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Abstract
Central Europe and Czech Lands (recent Czech Republic) itself have recently represented an
area with a transitional type between the oceanic and continental types of temperate climate.
The climate changed during geological history and various climates played an important role
in the evolution of landforms due to changes in type and intensity of weathering and earth
surface processes. This chapter describes general trends in climate oscillations during the
Tertiary and the Quaternary within the Czech Lands and Central Europe. Climatological and
hydrological extremes and fluctuations during the last centuries are along with human
activity fundamental drivers of recent changes in the landscape evolution.
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3.1 Introduction

The relief of the Czech Republic shows distinct signs of
polygenesis and its evolution was strongly controlled by
climate that underwent considerable changes during the
Cenozoic Era. Different climatic conditions influenced the
evolution of landforms that represent a parallel to the relief
development in contemporary morphoclimatic zones of the
Earth. Geomorphological legacy of the oldest Cenozoic
periods has greatly been changed in the subsequent phases,
particularly cold phases of the Quaternary. Climate recon-
structions are based on the modern analysis of stable

isotopes in marine sediments and ice cores (e.g. Svensson
et al. 2008; Vinther et al. 2010). From the point of view of
the region, however, key analyses are mainly paleobotanical
(pollen analyses) (e.g. Davis et al. 2003). It is particularly
paleobotanical data that make it possible to derive mean
annual temperatures and mean precipitation totals for the
territory of Central Europe (Mosbrugger et al. 2005). Indi-
vidual parts of the following text describe climatic condi-
tions in different periods of Cenozoic landscape evolution,
mainly in the period of the late Tertiary and the Quaternary,
characterised by significant climate oscillation with the dis-
plays of the alternation of cold and dry glacial periods and
warm and humid interglacial periods. From the point of view
of landscape and relief evolution, special phenomena are
extreme events whose existence has been recorded but their
frequency decreases if we go deeper into the past due to the
incompleteness of datasets. The reconstruction of natural
extremes that formed the relief of Czech landscape and that
comprise particularly hydrometeorological events was
derived mainly from documentary and instrumental data
(e.g. Brázdil et al. 2005, 2012). The final part of this chapter
focuses on contemporary climatic conditions.
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3.2 Tertiary Climates of Central Europe

Unlike the subsequent period of the Quaternary, climatic
conditions of the Tertiary were greatly different than those of
today and led to the origin of different landform assemblages
that can be identified in the landscape of the Czech Republic
even nowadays. Sediments that fill basin structures of the
Czech Republic, namely organogenic sediments of the rank
of coal (e.g. in Mostecká pánev Basin), are other important
evidence of different climatic conditions of the Tertiary.
From the point of view of paleogeography, very important
sediments are Miocene formations of the Carpathian
Foredeep.

Tertiary climate was characterised by the alternation of
warmer and colder oscillations with a tendency towards
gradual cooling (Chlupáč et al. 2002). Climate has been
reconstructed in the Wiess Elster Basin in the vicinity of the
border between Bohemia and Germany. Paleobotanical
analyses show that climate in Central Europe in the period
from the Middle Eocene to Lower Oligocene was tropical,
with mean annual temperature ranging from 23 to 25 °C,
mean annual precipitation from 1,000 mm to 1,600 mm and
coldest month mean (CMM) from 17 to 21 °C (Mosbrugger
et al. 2005). Lower temperatures were associated with a
majority of the Oligocene period with CMM around 5 °C,
while the latest Chattian was marked by a temperature peak
which was recorded by Mosbrugger et al. (2005) from the
Lower Rhine Basin. This peak corresponds to the Late
Oligocene Warming known from isotope records (Zachos
et al. 2001). The warmest period of the Neogene was the
Miocene (Chlupáč et al. 2002) in which the trend of
warming continued up to the Middle Miocene. This warm-
ing seems to be rather stepwise, while the curves show
several short-term variations. In the Weisselster Basin record
there is evidence of short-term cooling at the base of the
Aquitanian (Mosbrugger et al. 2005). The Middle Miocene
temperature peak in Central Europe corresponds to the
Middle Miocene Climatic Optimum that is observed glob-
ally. After Mosbrugger et al. (2005), the Miocene cooling
seems to be between 14 and 13 Ma when considering all
different records and analysed climate variables. In the
Molasse Basin, CMM decreased more rapidly than in both
other regions, and, at the end of the Middle Miocene, CMM
dropped below 4 °C. The transition between the Miocene
and the Pliocene shows a gradual trend in climate cooling.
During the Late Pliocene the cooling intensified and CMM
fell below the freezing point (Mosbrugger et al. 2005).

