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Generalized linear models Logistic regression

From linear to generalized linear models

Linear model: a reminder

Yi = β0 + β1xi ,1 + . . .+ βkxi ,k + εi , i ∈ {1, . . . , n}
I Yi : outcome, response, output, dependent variable

• random variable, we observe a realization yi
• (odezva, závisle proměnná, regresand)

I xi,1, . . . , xi,k : covariates, predictors, explanatory variables,
input, independent variables

• given, known
• (nezávisle proměnné, regresory)

I β0, . . . , βk : coefficients
• unknown
• (regresńı koeficienty)

I εi : random error
• random variable, unobserved

εi
iid∼ (0, σ2), i ∈ {1, . . . , n}
I E εi = 0: no systematic errors
I Var εi = σ2: same precision

we often assume that εi
iid∼ N(0, σ2), i ∈ {1, . . . , n}
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Generalized linear models Logistic regression

From linear to generalized linear models

Example: bloodpress data

from sites.stat.psu.edu/~lsimon/stat501wc/sp05/data/

association between the mean arterial blood pressure[mmHg]
and age[years], weight[kg], body surface area[m2], duration

of hypertension[years], basal pulse[beats/min], stress

data:

BP Age Weight BSA DoH Pulse Stress
105 47 85.4 1.75 5.1 63 33
115 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
110 48 90.5 1.88 9.0 71 99
122 56 95.7 2.09 7.0 75 99

model: Y = Xβ + ε
105
115
. . .
110
122

 =


1 47 85.4 1.75 5.1 63 33
1 49 94.2 2.10 3.8 70 14
. . . . . . . . . . . . . . . . . . . . .
1 48 90.5 1.88 9.0 71 99
1 56 95.7 2.09 7.0 75 99

×
β0. . .
β6

+


ε1
ε2
. . .
ε19
ε20


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Generalized linear models Logistic regression

From linear to generalized linear models

Non-normal outcome

linear model: Y = Xβ + ε
I outcome Y

• random vector, we observe a realization y
I predictors x,1, . . . , x,k

• vector of given (known) constants
I coefficients β

• vector of unknown constants
I error ε

• unknown random vector, we do not observe its realization
I assumptions: ε ∼ (0, σ2 I)

• E Y = Xβ: the expected value of Y is a linear function of β
• E ε = 0: no systematic errors
• Var ε = σ2 I: independence and same precision

normality not crucial with a large data set without influential
observations BUT what if Y is nowhere close to normal?

e.g. what if Yi ∈ {0, 1} ∀i?
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Generalized linear models Logistic regression

From linear to generalized linear models

Example: heart attack data

From: Simon Wood (2006). Generalized Additive models

Question: Is the level of creatinine kinase (CK) in blood
a marker of an on-going heart attack (HA)?

Data:

CK level HA (yes:1, no:0)
20 1
20 1
20 0
20 0
20 0
20 0
20 0
20 0
20 0
20 0
20 0
. . .︸︷︷︸

X

. . .︸︷︷︸
Y

Structure:
I outcome Y

• random vector, we observe a realization y, yi ∈ {0, 1} ∀i
I predictors x,1, . . . , x,k

• vector of given (known) constants
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Generalized linear models Logistic regression

From linear to generalized linear models

Binary outcome
outcome Y

I random vector, we observe a realization y, yi ∈ {0, 1} ∀i
predictors x,1, . . . , x,k

I vector of given (known) constants
coefficients β

I vector of unknown constants
how to connect Y,X, and β, so that we can describe the
relationship between Y and X using β?

I clearly not Y = Xβ + ε, ε ∼ N(0, σ2 I)

I how about picking up on E Y = Xβ?
I Yi ∈ {0, 1} ⇒ Yi ∼ Bernoulli(pi ) = Bi(1, pi )
I EYi = pi = f (xi,·,β)
I how about EYi = x>i,·β? (i.e. E Y = Xβ again)
I EYi is a probability ⇒ must be in [0, 1] . . . unlike x>i,· β
I how about EYi = g−1

(
x>i,· β

)
, where g : (0, 1) 7→ R?

