

Petr Kubíček

kubicek@geogr.muni.cz

Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic

The importance of networks

• Networks are all around us.

LGO

• The techniques have been developed to analyse these most geographical phenomena.

Data requirements for network analysis

Data requirements (Clausen 1991, road analysis):

- Accurate
- Up to date
- Topologically correct
- Attributes:
 - road conditions
 - classification
 - speed restrictions
 - one way streets
 - turning restrictions
 - width and height restrictions
 - junctions
 - roundabouts
 - reference landmarks

Networks and GIS

Cost:

G

•

- What is the impact of an object flowing through the network?
 - Types
 - -Time
 - -Distance
 - Based on connectivity, flow, and rules

Directions to Science Dr, Durham, NC 2,121 mi – about 1 day 10 hours

Get I	Directions	<u>My Ma</u>	aps				
		A	e	Ŕ	de la		×
			~	1	~~	J	
A	Salt Lake	City, U	Т				
B	Science D	rive, Du	urham,	NC			
	Add Destinatio	on - <u>Shov</u>	w optior	<u>ns</u>			
					Get	Directions	

Network characteristics formal description

- A network can be defined as a set of linear features through which resources flow.
- A network is referred to as a *pure network* if only its **topology and connectivity** are considered.
- If a network is characterised by its topology and flow characteristics (such as capacity constraints, path choice and link cost functions) it is referred to as a *flow network*.
- A *transportation network* is a flow network representing the movement of people, vehicles or goods (Bell and Iida, 1997).

Nodes and links

Building stones - nodes (the end points of lines) are used as origins and destinations, and **links** (lines) travers from one node to the other. A classification of networks (adapted from Laurini & Thompson, 1992). Directed links are referred to as arcs while undirected links as edges. Which one fits for the river network?

unoriented with loops

oriented with loops

oriented

Network data model conceptual

- A data model is an abstract representation of some real-world situation used to organise data in a database.
- three different levels of abstraction: conceptual, logical and physical levels.
- The *entity-relationship* and the *extended entityrelationship* models are the most widely used conceptual data models.
- The network data model (vector) is built around two core entities: the *Node* (a zero-dimensional entity) and the *Arc* (a one dimensional entity).

Network data model - logical

- logical data model that supports the node-arc representation of networks is the georelational model.
- separates **spatial (geometry)** and **attribute** data into different data models.

(a) Example network for the relational model example

(a) Example network for the relational model example

Arc ID	Street Name	Lanes	Other Attributes
a	High Street	2	
b	High Street	4	
с	High Street	4	
d	High Street	2	
e	River Way	2	
f	Hill Street	2	

(b) A simple arc table

Arc – node data model

Arc ID	Stop Light	Other Attributes
1	n	
2	У	
3	n	
4	У	
5	n	
6	n	

(c) A simple node table

Arc ID	Street Name	Lanes	From Node	To Node	Node ID	Stop Light?	Arc Links
а	High Street	2	1	2	1	n	9
a		-	1	2	1	11	a
b	High Street	4	2	3	2	У	a, b
с	High Street	4	3	4	3	n	b, c, f
d	High Street	2	4	5	4	У	c, d, e
e	River Way	2	2	4	5	n	d
f	Hill Street	2	3	6	6	n	f

(d) Pointers added to the arc and node tables to represent connectivity

Connectivity and planar networks

 standard fully intersected planar network data model has been extended by adding a new structure, called the *turn-table – node rules*.

From Arc	To Arc	Turn?	
a	с	n	* 6
a	b	У	t t
a	d	n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
b	а	у	e
b	с	n	(a) Example network for the relational model example

Turn table examples

					0 = N	olm pedance
Situation	Representation	Turntable			-1 = N	o Turn
U-Turn	8 6 20 7	NODE#	FROM ARC#	TO ARC#	ANGLE	TIME IMPEDANCE (seconds)
	9	20	6	6	180	20
Stopsign		NODE#	FROM ARC#	TO ARC#	ANGLE	TIME IMPEDANCE (seconds)
	0 20 7	20	6	7	0	15
		20	6	8	90	20
	9	20	6	9	-90	10
No Right Turn	8	NODE#	FROM ARC#	TO ARC#	ANGLE	TIME IMPEDANCE (seconds)
	6 20 7	20	6	9	-90	-1
		20	6	7	0	5
	9	20	6	8	90	10

IGC

Barrier Barrier Barriers Barrier represents certain limitations within the network. Different geometry types – point, line, polygon

Restrictions

(complete closures of the street/road segment),

Scaled cost (traffic lights, one way closure, traffic accident, traffic signs).

