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A B S T R A C T

Adipose tissue and its secreted products, adipokines, have a major role in the development of
obesity-associated metabolic derangements including Type 2 diabetes. Conversely, obesity and
its metabolic sequelae may be counteracted by modulating metabolism and secretory functions
of adipose tissue. LC-PUFAs (long-chain polyunsaturated fatty acids) of the n−3 series, namely
DHA (docosahexaenoic acid; C22:6n−3) and EPA (eicosapentaenoic acid; C20:5n−3), exert numerous
beneficial effects, such as improvements in lipid metabolism and prevention of obesity and
diabetes, which partially result from the metabolic action of n−3 LC-PUFAs in adipose tissue.
Recent studies highlight the importance of mitochondria in adipose tissue for the maintenance
of systemic insulin sensitivity. For instance, both n−3 LC-PUFAs and the antidiabetic drugs TZDs
(thiazolidinediones) induce mitochondrial biogenesis and β-oxidation. The activation of this
‘metabolic switch’ in adipocytes leads to a decrease in adiposity. Both n−3 LC-PUFAs and TZDs
ameliorate a low-grade inflammation of adipose tissue associated with obesity and induce changes
in the pattern of secreted adipokines, resulting in improved systemic insulin sensitivity. In contrast
with TZDs, which act as agonists of PPARγ (peroxisome-proliferator-activated receptor-γ ) and
promote differentiation of adipocytes and adipose tissue growth, n−3 LC-PUFAs affect fat cells by
different mechanisms, including the transcription factors PPARα and PPARδ. Some of the effects of
n−3 LC-PUFAs on adipose tissue depend on their active metabolites, especially eicosanoids. Thus
treatments affecting adipose tissue by multiple mechanisms, such as combining n−3 LC-PUFAs
with either caloric restriction or antidiabetic/anti-obesity drugs, should be explored.

INTRODUCTION

Obesity represents an increasing problem of health
care. Obesity leads to various chronic morbidities, in-
cluding Type 2 diabetes, dyslipidaemia and hypertension,

i.e. major components of the MS (metabolic syndrome).
The strongest correlation exists between accumulation of
body fat and diabetes [1,2]. This suggests the importance
of AT (adipose tissue) metabolism and AT-derived
factors (fatty acids and adipokines) in the development
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Abbreviations: ALA, α-linolenic acid; AMPK, AMP-activated protein kinase; AT, adipose tissue; BAT, brown AT; CB1 receptor,
cannabinoid type 1 receptor; COX, cyclo-oxygenase; CPT-1, carnitine palmitoyltransferase-1; DHA, docosahexaenoic acid;
EPA, eicosapentaenoic acid; GLUT-4, glucose transporter-4; HF, high-fat; IL, interleukin; LC, long-chain; MCP-1, monocyte
chemoattractant protein-1; MS, metabolic syndrome; NEFA, non-esterified fatty acid; NRF-1, nuclear respiratory factor-1;
POP, persistent organic pollutant; PPAR, peroxisome-proliferator-activated receptor; PGC-1α, PPARγ coactivator-1α; PLA2,
phospholipase A2; PUFA, polyunsaturated fatty acid; SCD-1, stearoyl-CoA desaturase-1; SREBP-1, sterol-regulatory-element-
binding protein-1; TNF-α, tumour necrosis factor-α; TZD, thiazolidinedione; UCP, uncoupling protein; aP2-Ucp1 transgenic mice,
mice harbouring ectopic expression of UCP-1 in WAT (white AT).
Correspondence: Dr Jan Kopecky (email kopecky@biomed.cas.cz).

C© The Authors Journal compilation C© 2009 Biochemical Society

www.clinsci.org

C
lin

ic
al

 S
ci

en
ce



2 P. Flachs and others

Table 1 Nomenclature of n−3 LC-PUFAs
Adapted from Table 1.1 in [175].

Name Abbreviation

Trivial Chemical Carboxyl reference Omega reference Other

Linolenic acid 9,12,15-Octadecenoic acid C18:3(�9,12,15) C18:3n−3 or C18:3(ω3) ALA
Eicosapentaenoic acid, icosapentaenoic acid or timnodonic acid 5,8,11,14,17-Eicosapentaenoic acid C20:5(�5,8,11,14,17) C20:5n−3 or C20:5(ω3) EPA
Docosahexaenoic acid 4,8,12,15,19-Docosahexaenoic acid C22:6(�4,8,12,15,19) C22:6n−3 or C22:6(ω3) DHA

Table 2 Beneficial effects of n−3 LC-PUFAs in the prevention and reversal of components of the MS
∗In adult humans. HDL, high-density lipoprotein; LDL, low-density lipoprotein; CVD, cardiovascular disease; ICHS, ischaemic coronary heart disease.

Effective dose of EPA
Aberration Effect of n−3 LC-PUFA and DHA (g/day)∗ Reference

Obesity Well-documented anti-obesity effects in animal studies − [7,24,29,115,130,161]
Moderate body-fat-lowering effects in small cohorts of human subjects 2–3 [22,23,162]

Dyslipidaemia Reductions in plasma triacyglycerols by 20–30 % in most animal and
human studies

1–4 [163,164]

Improvements in plasma lipoprotein profile, namely increases in
HDL-cholesterol and decreases in LDL-cholesterol in some studies

1.5–4 [165,166]

CVD Lower incidence of ICHS in large epidemiological and prospective
studies; anti-arrhythmic effects

0.2–1 [167,168]

Secondary prevention of ICHS and CVD mortality 0.5–1.8 [167–169]
Blood-pressure-lowering effect 3–6 [169]
Slower progression of atherosclerosis 1.5–5 [169]

Insulin resistance Prevention of diet-induced insulin resistance in animal studies − [9,18,19,138,170–174]
Improvements of insulin sensitivity and glucose homoeostasis in healthy

individuals
2 [21]

Type 2 diabetes Without consistent effects − Reviewed in [164,166]

of systemic insulin resistance, the key event in the patho-
physiology of the MS [1,2]. Insulin resistance most
probably results from increased accumulation of lipids
in the peripheral tissues (lipotoxicity) due to enhanced
release of fatty acids from hypertrophic fat cells.

