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Highlights
e Alteration map of 10 signaling pathways across 9,125
samples from 33 cancer types

e Reusable, curated pathway templates that include a
catalogue of driver genes

e 57% of tumors have at least one potentially actionable
alteration in these pathways

e Co-occurrence of actionable alterations suggests
combination therapy opportunities
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In Brief

An integrated analysis of genetic
alterations in 10 signaling pathways

in >9,000 tumors profiled by TCGA
highlights significant representation of
individual and co-occurring actionable
alterations in these pathways, suggesting
opportunities for targeted and
combination therapies.
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SUMMARY

Genetic alterations in signaling pathways that control
cell-cycle progression, apoptosis, and cell growth
are common hallmarks of cancer, but the extent,
mechanisms, and co-occurrence of alterations in
these pathways differ between individual tumors
and tumor types. Using mutations, copy-number
changes, mRNA expression, gene fusions and DNA
methylation in 9,125 tumors profiled by The Cancer
Genome Atlas (TCGA), we analyzed the mechanisms
and patterns of somatic alterations in ten canonical
pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-
Kinase/Akt, RTK-RAS, TGFB signaling, p53 and
B-catenin/Wnt. We charted the detailed landscape
of pathway alterations in 33 cancer types, stratified
into 64 subtypes, and identified patterns of co-occur-
rence and mutual exclusivity. Eighty-nine percent of
tumors had at least one driver alteration in these
pathways, and 57% percent of tumors had at least
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one alteration potentially targetable by currently
available drugs. Thirty percent of tumors had multi-
ple targetable alterations, indicating opportunities
for combination therapy.

INTRODUCTION

Cancer is a disease in which cells have acquired the ability to
divide and grow uncontrollably (Hanahan and Weinberg, 2000,
Hanahan and Weinberg, 2011), usually through genetic alter-
ations in specific genes. Advances in DNA sequencing over the
past decade have made it possible to systematically study these
genetic changes, and we now have a better understanding of the
commonly involved processes and signaling pathways (Garr-
away and Lander, 2013; Vogelstein et al., 2013). As more genetic
alterations become targetable by specific drugs, DNA
sequencing is becoming part of routine clinical care (Hartmaier
et al., 2017; Schram et al., 2017; Sholl et al., 2016; Zehir et al.,
2017). However, there is considerable variation in the genes
and pathways altered across different tumor types and individual
tumor samples, and a complete understanding of the genes and
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pathways altered in all cancer types is essential to identify poten-
tial therapeutic options and vulnerabilities.

Several important signaling pathways have been identified
as frequently genetically altered in cancer, including the RTK/
RAS/MAP-Kinase (hereafter also called RTK-RAS for brevity)
pathway, PI3K/Akt signaling, and others (Vogelstein and Kinzler,
2004). Members of these pathways and their interactions have
been captured in a number of pathway databases, such as
Pathway Commons (Cerami et al., 2011), which aggregates a
number of databases, including REACTOME (Joshi-Tope et al.,
2005) and KEGG (Kanehisa and Goto, 2000). Genes in key path-
ways are not altered at equal frequencies, with certain genes
recurrently altered and well-known in cancer, while others are
only rarely or never altered.

The detection of recurrence of rare alterations often requires
large numbers of samples (Lawrence et al., 2014). This is
confounded by the challenge to distinguish between functionally
relevant (or “driver” alterations) and non-oncogenic “passen-
ger” events (Gao et al., 2014), especially in tumor types with a
high background mutation burden (Alexandrov et al., 2013; Law-
rence et al., 2013). In these cases, many mutations, even when
they occur in cancer genes, may have no functional effect. This
topic is further addressed in Bailey et al. (Bailey et al., 2018).

Previous studies by The Cancer Genome Atlas (TCGA) have
incrementally mapped out the alteration landscape in signaling
pathways. Certain pathways, such as RTK-RAS signaling or
the cell-cycle pathway, are altered at high frequencies across
many different tumor types, whereas other pathways are altered
in more specific subsets of malignancies (e.g., alterations in the
oxidative stress response pathway are strongly associated with
squamous histologies). With >10,000 samples characterized by
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TCGA, there is an opportunity to systematically characterize and
define the alterations within well-known cancer pathways across
all tumor types and map out commonalities and differences
across pathways. The existence of shared genomic features
across histologies has been highlighted by several studies
(Ciriello et al., 2013; Hoadley et al., 2014, 2018), but these studies
traditionally used a gene-centric, as opposed to pathway-
centric, approach. Identifying relationships of inter- and intra-
pathway recurrence, co-occurrence or mutual exclusivity across
different types of cancers can help elucidate functionally relevant
mechanisms of oncogenic pathway alterations that might inform
treatment options.

