Řešitelský seminář, 14.3.2017

Problem 1. Let A be a unitary and commutative ring with an odd number of elements. If n is the number of solutions of the equation $x^{2}=x, x \in A$, and m the number of invertible elemets, show that n divides m.

Problem 2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous differentiable function, such that

$$
\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x \leq 2 \int_{0}^{1} f(x) d x
$$

Find f if $f(1)=-\frac{1}{6}$.
Problem 3. Prove or give an counterexample: Every connected, locally pathwise connected set in \mathbb{R}^{n} is pathwise connected.

Domácí úloha

Problem 4. Show that a positive constant t can satisfy $e^{x}>x^{t}$ for all $x>0$, iff $t<e$.

