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Generalized linear models
[ JeJelele]

From linear to generalized linear models

Linear model: a reminder
o Yi=p0o+ fixii+ ...+ Bixik+ei, i€{l,...,n}

» Y;: outcome, response, output, dependent variable
e random variable, we observe a realization y;
e (odezva, zivisle promé&nnd, regresand)
> X1, .., Xj k. covariates, predictors, explanatory variables,

input, independent variables
e given, known

e (nezdvisle promé&nné, regresory)
> Oo, ...y By coefficients

e unknown

e (regresni koeficienty)
» ¢;: random error

e random variable, unobserved

iid .
e ¢~ (0,0%),ie{l,....n}
» Ee; = 0: no systematic errors

» Vare; = o2: same precision
iid .
o we often assume that ; ~ N(0,02), i € {1,...,n}
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Generalized linear models

From linear to generalized linear models

Example: bloodpress data

o from sites.stat.psu.edu/~1lsimon/stat501wc/sp05/data/

@ association between the mean arterial blood pressure[mmHg]
and age|years], weight[kg], body surface area[m?], duration
of hypertension[years|, basal pulse[beats/min], stress

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 51 63 33
Y data: 115 49 94.2 2.10 3.8 70 14
110 48 905 188 90 71 99
122 56 95.7 2.09 7.0 75 99
@ model: Y = X3+ ¢
105 1 47 854 175 51 63 33 €1
115 1 49 942 210 38 70 14 Bo €2
110 1 48 905 188 9.0 71 99 Be €19
122 1 56 957 209 7.0 75 99 €20
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Generalized linear models

[e]e] lele}

From linear to generalized linear models
Non-normal outcome
@ linear model: Y = X3+ ¢

» outcome Y
e random vector, we observe a realization y
> predictors X 1,...,X «
e vector of given (known) constants
» coefficients 3
e vector of unknown constants
> error €
e unknown random vector, we do not observe its realization
» assumptions: € ~ (0,0°1)
o EY = X3: the expected value of Y is a linear function of 3
e Ee = 0: no systematic errors
e Vare = o2 |: independence and same precision

@ normality not crucial with a large data set without influential
observations BUT what if Y is nowhere close to normal?
e e.g. whatif Y; € {0,1} Vi?
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Generalized linear models

[e]e]e] e}

From linear to generalized linear models

Example: heart attack data

@ From: Simon Wood (2006). Generalized Additive models

@ Question: Is the level of creatinine kinase (CK) in blood
a marker of an on-going heart attack (HA)?

CK level HA (yes:1, no:0)
20
20
20
20
20

o Data: o
20
20
20
20

X

e Structure:
» outcome Y
e random vector, we observe a realization y, y; € {0,1} Vi
> predictors X 1,...,X
e vector of given (known) constants
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Generalized linear models

From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ how to connect Y, X, and 3, so that we can describe the
relationship between Y and X using 37
» clearly not Y = X8 + ¢, € ~ N(0,021)
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Generalized linear models
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From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
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Generalized linear models

[e]e]ele] }

From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ how to connect Y, X, and 3, so that we can describe the
relationship between Y and X using 37
» clearly not Y = X8 + ¢, € ~ N(0,021)
» how about picking up on EY = X37
» Y; € {0,1} = Y; ~ Bernoulli(p;) = Bi(1, p;)
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Generalized linear models

From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ how to connect Y, X, and 3, so that we can describe the
relationship between Y and X using 37
» clearly not Y = X8 + ¢, € ~ N(0,021)
how about picking up on EY = X37?
Y; € {0,1} = Y; ~ Bernoulli(p;) = Bi(1, p;)
E )/I = pi = f(xl',-wB)
how about E Y; = x 87 (i.e. EY = X3 again)
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Generalized linear models

From linear to generalized linear models

Binary outcome
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Generalized linear models

From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ how to connect Y, X, and 3, so that we can describe the
relationship between Y and X using 37
» clearly not Y = X8 + ¢, € ~ N(0,021)
how about picking up on EY = X37?
Y; € {0,1} = Y; ~ Bernoulli(p;) = Bi(1, p;)
E )/I = pi = f(xl',-wB)
how about E Y; = x 87 (i.e. EY = X3 again)
E Y; is a probability = must be in [0,1] ... unlike x,T 3
> how about E Y; = g7*(x;. B), where g : (0,1) — R?