3.3 Quaternary Climatic Cycle

Quaternary evolution in Central Europe is connected with
fundamental changes in environmental conditions and
essential paleogeographic changes that were related to the
transgression of the continental ice sheets, temperature drop
and changes in morphogenesis.

A comprehensive overview of landscape evolution is
brought by Quaternary climate and sediment model com-
piled by Ložek (1973, 1999a, b, 2007). The author charac-
terises the evolution using four phases (Fig. 3.1): early
glacial period, pleniglacial period, late glacial and inter-
glacial. It is evident that global trends of the climate system
oscillation were reflected in regional cycles. On the basis of
an extensive set of data about Quaternary sediments Ložek
(1999a, b) was able to derive a rather general model that
characterises not only climate parameters but also points to
the conditions of the evolution of soils and vegetation and
the processes of weathering and material deposition. The
four phases of Ložek’s model are described below.

The phase of early glacial is characterised by the onset of
cold climate. Mean annual temperatures range between +3
and −1 °C, depending on the location. Cooling brings a
distinct decline in precipitation (mean annual precipitation
totals are estimated to 200–400 mm). The landscape
undergoes gradual aridization, which becomes evident in
pedogenesis and vegetation composition. Interglacial forests
are divided into smaller units whose species composition
changes towards a boreal forest (taiga). Conifers start to
appear, while the species of Central European temperate
forest are in recession. Very dry periods bring forth cher-
nozem steppes. The transformation of ecosystems gradually
gives rise to cold continental steppes in which grasses and
chernozems prevail. Temperatures and precipitation totals
continue to decrease, while the cycle passes into the phase of
the so-called pleniglacial.

Pleniglacial phase is characterised by the transgression of
the continental glacier and conditions of periglacial climate in
a great part of the territory. Glaciers start to appear in the
topmost areas of mountain ranges and the ice sheet expands
into the northernmost parts of the recent Czech Republic
territory. Mean annual temperatures drop to −3 to −5 °C,
which leads to the occurrence of permafrost. Tree vegetation
recedes considerably, while groups of trees only survive in
protected areas or vanish totally. The development of vege-
tation is limited by very low precipitation totals, ranging
between 100 and 200 mm/year. Cold and dry climate is
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marked by strong atmospheric flow and loess deposition. This
leads to the formation of cold loess steppes. However, the
foreground of the ice sheet and higher locations witness the
formation of tundra or sub-alpine ecosystems with cryogenic
soils. Soil-forming substrates are very rich in salts and cal-
cium carbonate, which leads to the spreading of halophile and
calciphile species. The character of non-glaciated parts of the
landscape is significantly affected by intensive congelifrac-
tion, presence of permafrost and gelifluction. The period of
low temperature is replaced by gradual warming of climate,
which leads to temperature oscillation. The landscape starts to
enter the period of late glacial.