Here, we worked within the framework of the TCGA PanCancer
Atlas initiative (Cancer Genome Atlas Research Network et al.,
2013c) to build a uniformly processed dataset and a unified data
analysis pipeline aimed at exploring similarities and differences
in canonical cancer pathway alterations across 33 cancer types.
The focus of this effort is on mitogenic signaling pathways with
vidence for functional alterations; other oncogenic processes,
such as alterations in DNA repair (Knijnenburg et al., 2018), the
spliceosome (Seiler et al., 2018), ubiquitination (Ge et al., 2018),
or metabolic pathways (Peng et al., 2018), as well as the effects
of splicing mutations (Jayasinghe et al., 2018), are covered by
other efforts of the TCGA PanCancer Atlas project.

RESULTS

Dataset

We evaluated all samples in the TCGA PanCancer Atlas collec-
tion for which the following data types were available: somatic
mutations (whole-exome sequencing), gene expression levels
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Figure 1. TCGA PanCancer Atlas Pathways Dataset and Workflow

(A) Distribution of cancer types in the cohort, including molecular subtypes analyzed.

(B) Workflow for pathway curation and analysis. Genes were curated from previous TCGA efforts and the scientific literature. Only genes with evidence for
statistically recurrent or known driver alterations in the uniformly processed TCGA PanCancer Atlas dataset were included in the curated pathway templates.
TCGA disease codes and abbreviations: AML, acute myeloid leukemia; ACC, adrenocortical carcinoma; BRCA, breast cancer; CESC, cervical cancer; KICH,
chromophobe renal cell carcinoma; KIRC: clear cell kidney carcinoma; CRC, colorectal adenocarcinoma; SKCM, cutaneous melanoma; DLBC, diffuse large B
cell lymphoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LGG, lower grade glioma;
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(RNA-Seq), DNA copy-number alterations (Affymetrix SNP6
arrays), and DNA methylation (Infinium arrays). This resulted in
a final set of 9,125 samples from 33 different cancer types
(Figure 1A, Table S1). In order to account for molecular or
histological subtypes, these cancer types were further stratified
into a total of 64 genomically distinct tumor subtypes, as
previously defined by the individual TCGA analysis working
groups (Figure 1A, Table S1). All genomic data and clinical
attributes per sample can be visualized through the cBioPortal
for Cancer Genomics at http://www.cbioportal.org/ (Cerami
et al., 2012).

Definition of Pathways and Alterations

We evaluated 10 canonical signaling pathways with frequent
genetic alterations, starting with key cancer genes explored in
these pathways in previous TCGA publications, and focused
on pathway members likely to be cancer drivers (functional con-
tributors) or therapeutic targets. The pathways analyzed are: (1)
cell cycle, (2) Hippo signaling, (3) Myc signaling, (4) Notch
signaling, (5) oxidative stress response/Nrf2, (6) PI-3-Kinase
signaling, (7) receptor-tyrosine kinase (RTK)/RAS/MAP-Kinase
signaling, (8) TGFB signaling, (9) p53 and (10) B-catenin/Wnt
signaling (Figures 2 and S1, Table S2). Alterations in DNA repair
pathways, epigenetic modifiers, splicing, and other cellular pro-
cesses frequently altered in cancer were not included, as these
primarily provide a background of genomic instability, rather
than specifically proliferative potential.

We began by compiling and reviewing the full set of cancer-
type specific pathway diagrams from the compendium of
TCGA manuscripts published between 2008 and 2017 (Brennan
et al.,, 2013; Cancer Genome Atlas Network, 2012a, 2012b,
2015a, 2015b, Cancer Genome Atlas Research Network, 2008,
2011, 2013a, 2013b, 2014a, 2014b, 2014c, 2014d, 2017a,
2017b; Davis et al., 2014), each of which included the pathway
genes found to be genetically altered in the individual tumor
types. These pathway diagrams are publicly available as pre-
defined network templates within the www.PathwayMapper.
org visualization tool (Bahceci et al., 2017). By taking the union
of pathway members across multiple TCGA studies, we pro-
duced a consolidated list of candidate member genes for each
of the ten pathways. These were then further curated based on
updated literature (including but not limited to the references in
Table S2), public pathway databases, and expert opinion
(Figure 1B).

