Řešitelský seminář, 7.3.2017

Problem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that \mathbb{R} contains a countably infinite subset S such that

$$\int_{p}^{q} f(x) \, dx = 0$$

if p and q are not in S. Prove that f is identically zero.

Problem 2. Let n be a positive integer and $A \in \mathcal{M}_n(\mathbb{C})$, $A = (a_{pq}), 1 \leq p, q \leq n$ be such that $a_{ij} + a_{jk} + a_{ki} = 0$ for all $i, j, k \in \{1, 2...n\}$. Prove that rank $(A) \leq 2$.

Problem 3. Let $(A, +, \cdot)$ be a finite unitary and commutative ring. Denote by d the number of divisors of zero and by n the number of nilpotents. Prove

- 1. If x and y are nilpotents, then x + y and xy are nilpotents,
- 2. n is a divisor of d.

Problem 4. Prove or give an counterexample: Every connected, locally pathwise connected set in \mathbb{R}^n is pathwise connected.

Domácí úloha

Problem 5. For which numbers $a \in (1, \infty)$ is true that $x^a \leq a^x$ for all $x \in (1, \infty)$?