Řešitelský seminář, 4.4. 2017

Problem 1. Prove that $\frac{S(n)}{S(3 n)}$ is unbounded. ($S(n)$ is the sum of the digits of positive integer n in its decimal representation.
Problem 2. Suppose that a graph G is the union of three trees. Is it true that G can be covered by two planar graphs?

Problem 3. Show that if $k \leq \frac{n}{2}$ and \mathcal{F} is a family of $k \times k$ submatrices of and $n \times n$ matrix such that any two intersect then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}^{2}
$$

Problem 4. Let n be a positive integer, and $S_{1}, \ldots S_{n}$ be a collection of finite non-empty sets such that

$$
\sum_{1 \leq i<j \leq n} \frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i}\right|\left|S_{j}\right|}<1
$$

Prove that there exits pairwaise distinct elements $x_{1}, \ldots x_{n}$ such that x_{i} is a member of S_{i} for each index i.

Domácí úloha

Problem 5. Determine the integers $k \geq 2$ for which the sequence $\binom{2 n}{n}, n=1,2,3, \ldots$ is eventually periodic.