Increased physical activity and dietary manipulation in
patients with impaired glucose tolerance has been shown
to lower the incidence of Type 2 diabetes by 60 % [3,4].
The quality of dietary lipids is important, in particular the
LC-PUFAs (long-chain polyunsaturated fatty acids) of
the n−3 (omega-3) series DHA (docosahexaenoic acid;
C22:6n−3) and EPA (eicosapentaenoic acid; C20:5n−3; for
nomenclature of n−3 PUFAs, see Table 1), which are
abundant in sea fish, lower triacylglycerols (triglyce-
rides) while increasing HDL (high-density lipoprotein)-
cholesterol levels in plasma, prevent the development of
heart disease and exert anti-inflammatory properties in
humans (reviewed in [5], and see Table 2). Studies in rats
and mice fed an HF (high-fat) or lipogenic sucrose-rich
diet report a counteraction of the development of both
obesity and insulin resistance by n−3 LC-PUFAs.
Several studies have demonstrated a decrease in adiposity
in obese humans and improved glucose metabolism in

healthy lean individuals after n−3 LC-PUFA supple-
mentation. However, the findings on the reversal
of already established insulin resistance and obesity
by n−3 LC-PUFAs are ambiguous (see Table 2 for
references). Conflicting results concerning the reversal
of established insulin resistance were also obtained using
laboratory mice [6,7] and rats [8–11]. The reason for
poor effectiveness of n−3 LC-PUFA administration
in the reversal of insulin resistance remains to be
established. However, n−3 LC-PUFAs decreased plasma
triacylglycerol levels without adverse side-effects even
in patients with diabetes [12,13].

The high potency of n−3 LC-PUFAs to regulate
metabolism may reflect the formation of their metabolites
acting as signalling molecules. The effects of n−3 LC-
PUFAs also depend on the ratio of dietary n−6 (omega-6)
to n−3 PUFAs, which was lower in the diet of ancient
hunter-gatherers compared with that of modern humans
and is still increasing in affluent societies [14,15]. It is also
important to discriminate between the n−3 LC-PUFAs
DHA and EPA and their precursor ALA (α-linolenic
acid; C18:3n−3), as n−3 LC-PUFAs usually exert much
stronger effects.
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The metabolic effects of n−3 LC-PUFAs primarily
result from their interactions with several organ systems.
The liver is involved in (i) the hypolipidaemic effect,
due to a decrease in lipogenesis, lower formation of
triacylglycerols, and their lower release as VLDLs
(very-low-density lipoproteins) into circulation, and the
increase in fatty acid oxidation in situ [9,16,17]; and
(ii) the prevention of glucose intolerance in animals fed
an HF diet, due to the suppression of gluconeogenesis
by n−3 LC-PUFAs. EPA, but not DHA, is probably the
main hypolipidaemic constituent of fish oils, due to its
stimulatory effect on mitochondrial fatty acid oxidation
in the liver [17]. The skeletal muscle, quantitatively the
most important site of whole-body glucose utilization,
is involved in the insulin-sensitizing effect of n−3 LC-
PUFAs, due to its increased glucose uptake and utiliza-
tion (reviewed in [9]). The prevention of triacylglycerol
accumulation in non-ATs represents a common feature of
n−3 LC-PUFA feeding in all animal models of obesity
and insulin resistance [18,19]. These fatty acids probably
induce a switch in substrate metabolism, namely an
increase in whole-body fat oxidation and a decrease in
carbohydrate oxidation [20–23]. n−3 LC-PUFAs affect
the development of AT, as well as its metabolism and
secretory functions. Recent studies document the major
role of AT in the development of the MS and suggest the
possibility of ameliorating obesity and its metabolic con-
sequences by modulating the metabolism and secretory
functions of AT. Therefore the aim of the present review
is to summarize the effects of n−3 LC-PUFAs mainly
on AT as a basis for understanding better the mechanism
of action of n−3 LC-PUFAs, and to promote the use of
n−3 LC-PUFAs in the prevention and treatment
of the MS.

METABOLISM AND BIOLOGICAL EFFECTS OF
n−3 PUFAs

Fatty acid metabolism and formation of
their active metabolites
Animals and humans cannot synthesize PUFAs of the
n−6 and n−3 series, which contain double bonds at
C-6 and C-3 respectively, from the methyl end of the
molecule. The most plentiful source of n−3 LC-PUFAs
is marine phytoplankton, a fundamental component of
the marine food chain. Precursors for the synthesis of LC-
PUFAs of the n−6 and n−3 series in mammals are lino-
leic acid (C18:2n−6) and ALA respectively. Although
linoleic acid and ALA give rise to different metabolites,
the enzymes involved in their metabolism are the
same. Linoleic acid and ALA compete for the enzyme
�6 desaturase, which is required for their further meta-
bolism. Excessive amounts of linoleic acid slows down the
formation of EPA and DHA. Even without this inhibit-
ory effect, the synthesis of EPA and DHA from ALA is

fairly inefficient. Therefore increased intake of EPA and
DHA results in better effects, even if the content of ALA
in the diet is high [24]. When EPA is supplemented in the
diet of humans, there is an increase in EPA, but no change
in DHA, in plasma phospholipids [25].

PUFAs represent the fundamental components of
phospholipids in cellular membranes. PUFAs are usually
located in the sn-2 position, whereas saturated or mono-
unsaturated fatty acids are usually bound in the sn-1
position of the phospholipid molecules. Fatty acids integ-
rated in these positions reflect the composition of dietary
fat. In humans, it may take 4–6 months after the start of
DHA supplementation to reach steady-state levels
of DHA in the membranes and achieve a full biological
effect [12,26]. Many effects of LC-PUFAs depend on
the formation of their active metabolites, eicosanoids
and other lipid mediators. These molecules are formed
after the release of LC-PUFAs from phospholipids by
PLA2 (phospholipase A2) and act in both autocrine and
paracrine manners (Figure 1). They are usually poorly
stable and act very rapidly through the use of approx. ten
different receptors in immunocompetent cells, platelets,
smooth muscle, AT and other tissues (see below).
Reasonably often, mediators from the same group have
different tissue-dependent biological effects. Synthesis of
prostaglandins and thromboxanes depend mostly on the
activity of type 1 and 2 COXs (cyclo-oxygenases), for
which arachidonic acid (C20:4n−6) is a ‘better’ substrate
than EPA, and on the activity of lipoxygenase, whose
preferences for arachidonic acid and EPA are opposite
compared with COXs [27]. Arachidonic acid and
EPA compete for COXs, and both EPA and DHA dir-
ectly inhibit the activity of this enzyme (Figure 1). A
relatively small increase in the n−3 LC-PUFA content
significantly slows down the synthesis of eicosanoids
from arachidonic acid. Eicosanoids derived from n−3
LC-PUFAs have, in general, anti-inflammatory effects,
whereas the equivalent eicosanoids derived from n−6
PUFAs promote inflammation [28]. Moreover, novel
families of lipid mediators derived from EPA and
DHA, the resolvins and protectins, are potent locally
acting agents in the processes of acute inflammation
and its resolution. They possess anti-inflammatory
pro-resolving effects, as well as providing protection
against tissue damage [29].

