Řešitelský seminář, 21.2.2017

Problem 1. Let A and B be 2×2 real matrices such that $AB = A^2B^2 - (AB)^2$ and det(B) = 2. Evaluate det(A + 2B) - det(B + 2A).

Problem 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a nonconstant function such that $f(x) \leq f(y)$ whenever $x \leq y$. Prove that there exist $a \in \mathbb{R}$ and c > 0 such that $f(a + x) - f(a - x) \geq cx$ for all $x \in [0, 1]$.

Problem 3. Prove that for all x > 0, $\sin x > x - \frac{x^3}{6}$.

Problem 4. Which number is larger, π^3 or 3^{π} ?

Problem 5. Let A be a linear transformation on \mathbb{R}^3 whose matrix (relative to the usual basis for \mathbb{R}^3) is both symmetric and orthogonal. Prove that A is either plus or minus the identity, or a rotation by 180° about some axis, or a reflection about some two-dimensional subspace of \mathbb{R}^3 .

Problem 6. Let $n \ge 2$ be an integer and let $(K, +, \cdot)$ be a commutative field with the property:

$$\underbrace{1 + \dots + 1}_{m \text{ times}} \neq 0, m = 2, \dots, n$$

Consider a polynomial $f \in K[x]$ of degree n and G a subgroup of the additive group $(K, +), G \neq K$. Prove that there exists $a \in K$, such that $f(a) \notin G$.