Řešitelský seminář, 18.4.2017

Problem 1. Let p(x) be the polynomial $x^3 + 14x^2 - 2x + 1$ Let $p^{(n)}(x)$ denotes $p(p^{(n-1)}(x))$. Show that there is an integer N such that $p^{(N)}(x) - x$ is divisible by 101 for all integers x.

Problem 2. Find the number of integers c such that $-2007 \le c \le 2007$ and there exists an integer x such that $x^2 + c$ is a multiple of 2^{2007} .

Domácí úloha

Problem 3. Let (a_n) be a sequence of nonzero real numbers. Prove that the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$

$$f_n(x) = \frac{1}{a_n}\sin(a_nx) + \cos(x+a_n)$$

has a subsequence converging to a continuous function.