Řešitelský seminář, 11.4. 2017

Problem 1. Let $f(x)$ be a polynomial of degree at most n such that

$$
f(k)=\frac{n+1-k}{k+1}
$$

for $k=0,1, \ldots, n$. Find $f(n+1)$.
Problem 2. Let $a>0$ be a real number. Find the value of the following integral

$$
\int_{-a}^{a} \frac{\cos t}{a^{\frac{1}{t}}+1} d t
$$

Problem 3. For a non-negative integer n, let $f(n)$ be the number obtained by writing n in binary and replacing every 0 with 1 and vice versa. For example, $n=23$ is 10111 in binary, so $f(n)$ is 1000 in binary, thus $f(23)=8$.

1. Compute

$$
\sum_{j=1}^{n} f^{j}(j)
$$

where $f^{n}(k)$ means function f applied n-times on k.
2. Show

$$
\sum_{k=1}^{n} \leq \frac{n^{2}}{4}
$$

When does the equality hold?

Problem 4.

$$
\sum_{1 \leq i<j \leq n} \frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i}\right|\left|S_{j}\right|}<1
$$

Prove that there exits pairwaise distinct elements $x_{1}, \ldots x_{n}$ such that x_{i} is a member of S_{i} for each index i.

Domácí úloha

Problem 5. Let $n \geq 2$ and $A_{1}, A_{2}, \ldots A_{n+1}$ be $n+1$ points in the n-dimensional Euclidean space, not lying on the same hyperplane, and let B be a point strictly inside the convex hull of $A_{1}, A_{2}, \ldots A_{n+1}$. Prove that $\left|\angle A_{i} B A_{1}\right|>90^{\circ}$.

