COMPUTING HOMOLOGY GROUPS

We are given the following (model of) topological space X via its Δ-complex We

Figure 1. Model of the space X
decompose X into the sequence of cells:

$$
X_{0}=\{V\}, \quad X_{1}=\{a, b, c\}, \quad X_{2}=\{\mathcal{T}, \mathcal{S}\}, \quad X_{n}=\emptyset, n \geq 3
$$

The chain complex $C_{*}(X)$ is given by

$$
C_{i}=<X_{i}>, i \geq 0
$$

as every group C_{i} is an abelian group ($=\mathbb{Z}$ module) finitely genrated by the i-cells.
As such, we can see C_{i} as a kind of "vector space" and we can describe the chain homomorphisms ∂_{i} in terms of matrices. Let us describe ∂_{2} : We have $\partial_{2}(\mathcal{T})=2 b-c$, $\partial_{2}(\mathcal{S})=2 a-c$, hence in our ordering

$$
\partial_{2}=\left(\begin{array}{lll}
2 & 0 & -1 \\
0 & 2 & -1
\end{array}\right)
$$

We can see that the kernel of ∂_{2} is 0 . Then it is rather easy to see that $0=Z_{2}(X)=$ $H_{2}(X)$.

In order to compute $H_{1}(X)$, we first see that ker $\left.\partial_{1}=C_{1}=<a, b, c\right\rangle$. (because the matrix is the zero matrix).
The group H_{1} is a factor group of C_{1} where the relations that definie factoring are $2 b-c=0$ and $2 a-c=0$.

I am not aware of any very easy algorithmic way how to compute the factoring now (there is in fact a way using the Smith normal form, but I deem it unnecessary). We have to use our wit and some dirty tricks:
(1) we observe that c depends on both a and b and so we have

$$
<a, b, c|2 a=-c, 2 b=-c>=<a, b| 2 a=2 b>
$$

(2) From our "vector space" idea we can change our basis from (a, b) to $(a-b, a)$. Let us denote $d=a-b$. Then

$$
H_{1}=<a, d \mid 2 d=0>\cong \mathbb{Z} \oplus \mathbb{Z}_{2} .
$$

This concludes the calculation. Good luck with the homework. And by the way what is really our space X geometrically? (HINT: First think just about one of the triangles).