Probably through the action of these lipid metabolites,
n−3 LC-PUFAs decrease inflammation, including a
low-grade inflammatory response of AT in obesity ([30],
and Z. Jilkova, P. Flachs and S. Cinti, unpublished work).

Intracellular regulatory mechanisms
affected by n−3 LC-PUFAs
The metabolic effects of n−3 LC-PUFAs are largely
mediated by PPAR (peroxisome-proliferator-activated
receptor) transcription factors, with PPARα and PPARδ

(PPARβ) being responsible for the lipid-catabolizing

C© The Authors Journal compilation C© 2009 Biochemical Society



4 P. Flachs and others

Figure 1 Formation of active metabolites from LC-PUFAs
LC-PUFAs bound to membrane phospholipids at the sn-2 position are released by PLA2 in response to various physiological and pathophysiological stimuli. The released
LC-PUFAs are used as substrates for the production of active lipid metabolites acting extracellulary, primarily through G-protein-coupled receptors.

effects of n−3 LC-PUFAs. Other transcription factors
involved include LXR-α (liver X receptor-α), HNF-4
(hepatic nuclear factor-4) and SREBP-1 (sterol-
regulatory-element-binding protein-1) (reviewed in
[16]). PUFAs, including DHA, can also function as endo-
genous ligands of RXR-α (retinoid X receptor-α) while
affecting lipid metabolism [31]. Besides acting directly,
most of the effects of n−3 LC-PUFAs are mediated
indirectly through their active metabolites (see above).

Part of the metabolic effects on n−3 LC-PUFAs in the
liver [32], and possibly also in other tissues, is mediated
by the stimulation of AMPK (AMP-activated protein
kinase; [33]), a metabolic sensor controlling intracellular
metabolic fluxes, namely the partitioning between lipid
oxidation and lipogenesis. Phosphorylation of acetyl-
CoA carboxylase by AMPK leads to an inhibition of
enzyme activity, resulting in a decrease in malonyl-CoA
content. Malonyl-CoA is the key lipogenic intermedi-
ate, which also inhibits mitochondrial CPT-1 (carnitine
palmitoyltransferase-1). Thus AMPK inhibits lipogenesis
while stimulating β-oxidation. Moreover, AMPK inhibits
gluconeogenesis in the liver and stimulates glucose
transport in skeletal muscle. In muscle cells, AMPK is
activated by physical activity. Therefore AMPK stimul-
ates the influx of glucose into muscle cells independently
of insulin [33,34]. AMPK also induces mitochondrial
biogenesis through the activation of NRF-1 (nuclear
respiratory factor-1) [35] and the upstream regulatory
factor PGC-1α (PPARγ coactivator-1α). This factor

links nuclear receptors to the transcriptional programme
of mitochondrial biogenesis and oxidative metabolism
in both adipocytes and muscle cells [36–38] and to the
gluconeogenic programme in the liver [39]. AMPK
activation in adipocytes results in the inhibition of fatty
acid synthesis and lipolysis [40–43], stimulation of
glucose uptake [44] and down-regulation of PPARγ [45].
The physiological role of AMPK in AT remains relatively
unexplored (reviewed in [46], and see below). AMPK
in the liver is stimulated by metformin [47], a widely
used antidiabetic agent. In addition, TZDs (thiazol-
idinediones), increasingly used for the treatment of
patients with diabetes, may stimulate AMPK activity in
many tissues, including WAT (white AT) [48], rapidly and
independently of PPARγ -mediated gene transcription
[49]. The activity of the AMPK regulatory cascade is
also modulated by some adipokines: both leptin [50]
and adiponectin [51] stimulate AMPK, whereas resistin
has the opposite effect [52]. Thus AMPK represents an
outstanding therapeutic target and may also be important
for the mechanism of action of n−3 LC-PUFAs in AT.

Several studies have indicated the involvement of
SCD-1 (stearoyl-CoA desaturase-1) in the metabolic
effects of PUFAs in the liver and skeletal muscle, where
PUFAs down-regulate the SCD-1 gene [24]. SCD-1 is
a central lipogenic enzyme, catalysing the synthesis of
mono-unsaturated fatty acids both in the liver [53,54]
and skeletal muscle [55]. Using multiple mechanisms,
involving the activation of AMPK and suppression
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of acetyl-CoA carboxylase activity, down-regulation of
SCD-1 results in increased β-oxidation, enhanced
thermogenesis and obesity resistance [54–57]. As SCD-1
is also involved in the formation of ceramides, its
down-regulation in skeletal muscle may improve insulin
sensitivity [55]. In our experiments, SCD-1 expression
was down-regulated by dietary n−3 LC-PUFAs in
several tissues of mice fed an HF diet, including liver,
AT [24] and skeletal muscle (P. Flachs and M. Hensler,
unpublished work).

Studies suggest that cannabinoids directly influence
both the central nervous system and peripheral tissues,
including AT, in which the CB1 receptor (cannabinoid
type 1 receptor) is expressed, and that CB1-receptor-
knockout mice are resistant to obesity (reviewed in [58]).
By analogy to their effects in the brain [59], dietary
n−3 LC-PUFAs might affect metabolism of peripheral
tissues by modulating the formation of the endogenous
ligand for the CB1 receptor.