Horák a kol. 2015

Data for network analysis

ZABAGED, OpenStreetNet, JSDI

LGC

- StreetNet (CEDA) updated 2x year; seamless and fully routable road network supplemented by additional topographic layers and layers of administrative boundaries.
- Road DB its descriptive information (number, international number and class of the road, street name etc.), attributes describing technical and functional state of individual segments and basic attributes for movement on the network.

Street Net sample

Street Net selection of roads

Tab. 21: Číselník pro sloupec FC (Funkční kategorizace) (CEDA, 2014a)

Kód		Hodnota	
(0	dálnice	
	1	hlavní silnice (zejm. mezinárodně významné silnice evropské tahy E)	
	2	ostatní významné silnice	
	3	silnice regionálního významu	
	4	spojovací silnice lokálního významu	
	5	významné spojnice v rámci sídel	
	6	ostatní významné komunikace v rámci sídel	
	7	místní komunikace	
	8	účelové komunikace (lesní a polní cesty, chodníky pro pěší, stezky pro cyklis)	sty,

Obr. 155: Porovnání vrstvy

Real Time data for network analysis

• Rodos <u>http://rodos.vsb.cz/</u>

Dynamic Mobility Model (DMM) integrating the movement of persons, vehicles, and goods.

Detail view on Brno with traffic delays

GC

Brno

Algorithms for network operations

- Search procedure alternations no turning back, fewest number of nodes, minimum cost.
- A common question is "what is the shortest path?, - Dijkstra algorith, mathematically designed to find the lowest cost route between two locations when a measure of cost is attached to each link.
- Simplification one way, no loops.

Dijkstra algorithm I

Task: find the shortest path between an origin (A) and a destination (G). Trial and error method \bigcirc

IGC

Dijkstra algorithm II

 List all the nodes of the graph that link directly to the starting node and label each link with its cost value.

	Dist.	Parent	Incl.
А	0	-	Yes
В	3	А	No
С	2	А	No
D		-	No
Е		-	No
F		-	No
G		-	No

Dijkstra algorithm III

Find the node with the lowest link value and label the node with this value. This is the lowest cost path between the origin and this node.

	Dist.	Parent	Incl.
А	0	-	Yes
В	3	А	No
С	2	Α	Yes
D		-	No
Е		-	No
F		-	No
G		-	No

Dijkstra algorithm IV

Extend the search from this node. Brown and green lines.

	Dist.	Parent	Incl.
А	0	-	Yes
В	3 or 4	A or C	No
С	2	Α	Yes
D	3	С	No
Е		-	No
F	6	С	No
G		-	No

Dijkstra algorithm V

- Find the node with the lowest cumulative cost and label the node with this value.
- If there is more than one node that has been reached in the same cumulative cost so we label them both

	Dist.	Parent	Incl.
А	0	-	Yes
В	3	Α	Yes
С	2	Α	Yes
D	3	С	Yes
Е		-	No
F	6	С	No
G		-	No

Dijkstra algorithm VI

• Extend the search again. Add new linked nodes to the list of nodes and calculate the cumulative cost to each.

	Dist	Parent	Incl
A	0	-	Yes
В	3	Α	Yes
С	2	Α	Yes
D	3	С	Yes
Е	6	В	No
F	6	С	No
G	5 or 6	B or C	No

Dijkstra algorithm VII

the node with the lowest cumulative cost

Node **G** is reached from B which is reached from A i.e. shortest path = **A B G**.

Applications of network analysis

- Routing Finding shortest routes is probably the commonest routing problem to occupy GIS users.
 Finding the shortest route from A to B through a road network is crucial for emergency services, business journeys, or simply planning routes for holiday makers touring a region.
- Service area The objective is to create service areas around a centre and optimise the distribution of the resources based on the capacity of each facility.