The selected genes in the ten pathways were then assessed
for recurrent alterations within and across different tumor types
as follows (Figure 1B): Alterations of pathway members were
classified as activating events (usually specific recurrent
missense mutations, i.e., hotspot mutations, amplifications, or
fusions involving oncogenes) or inactivating events (truncating

mutations, specific recurrent missense or inframe mutations,
deletions, as well as fusions and promoter hypermethylation of
tumor suppressor genes). Individual alterations were also scruti-
nized for two features: statistical recurrence across sets of tumor
samples and presumed functional impact. We first assessed sta-
tistical recurrence using MutSigCV (Lawrence et al., 2014) for
mutations and GISTIC 2.0 (Mermel et al., 2011) for copy-number
alterations. In order to identify likely functional variants, we then
used recurrence across tumor samples at the residue level (linear
and 3D mutational hotspots; Chang et al., 2016, 2018; Gao et al.,
2017; see STAR Methods) and prior knowledge about specific
variants via the OncoKB knowledge base, which contains infor-
mation about the oncogenic effects and treatment implications
of variants in > 400 cancer genes (Chakravarty et al., 2017a).
Epigenetic silencing through promoter DNA hypermethylation
of tumor suppressor genes was evaluated using the RESET algo-
rithm (see STAR Methods). Gene fusions and structural rear-
rangements were called from RNA-Seq data using a combina-
tion of the STAR-Fusion, EricScript and BreakFast algorithms
(Gao et al., 2018, see STAR Methods), and likely passenger
events were filtered out based on OncoKB annotation. Through
this process, genes without evidence for recurrent or previously
known oncogenic alterations were removed from the preliminary
pathway templates. The resulting curated pathway templates
and the identified genetic alterations were vetted for functional
importance by individual pathway experts or the corresponding
TCGA PanCancer Atlas pathway-specific analysis working
groups, when applicable (Figure 1B). The pathway member
genes and the genetic alterations considered as oncogenic are
listed in Table S3, and binary genomic alteration matrices are
provided as Table S4 (see STAR Methods).

The resulting comprehensive dataset of different types of
alterations across many tumor types form the basis of all subse-
quent analyses regarding pathways, patterns of co-occurrence
and mutual exclusivity, as well as potential therapeutic implica-
tions. The simplified pathway diagrams in Figure 2 show the
most frequently altered genes in the ten pathways, including
alteration frequencies as well as the types of oncogenic alter-
ations identified in each of the genes.

Pathway Alteration Frequencies per Tumor Type

For each tumor type and subtype, we computed the fraction of
samples with at least one alteration in each of the 10 signaling
pathways (Figure 3). A tumor sample was considered as altered
in a given pathway if one or more genes in the pathway contained
a recurrent or known driver alteration (as described above).
Despite the fact that non-recurrent and not previously known
alterations were filtered out as likely passenger events and
were not included in the alteration frequencies, the microsatellite
instability (MSI) and polymerase ¢ (POLE) mutant subtypes of

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; KIRP, papillary kidney carcinoma; THCA, papillary
thyroid carcinoma; STAD, stomach adenocarcinoma; PRAD, prostate adenocarcinoma; BLCA, urothelial bladder cancer; UCS, uterine carcinosarcoma; UCEC,
uterine corpus endometrial carcinoma; ESCA, esophageal cancer; PCPG, pheochromocytoma & paraganglioma; PAAD, pancreatic ductal adenocarcinoma;
MESO, mesothelioma; UVM, uveal melanoma; SARC, sarcoma; CHOL, cholangiocarcinoma; TGCT, testicular germ cell cancer; THYM, thymoma; STES,
stomach and esophageal cancer; EBV, Epstein-Barr virus; HPV, human papillomavirus; DDLPS, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS/UPS,
myxofibrosarcoma/undifferentiated pleomorphic sarcoma; ESCC, esophageal squamous cell carcinoma; GS, genomically stable; CIN, chromosomal instability;

MSI, microsatellite instability.
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Figure 2. Curated Pathways

Pathway members and interactions in the ten selected pathways. Genes are altered at different frequencies (color intensity indicates the average frequency of
alteration within the entire dataset) by oncogenic activations (red) and tumor suppressor inactivations (blue). The types of somatic alteration considered for each
gene (copy-number alterations, mutations, fusions or epigenetic silencing) are specified using a set of four vertical dots on the left of each gene symbol. An
expanded version including cross-pathways interactions is provided as Figure S1.

gastrointestinal and uterine tumors, which had the highest muta-  in these tumor types (Boland and Goel, 2010; Rayner
tion burden, also had the highest overall frequencies of pathway et al., 2016).

alterations. This is possibly due to the frequent inactivating The RTK-RAS pathway was the signaling pathway with the
mutations introduced by the predominant mutation mechanisms  highest median frequency of alterations (46% of samples)
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Figure 3. Pathway Alteration Frequencies

