Řešitelský seminář, 28.2.2017

Problem 1. Evaluate

$$\lim_{n \to \infty} \int_0^1 e^{x^n} dx.$$

Problem 2. We say that a group (G, \cdot) has the property (P), if for any automorphism f of G exist two automorphisms g and h of G such that $f(x) = g(x) \cdot h(x)$, for any $x \in G$. Prove that:

- 1. Any group with the property (P) is commutative,
- 2. Any finite abelian group of odd order has the property (P),
- 3. No finite group of order 4n + 2, $n \in \mathbb{N}$, has the property (P).

Problem 3. Let A and B be two n by n matricies with real entries such that $AB^2 = A - B$.

- 1. Prove that $I_n + B$ is a nonsingular matrix,
- 2. Prove that AB = BA.

Problem 4. Let G be a group of order n and let e be the identity element. Find all functions $f: G \to N^*$ such that

- 1. f(x) = 1 iff x = e.
- 2. $f(x^k) = f(x)/(f(x), k)$, for all positive divisors k of n.

Domácí úloha

Problem 5. Let G be a group of order 2p, where p is an odd prime. Assume that G has a normal subgroup of order 2. Prove that G is cyclic.