Mean annual temperatures in late glacial phase are still
relatively low, ranging between –2 and +2 °C, however, the
warming trend and increasing humidity are evident (200–
400 mm). The climate is characterised by significant insta-
bility, which is reflected by the fact that cold continental
steppes are preserved at many places, while the onset of
thermophilic vegetation is very slow. Degradation of per-
mafrost makes itself felt both by the increase in the thickness
of its active layer and gradual decomposition of continuous
permafrost areas into isolated permafrost patches. The retreat

of the continental ice sheet along with the deglaciation of the
highest mountain ranges brings fundamental changes in
environmental conditions. Periods of warm oscillations
make conditions for light discontinuous taiga with birch,
pine and sea-buckthorn. Colder phases still witness the
occurrence of cold continental steppe. Large accumulations
of material weathered during cold periods start to be influ-
enced by chemical weathering. Towards the end of the late
glacial, forest species start to appear and the area covered by
forests gradually extends.

Interglacial phase is a phase of warm climate. Annual
temperature means increase greatly (8–12 °C) and the cli-
mate becomes more humid (700–1000 mm/year). The
landscape changes fundamentally. With the onset of climatic
optimum the open landscape is gradually closed by the
Central European forest that replaces forest-steppe commu-
nities. Soils rich in calcium enable intensive spreading of
basophilic species and high temperatures predetermine the
spreading of xerophilic communities. Intensive chemical
weathering and leaching alkali out of soil gradually gives
rise to cambisols. Forest formations change regarding the
species and gradual acidification of the surroundings

Fig. 3.1 Simplified Quaternary
climate and sediment model
compiled by Ložek (2007)
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facilitates the spreading of acidophilic species. The contin-
uous forest reaches the phase of climax. However, the cli-
matic system undergoes further development and enters the
phase of cooling, which involves the spreading of
cold-loving species, acidification intensifies and taiga
spreads in the landscape.

3.4 Quaternary Climate in Central Europe

Climate cooling at the end of the Tertiary led to the Pleis-
tocene, characterised by the alternation of cold (glacials) and
warm (interglacials) periods. Using marine isotope stages
(MIS) as a framework, it is possible to identify 104 stages of
cool (52) or warm (52) climate periods during the whole
Quaternary (and 103 MIS within the Pleistocene). Early
Pleistocene was characterised by the mean annual tempera-
ture below 0 °C; however, this very old period in Central
Europe is not covered well by precise data. On the basis of
geomorphological proxy data, Czudek (2005) estimates that
during cold phases of the Early Pleistocene mean annual
temperatures dropped to −3 to −4 °C. The formation of
cryogenic structures in the southern Moravia can indicate
mean monthly temperatures of the coldest month to –20 °C,
which would point to the occurrence of continuous per-
mafrost (Vandenberghe 2001b). With respect to the climate
of our territory, there is relatively little information on the
Middle Pleistocene. Our conclusions are again drawn from
proxy data (e.g. ice wedges and a range of pseudomor-
phoses). Mean annual temperature is estimated for −5 °C.
Temperatures of the coldest months were on average around
−20 °C or even lower. The Late Pleistocene was charac-
terised by the peak in periglacial landform-shaping processes
in the territory of the recent Czech Republic (Czudek 2005).
In the Eemian interglacial period mean annual temperatures
were around 13 °C and the climate was very humid (Czudek
2005). Subsequent cooling in the Weichsellian glacial period
again brought mean annual temperatures below the freezing
point (−2 and −5 °C). The greatest drop in temperatures
came in the pleniglacial (73–13 ka BP) when in the phase of
the Last Glacial Maximum (LGM) mean annual tempera-
tures were −6 to −8 °C; mean January temperatures ranged
between −18 and −20 °C. The warmest summer months
reached temperatures between 5 and 6 °C (2005). Ložek
(1999a) states that climate had continental character, with
long and cold winters, short springs, but relatively warm
summers. He further mentioned that annual precipitation
totals ranged between 100 and 200 mm and they occurred
particularly in the warm part of the year. An interesting
approach in the reconstruction of environmental conditions
during the LGM is brought by the study of Alvaradoa et al.
(2011) in which a drop in temperatures by 5–7 °C was
confirmed by the analysis of dissolved noble gases in

groundwater of the Bohemian Cretaceous Basin. The end of
the Pleistocene (Late Pleistocene) was characterised by a
distinct increase in temperatures; however, with considerable
oscillation between interstadials (Bölling and Alleröd) and
stadials (Older and Younger Dryas). Mean annual tempera-
tures in interstadials ranged between 2 and 5 °C, while
during stadials they were around −2 to −3 °C (Czudek
2005).