Fraction of altered samples per pathway and tumor subtype. Pathways are ordered by decreasing median frequency of alterations. Increasing color intensities
reflect higher percentages. Average mutation count, as well as number of unbalanced segments and fraction genome altered (two measures of the degree of
copy-number alterations) per cancer subtype are also provided. The MSI and POLE subtypes were grouped in this figure in colorectal, stomach and endometrial
cancers.

across all cancer types. The tumor subtypes with the highest
fraction of alterations in this pathway were (in descending or-
der): melanoma (SKCM, 94% altered), the genomically-stable
subtype of colorectal cancer (CRC GS, 88%), Her2-enriched
breast cancer (BRCA Her2-enriched, 82%), pancreatic cancer
(PAAD, 78%), IDH1-wild-type glioma (LGG IDHwt, 82%), lung
adenocarcinoma (LUAD, 74%), and thyroid carcinoma (THCA,
84%). Some tumor types, such as lung squamous cell carci-
noma (LUSC), EBV-positive esophagogastric cancer (STES
EBV), and non-hypermutated uterine cancer (UCEC CN high
and CN low), had high rates of alterations in the PI3K pathway,
altered in 68%, 80%, 86%, and 95% of samples, respectively.
While cell-cycle alterations were common in many tumor types,
the pathway was only rarely altered in uveal melanoma (UVM),
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thymoma (THYM), testicular cancer (TGCT), and acute myeloid
leukemia (AML). Alterations in the Wnt pathway were the most
variable across cancer types. Colorectal cancer had near uni-
versal activation of this pathway, while others, such as renal
cell carcinomas and breast cancer, had very low frequencies
of alteration in genes in this pathway. The oxidative stress
response/Nrf2 pathway had the lowest overall frequency of
alteration (1% of samples), and it was altered most frequently
in lung squamous (25% altered) and esophagogastric squa-
mous cell carcinoma (STES ESCC, 23%).

Particularly interesting gene alterations across tumor types
were observed in the RTK-RAS pathway. KRAS was the most
frequently altered gene (9% across all samples), followed by
BRAF (7%) and EGFR (4%) (Figure 4A). KRAS alterations were
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most common in pancreatic carcinoma (PAAD, 72%), genomi-
cally stable colorectal cancer (69%), and lung adenocarcinoma
(83%) (Figure 4B). BRAF alterations (predominantly known
hotspot mutations) were found in melanoma and thyroid carci-
noma, altered in 51% and 62% of samples, respectively. EGFR
alterations were predominantly found in glioblastoma (GBM,
50%), low grade glioma IDHwt (52%), HPV-negative head and
neck cancer (HNSC HPV-, 13%), lung adenocarcinoma (13%),
and esophagogastric squamous carcinoma (14%), while
ERBB?2 alterations were found most commonly in breast cancer
and chromosomally unstable esophagogastric carcinoma (STES
CIN 26% altered), as well as cervical carcinoma (CESC 23%
altered). While most of the alterations described here were
previously reported as functional contributors, we identified rela-
tively rare potentially oncogenic alterations in SOS7 (<1%).
SOS1 encodes a guanine-nucleotide-exchange factor (GEF)
involved in the activation of Ras proteins. Specific germline
mutations in this gene are involved in Noonan syndrome (Lepri
et al., 2011), and recurrent somatic mutations in SOS7 were
recently identified in otherwise RAS-pathway driver-negative
lung adenocarcinoma samples (Campbell et al., 2016). We iden-
tified recurrent (hotspot) mutations (A90V/T, N233Y/S) and other
known activating mutations (M2691/V, G434R, R552S/K/G/M,
E846K) in SOST1 in a total of 1% of lung adenocarcinoma sam-
ples, 1% of uterine carcinomas, independent of subtype, and
at lower frequencies in several other cancer types (Figure 4C).
This finding suggests that rarely altered novel cancer genes
can be identified as more tumor samples are profiled. A more
detailed analysis of RAS pathway alterations is published sepa-
rately, including a description of downstream transcriptional
changes due to malfunctioning Ras signaling and results sug-
gesting that multiple hits in the Ras pathway are capable of
increasing overall Ras activity in RAS wild-type tumors (Way
et al., 2018).

