Řešitelský seminář, 4.4.2017

Problem 1. Prove that $\frac{S(n)}{S(3n)}$ is unbounded. (S(n) is the sum of the digits of positive integer n in its decimal representation.

Problem 2. Suppose that a graph G is the union of three trees. Is it true that G can be covered by two planar graphs?

Problem 3. Show that if $k \leq \frac{n}{2}$ and \mathcal{F} is a family of $k \times k$ submatrices of and $n \times n$ matrix such that any two intersect then

$$|\mathcal{F}| \le \binom{n-1}{k-1}^2.$$

Problem 4. Let n be a positive integer, and S_1, \ldots, S_n be a collection of finite non-empty sets such that

$$\sum_{1 \le i < j \le n} \frac{|S_i \cap S_j|}{|S_i||S_j|} < 1.$$

Prove that there exits pairwaise distinct elements $x_1, \ldots x_n$ such that x_i is a member of S_i for each index *i*.

Domácí úloha

Problem 5. Determine the integers $k \ge 2$ for which the sequence $\binom{2n}{n}$, n = 1, 2, 3, ... is eventually periodic.