ADIPOSE TISSUE

Biology and secretory functions
Two types of AT found in mammalian organisms, BAT
(brown AT) and WAT, differ with respect to their
physiological functions, morphology, metabolism and
development during ontogeny. BAT is an organ of
regulatory non-shivering thermogenesis, mediated by
UCP-1 (uncoupling protein-1) in mitochondria, which
are abundant in multilocular brown adipocytes [60]. In
contrast, large unilocular adipocytes of WAT, filled with
triacylglycerols and equipped with a small cytosolic
compartment, serve as an energy storage device. During
the perinatal period, dynamic recruitment of both BAT
and WAT occurs, with important differences among
species. Humans are born with substantial amounts of
both tissues, with BAT and WAT developing during the
last trimester of gestation [61,62]. The amount of BAT
declines sharply during the early postnatal period, but it
may exist even in the elderly as brown adipocytes inter-
spersed in WAT [63]. Large changes in WAT size
and cellularity in response to changes in energy balance
represent the typical features of this organ. Both abnorm-
ally low or excessively high content of WAT leads to
adverse metabolic consequences at the systemic level.

The systemic effects of WAT reflect its ability to
function as an endocrine organ, integrating hormonal
signals from different parts of the body in response to
changes in energy balance and secreting a large number (at
least 60–70) of various adipokines acting both at the local
(autocrine/paracrine) and systemic (endocrine) level.
Through the secretion of adipokines, WAT is involved in
the control of energy balance, body temperature, immune
response, blood clotting, bone mass, and thyroid and
reproductive functions, as well as some other functions.

Several adipokines, namely leptin, adiponectin, omentin
and visfatin, also exert antidiabetic effects [64–66]. In the
peripheral tissues, both leptin [50] and adiponectin [51,67]
stimulate AMPK. Part of the metabolic effects of leptin is
also attributable to a specific repression of mRNA levels
and enzyme activity of SCD-1 (see above). By promoting
oxidation of fatty acids in peripheral tissues, leptin and
adiponectin protect tissues against the lipotoxic damage,
thus permitting a harmless storage of body fat. Obesity is
frequently associated with leptin resistance and increased
leptinaemia [68,69], while adiponectin concentrations
are decreased and closely related to insulin resistance
[70]. Moreover, hypertrophic AT secretes various pro-
inflammatory cytokines, including TNF-α (tumour
necrosis factor-α), IL (interleukin)-6, IL-1 and MCP-1
(monocyte chemoattractant protein-1), and also mediat-
ors of the clotting processes, such as PAI-1 (plasminogen
activator inhibitor-1) and certain complement factors (for
review, see [65]). In fact, systemic low-grade inflamma-
tion has been proposed to have an important role in the
pathogenesis of obesity-related insulin resistance [71,72].
Studies suggest that (i) TLR4 (Toll-like receptor 4), one of
the receptors playing a critical role in the innate immune
system, is involved in the activation of the inflammatory
pathways in AT by high levels of NEFAs (non-esterified
fatty acids) in an obese state [73]; and (ii) AT in lean in-
dividuals contains macrophages in an M2-polarized state
that may protect adipocytes from inflammation, whereas
obesity leads to increased accumulation of macrophages
in AT and a shift in the activation state of the macro-
phages to M1-state, which is inflammatory and contri-
butes to insulin resistance [74,75]. Thus AT of obese
individuals contains a large number of macrophages
that represent an additional source of pro-inflammatory
cytokines [76,77], including TNF-α and other insulin-
resistance-promoting adipokines [78,79]. MCP-1 has
been identified as a potential factor contributing to
macrophage infiltration in AT [80]. Importantly, part
of the anti-inflammatory effects of TZDs could result
from the activation of M2 macrophages, at least in peri-
pheral blood [81]. This mechanism might also be import-
ant for the suppression of a low-grade inflammation in
AT [65,78].

AT as a target for the treatment of the MS
Obesity and Type 2 diabetes are associated with insulin
resistance, the underlying feature of all components
of the MS [1,2]. Surprisingly, despite only a minimal
contribution of AT to the whole-body glucose uptake,
impairment of glucose transport in adipocytes results in
insulin resistance in skeletal muscle and liver [82]. Hyper-
trophied adipocytes, especially from the intra-abdominal
fat depot, are resistant to the antilipolytic effect of insulin
[83]. Insulin-resistant adipocytes are also inefficient with
regard to the storage of meal-derived NEFAs during post-
prandial periods [84]. Insufficient ‘buffering’ capacity of
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adipocytes would lead to ectopic lipid deposition in non-
ATs, such as skeletal muscle, resulting in decreased insulin
sensitivity [85,86]. The critical role of AT as a metabolic
sink for excess NEFAs, which secures normal insulin
sensitivity, has been demonstrated further by either trans-
genic mouse models of lipodystrophy [87] or in genetic-
ally obese ob/ob mice overexpressing adiponectin [88].

A recent hypothesis suggests that the number and
activity of mitochondria within adipocytes contribute
to the threshold at which fatty acids are released into
the circulation, leading to insulin resistance and Type 2
diabetes [89]. Mitochondrial content was decreased in AT
of genetically obese mice [90], whereas this defect was
normalized by the treatment with TZDs [91]. A recent
study suggests an inverse correlation between mitochon-
drial oxidative capacity and in situ lipogenesis in human
WAT and the importance of this link for local control
of adiposity in fat depots [92]. In fact, our previous
studies indicated that the ‘metabolic switch’, brought
about by the expression of transgenic UCP-1 specifically
in WAT of aP2-Ucp1 transgenic mice, rendered these
animals resistant to obesity and glucose intolerance
[93,94]. Systematic phenotypic characterization revealed
(reviewed in [95]) that the beneficial effect of respiratory
uncoupling resulted from a sequence of related events
in adipocytes: (i) increased mitochondrial biogenesis
[96]; (ii) elevated activity of lipoprotein lipase [97,98];
(iii) induction of fatty acid oxidation and decreased
lipogenesis [99]; (iv) lower release of fatty acids into the
systemic circulation [98,100]; and (v) lower accumulation
of lipids in the liver and skeletal muscle of the transgenic
mice (M. Rossmeisl and M. Hensler, unpublished work).
We have demonstrated that a key regulatory event sti-
mulated by respiratory uncoupling in adipocytes of
transgenic aP2-Ucp1 mice was the induction of AMPK
[101]. Possible involvement of AMPK in the ‘metabolic
switch’ in adipocytes is supported further by the fact
that some treatment strategies, including TZDs, adipo-
kines, such as leptin and adiponectin (see above), as
well as starvation [102] and physical activity [103],
improve various metabolic parameters while activating
AT AMPK. Thus AMPK in WAT could be involved in
the control of whole-body lipid metabolism, adiposity
and insulin sensitivity. Similar to the effect of ectopic
UCP-1 in WAT, substances such as leptin [104,105], β3-
adrenergic agonists [106] and bezafibrate [107] are capable
of converting adipocytes into fat-burning cells and
reducing accumulation of body fat in rodents [104,107].
A similar effect was also observed in our experiments
with n−3 LC-PUFAs, even without induction of UCPs
in adipocytes ([24]; and see below), and could be possibly
caused by a reduction in CB1 receptor signalling in WAT
([58,59]; see above).