The alteration frequencies of the most commonly altered
genes in the other nine pathways are in Figure 5 (full heatmaps
providing frequencies of alteration for every gene in each
pathway are in Figures S2 and S3). In some pathways, the alter-
ations are distributed over many genes (e.g., cell cycle, PI3K),
while in others the alterations mainly affect only a few genes
(Wnt, Myc, Nrf2). Several pathways are featured in more detail
as separate publications, including: (1) PI3K pathway (Zhang
et al., 2017): aberrations in the PI3K pathway were found pre-
dominantly as activating events in PIK3CA (less commonly in
PIK3CB) and inactivating events in PTEN or PIK3R1 with PIK3CA
and PTEN alterations being most commonly found in head and

neck cancer, breast cancer, gastrointestinal and gynecological
tumors; (2) TGFB pathway (personal communication): The
TGFp pathway had the highest alteration rate in pancreatic and
gastrointestinal cancers, while renal and brain cancers, among
others, had almost no alterations in this pathway; and (3) Myc
pathway (Schaub et al., 2018): Myc pathway alterations were
most common in tumor types with amplification of chromosome
8, which contains MYC, such as breast cancer, ovarian cancer
(OV), and others.

Mutual Exclusivity and Co-occurrence among Pathway
Alterations

Individual tumors typically have multiple functional alterations
affecting more than a single pathway. Some pathways may be
the target of more than one alteration per patient or distinct
pathways may be co-altered in one tumor. Patterns of mutual
exclusivity between alterations across large patient cohorts
have been associated either with functional redundancy, indi-
cating that once one occurred and is selected the second will
not provide a further selective advantage, or with synthetic
lethality, indicating that cells cannot survive with both alterations
(Etemadmoghadam et al., 2013; Mina et al., 2017). Patterns of
co-occurrence of alterations in many tumor samples, on the
other hand, indicate functional synergies and, importantly, may
reflect resistance to therapy targeting one of the alterations (Nis-
san et al., 2014)

To explore significantly co-occurring and mutually exclusive
alterations by pathway or by gene, we used the SELECT method
(Mina et al., 2017). Among the 410 alterations characterized, we
identified 156 pairs of mutually exclusive alterations and 117
pairs of co-occurring alterations (Table S5).

Upon mapping these significant pairs to the affected path-
ways, we found numerous mutually exclusive pairs within the
p53, cell-cycle, RAS, and PI3K pathways, suggesting that one
alteration is sufficient to functionally alter each of these pathways
or that more than one might be disadvantageous (Figure 6A). On
the other hand, the Hippo, RTK, and, to a lesser extent, Wnt
pathways often had multiple alterations per tumor sample, sug-
gesting co-occurring events that mediate synergistic activation
of each pathway (Figure 6A). The SELECT method also identified
several significant interdependencies between distinct path-
ways (Figure S4). For example, activation of RTKs was signifi-
cantly mutually exclusive with alterations that promote either
RAS or PI3K signaling, consistent with RTKs being able to acti-
vate either pathway without the need for additional alterations.
Notable exceptions were significant co-occurrent alterations in

Figure 4. RTK-RAS Pathway Alterations

(A) Altered genes and their functional relationships in the RTK-RAS pathway. Shades of red indicate frequencies of activating events (known or likely activating
mutations or fusions, amplifications) and shades of blue indicate frequencies of inactivating events (known or likely inactivating mutations or fusions, homozygous

losses).

(B) Detailed heatmap of alteration frequencies in members of the RTK-RAS pathway. Only known or likely oncogenic alterations in each gene are considered, as
described in STAR Methods. The individual gene alteration frequencies may add up to more than the total for each tumor type, as some tumor samples may have
multiple alterations. Color side bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene.
Top color bars show the proportion of different types of alterations for each cancer subtype.

(C) Recurrent or known functional mutations in SOS7. Recurrent or known mutations are color-coded by tumor type, all other mutations observed in the gene are
considered variants of unknown significance (gray). Three singleton mutations involved in a 3D hotspot are not shown for space reasons: D89A in a UCS sample,

A93D in CRC, and S92P in UCEC.
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Figure 5. The Most Commonly Altered Genes in Nine Signaling Pathways

Oncogenic alteration frequencies per gene and tumor subtype for the most frequently altered genes in each pathway (for RTK-RAS see Figure 4). Red: activating
events; blue: inactivating events; frequency of occurrence scale with color intensity. Last row for each pathway: overall alteration frequency of that pathway per
tumor type. The individual gene alteration frequencies may add up to more than the total for each tumor type, as some tumor samples have multiple alterations.
Color side bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Comprehensive
heatmaps with alterations for every gene in each pathway are in Figure S2 and Figure S3.
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the FGF receptors FGFR2 and FGFR3 and alterations in the PIBK
pathway (Figure S4A). The p53 and cell-cycle pathways were
frequently co-altered. Indeed, numerous alterations affecting
Rb-mediated cell-cycle control were found co-occurring with
TP53 mutations. These included amplification of CCNE1, muta-
tion of CDKN2A, RB1 loss, and amplification of CDK6 and E2F3
(Figure S4B). Interestingly, TP53 mutations were found mutually
exclusive with CDKN2A deletion, consistent with the latter invari-
ably affecting both p16, regulating the cell cycle, and ARF, pro-
moting p53-dependent apoptosis. Similarly, MDM2 amplifica-
tion was significantly mutually exclusive with RB7 and
CDKN2A loss. However, MDM?2 is proximal to CDK4 in the
genome and the two genes were almost always co-amplified.
Overall, these results indicate that p53 signaling and cell-cycle
control are frequently co-altered across multiple tumor types,
either through two independent events (e.g., mutations of TP53
and RBT1), or through a single alteration that is able to affect
both pathways (e.g., CDKN2A deletion).

