Řešitelský seminář, 18.4.2017

Problem 1. Let $p(x)$ be the polynomial $x^{3}+14 x^{2}-2 x+1$ Let $p^{(n)}(x)$ denotes $p\left(p^{(n-1)}(x)\right)$. Show that there is an integer N such that $p^{(N)}(x)-x$ is divisible by 101 for all integers x.

Problem 2. Find the number of integers c such that $-2007 \leq c \leq 2007$ and there exists an integer x such that $x^{2}+c$ is a multiple of 2^{2007}.

Domácí úloha

Problem 3. Let $\left(a_{n}\right)$ be a sequence of nonzero real numbers. Prove that the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$

$$
f_{n}(x)=\frac{1}{a_{n}} \sin \left(a_{n} x\right)+\cos \left(x+a_{n}\right)
$$

has a subsequence converging to a continuous function.