The findings mentioned above, as well as other
evidence (reviewed in [108]), strongly support the notion
that energy metabolism of WAT and its secretory

functions are central to the pathophysiology of the MS.
Therefore AT represents a suitable target for the preven-
tion and treatment of the MS.

ADIPOSE TISSUE AS A TARGET FOR n−3
LC-PUFAs

Accumulation and storage of
n−3 LC-PUFAs in WAT
WAT represents an important player involved in the effect
of PUFAs, due to its storage capacity for triacylglycerols,
the most concentrated form of fatty acids including
PUFAs. In this respect, AT of nursing mothers serves
as a buffer for n−3 LC-PUFAs, thus preventing large
fluctuations in their concentration in breast milk [109]. In
addition, in adults, WAT represents the main storage site
of PUFAs, including n−3 LC-PUFAs, as it represents
approx. 15–25 % of body weight in lean individuals (this
percentage can increase by more than 50 % in cases of
morbidly obese patients), whereas approx. 70 % of AT
mass is formed by lipids [110]. Similar to liver and skeletal
muscle, the fatty acid composition in AT triacylglycerols
approximately corresponds to the composition of fatty
acids in the diet [111]. Importantly, in addition to the
storage of DHA in AT, a substantial portion of DHA
is contained in brain phospholipids. DHA constitutes
almost 17 % of the total fatty acids in the brain [112].

AT is also a major reservoir for many different
lipophilic contaminants [110]. Most of them are POPs
(persistent organic pollutants), such as polychlorinated
biphenyls, dioxins and hexachlorobenzenes (reviewed
in [113]), which are also accumulated in higher trophic
levels of the food chain. Thus food, especially fatty fish,
meat and milk products, is the main source of human
exposure to POPs. In particular, pregnant women must
be advised to choose contaminant-free sea food. On
the other hand, their daily intake of n−3 LC-PUFAs
should be similar to the rest of the population [for
the recommendations concerning dietary intake of
n−3 LC-PUFAs in different countries, see the ISSFAL
(International Society for the Study of Fatty Acids and
Lipids) website at http://www.issfal.org.uk/]. Thus fish
oil concentrates, in which environmental pollutants have
been removed during their manufacturing, represent a
suitable alternative for individuals who could benefit
from an increased intake of n−3 LC-PUFAs.

Prevention of AT growth and proliferation
of adipocytes by n−3 LC-PUFAs
AT mass can increase either by hypertrophy or hyper-
plasia of fat cells. During differentiation, pluripotent stem
cell precursors give rise to multipotent mesenchymal
precursor cells, preadipocytes and differentiated mature
adipocytes [114]. The key role in the differentiation
process is played by transcription factors from the PPAR
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(see below) and C/EBP (CCAAT/enhancer-binding
protein) families [114]. Our results, obtained in adult
C57BL/6 mice fed an HF diet (corn oil as a major lipid
component), have demonstrated that substitution of only
9 % of dietary lipids in the HF diet by EPA/DHA (i.e.
the replacement of 15 % of the lipids by the EPA/DHA
concentrate EPAX 1050 TG) prevented fat accumulation
with a preferential reduction in abdominal fat depots
[24,115]. Using n−3 LC-PUFA concentrates which
differed in the EPA to DHA ratio (EPAX 1050 TG and
EPAX 4510 TG respectively), we have shown that the
protective effect of n−3 LC-PUFAs on AT accumulation
was stronger in the case of DHA compared with EPA
and resulted, in part, from the inhibition of fat cell
proliferation [115]. In experiments using cell cultures,
DHA inhibited adipocyte differentiation and induced
apoptosis in post-confluent preadipocytes [116]. DHA
also induces apoptosis in several models of cancer
[117].

The effects of n−3 LC-PUFAs on proliferation and
maturation of adipose cells may be caused by altering
phospholipid composition of the cellular membrane with
consequent changes in eicosanoid biosynthesis (Figure 2).
Preadipocytes, as well as adipocytes, produce signific-
ant amounts of prostaglandins (PGE2, PGF2α and
PGD2) and prostacyclins (PGI2), i.e. eicosanoids of the
‘2-series’ derived from arachidonic acid (see Figure 1).
Feeding diets rich in n−3 PUFAs results in a decreased
arachidonic acid content in membrane phospholipids of
AT [118], while slowing down the synthesis of eicos-
anoids. For instance, decreased formation of PGD2 and its
15-deoxy-J2 derivate, known PPARγ ligands and indu-
cers of adipogenesis [114], would be compatible with
the effect of DHA on the differentiation of adipocytes
in vitro (see above). PGI2 released by differentiated
adipocytes is able to induce preadipocytes to differentiate
[119]. In vivo, this paracrine effect may represent a crucial
signal in the hyperplastic development of AT known
to occur once adipocytes reach their maximal size
[114].

The antiproliferative effect of n−3 LC-PUFAs may
be involved in the decreased adiposity of pups born to
rat or mouse dams that were fed diets supplemented by
n−3 LC PUFAs [120] or ALA [15] during gestation and
suckling. It has been hypothesized that LC-PUFAs are
also involved in the anti-obesity [121] and antidiabetic
effects [122] of breastfeeding. A relatively high intake of
n−6 compared with n−3 PUFAs during the pregnancy,
suckling period and early infancy could lead to childhood
obesity. This may be of particular importance for modern
human society facing an increased dietary n−6/n−3
PUFA ratio [14,15,120]. However, presumptions about
the role of the dietary n−6/n−3 PUFA ratio in deter-
mining AT development are derived exclusively from
experiments in mice [15], and further studies are required
before a definite conclusion can be made [123].