The strongest co-occurrence among pathways was found
between alterations of the PI3K and Nrf2 pathways. Here, gain
of function mutations and amplifications of the NFE2L2 gene (en-
coding for NRF2) significantly co-occurred with PIK3CA amplifi-
cation and tended to co-occur with PIK3CA mutations and
PIK3CB amplification (Figure 6C). Interestingly, even though
NFE2L2 amplification was largely mutually exclusive with loss
of STK11 (a.k.a. LKBT1), the latter significantly co-occurred with
loss of function mutations of KEAPT, a negative regulator of
NFE2L2. Co-occurring Nrf2-PI3BK pathway alterations were
most frequent in lung tumors (both squamous cell and adenocar-
cinoma), esophageal carcinomas, head and neck squamous cell
carcinoma and uterine carcinoma, independent of subtype (Fig-
ure 6D). In these tumor types, alterations in NFE2L2 and KEAP1
were recurrent and almost perfectly mutually exclusive, and they
frequently co-occurred with PIKBCA activation or STK71 loss
(Figure BE). PI3K pathway activation promotes NRF2 accumula-
tion, which, in turn, mediates metabolic pathways required to
sustain cell proliferation and protection from reactive oxidative
species (Mitsuishi et al., 2012). NRF2 is however kept in check
by inhibitory molecules such as KEAP1 and CULS3 (Figure 6F).
The observed co-occurrence between alterations of the PI3K
and Nrf2 pathways suggests that bypassing these inhibitory
mechanisms (either by loss of KEAP1 or CUL3, or by direct
over-activation of NFE2L2) is synergistic with active PI3K

signaling. Importantly, tumors with these events might depend
on NRF2 activity to tolerate PI3K pathway over-activation.

The RTK-RAS pathway contained numerous and some of the
most significantly mutually exclusively altered genes, as well as
several gene pairs that were significantly concurrently altered
(Figure 6G). In particular, alterations promoting EGFR activation
(gain of function mutations, fusion, and amplification) were
involved in the highest number of significant pairs. EGFR ampli-
fication was significantly mutually exclusive with activation of its
paralog growth factor receptor Her2 (ERBB2, Figure 6H, Box 1)
and with key drivers of the RAS pathway, including oncogenic
mutations in BRAF and KRAS as well as loss of NF71 and
RASAT1 (Figure 6G). Since oncogenic EGFR can be synthetically
lethal with mutated KRAS and can mediate resistance to BRAF
inhibition in colon cancer and melanoma (Sun et al., 2014; Unni
et al., 2015), these results suggest a similar antagonistic interac-
tion with loss of NF1 or RASAT. Overall, alterations of either of
these genes were recurrent across multiple tumor types,
although almost never in the same patient (Figure 6H, Box 2).
On the other hand, in glioblastoma and IDH wild-type low grade
glioma, EGFR amplifications were highly co-occurrent with
either EGFR mutations or gene fusions (Figure 6H, Box 3) or
with focal amplifications of chromosome 412, where both KIT
and PDGFRA are located (Figure 6H, Box 4). It should be noted
that the majority of EGFR and PDGFRA fusions were found
coincident with amplifications in these genes, indicating that,
potentially, in these cases the same structural variant was
detected as both a copy number gain and a fusion (Alaei-Maha-
badi et al., 2016). Interestingly, co-amplification of EGFR and
PDGFRA has been proposed to be an early event in glioblastoma
development, where the two receptors heterodimerize under
EGF stimulation and respond to EGFR-inhibitors (Chakravarty
et al., 2017b).

Overall, these results provide a map of the cross-talk between
pathways and pathway components, reflecting functional inter-
actions and dependencies that could be therapeutically
exploited.

Therapeutic Actionability

DNA sequencing has been used routinely to inform the choice of
targeted therapy in specific cancer types for several years, and
some institutions now apply it more broadly to guide clinical trial
enroliment for many additional cancer types. A relatively small

Figure 6. Co-occurrence and Mutual Exclusivity of Pathway Alterations
(A and B) Mutual exclusivity (purple) and co-occurrence (green) of gene alterations within pathways (A) and between pathways (B). Asterisks indicate significant

relationships (Q value < 0.1).