Warming at the end of the Younger Dryas brought radical
changes to the environment. Considerable retreat of the
glaciers led to the onset of the Holocene interglacial. Climate
warming was accompanied by increased precipitation that
accelerated vegetation growth and changes in the pedoge-
netic conditions, weathering and relief evolution. Individual
chronozones of the Holocene landscape evolution are shown
in Fig. 3.2 including reconstructed temperatures and pre-
cipitation totals after Ložek (2007) and Starkel (1990a). In
the Preboreal (10,300–9,300 BP) mean annual temperature
was by c. 3 °C lower than nowadays. Continuing continental
climate was warmed in the course of the Preboreal (9300–
8400 BP); mean annual temperature was by 2–3 °C higher
than nowadays (Czudek 2005).

Climatic optimum was reached in the Atlantic (8400–
5100 BP) in which the mean annual temperature was up to
3 °C higher than today (Czudek, 2005). An important
characteristic of the Atlantic climate was significantly higher
precipitation, namely by 100 %, if compared with nowadays
(Ložek 1999c). The beginnings of the Subboreal (5100–
2400 BP) were by 1 °C warmer than the present-day mean.
The main feature of the Subboreal period was ambivalence
and drier periods alternating with more humid ones and
warmer periods alternating with colder ones (Czudek 2005).
The period of the Subatlantic (2400 BP—the present day)
brought cooling and, at the same time, increased precipita-
tion (Ložek 1999c). Humid climatic phases are reflected in
the landslide activity phases in the Carpathian part of the
Czech Republic (Pánek et al. 2010) that also correspond with
the Polish landslide activity chronology (Fig. 3.2).

The latest pollen data proxies and the relationship of
pollen and the climate changes during Holocene are brought
by the research of Veron et al. (2014) from the peat bog of
Boží Dar (Krušné hory Mts). The authors confirm very cold
Late Glacial dominated by Cyperaceae grass land (12.5–
11.0 kyr BP), the Early Holocene warming and the onset of
Pinus (11.0–9.0 kyr BP). During the Boreal the temperature
increased with an increase in the shade-intolerant Corylus
and a concurrent decrease in Pinus (9.0–8.1 kyr BP). The
Atlantic chronozone is classified as the warmest and wettest
period of the Holocene characterised by the species of Alnus
and Fraxinus (8.1–4.3 kyr BP). The following Subboreal
chronozone was detected as drier and possibly colder and
characterised by the decline in temperature-sensitive species
(< 4.3 kyr BP). Similar results of temperature trends were
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brought by the synthesis of pollen data proxies of all Central
Europe made by Davis et al. (2003).

3.5 Climate and Floods of the Past 500 Years
in the Czech Lands

Climate of the past millennium is usually divided into
Medieval Warm Anomaly (MWA), Little Ice Age (c. 1300–
1860) and recent global warming (e.g. Grove 2004; Mat-
thews and Briffa, 2005; Xoplaki et al. 2011; Stocker et al.
2013). High-resolution climatic data in the Czech Lands are
related to the beginnings of systematic instrumental

meteorological observations. The longest series are available
from the Prague-Klementinum station (temperatures from
1775 and precipitation from 1804) and the Brno station
(temperatures from 1800, precipitation from 1803) (Brázdil
et al. 2012). The data from the period before the instrumental
period can be extended with dendrochronological and doc-
umentary data. The tree-ring data of fir (Abies alba Mill.)
were compiled from different places in South Moravia and
used for March–July precipitation reconstruction in the
1376–1996 period (Brázdil et al. 2002). Recently this series
has been complemented with other samples and used to
reconstruct May–June Z-index as a drought indicator from
AD 1500 (Büntgen et al. 2011). Because of restrictions of