Modulation of AT metabolism by
n−3 LC-PUFAs

EPA, DHA and some eicosanoids modulate gene
expression through a variety of transcription factors and
their effects are tissue-specific (see above and Figure 2).
One of the important targets, PPARγ , binds not only
lipid molecules, but also TZDs [85,124,125]. After ligand
binding, PPARγ stimulates expression of genes engaged
in differentiation of fat cells, namely genes encoding fatty
acid transporters and lipogenic genes. In addition, other
members of the PPAR family, PPARα and PPARδ, can
be activated in adipocytes, resulting in the stimulation
of fatty acid oxidation in mitochondria and peroxisomes
[16,126]. The AMPK and SCD-1 regulatory cascades
may be also involved in the effects of n−3 LC-PUFAs
on AT metabolism (see above). Our experiments in mice
have shown a marked down-regulation of the Scd-1 gene
in WAT by n−3 LC-PUFAs admixed to an HF diet [24],
suggesting the involvement of SCD-1 in the induction of
lipid catabolism in AT (see below).

We have found [24] that a more pronounced effect of
n−3 LC-PUFAs in the prevention of obesity induced
by an HF diet in mice, as compared with their precursor
ALA, may be mediated by the induction of mitochondria
in WAT. The replacement of 15 % of the dietary lipids in
the HF diet with an EPA/DHA concentrate (6 % EPA
and 51 % DHA; EPAX 1050 TG) resulted in the up-
regulation of genes for mitochondrial proteins predo-
minantly in epididymal fat [24]. The effect of EPA/DHA
in abdominal fat was associated with a 3-fold increase in
the expression of genes for regulatory factors for mito-
chondrial biogenesis and oxidative metabolism, namely
PGC-1α and NRF-1 respectively. In contrast with WAT,
no changes in the expression of mitochondrial genes
were observed in either the liver [24] or skeletal muscle
(P. Flachs, M. Hensler and J. Kopecky, unpublished
work). The expression of genes for CPT-1 and fatty
acid oxidation were increased in epididymal, but not in
subcutaneous, fat. In the former fat depot, palmitate oxid-
ation was increased, whereas lipogenesis was depressed.
Moreover, gene expression of PGC-1α and NRF-1 were
also stimulated by n−3 LC-PUFAs in 3T3-L1 adipo-
cytes differentiated in cell culture [24]. Surprisingly, no
induction of UCP-1 by dietary n−3 LC-PUFAs was
detected either in BAT or WAT, and no increase of UCP-
2 expression in WAT was observed [24]. Thus the anti-
obesity effect of n−3 LC-PUFAs may result, at least
in part, from increased lipid catabolism and depression
of lipogenesis in adipocytes, independent of respiratory
uncoupling (Figure 2). Similar metabolic changes in
AT (‘metabolic switch’), such as the up-regulation of
genes for CPT-1 [105,107] and PGC-1α [104], could
be also induced by other treatments, including leptin,
together with the activation of AMPK in adipocytes
(see above). In addition, CNTF (ciliary neurotrophic
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Figure 2 Effects of n−3 LC-PUFAs in adipocytes
Overview of the actions of n−3 LC-PUFAs on gene expression, lipid metabolism and secretory function of adipocytes. ACC, acetyl-CoA carboxylase; FA, fatty acids; LPL,
lipoprotein lipase; OXPHOS, oxidative phosphorylation; TAG, triacylglycerol.

factor) reversed obesity in mice by re-programming AT to
promote mitochondrial biogenesis, enhancing oxidative
capacity and reducing lipogenic capacity while increasing
lipid oxidation and AMPK activity in adipocytes [127].
Whether AMPK is involved also in the effect of n−3
LC-PUFAs in WAT remains to be established (Figure 2).
A combined treatment by the EPA/DHA concentrate
(EPAX 1050 TG) admixed to the HF diet and mild caloric
restriction has been suggested to exert additivity both in
the reduction of adiposity and in the stimulation of mito-
chondrial biogenesis in AT (P. Flachs, unpublished work).
Caloric restriction has been shown previously to induce
mitochondrial biogenesis in several tissues via the activ-
ation of the NO signalling pathway [128]. Production of
NO in WAT, namely in the endothelial cells of its blood
vessels, could be stimulated by adiponectin (see [129] and
below).

In accordance with the increased catabolism of fatty
acids in adipocytes, basal lipolysis, which is significantly
increased in obese and insulin-resistant rats fed a sucrose-
rich diet, was also normalized by n−3 LC-PUFAs
admixed with the diet [9]. This effect probably depends
on improved insulin sensitivity of AT and restoration
of the antilipolytic effect of insulin. In contrast with
the effect of DHA in obese animals, DHA promoted
lipolysis in adipocytes differentiated in cell culture [116].
This paradoxical in vitro effect could be explained by
the suppressed formation of PGE2 in the presence of
DHA [118], as PGE2 negatively modulates lipolysis via
its specific receptor EP4 [27]. It has also been shown that
n−3 LC-PUFAs decreased the activity of lipoprotein
lipase in abdominal AT of rats while ameliorating obesity
induced by a high-carbohydrate diet [9], in accordance
with reduced lipoprotein lipase gene expression in
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response to n−3 LC-PUFA in rats fed an HF diet [130].
Therefore increased fatty acid oxidation in fat cells due
to n−3 LC-PUFA feeding possibly contributes to their
anti-obesity effect and to the shrinkage of adipocytes,
but it is not associated with increased fatty acid uptake
into AT. These experiments suggest that decreased lipo-
genesis and increased lipid oxidation in the liver and
skeletal muscle, rather than increased uptake of fatty acids
in AT, are of primary importance in the hypolipidaemic
effect of n−3 LC-PUFAs [9,16].