I,
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Generalized linear models

From linear to generalized linear models

Binary outcome
@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors X1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ how to connect Y, X, and 3, so that we can describe the
relationship between Y and X using 37
» clearly not Y = X8 + ¢, € ~ N(0,021)
how about picking up on EY = X37?
Y; € {0,1} = Y; ~ Bernoulli(p;) = Bi(1, p;)
E )/I = pi = f(xl',-wB)
how about E Y; = x 87 (i.e. EY = X3 again)
E Y; is a probability = must be in [0,1] ... unlike x,T 3
» how about EY; = g_l(xz B), where g : (0,1) — R?
» logistic regression: E Y; = exp {x,—r ,8}/(1 + exp {x,—r ﬁ})
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lized linear models

eneralied linear models
Generalized linear model

@ outcome Y
» random vector, we observe a realization y
@ predictors X 1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ model: Y; Y
» L a probability distribution
e from an exponential family of distributions
e density/probability mass function satisfies that

Oy — b(0
f(y:0,0) =exp {T() + C(y,so)}
and there are some assumptions on b
e EY =b'(0), VarY = p b (0)
» g(EY))=x/ 3
e g is called link function
Andrea Kraus Linear Models in Statistics
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Generalized linear models

Generalized linear models

GLM example: linear regression

@ exponential family of distributions
f(yi0.¢) = exp{ey 20 4 C(y w)}

» Gaussian distribution Y; 2 N(u,a )

1 1
f(y;u702) = \/ﬁ eXP{—M(}/ —ﬂ)2}
2
_ py—pj2 1 5 1 2
= exp{ = 252 T3 log(2mc)

e link function g(EY;) =x,; B
> E Y = M
» canonical link: identity g(x) = x ~- linear regression

o log-link may help address heteroskedasticity in linear regression
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lized linear models

Generalized linear models

GLM example: Gamma regression

@ exponential family of distributions
fly: 0 — Oy— b( )
(v:0,9) = exp -+dy¢)

» Gamma distrlbutlon Y; < Gamma(a,b’)

a  a—1 _—By
flyia,8) = %
= exp{alog(B) + (o —1)log(y) — By — log(I'(a))}

exp { (*5/a)}’17a|0g(/8/a) + alog(ay) — log (F(a) y)}

o link function g(EY;) =x; B
» EY =a/B ’
» common links: g(x) = 1/x (canonical), g(x) = log(x)
@ used for skewed non-negative data
@ addresses heteroskedasticity and heavy tail (e.g. the size of
an insurance claim) but other choices possible as well

Andrea Kraus Linear Models in Statistics
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Generalized linear models

eneralied linear models
Log link

e logarithm g(\) = log(A) : (0,00) — R
o exponential g7}(x) = e : R — (0, 00)

Logarithm Exponential
< -
o
S |
™ - =]
o
N 8 —
—~ — -
= -
\_m/ xq) ©o
o o
o
S
< <
o
A &7
? o
T T T T T T T T T T T 1
0 10 20 30 40 50 -6 -2 0 2 4 6
A X
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Generalized linear models

Generalized linear models

GLM example: log-linear model

@ exponential family of distributions

Oy—b
fyi0.0) = exp{ Loty C(y,w)}
» Poisson distrlbutlon Y, X Po(/\)
N
: _ A
f(y, A) = € W
= exp {log(A)y — A — log(y!)}
e link function g(EY;) = XIT J;
» EY =)
» canonical link: log link: g(x) = log (x)
@ convenient way of handling contingency tables
@ used to model e.g. the number of insurance claims
@ has connections to Cox PH model
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Generalized linear models