Fig. 3.2 Correlations of dated
landslides (both in the Czech and
Polish parts of the Flysch
Carpathians) with paleoclimate
(Pánek et al. 2010). The scheme
is based on a diagram performed
by Margielewski (2006);
time-span of individual
chronozones after Mangerud et al.
(1974) and Starkel (1999); dated
landslides in the Czech part of the
Outer Western Carpathians
(OWC) after Baroň (2007) (20
cases—black boxes) and dating
performed by the authors of this
study (15 cases—gray boxes);
dated landslides (landslide phases
derived from the dating of 67
landslides) in the western part of
the Polish Outern Western
Carpathians after Margielewski
(2006); paleotemperature and
paleoprecipitation after Starkel
(1990). Despite the fact that
landslides occurred in the Czech
part of the OWC throughout the
entire Late Glacial and Holocene,
significant landslide aktivity
clusters (horizontal grey bars) are
correlated to periods characterised
by high precipitation/low
temperature
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tree-ring-based reconstructions to only a few months of the
year (usually of the vegetation period), documentary data
related to weather and climate are more promising. They
describe directly weather and/or human activities or phe-
nomena with a direct relation to the weather. Their sources
are very diverse: annals, memories, chronicles, diaries, let-
ters, economic records, pictures, etc. Weather-related docu-
mentary data in the Czech Lands between the eleventh and
fifteenth century are relatively scarce and do not allow to
obtain a continuous description of climatic patterns (Brázdil
and Kotyza 1995). Their density increases after AD 1500.
Because of qualitative information in documentary data, the
series of temperature indices has to be interpreted in an
ordinal scale. For example, in case of the seven degree scale,
the following monthly weighted indices are applied: –3
extremely cold, –2 very cold, –1 cold, 0 normal, 1 warm, 2
very warm, 3 extremely warm. Analogously, similar indices
are interpreted for monthly precipitation: –3 extremely dry, –
2 very dry, –1 dry, 0 normal, 1 wet, 2 very wet, 3 extremely
wet. Monthly indices are then summarised to obtain seasonal
(indices from −9 to 9) and annual (indices from −36 to 36)
information (Brázdil et al. 2005).

In Central Europe, series of temperature indices were
created separately for the territory of Germany, Switzerland
and the Czech Lands for the 1500–1854 period. They were
then combined into one index series for Central Europe,

which is fully representative also for the Czech Lands with
respect to high spatial temperature correlations. In addition,
a mean series of air temperature was calculated from the
measurements at 11 Central European stations in South
Germany, Switzerland, Austria and Bohemia
(Prague-Klementinum) that date back to the year 1760.
Finally, these two series were statistically analysed (using
standard paleoclimatological method) for the common per-
iod of 1760–1854 in order to identify inter-relations and
ultimately to reconstruct the temperature from before the
year 1760 using several statistical techniques. Based on this
stepwise analysis, temperature series of Central Europe
could be produced for the seasons and the year for the entire
1500–2007 period (Dobrovolný et al. 2010). The recon-
struction is very good and accounts for 81 % of the corre-
sponding annual temperature variability (for seasons from
73 % in autumn to 83 % in winter). The Central European
temperatures exhibit a great interannual and interdecadal
variability and an increasing trend from the nineteenth cen-
tury that has been particularly pronounced since the 1970s,
which is in agreement with the observed global warming
(Fig. 3.3a). The coldest periods occurred in the last three
decades of the sixteenth century and in the late seventeenth
century. As for seasons, remarkable periods are the coldest
30-year periods in the late sixteenth century (winter 1572–
1601, summer 1569–1598) corresponding to Little-Ice-Age

Fig. 3.3 (a) Annual temperature fluctuations in Central Europe in the
1500–2007 period derived from documentary and instrumental data and
expressed as deviations from the 1961–1990 reference period. Uncer-
tainty limits of reconstructed values are expressed by grey colour
(Dobrovolný et al. 2010); (b) annual precipitation fluctuations in the
Czech Lands in the 1501–2010 period expressed as deviations from the