(C) Co-occurrence and mutual exclusivity of individual gene alterations in the PI3K and Nrf2 pathways.

(D) Breakdown of the co-occurrence of gene alterations in the PI3K and Nrf2 pathways by tumor subtype. Green bars: percentage of samples with alterations in
both PI3K and Nrf2 pathways. Pathways are sorted by decreasing percentage of samples with alterations in both pathways.

(E) Details of gene alterations in select genes (PIK3CA, STK11, NFE2L2, and KEAP1) within and between PI3K and Nrf2 pathways, with co-occurrence and mutual
exclusivity between alterations. Samples are shown from left to right, and the number of samples in each group (bottom; note: the changing scale, indicated by

solid and dashed lines).
(F) Pathway representation of the link between the PI3K and Nrf2 pathways.

(G) Dependencies between single alterations in the RTK and RAS/ERK pathways. Only the 22 alterations with at least one significant interaction (average sum

correction, ASC score > 0.24; Mina et al., 2017) included.

(H) Breakdown of the interactions involving EGFR amplifications and mutations, corresponding to the bounding boxes in panel G. Left side: mutually exclusive

interactions. Right side: co-occurring interactions.
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number of alterations in a subset of tumor types are currently
biomarkers for standard care targeted therapies, and a larger
number are potential biomarkers for investigational therapies,
some with promising clinical results. Using the OncoKB knowl-
edge base of clinically actionable alterations (Chakravarty
et al., 2017a), we systematically assessed all alterations in
each sample of each cancer type, distinguishing between stan-
dard care actionability (Levels 1 or 2) and investigational thera-
pies (Levels 3 and 4). Overall, 51% of tumors had at least one
potentially actionable alteration in the ten signaling pathways,
and 57% had at least one actionable alteration when including
genes outside of these pathways, most notably BRCA1/2 and
IDH1/2 (all numbers referenced below include these additional
genes). Apart from the Her2-enriched breast cancer samples,
most of which have a standard care targeted therapy, melanoma
was the tumor type with the highest fraction of tumors with a
Level 1 or 2A alteration (46%) (Figure 7A), mainly due to frequent
BRAF mutations (Figure 7B), followed by esophagogastric
cancers (ERBB2 amplifications). Luminal A breast cancer was
the tumor type with the highest frequency of biomarkers with
promising investigational data (Level 3A), driven by the high
prevalence of PIK3CA, AKT1 and ERBB2 mutations. Several tu-
mor types had frequent mutations that are biomarkers for drug
sensitivity in other cancer types (Level 3B), including endometrial
cancer, where PIK3CA mutations are common. Uveal melanoma
and testicular non-seminoma had the lowest percentage of
potentially targetable samples (2.5% and 8.5%, respectively);
thymoma, mesothelioma (MESO), and renal clear cell carcinoma
(KIRC) also had low frequencies of potentially actionable
alterations.

Thirty percent of tumor samples had two or more potentially
targetable alterations (Figure 7C). Among these, the MSI-H and
POLE-mutated tumor subtypes had the highest proportion of
samples with multiple potentially actionable alterations (not
considering the fact that patients with MSI-H tumors are now
eligible for immunotherapy). Other tumor types with a high fre-
quency of samples with multiple targetable alterations included
non-hypermutated endometrial cancer (64%), colorectal cancer
(87%), and breast cancer (28%).

Finally, we searched for candidate drug combinations that
could prove effective across different tumor types based on
the occurrence of actionable alterations. Hypermutant MSI and
POLE subtypes had a high fraction of samples of actionable al-
terations corresponding to various drug combinations. In other
tumor subtypes, a combination of CDK4 and MDM2 inhibitors
was the most commonly indicated combination (1% total), in
particular in dedifferentiated liposarcomas (SARC DDLPS), in

which 78% of the cases had co-ampilification of the two targets
(Figure 7D). By a similar consideration linking actionable alter-
ations of targets to their inhibitors, a combination of HER2 and
PI3K inhibitors might be beneficial across multiple tumor types,
in particular Her2-enriched breast cancer (17 %), uterine carcino-
sarcoma (UCS, 7%), chromosomally unstable endometrioid car-
cinoma (UCEC CN high, 7%), and cervical adenocarcinoma (7 %)
(Figure 7D). Additional candidate combination therapies include
PI3K and MEK inhibitors in EBV+ stomach tumors (10%), CDK4
and PI3K inhibitors in glioblastoma multiforme (7%), HER2 and
MEK inhibitors in pancreatic cancer (7%), PI3K and RAF inhibi-
tors in melanoma (SKCM, 12%), and IDH and PI3K inhibitors in
IDH-mutant low grade glioma (14%) (Figure 7D). While there
are many steps from the observation of combinations of genetic
alterations to valid combination therapies, this survey indicates
the wide landscape of potential tumor-type specific novel thera-
peutic combinations that can be explored in experimental and
clinical contexts.