Isochrones

15 – 60 min

IGC

Finding Service Areas Using ArcGIS Network Analyst

- Create Isochrone Maps How Far Can Firefighters Service?
- that each facility will have it's own service area or extent for how far firefighters can reach in a given amount of time (isochrone).
- different scenarios including setting up lengths and time.

What You Will Need

- Network Analyst Extension
- Road Network topologically correct.
- Facilities Layer (Fire stations, police stations, hospitals, etc)

Start new Service area

le

GC		
letwork Analyst Service Area		Right-Click
	-	
 ↔ Polygons (0) ↔ Lines (0) ↔ Point Barrier: ↔ Line Barriers ↔ Polygon Barri 	水 留 留 × ×	Cut Copy Paste Delete Delete All
	• • •	Selection Open Attribute Table Export Data Zoom To Layer Find Address
		Load Locations
	~	Recalculate Location Fields

Adding facilities

- Load facilities point data
- Visualize and check for errors
- Service Area
 Facilities
 Error
 Located
 Unlocated

Network Analyst	Ψ×
Service Area	~ 🔳 🔪
Facilities (30)	
Polygons (0)	Ser
	Pro
Point Barriers (0)	
Line Barriers (0)	
Polygon Barriers (0)	

Variables:

- Impedance
- Breaks (m, min)
- Direction

Line Gene	ration	Accur	nulation	1	letwork Locations
General	Layers	Source	Analysis Settin	ngs	Polygon Generation
Settings			Restrict	ions	
Impedance:	Leng	th (Meters)			
Default Breaks:	1000	0, 2500, 5000			
Use Time:					
Time of Day:	8 AM	1			
Day of We	ek: Toda	У	~		
O Specific Da	te: 2015	-11-22			
Direction:					
Away From	Facility				
O Towards Fa	cility				
U-Turns at Junctio	Allow	ed	~		
Use Hierarchy					
✓ Ignore Invalid	Locations				

V

About the service area analysis layer

I muse Departies

LG

Line Generation		Accum	ulation	Network Locations	
General	Layers	Source	Source Analysis Settings		
Generate Polyg	jons				
Polygon Type		Multiple Facilit	ies Options		
Generalize O Detailed	ed .	Overlapp Create po polygons r	ing lygons for each facility. 1 may overlap.	These	
Trim Polyg	jons:	O Not Over	lapping		
100		Allocate p	olygons to the closest fa	cility.	
Meters	~	O Merge by	break value		
meters		Join poly same bre	gons of multiple facilities ak values.	having the	
Excluded Sour	rces	Overlap Type			
TER CANMAP ROAD	Rings		-		
		Do not inc Create the consecutiv	lude the area of the sma e polygons going betwee ve breaks.	ller breaks.	
		() Disks		-	
		Create the break	ne polygons going from t c.	he facility to	

Line generation options – the use of linear referencign system.

and the second se				
Line Generation		ulation	Network Locations	
easures				
t Breaks				
work Source Field	s			
ins				
ng			_	
separate line fea bedance units of t	ature for each facilit the line.	ty within		
apping		•		
ach line at most o east impedance) f	once and associate i facility.	it with its		
	easures t Breaks vork Source Fields ins ing separate line fea bedance units of t lapping each line at most of east impedance)	easures t Breaks vork Source Fields ing is separate line feature for each facilit bedance units of the line. lapping each line at most once and associate is east impedance) facility.	easures t Breaks vork Source Fields ing is separate line feature for each facility within bedance units of the line.	

Generate the service area polygons and lines/road segments

Using bariers

Transportation of dangerous goods – case study (Leitgeb 2015)

- Goal: Minimise the potential impact on inhabitants during the transportation of dangerous substances (flammable, explosive...).
- ADR classification, Police and army internal legislation.

• Alternative criterion:

- Population concentration based on street/road segments;
- Buildings (POIs) with high concentration of inhabitants and sensitive objects.

Criterion 1 – street segments

Criterion 2 – sensitive objects and PoI

IGC

OPTIMALIZACE TRASY PŘEVOZU VÝBUŠNIN NA MODELOVÉM ÚZEMÍ ČESKOBUDĚJOVICKA

- A- shortest path
- **B** criterion 1
- C criterion 2