1961–1990 reference period. Uncertainty limits are given by a 95 %
confidence interval (Dobrovolný et al. 2014). Values in both graphs are
smoothed by 30-year Gaussian filter; deviations for the
pre-instrumental period are in blue colour, for the instrumental period
in red colour
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type event sensu Wanner (2000) (see also Matthews and
Briffa, 2005). The other existing temperature reconstruction
for the Czech Lands is based on winter wheat harvest dates
and gives March–June temperatures for the 1501–2008
period (Možný et al. 2012).

The same standard paleoclimatological approach as for
temperatures was applied to reconstruct precipitation totals
from the series of precipitation indices for the Czech Lands.
The 1803–1854 period was used as an overlap period
between the series of documentary-based precipitation
indices and the mean Czech series calculated from homo-
genised series of precipitation totals from 14 stations
(Dobrovolný et al. 2015). With respect to higher spatial
variability of precipitation, the reconstruction of annual
totals explains only 36 % of corresponding precipitation

variability (for seasons from 26 % in winter to 36 % in
autumn). Fluctuations in annual precipitation totals in the
last 500 years are characterised by great inter-annual and
inter-decadal variability, but generally with missing
long-term trends (Fig. 3.3b). The wettest 30-year periods
were recorded analogously as for temperatures, in the second
half of the sixteenth century (winter 1555–1584, summer
1568–1597).

Fluctuations in floods, which are the most disastrous
natural events in the Czech Lands, are another important
feature of the climate. Based on meteorological causes of
their origin, floods can be divided into winter and summer
floods. Winter floods are related to snow melt due to sudden
warming (accompanied by rain) or ice jams in rivers and
they usually occur from November to April. Summer floods,

Fig. 3.4 Decadal frequencies of
floods in the Czech Lands in the
1501–2010 period with
differentiation according to the
synoptic type of the flood
(W winter, S summer, N not
specified): the River Vltava (from
České Budějovice to its mouth
into the Labe River near Mělník),
the Ohře River (from Kadaň to its
mouth into the Labe River at
Litoměřice), the Labe/Elbe River
(from Brandýs nad Labem to
Děčín), the Morava River (from
Olomouc to Strážnice) (Brázdil
et al. 2005, 2011). Arrows mark
the beginning of systematic
hydrological measurements
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related to heavy precipitation lasting for several days, are
typical of May to October (flash floods do not occur in the
studied rivers). Quite rich documentary evidence together
with water level and discharge measurements starting in the
ninteenth century allow to compile long series of flood fre-
quency for the most important rivers in the Czech Lands (the
Labe/Elbe River and its tributaries Vltava and Ohře Rivers in
Bohemia, the Morava River in Moravia) from AD 1500
(Fig. 3.4). Despite differences between individual rivers,
remarkable maxima of flood frequency are typical of the
nineteenth century (mainly winter floods) and of the second
half of the sixteenth century (mainly summer floods)
(Brázdil et al. 2005).

3.6 Contemporary Climate

The location of the Czech Lands in Central Europe together
with their relief and position in relation to the main pressure
systems in the Atlantic-European area, influencing atmo-
spheric circulations patterns, are the main factors deciding
about spatial and temporal variability of climate in the Czech
Republic. This territory falls within the transitory temperate
climate zone and therefore the area of interest experiences
the influence of both the oceanic and continental climate.
Temperature conditions largely reflect location and elevation
above the sea level. The highest mean temperatures (more
than 10 °C) are measured in lowlands and southern areas of
the country and thus Southern Moravia, Osoblažsko area and
middle and lower portions of the Labe River belong to the
warmest locations (Tolasz et al. 2007). On the other hand,
the lowest mean air temperatures are measured in