The induction of mitochondrial biogenesis in murine
AT by n−3 LC-PUFAs was detected in mature adipo-
cytes, released from AT by collagenase digestion [24], and
was associated with the up-regulation of PPARγ in these
cells (P. Flachs, unpublished work). In addition, TZDs
stimulate the formation of mitochondria in AT [91,131].
However, in contrast with EPA/DHA, TZDs induce AT
growth, especially in the abdomen [132,133], indicating
multiple and distinct mechanisms of action in the effects
of n−3 LC-PUFAs and TZDs. Treatment with n−3 LC-
PUFAs or the TZD rosiglitazone [30,115,134] resulted in
a significant decrease in the size of mature adipocytes
in epididymal fat compared with those in the control
HF-fed animals, and this effect was enhanced further by
the combination treatment with n−3 LC-PUFAs and
rosiglitazone (O. Kuda, T. Jelenik, M. Rossmeisl and J.
Kopecky, unpublished work). Even in human subjects
with diabetes, n−3 LC-PUFAs decreased the size of
fat cells [135]. The formation of small adipocytes may
result from proliferation of preadipocytes [30,115,134]
and/or from shrinkage of existing mature adipocytes
due to catabolism of their triacylglycerol stores
[16,24,91,136]. Small adipocytes could be involved in the
antidiabetic action of the above treatments. Compared
with large adipocytes, small cells are more insulin-
sensitive and less lipolytic, release less inflammatory cyto-
kines (reviewed in [133]) and secrete more adiponectin
[137]. The small cells could also serve as a ‘buffer’ for
lipids and protect tissues against lipotoxicity (see above,
and [85,86]). In fat cells, n−3 LC-PUFAs also affect the
expression of the GLUT-4 (glucose transporter-4) gene
[115] and, hence, could influence glucose uptake into
the cells [9]. In rodents, both the expression of GLUT-4
and glucose uptake in adipocytes is inhibited by an HF
diet in parallel with the induction of insulin resistance.
Admixing EPA/DHA to the HF diet protected animals
against the down-regulation of GLUT-4 [19].

Modulation of secretion of adipokines by
n−3 LC-PUFAs
That adiponectin may be induced in response to dietary
n−3 LC-PUFAs was demonstrated for the first time in
rats fed a sucrose-rich (approx. 60 g of sucrose/100 g) diet
[10]. Long-term (9 months) feeding with this diet resulted
in a decrease in plasma adiponectin levels. Shifting the
source of dietary fat from corn oil to fish oil (i.e. replacing

7 g out of 8 g of oil/100 g diet) during the last 2 months
of experimental feeding increased plasma adiponectin
over the controls and normalized leptin levels, while
reversing whole-body insulin resistance, dyslipidaemia
and AT hyperplasia [10]. In our experiments on mice fed
a corn-oil-based HF diet (35 g of fat/100 g of diet), the
replacement of 15 % of dietary lipids by an EPA/DHA
concentrate prevented the development of obesity and
insulin resistance (see above), while plasma adiponectin
levels as well as adiponectin release from epididymal AT
were increased [138]. In a similar study on mice fed
a safflower-oil-based HF diet (27 g of fat/100 g diet),
performed by Shulman and co-workers [139], n−3 LC-
PUFAs also induced adiponectin, and this induction was
completely blocked by a PPARγ inhibitor [139]. In
contrast, the effect of n−3 LC-PUFAs on adiponectin
secretion was retained in PPARα-null mice [139]. Both
studies showed an induction of adiponectin in epidi-
dymal, but not in subcutaneous, fat [138,139]; accord-
ingly, abdominal fat is a more important producer
of adiponectin than subcutaneous fat [138,140]). Our
study [138] also demonstrated that fully differentiated
adipocytes represented the main source of adiponectin in
mice treated with n−3 LC-PUFAs. In contrast with the
study by Shulman and co-workers [139], our experiments
indicated that the induction of adiponectin gene expres-
sion by orally administered n−3 LC-PUFAs required
more than 24 h, whereas the absence of the induction
during the first 24 h was independent of the EPA/DHA
ratio in the diet, ranging between 0.4 and 4.0 (P. Flachs
and M. Hensler, unpublished work). In addition, in
contrast with the results by Shulman and co-workers
[139], in which various n−3 PUFAs failed to stimulate
adiponectin mRNA expression in 3T3-L1 adipocytes,
a recent report [141] documented the induction of the
adiponectin gene by n−3 LC-PUFAs in this adipocyte
cell line, with DHA having the most pronounced effect.
Thus n−3 LC-PUFAs represent naturally occurring
inducers of adiponectin, acting perhaps via PPARγ upon
the adiponectin gene promoter ([142], and see Figure 2).

The induction of mitochondrial biogenesis in adipo-
cytes by n−3 LC-PUFAs (see above) could be directly
involved in the stimulation of adiponectin secretion [143].
In turn, adiponectin could induce NO formation in the
endothelium of blood vessels in AT [129] and, hence,
activate the regulatory pathway of mitochondrial bio-
genesis (see above, and [128]) as well as local vasodilation
[129]. NO is also involved in a positive regulatory loop
controlling adiponectin release [144]. The mechanisms
above may be closely linked to defective NO bioavailab-
ility described in patients with the MS [145]. In contrast
with adiponectin, TNF-α down-regulates the activity of
the NO signalling pathway, while depressing mitochon-
drial biogenesis in fat and muscle of obese rodents [146].
Adiponectin is also induced in response to a CB1 receptor
antagonist [147], i.e. under the conditions that promote
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obesity resistance in mice [58]. Accordingly, the forma-
tion of an endogenous ligand for the CB1 receptor might
be reduced by n−3 LC-PUFA treatment (see above, and
[59]). Further studies are required to clarify the role of
n−3 LC-PUFAs in the integrated control of secretory
functions and mitochondrial biogenesis in adipocytes.

A clinical study [12] has demonstrated the induction of
plasma adiponectin in response to a daily intake of 1.3 g
of EPA and 2.9 g of DHA (administered as EPAX 2050
TG) in overweight patients treated simultaneously by a
weight-loss programme. The effect was stronger after 6
months compared with 3 months of treatment [12]; how-
ever, an appropriate control group without the weight-
loss programme was not included in that study. In our ex-
periments, the induction of adiponectin in mice fed an HF
diet was not affected by a 30 % caloric restriction [138]. In
accordance with the in vitro results (see above), the intake
of DHA, rather than EPA, also appeared to be important
for the induction of adiponectin in humans, where a relat-
ively slow increase in plasma adiponectin levels correlated
with the time course of the increase in DHA concentra-
tions in AT [12]. The induction of adiponectin could be
of great importance for the beneficial effect of n−3 LC-
PUFAs on systemic insulin sensitivity, reflecting their
paracrine anti-inflammatory effects in AT (see below).