Generalized linear models
GLM example: logistic regression
@ exponential family of distributions
(y:0,0) = exp { 2200 ¢ C(y e)}
» Bernoulli distribution: Y; ~ Bernoulli(p)
fly;:p) = p(1—p)'™
= exp {ylog(p) + (1 — y)log(1 - p)}

exp {Iog (1_pp> y + log(1l — p)}

e link function g(EY;) = XIT 8
» EY=p

» canonical link: “logit” g(x) = Iog< X >

1—x
» other common choices: “probit”, “complementary log-log”
@ used e.g. in credit risk analysis (probability of default, classification)
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Generalized linear models

000000@

Generalized linear models

“Logit” link

1 e*
“ ) —
o "expit’ g7 (x) = —— R~ (0,1)
1+eX
Logit Expit
S
I
© -
0
< - S
—~ [V | @
5 P2
g o+ &
=) SO
g - % c 7
! x
o
< o~
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o
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lized linear models

Inference for generalized linear models

MLE for 6 in exponential families
@ exponential family of distributions

fy;0,0) = exp{ey_:(e) + C(y,w)}

o likelihood . .
L(y:0,¢) = [ f(vi:60,%) —eXP{ Zy, " ZC(y;,sD)}
i=1 i=1
o |og-likelihood n

(y; 60, ) Zy, " +> el o)

i=1
@ score function (the 6- reIated part)

) 1 ¢ b'(0)
Ui(y; 6, ;0 i —n——=

1y 0,0) = 55 (y:0,9) = Lplz;y "=

@ solution to the score equation (the 6-related part)

0 —0e Sy,
Uyt 0) =0 =~y = b(0)

i=1
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lized linear models

000000

Inference for generalized linear models

From MLE for 6 to MLE for 3

@ under some assumptions on the exponential family
» 3 unique MLE for 6:

1 n
o=t~ Zy,-
i=1
> it can be shown that
Jn (é - 9) 9N (o, 0 (b”(9))_1)
> note that
e @ does not depend on ¢
= we do not need ¢ for point estimation of #

e the (asymptotic) variance of § depends on ¢ =
= we do need ¢ for interval estimation of 0

Andrea Kraus Linear Models in Statistics
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ized linear models

000000

Inference for generalized linear models

From MLE for 6 to MLE for 3

@ under some assumptions on the exponential family
» 3 unique MLE for 6:

1 n
h=b"1 (n Zy;)
i=1
> it can be shown that
Jn (é - 9) 9N (o, 0 (b”(9))_1)
> note that
e @ does not depend on ¢
= we do not need ¢ for point estimation of §
e the (asymptotic) variance of 6 depends on ¢ =
= we do need ¢ for interval estimation of 0
@ this is all very nice BUT in a GLM
> g(EY:) =x.B = b(0;)
e so there is 6;, not

e and we want to estimate 3

Andrea Kraus Linear Models in Statistics

MUNI, Fall 2016 14 /32



Generalized linear models

000000

Inference for generalized linear models

Estimating 3 in GLMs
@ log-likelihood for an exponential family:

0 « b(6 -
ﬁ(y:ﬁ,w)—@zyi—n59)+ZC(y;7<p)
i=1

i—1
@ log-likelihood for a GLM:
1 n n
Uy B.p) = 2 > (0iyi — b(6) + > clyi, @)
i1 i=1
@ score function (the ,@ related part)

1< )
Us.p(y; B, ¢ ,p) = —b'(0;)) =0
1.p(yﬁ ) ﬁ( y; 8 ) s0]2;(}/1 (’))3,3’
@ no closed-form solution = numerical solution through the
Iteratively Re-weighted Least Squares algorithm
» usually converges fast; if not, we might have a deeper problem
® no guarantee that a solution exists
® no guarantee that a solution is the MLE unless the link is

canonical
Andrea Kraus Linear Models in Statistics
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Generalized linear models