mountainous regions, namely in the highest locations (less
than 3 °C) of the Krušné hory Mts., Krkonoše Mts., Šumava
Mts., Jizerské and Orlické hory Mts., Králický Sněžník Mts.,
Hrubý Jeseník Mts. and Moravskoslezské Beskydy Mts.
Maximum precipitation is reached in summer half-year.
Generally, about 40 % of precipitation falls in summer, 25 %
in spring, 20 % in autumn and 15 % in winter. The rainiest
locations are found in the highest elevations of the Czech
and Moravian ranges where mean annual precipitation
considerably exceeds 1200 mm (Krušné hory Mts., Šumava
Mts., Jizerské hory Mts., Krkonoše Mts., Orlické hory Mts.,
Hrubý Jeseník Mts. and Moravskoslezské Beskydy Mts.)
(Tolasz et al. 2007). The lowest annual precipitation is
measured in Žatec Basin behind the Krušné hory Mts., in the
rain shadow area. Other locations with low precipitation
throughout the year are Southern and Central Moravia (area
of Moravian basins), Polabí area and Opava region. Žatec
region, Polabí Lowland and Southern Moravia are also
characterised by the highest occurrence of dry periods given
by precipitation deficit (Tolasz et al. 2007). Selected cli-
matological parameters for some geomorphological units are
presented in Table 3.1.

3.7 Conclusion

The Czech Republic is located in the transition area whose
climate results from interaction of both maritime and conti-
nental air masses. The geographical position was crucial
during the geological history and therefore the paleoclimate
was influenced by transgressions and regressions of the
Scandinavian ice sheets. The paleoclimate oscillations and

Table 3.1 Selected annual climatological characteristics of the geomorphological units of the Czech Republic 1961–1990, (Source: www.chmi.cz)

Station (Geomorphological Unit)a Altitude (m a.s.l.) Mean temperature (°C) Mean precipitation (mm)

Červená (Nízký Jeseník) 749 5.5 739

Doksany (Dolnooharská tabule) 158 8.5 454

Cheb (Chebská pánev) 483 7.2 560

Churáňov (Šumava) 1118 4.2 1091

Kuchařovice (Znojemská pahorkatina) 334 8.5 471

Lysá hora (Moravskoslezské Beskydy) 1322 2.6 1390

Milešovka (České středohoří) 837 5.2 555

Plzeň (Plzeňská kotlina) 360 7.3 533

Praha—Karlov (Pražská plošina) 261 9.4 447

Přibyslav (Českomoravská vrchovina) 532 6.6 677

Přimda (Český les) 742 5.8 684

Svratouch (Žďárské vrchy) 733 5.7 762

Praděd (Hrubý Jeseník) 1490 1.1 1129

Ústí nad Orlicí (Svitavská pahorkatina) 402 7.1 763
aFor the localization of geomorphological units see Fig. 1.1
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historical fluctuations were reconstructed with the use of
various proxy data. It is evident that a very important role in
the evolution of landforms was played by warm and wet cli-
mate of the Tertiary. A complete change started at the end of
the Tertiary when the climate pattern changed into Quaternary
oscillations between colder and drier periods of the glacials
and warmer and wetter periods of the interglacials. Climate
changes created conditions for the evolution of periglacial
landforms and limited areas were affected by glacier action
(the highest mountains were glaciated and the northernmost
areas of the recent Czech Republic were covered by masses of
the Scandinavian ice sheet (Elsterian and Saalian glacials).
Extreme temperatures during the whole Pleistocene are con-
nected with the Last Glacial Maximum (*26 ka BP) when
mean annual air temperatures oscillated between −6 and −8 °
C. The Holocene started with higher temperatures and higher
precipitation and this led to the evolution of vegetation and
changes in landform evolution. Human activities during the
Post-Atlantic period created new conditions for the acceler-
ation of alluviation under more humid climate.With the use of
the methods of historical climatology and instrumental mea-
surements in the last five centuries it was possible to identify
climate and flood fluctuations which are very important in
recent landform evolution.
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