With regard to the effect of n−3 LC-PUFAs on other
adipokines besides adiponectin, experimental evidence is
much weaker and conflicting. Feeding rats a sucrose-rich
diet resulted in a decrease in plasma leptin levels, which
was prevented by dietary n−3 LC-PUFAs [10], whereas
feeding mice an HF diet resulted in increased plasma
leptin levels that were not affected by lower doses
[138,139], but were depressed by a higher dose of n−3
LC-PUFAs in the diet [139]. Early postnatal development
may represent a critical period for the modulation of
leptin gene expression by PUFAs [120,148].

In addition, the secretion of other adipokines could be
affected by n−3 LC-PUFA administration, as these fatty
acids are capable of reducing the low-grade inflammation
of AT associated with obesity. This was demonstrated
in obese diabetic db/db mice [30] as well as in inbred
C57BL/6 mice fed an HF diet (Z. Jilkova and P. Flachs,
unpublished work). In both studies, a partial replacement
of dietary lipids by n−3-LC-PUFAs prevented macro-
phage infiltration of AT and down-regulated inflammat-
ory gene expression. In db/db mice, the anti-inflam-
matory effect of n−3 LC-PUFAs was not associated with
a decrease in adiposity, leading to a separation of their
anti-obesity effects from anti-inflammatory action [30].
In both studies, n−3 LC-PUFAs induced adiponectin,
similar to the effect of TZDs, which are also capable of
lowering resistin and leptin secretion from fat cells while
counteracting AT inflammation [65,136,149–152]. Our
studies in C57BL/6 mice revealed additivity in the effects
of TZDs and n−3 LC-PUFAs on the reduction of AT
inflammation and induction of adiponectin (O. Kuda,

Z. Jilkova and P. Flachs, unpublished work). However,
no effect of n−3 LC-PUFAs on plasma levels of resistin
[139], IL-6 or MCP-1 levels in the obese diabetic db/db
mice was observed [30]. Only some human studies have
shown reductions in pro-inflammatory cytokines after
dietary supplementation with fish oil [12,28]. Therefore,
with respect to a possible modulation of inflammatory
cytokine secretion by n−3 LC-PUFAs, especially from
AT, further studies are required. New insights into
the mechanism of the control of adiposity by n−3
LC-PUFAs might be obtained. Perhaps, through the
induction of adiponectin (see above) and consequent
down-regulation of TNF-α, n−3 LC-PUFAs could also
decrease the local production of cortisol in AT, and thus
interfere with the development of obesity (for references,
see [153]). Some conflicting findings could most probably
be explained by the use of different n−3 LC-PUFA pro-
ducts. Consequently, the effect of n−3 LC-PUFAs in the
production of pro-inflammatory mediators in macro-
phages may depend on the ratio of EPA to DHA [154].
Future studies should verify whether n−3 LC-PUFAs
can activate M2 macrophages in AT, i.e. activate the
cells capable of the secretion of anti-inflammatory
cytokines, similar to the effect of TZDs on macrophages
in peripheral blood (see above, and [81]).

FUTURE DIRECTIONS

The effectiveness of n−3 LC-PUFAs in the modulation
of gene expression, metabolism and other biological pro-
perties of the organism depends on the duration of n−3
LC-PUFA administration and on the composition of
dietary lipids. In the case of n−3 LC-PUFA concen-
trates, the effectiveness may depend on the ratio of EPA to
DHA, as well as on the formulation of the concentrate.
Thus, although the hypolipidaemic effect of n−3 LC-
PUFAs probably depends mainly on EPA or its metabol-
ites [17], other beneficial effects, including the induction
of adiponectin [12,139] or reductions in body weight,
adiposity and AT cellularity [23,115], may be more
strongly associated with DHA or its active metabolites.
Bioavailability of n−3 LC-PUFAs might be affected by
the structural form of dietary lipids, i.e. whether EPA and
DHA are administered as triacylglycerols, ethyl esters
or phospholipids. Triacylglycerols are quantitatively the
most important lipid component in the human diet and
they are generally very well absorbed in the intestine
(>95 % efficiency). Ethyl esters do not appear to be an
efficient form [155], and long-term feeding is necessary to
achieve a similar level of tissue incorporation of EPA and
DHA compared with triacylglycerol. n−3 LC-PUFAs
introduced in the form of phospholipids appear to be very
efficient in increasing LC-PUFA levels in brain and also
in other organs [156]. Further investigations are needed
to clarify this matter.
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Figure 3 Central role of WAT in the development of sys-
temic insulin resistance and protective effects of dietary
n−3 LC-PUFA supplementation
A general overview of beneficial effects of n−3 LC-PUFAs. The conclusions are
drawn mainly from experiments in animal models of diet-induced obesity, in which
either a lipogenic sucrose-rich diet or an HF diet was used.

Relatively recently, dual-PPAR agonists targeting two
distinct families of PPARs (PPAR-α and PPAR-γ ) have
been introduced as a novel strategy for the treatment of
abnormalities in lipid and glucose metabolism associated
with the MS and Type 2 diabetes. Despite concerns
about their safety [157], this class of agents have a large
therapeutic potential [158]. Likewise, attempts have been
made to synthesize chemical derivatives of DHA with
the properties of dual-PPAR agonists [159,160]. The
first results suggested that these compounds could lower
blood glucose in rat and mouse models of diabetes [160];
however, it is too early to conclude whether this strategy
will also be successful in humans.

Providing that the metabolism of AT and secretion of
adipokines, as well as the inflammatory status of AT, rep-
resent important targets for the prevention and treatment
of the MS (Figure 3), it should be established whether the
anti-obesity and antidiabetic effects of n−3 LC-PUFAs,
and especially of the DHA-rich concentrates, could be

improved by combining dietary n−3 LC-PUFAs with
other treatments, thus affecting AT by multiple mechan-
isms. For instance, combination treatments of n−3 LC-
PUFAs and caloric restriction or n−3 LC-PUFAs and
antidiabetic/anti-obesity drugs should be explored.
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