials need a more complex interpretation

◦ is it meaningful to imagine that a covariate changes while all the other remain fixed?

Be careful with

◦ confounding: suppose that

. the truth is Yi = β0 + βE Ei + βC Ci + εi

. we do not know about C and use Yi = β0 + βE Ei + εi instead

. C and E are connected, e.g. Ei = γ0 + γC Ci + ε̃i

. then if C has an effect on Y , we will (erroneously) attribute an effect on Y to
E

. may be solved by multiple regression model, provided the confounders and the
form of their association to the outcome are known

◦ causality

. very hard to be confident about a causal relationship rather that the “associa-
tion”

◦ both can be helped by a sound design
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10.3.2 Notes on the prediction

Prediction from linear regression

◦ model: Y = Xβ + ε, ε ∼ N(0, σ2 I)

◦ what can we say about Y = β0 + β1x1 + . . .+ βkxk + ε

for a new x = (1, x1, . . . , xk)
>?

◦ Y = x>β + ε and EY = x>β

◦ estimate EY and Y by x>β̂

◦ (1− α)× 100 % confidence interval for EY :

(
x>β̂ − t1−α/2(n− p)

√
σ̂2 x>(X>X)−1x ,

x>β̂ + t1−α/2(n− p)
√
σ̂2 x>(X>X)−1x

)

◦ (1− α)× 100 % confidence interval for Y

(
x>β̂ − t1−α/2(n− p)

√
σ̂2
(
1 + x>(X>X)−1x

)
,

x>β̂ + t1−α/2(n− p)
√
σ̂2
(
1 + x>(X>X)−1x

))

Be careful with

◦ extrapolation

. predicting Y for x that is far from the xi,’s in X

. predicting for different situations/populations than the one satisfying Y = Xβ+
ε

◦ overfitting

. fitting a model Y = Xβ + ε that is “too close to the data”

. estimated σ2 is small

◦ having seen enough data
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10.4 Transformations

10.4.1 Transformations

Transformations of variables

◦ model: Y = Xβ + ε

◦ we have seen transformations of predictors to find a suitable functional dependence
of Y on x

◦ how about transforming Y ?

. done in practice to improve the functional dependence or fix heteroskedasticity

. most common are log(Y ),
√
Y , some use other powers of Y

. this is a fundamental change to the model

∗ leaving the simple linear regression framework . . .

Log-transformation of the response

◦ original model: Yi = β0 + β1 xi + εi

◦ model after the log transform: log(Yi) = β0 + β1 xi + εi

. on the original scale: Yi = exp{β0} × exp{β1 xi} × exp{εi}

. the effects of covariates are on the multiplicative scale

. the error enters multiplicatively and the multiplicative error has log-normal
distribution

∗ exp{x} ≈ 1 + x for small x

⇒ Yi = exp{β0} × exp{β1 xi} × (1 + εi) for small εi

non-linear regression model with non-constant variance

Yi = exp{β0} × exp{β1} exp{xi}+ σ2
i εi for small εi . . .

. prediction on the original scale

∗ predict by exp{Ŷ } with CI (exp{L}, exp{U})
. interpretation of β on the log-scale

. problems with interpretation on the original scale

∗ log(EY ) 6= E log(Y ) but the median is preserved

∗ log(1 + x) ≈ x for small x . . .

∗ e.g. β̂1 = 0.09 can be interpreted as a 9 % increase in medY associated with
a unit increase in x
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Box–Cox transformation of the response

◦ original model: Yi = β0 + β1 xi + εi

◦ looking for a more general transform. . .

◦ suppose that Y > 0

◦ Box–Cox transformation:

. gλ(y) =

{
yλ−1
λ

λ 6= 0

log(y) λ = 0
(a continuous function of λ)

. λ can be viewed as a parameter and λ̂ found by MLE

∗ also gives a CI

. for prediction, you may use yλ̂

. for interpretation, you had better round λ̂ to the nearest interpretable value
(check the CI)

. use CI to see if you need a transform at all

10.5 Concluding remarks

10.5.1 Reflection

It’s an uncertain world . . . use statistics to decide

◦ How much of

. chocolate and other goodies is good for our health?

. levels of bacteria, fertilizers, chemicals, . . . is safe?

◦ What is the right size for

. the height of a dam?

. insurance premium?

. mortgage interest?

◦ What is

. the average salary?

. public opinion on . . . ?

. results in upcoming elections?
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◦ uncertainty at the beginning 99K imperfect answers at the end

◦ statistics is used for quantifying uncertainty,

not for getting rid of it

Statistics is collaboration

◦ The best thing about being a statistician is that you get to play at everyone’s backyard.

John Tukey

Statistics does not guarantee the right answers

◦ if there is no uncertainty, there is no need for statistics

↪→ statistics might give a wrong answer

!!!but we should not abuse this!!!

◦ only incompetent statisticians do not know how to lie with statistics

◦ good statisticians know the pitfalls and know they must be cautious

Ingredients of a statistical analysis

◦ mathematics, programming, communication . . .

◦ but above all: COMMON SENSE
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