Synthesis of Tin (IV) Heteroaryl Alkenols and Their Susceptibility Towards Fluorination

Podhorsky J.¹, Moravec Z.¹, Pinkas J.¹, Hegemann C.² and Mathur S.^{2*}

1 – Department of Chemistry, Masaryk University, Kotlarska 2,611 37 Brno, Czech Republic

2 – Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 509 37 Cologne, Germany

In our work, we focused on reactions of organometallic tin (IV) precursors, such as $Sn(O^{t}Bu)_{4}$, Me₃SnCl, and Me₃SnF, with β -heteroarylalketonates: 3,3,3-trifluoro(pyridin-2-yl)propen-2-ol, 3,3,3-trifluoro(dimethyl-1,3-oxazol-2-yl)propen-2-ol, and 3,3,3-trifluoro(1,3-benzthiazol-2-yl)propen-2-ol [1]. Obtained compounds were exposed to various fluorination agents (HF, XeF₂, and NH₄F) and their reactivity towards them was compared to already published Sn (II) β -heteroarylalketonates [2-3]. Subseqent CVD experiments made by partner institution (Murauskas, Abrutis, University of Vilnius) have proved that our Sn (IV) β -heteroarylalketonates are suitable precursors for transparent SnO₂ thin films used in optoelectronics.

Figure 1 Transparency of SnO₂ prepared by deposition at 650 °C of PODA $(Sn(O^tBu)_2(2-pyCHCOCF_3)_2)$ and POD B $(Sn(O^tBu)_2(4,5-meOxCHCOCF_3)_2)$

References:

[1] M. Kawase, M. Teshima, S. Saito, S. Tani, *Heterocycles*, **1998**, 48, 2103.

[2] I. Giebelhaus, R. Müller, W. Tyrra, I. Pantenburg, T. Fischer, S. Mathur, *Inorg. Chim. Acta*, **2011**, 372, 340.

[3] T. Heidemann, S. Mathur, Eur. J. Inorg. Chem., 2014, 506.