I logistic regression: EYi = exp
{

x>i,· β
}
/
(
1 + exp

{
x>i,· β

})
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Generalized linear models Logistic regression

Generalized linear models

Generalized linear model

outcome Y
I random vector, we observe a realization y

predictors x,1, . . . , x,k
I vector of given (known) constants

coefficients β
I vector of unknown constants

model: Yi
iid∼ L

I L a probability distribution
• from an exponential family of distributions
• density/probability mass function satisfies that

f (y ; θ, ϕ) = exp

{
θy − b(θ)

ϕ
+ c(y , ϕ)

}
and there are some assumptions on b

• EY = b′(θ), VarY = ϕ b′′(θ)
I g(EYi ) = x>i,· β

• g is called link function
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Generalized linear models Logistic regression

Generalized linear models

GLM example: linear regression

exponential family of distributions

f (y ; θ, ϕ) = exp
{
θy−b(θ)

ϕ + c(y , ϕ)
}

I Gaussian distribution Yi
iid∼ N(µ, σ2)

f (y ;µ, σ2) =
1√

2πσ2
exp

{
− 1

2σ2
(y − µ)2

}
= exp

{
µ y − µ2/2

σ2
− 1

2σ2
y2 − 1

2
log(2πσ2)

}
link function g(EYi ) = x>i ,· β

I EY = µ
I canonical link: identity g(x) = x  linear regression

log-link may help address heteroskedasticity in linear regression

Andrea Kraus Linear Models in Statistics

MUNI, Fall 2016 7 / 32



Generalized linear models Logistic regression

Generalized linear models

GLM example: Gamma regression

exponential family of distributions

f (y ; θ, ϕ) = exp
{
θy−b(θ)

ϕ + c(y , ϕ)
}

I Gamma distribution Yi
iid∼ Gamma(α, β)

f (y ;α, β) =
βα yα−1 e−βy

Γ(α)

= exp {α log(β) + (α− 1) log(y)− βy − log(Γ(α))}

= exp

{
(−β/α) y + log(β/α)

1/α
+ α log(α y)− log

(
Γ(α) y

)}
link function g(EYi ) = x>i ,· β

I EY = α/β
I common links: g(x) = 1/x (canonical), g(x) = log(x)

used for skewed non-negative data
addresses heteroskedasticity and heavy tail (e.g. the size of
an insurance claim) but other choices possible as well
(log-normal, inverse Gaussian, . . . )Andrea Kraus Linear Models in Statistics

MUNI, Fall 2016 8 / 32



Generalized linear models Logistic regression

Generalized linear models

Log link

logarithm g(λ) = log(λ) : (0,∞) 7→ R
exponential g−1(x) = ex : R 7→ (0,∞)
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−
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0
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λ
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Generalized linear models Logistic regression

Generalized linear models

GLM example: log-linear model

exponential family of distributions

f (y ; θ, ϕ) = exp
{
θy−b(θ)

ϕ + c(y , ϕ)
}

I Poisson distribution Yi
iid∼ Po(λ)

f (y ;λ) = e−λ
λy

y !

= exp
{

log(λ) y − λ− log(y !)
}

link function g(EYi ) = x>i ,· β
I EY = λ
I canonical link: log link: g(x) = log (x)

convenient way of handling contingency tables

used to model e.g. the number of insurance claims

has connections to Cox PH model
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Generalized linear models Logistic regression

Generalized linear models

GLM example: logistic regression

exponential family of distributions

f (y ; θ, ϕ) = exp
{
θy−b(θ)

ϕ + c(y , ϕ)
}

I Bernoulli distribution: Yi
iid∼ Bernoulli(p)

f (y ; p) = py (1− p)1−y

= exp
{
y log(p) + (1− y) log(1− p)

}
= exp

{
log

(
p

1− p

)
y + log(1− p)

}
link function g(EYi ) = x>i ,· β

I EY = p

I canonical link: “logit” g(x) = log

(
x

1− x

)
I other common choices: “probit”, “complementary log-log”

used e.g. in credit risk analysis (probability of default, classification)
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Generalized linear models Logistic regression

Generalized linear models

“Logit” link

“logit” g(p) = log

(
p

1− p

)
: (0, 1) 7→ R

“expit” g−1(x) =
ex

1 + ex
: R 7→ (0, 1)
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lo
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Generalized linear models Logistic regression

Inference for generalized linear models

MLE for θ in exponential families
exponential family of distributions

f (y ; θ, ϕ) = exp

{
θy − b(θ)

ϕ
+ c(y , ϕ)

}
likelihood

L(y; θ, ϕ) =
n∏

i=1

f (yi ; θ, ϕ) = exp

{
θ

ϕ

n∑
i=1

yi − n
b(θ)

ϕ
+

n∑
i=1

c(yi , ϕ)

}
log-likelihood

`(y; θ, ϕ) =
θ

ϕ

n∑
i=1

yi − n
b(θ)

ϕ
+

n∑
i=1

c(yi , ϕ)

score function (the θ-related part)

U1(y; θ, ϕ) =
∂

∂θ
`(y; θ, ϕ) =

1

ϕ

n∑
i=1

yi − n
b′(θ)

ϕ

solution to the score equation (the θ-related part)

U1(y; θ, ϕ) = 0⇔ 1

n

n∑
i=1

yi = b′(θ)
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Generalized linear models Logistic regression

Inference for generalized linear models

From MLE for θ to MLE for β

under some assumptions on the exponential family
I ∃ unique MLE for θ:

θ̂ = b′−1

(
1

n

n∑
i=1

yi

)
I it can be shown that

√
n
(
θ̂ − θ

)
d−→ N

(
0, ϕ (b′′(θ))

−1
)

I note that
• θ̂ does not depend on ϕ

⇒ we do not need ϕ for point estimation of θ
• the (asymptotic) variance of θ̂ depends on ϕ ⇒

⇒ we do need ϕ̂ for interval estimation of θ

this is all very nice BUT in a GLM
I g(EYi ) = x>i,· β = b(θi )

• so there is θi , not θ
• and we want to estimate β
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Generalized linear models Logistic regression

Inference for generalized linear models

Estimating β in GLMs
log-likelihood for an exponential family:

`(y; θ, ϕ) =
θ

ϕ

n∑
i=1

yi − n
b(θ)

ϕ
+

n∑
i=1

c(yi , ϕ)

log-likelihood for a GLM:

`(y;β, ϕ) =
1

ϕ

n∑
i=1

(
θi yi − b(θi )

)
+

n∑
i=1

c(yi , ϕ)

score function (the β-related part)

U1:p(y;β, ϕ) =
∂

∂β
`(y;β, ϕ) =

1

ϕ

n∑
i=1

(
yi − b′(θi )

) ∂

∂β
θi

no closed-form solution ⇒ numerical solution through the
Iteratively Re-weighted Least Squares algorithm

I usually converges fast; if not, we might have a deeper problem
• no guarantee that a solution exists
• no guarantee that a solution is the MLE unless the link is

canonical
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Generalized linear models Logistic regression

Inference for generalized linear models

Inference for β̂

β̂ is a MLE ⇒ we can use general theory on the asymptotic
properties of the MLEs

I the results are asymptotic (i.e. for large n)
I hold under some assumptions but “if all is well”. . .

1 β̂ is a consistent estimator of β

2
√
n
(
β̂ − β

) d−→ N
(
0, I−1(β, ϕ)

)
3 2

(
`
(
Y; β̂, ϕ

)
− `
(
Y;β, ϕ

)) d−→ χ2
p

inference for β̂
1 tells us we are eventually getting what we want
2 is a basis for Wald tests and CIs about β
3 and similar results basis for likelihood ratio tests and CIs for β

• CIs are based on profile likelihood
• recommended over Wald (or Rao) tests and CIs

we have treated ϕ as fixed so far but we need to estimate it in
order to get the test statistics and CIs
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Generalized linear models Logistic regression

Inference for generalized linear models

Deviance

a model that fits ÊYi = Yi is called saturated model in GLMs
I has a parameter for each unique covariate combination

unscaled deviance is ϕ× the difference between the
maximized log-likelihood in the saturated and current model

D
(
y, β̂

)
= 2ϕ

(
`(saturated model)− `(y; β̂, ϕ)

)
I a goodness-of-fit measure
I a generalization of the residual sum of squares from LM

scaled deviance is the difference between the maximized
log-likelihood in the saturated and current model

D∗
(
y, β̂

)
= 2
(
`(saturated model)− `(y; β̂, ϕ)

)
I difference between deviances of two nested models is the test

statistic of the likelihood ratio test (with ϕ replaced by ϕ̂)
other goodness of fit and model selection tools

I AIC, BIC, . . .
Andrea Kraus Linear Models in Statistics
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Generalized linear models Logistic regression

Inference for generalized linear models

Residuals and model diagnostics
Pearson residuals

rPi =
Yi − ÊYi√

V̂arYi

Var rPi ≈ ϕ(1− hi ,i ) (H comes from the WLS in IRLS)
standardized Pearson residuals

rSPi =
Yi − ÊYi√

ϕ̂ V̂arYi (1− hi,i )
deviance residuals

rDi = sgn(Yi − ÊYi ) di
I d2

i is the contribution of the i th observation to the deviance
standardized deviance residuals

rSDi =
sgn(Yi − ÊYi ) di√

ϕ̂ (1− hi,i )

residuals can be used for residual plots as in LM
a generalization of leverage and Cook’s distance from LM
available for GLM
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Generalized linear models Logistic regression

The model

Logistic regression

outcome Y
I random vector, we observe a realization y, yi ∈ {0, 1} ∀i

predictors x,1, . . . , x,k
I vector of given (known) constants

coefficients β
I vector of unknown constants

model:
I Yi

iid∼ Bernoulli(pi )

I pi =
exp
{

x>i,· β
}

1+exp
{

x>i,· β
} with “logit” link: g(p) = log

(
p

1−p

)
I less common choices for the link function:

• pi = Φ
{

x>i,·β
}

with Φ the distribution function of N(0, 1)
with “probit” link g(p) = Φ−1(p)

• pi = 1− exp
{
− exp{x>i,· β}

}
with “complementary log-log” link g(p) = log

(
− log(1− p)

)
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Generalized linear models Logistic regression

The model

“Logit” link

“logit” g(p) = log

(
p

1− p

)
: (0, 1) 7→ R

“expit” g−1(x) =
ex

1 + ex
: R 7→ (0, 1)
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Generalized linear models Logistic regression

The model

Example: heart attack data
Is the level of creatinine kinase (CK) in blood a marker of an
on-going heart attack (HA)?