000800

Inference for generalized linear models

Inference for 3

° B is a MLE = we can use general theory on the asymptotic
properties of the MLEs
> the results are asymptotic (i.e. for large n)
» hold under some assumptions but “if all is well”. ..
@ 33 is a consistent estimator of 3
@ Vn(B-B) S N(0,17(8,¢))
© 2(¢(YiB.o) — (YiB.%)) %3
@ inference for B
@ tells us we are eventually getting what we want
@ is a basis for Wald tests and Cls about 3
@ and similar results basis for likelihood ratio tests and Cls for 3
e Cls are based on profile likelihood
e recommended over Wald (or Rao) tests and Cls
@ we have treated ¢ as fixed so far but we need to estimate it in

order to get the test statistics and Cls

Andrea Kraus Linear Models in Statistics
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Generalized linear models

000000

Inference for generalized linear models
Deviance

@ a model that fits E Y; = Y] is called saturated model in GLMs
» has a parameter for each unique covariate combination

@ unscaled deviance is ¢x the difference between the
maximized log-likelihood in the saturated and current model

D(y,B) = 2ip({(saturated model) — ((y; B8, ©))

» a goodness-of-fit measure
> a generalization of the residual sum of squares from LM

@ scaled deviance is the difference between the maximized
log-likelihood in the saturated and current model

D* (y7B) = 2(¢(saturated model) — ((y; B8, ©))

» difference between deviances of two nested models is the test
statistic of the likelihood ratio test (with ¢ replaced by @)
@ other goodness of fit and model selection tools
» AIC, BIC, ...

Andrea Kraus Linear Models in Statistics
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lized linear models

[e]e]e]ele] ]

Inference for generalized linear models

Residuals and model diagnostics

@ Pearson residuals _

P Yi—EY;
\/Var Y,

Var rf’ =~ ¢(1 — h; ;) (H comes from the WLS in IRLS)

standardized Pearson residuals

sp_ Y —EY,
$Var Yi(1 - hi))

@ deviance residuals
r,-D =sgn(Y; — E/?,) d;
» d? is the contribution of the /" observation to the deviance
standardized deviance residuals
FS0 sgn(Y; —EYi)di
' @(1—hij)
residuals can be used for residual plots as in LM
a generalization of leverage and Cook's distance from LM
available for GLM
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MUNI, Fall 2016 18 /32



stic regression

g Logistic regression
@ The model
@ Logistic curve and its parameters
o Fitted model
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1 linear models Logistic regression

The model
Logistic regression

@ outcome Y
» random vector, we observe a realization y, y; € {0,1} Vi
@ predictors x1,...,X
» vector of given (known) constants
o coefficients 3
» vector of unknown constants
@ model:
Y; i Bernoulli(p;)
T
. o= pr{{fg} with “logit” link: g(p) = log (ﬁ)
» less common choices for the link function:
° p = ¢{xIﬂ} with ® the distribution function of N(0, 1)
with “probit” link g(p) = ®~}(p)
o pi=1—exp{—exp{x] B}}
with “complementary log-log” link g(p) = log ( — log(1 — p))
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d linear mo

The model

“Logit” link

1 e*
“ ) —
o "expit’ g7 (x) = —— R~ (0,1)
1+eX
Logit Expit
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1 linear models Logistic regression

The model

Example: heart attack data

@ Is the level of creatinine kinase (CK) in blood a marker of an
on-going heart attack (HA)?

CK level HA (yes:1, no:0)

20 1
20 1
20 0
20 0
20 0
20 0
@ Data: 20 0
20 0
20 0
20 0
20 0 CK level Nr. of HAs Nr. of no HAs
20 2 88
o 60 13 26
100 30 8
140 30 5
. 180 21 0
e Data (equivalent form): 220 19 1
260 18 1
300 13 1
340 19 1
380 15 0
420 7 0
460 8 0
Andrea Kraus Linear Models in Statistics
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d linear models ogistic regression
Ml el Logist

The model

Binomial form for the heart attack data

Data Observed proportions
CK level Nr. of HAs  Nr. of no HAs
20 2 88 o |
60 13 26
100 30 8 = |
140 30 5
180 21 0 <.
220 19 1 37
260 18 1
300 13 1 53]
340 19 1
380 15 0 BN
420 7 0
460 8 0 ER . . . .
100 200 300 400
CK level
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stic regression

