Řešitelský seminář, 14.3.2017

Problem 1. Let A be a unitary and commutative ring with an odd number of elements. If n is the number of solutions of the equation $x^2 = x, x \in A$, and m the number of invertible elemets, show that n divides m.

Problem 2. Let $f:[0,1] \to \mathbb{R}$ be a continuous differentiable function, such that

$$\int_0^1 (f'(x))^2 dx \le 2 \int_0^1 f(x) dx.$$

Find f if $f(1) = -\frac{1}{6}$.

Problem 3. Prove or give an counterexample: Every connected, locally pathwise connected set in \mathbb{R}^n is pathwise connected.

Domácí úloha

Problem 4. Show that a positive constant t can satisfy $e^x > x^t$ for all x > 0, iff t < e.