Data:

CK level HA (yes:1, no:0)
20 1
20 1
20 0
20 0
20 0
20 0
20 0
20 0
20 0
20 0
20 0
. . . . . .
. . . . . .
. . . . . .

Data (equivalent form):

CK level Nr. of HAs Nr. of no HAs
20 2 88
60 13 26

100 30 8
140 30 5
180 21 0
220 19 1
260 18 1
300 13 1
340 19 1
380 15 0
420 7 0
460 8 0
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Generalized linear models Logistic regression

The model

Binomial form for the heart attack data

Data

CK level Nr. of HAs Nr. of no HAs
20 2 88
60 13 26

100 30 8
140 30 5
180 21 0
220 19 1
260 18 1
300 13 1
340 19 1
380 15 0
420 7 0
460 8 0

Observed proportions
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Generalized linear models Logistic regression

Logistic curve and its parameters

Model fit: a logistic curve

“logit” and “expit”
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fitted logistic curve for the heart attack data
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Generalized linear models Logistic regression

Logistic curve and its parameters

Fitted model for the heart attack data

> summary(glm.ha)

Call:

glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",

data = heart.attack)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom

Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6

Andrea Kraus Linear Models in Statistics

MUNI, Fall 2016 24 / 32



Generalized linear models Logistic regression

Logistic curve and its parameters

Fitted logistic curve for the heart attack data
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

fitted probability

p(ck) =
exp{−2.76 + 0.03ck}

1 + exp{−2.76 + 0.03ck}
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Generalized linear models Logistic regression

Logistic curve and its parameters

Interpretation of the parameters
fitted probability

p(ck) =
exp{−2.76 + 0.03 ck}

1 + exp{−2.76 + 0.03 ck}

is there a nice way to see β̂1 = 0.03?
odds p

1− p

odds ratio (
p

1− p

)
/

(
p̃

1− p̃

)
eβ̂1 is the estimated odds ratio for two patients whose
difference in CK level is one unit
estimated odds for heart attack become eβ̂1 = 1.03 times
higher when the CK level increases by one unit
with more covariates the interpretation remains the same
when the values of all other covariates are kept fixed
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Generalized linear models Logistic regression

Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:

glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",

data = heart.attack)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom

Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6
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Generalized linear models Logistic regression

Fitted model

Inference for the heart attack data

Wald test statistics (and confidence intervals)
> summary(glm.ha)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

likelihood ratio confidence intervals (preferred)
> confint(glm.ha)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -3.46305890 -2.13705606

ck 0.02467179 0.03889618

likelihood ratio test (preferred)
> anova(glm.ha.null, glm.ha, test="Chisq")

Analysis of Deviance Table

Model 1: cbind(ha.ha, ha.ok) ~ 1

Model 2: cbind(ha.ha, ha.ok) ~ ck

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 11 271.712

2 10 36.929 1 234.78 < 2.2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Generalized linear models Logistic regression

Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:

glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",

data = heart.attack)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom

Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6
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Generalized linear models Logistic regression

Fitted model

Goodness of fit for the heart attack data

> summary(glm.ha)

...

Null deviance: 271.712 on 11 degrees of freedom

Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

null deviance: deviance of the null model (only intercept)
residual deviance: deviance of the current model
a generalization of the proportion explained
> (271.712 - 36.929)/271.712

[1] 0.8640877

residual variance should be ≈ χ2
10 if the model is OK:

deviance sometimes used for goodness of fit (caution. . . ) but
primary use is for model comparison
> 1-pchisq(36.929, df=10)

[1] 5.821642e-05

other measures of goodness of fit/model comparison/selection
> AIC(glm.ha)

[1] 62.3339

> BIC(glm.ha)

[1] 63.30371
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Generalized linear models Logistic regression

Fitted model

Fitted model for the heart attack data

> summary(glm.ha)

Call:

glm(formula = cbind(ha.ha, ha.ok) ~ ck, family = "binomial",

data = heart.attack)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***

ck 0.031244 0.003619 8.633 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 271.712 on 11 degrees of freedom

Residual deviance: 36.929 on 10 degrees of freedom

AIC: 62.334

Number of Fisher Scoring iterations: 6
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Generalized linear models Logistic regression

Fitted model

Example: diagnostic plots for the heart attack data
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