Logistic curve and its parameters

Model fit: a

o “logit" and "

o fitted logistic

Andrea Kraus
MUNI, Fall 2016
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log(p/(1-p))
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curve for the heart attack data
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ed linear models

Logistic curve and its parameters

Fitted model for the heart attack data

> summary (glm.ha)

Call:
glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",
data = heart.attack)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 **x
ck 0.031244 0.003619 8.633 < 2e-16 **x

Signif. codes: O ’*x*’ 0.001 ’#%’ 0.01 ’%’> 0.05 ’.” 0.1’ ’> 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6

Andrea Kraus Linear Models in Statistics
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stic regression

Logistic curve and its parameters

Fitted logistic curve for the heart attack data

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 **x

ck 0.031244 0.003619 8.633 < 2e-16 **x
o fitted probability
(ck) = exp{—2.76 + 0.03ck}
P = . exp{—2.76 + 0.03ck}
Andrea Kraus Linear Models in Statistics
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linear models Logistic regression

Logistic curve and its parameters

Interpretation of the parameters
o fitted probability

exp{—2.76 + 0.03 ck
p(ck) = p{ }

1+ exp{—2.76 4 0.03 ck}

@ is there a nice way to see 31 = 0.037
@ odds p

1-p

@ odds ratio p / B
1-p 1-p

o €1 is the estimated odds ratio for two patients whose
difference in CK level is one unit A

e estimated odds for heart attack become e”* = 1.03 times
higher when the CK level increases by one unit

@ with more covariates the interpretation remains the same
when the values of all other covariates are kept fixed

Andrea Kraus Linear Models in Statistics
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ed linear models

Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:
glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",
data = heart.attack)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 *xx*
ck 0.031244 0.003619 8.633 < 2e-16 *x**

Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.”> 0.1’ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6

Andrea Kraus Linear Models in Statistics
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ed linear models Logistic regression

O®0000

Fitted model

Inference for the heart attack data

e Wald test statistics (and confidence intervals)

> summary(glm.ha)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 **x
ck 0.031244 0.003619 8.633 < 2e-16 **x

o likelihood ratio confidence intervals (preferred)
> confint(glm.ha)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -3.46305890 -2.13705606
ck 0.02467179 0.03889618

o likelihood ratio test (preferred)
> anova(glm.ha.null, glm.ha, test="Chisq")
Analysis of Deviance Table

Model 1: cbind(ha.ha, ha.ok) ~ 1
Model 2: cbind(ha.ha, ha.ok) ~ ck
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 11 271.712
2 10 36.929 1 234.78 < 2.2e-16 **x*
Signif. codes: 0 ’#**x’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1
Andrea Kraus Linear Models in Statistics
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ed linear models

Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:
glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",
data = heart.attack)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 *xx*
ck 0.031244 0.003619 8.633 < 2e-16 *x**

Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.”> 0.1’ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6

Andrea Kraus Linear Models in Statistics
MUNI, Fall 2




linear models Logistic regression

Fitted model

Goodness of fit for the heart attack data

@ > summary(glm.ha)

Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom
AIC: 62.334

@ null deviance: deviance of the null model (only intercept)
@ residual deviance: deviance of the current model

@ a generalization of the proportion explained

> (271.712 - 36.929)/271.712
[1] 0.8640877

e residual variance should be ~ X3, if the model is OK:
deviance sometimes used for goodness of fit (caution...) but

primary use is for model comparison
> 1-pchisq(36.929, df=10)
[1] 5.821642e-05

@ other measures of goodness of fit/model comparison/selection
> AIC(glm.ha)
[1] 62.3339
> BIC(glm.ha)
[1] 63.30371
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Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:
glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",
data = heart.attack)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 *xx*
ck 0.031244 0.003619 8.633 < 2e-16 *x**

Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.”> 0.1’ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6
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000000

Fitted model

Example: diagnostic plots for the heart attack data
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