Řešitelský seminář, 21.2.2017

Problem 1. Let A and B be 2×2 real matrices such that $A B=A^{2} B^{2}-(A B)^{2}$ and $\operatorname{det}(B)=2$. Evaluate $\operatorname{det}(A+2 B)-\operatorname{det}(B+2 A)$.

Problem 2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a nonconstant function such that $f(x) \leq f(y)$ whenever $x \leq y$. Prove that there exist $a \in \mathbb{R}$ and $c>0$ such that $f(a+x)-f(a-x) \geq c x$ for all $x \in[0,1]$.
Problem 3. Prove that for all $x>0, \sin x>x-\frac{x^{3}}{6}$.
Problem 4. Which number is larger, π^{3} or 3^{π} ?
Problem 5. Let A be a linear transformation on \mathbb{R}^{3} whose matrix (relative to the usual basis for \mathbb{R}^{3}) is both symmetric and orthogonal. Prove that A is either plus or minus the identity, or a rotation by 180° about some axis, or a reflection about some two-dimensional subspace of \mathbb{R}^{3}.
Problem 6. Let $n \geq 2$ be an integer and let $(K,+, \cdot)$ be a commutative field with the property:

$$
\underbrace{1+\cdots+1}_{m \text { times }} \neq 0, m=2, \ldots, n .
$$

Consider a polynomial $f \in K[x]$ of degree n and G a subgroup of the aditive group $(K,+), G \neq K$. Prove that there exists $a \in K$, such that $f(a) \notin G$.