DISCUSSION

Signaling pathways are somatically altered in cancer at varying
frequencies and in varying combinations across different organs
and tissues, indicative of complex interplay and pathway cross-
talk. Understanding the extent, detailed mechanisms, and
co-occurrence of the oncogenic alterations in these pathways
is critical for the development of new therapeutic approaches
that can improve patient care.

Here we performed a comprehensive characterization of 10
selected signaling pathways across the 33 cancer types
analyzed by TCGA. This report constitutes the first pan-cancer
exploration that uses a uniformly processed dataset and a stan-
dardized set of pathway templates, curated through a combina-
tion of computational methods and expert review (Figures 1
and 2). The results highlight similarities and differences in fre-
quencies of alteration of individual pathways in different cancer
types and specific molecular subtypes (Figure 3). They also
underscore the potential for discovering previously uncharacter-
ized alterations in pathway genes that occur at low frequencies
and might otherwise remain statistically unnoticeable (see
SOST, Figure 4). More generally, even though a small set of crit-
ical genes contains a very large fraction of alterations in these
pathways (Figures 4 and 5), there is a complex interplay of co-
occurring and mutually exclusive alterations within and across
pathways (Figure 6). In spite of the accumulating wealth of bio-
logical knowledge and the accepted oncogenic relevance of
these pathways, the number of currently approved biomarkers

Figure 7. Therapeutic Actionability and Drug Combinations

(A) Frequencies of clinical actionability by cancer subtype, broken down by level of evidence (Levels 1-4). Samples are classified by the alteration that carries the
highest level of evidence. Tumor type-specific samples are analyzed by variants considered actionable, oncogenic but not actionable, or variants of unknown

significance (VUS).

(B) Frequencies of actionable alterations per gene across cancer subtypes. For genes with different levels for different alterations, multiple rows are shown. Genes
are grouped by pathway. Six additional genes not in the ten pathways (BRCA1, BRCA2, ERCC2, IDH1, IDH2, ESR1) are included and taken into account in the

overall frequencies.

(C) Fraction of samples with a given number of actionable alterations per tumor type.
(D) Frequencies of possible drug combinations indicated by the co-alteration of actionable variants in each tumor type for the most frequent drug class

combinations.
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linked to standard of care therapies remains sparse (Figure 7),
but additional drug targets in these pathways will hopefully
emerge, and candidates for combination therapy will be
explored.

This analysis of targetable alterations only included currently
approved therapies or investigational therapies with reported
promising results. These predominantly target the RTK-RAS,
PI3K, cell-cycle, and p53 pathways. While some of these thera-
pies are standard care, many are still investigational, and further
testing is required to assess how effective different targeted
therapies will be across tumor types and in tumors with different
co-mutation spectra. Efforts are underway to develop therapies
that target additional pathways, some of which are in clinical tri-
als (Table S6) (Park and Guan, 2013), (Whitfield et al., 2017),
(Whitfield et al., 2017), (Aster and Blacklow, 2012), (Takebe
et al., 2014), (Buijs et al., 2012), (Sheen et al., 2013), (Pai et al.,
2017). In the Wnt signaling pathway, for example, two ap-
proaches involve drugs targeting PORCN, which is involved in
the processing of wingless proteins, and monoclonal antibodies
directed at proteins in the Frizzled gene family. While the Nrf2
pathway does not have therapies directly targeting any of
the pathway members included in this study, alterations in Nrf2
pathway members (NFE2L2 and KEAPT) are used as part of
the inclusion criteria in the Phase 2 trial of a TORC1/2 inhibitor.
Clinical trials involving these pathways exemplify opportunities
in precision medicine to associate additional functional alter-
ations as part of inclusion criteria (Table S6). Not all apparently
functional mutations, however, represent therapeutic targets,
as illustrated, e.g., by the unusually large number of mutations
in the MSI-H and POLE-mutated tumor subtypes, of which
only a small fraction plausibly dominate oncogenesis. The
observed co-occurrence patterns indicate a potential for combi-
nation therapies in some tumor types. The development of tar-
geted combination therapies has been challenging for several
reasons, including lack of safety data for combinations, the rela-
tively slow pace of adoption of clinically approved multi-panel
gene tests and of clinical trials testing combinations of multiple
targeted therapies. However, there is a growing corpus of prom-
ising preclinical data indicating such combinations can be effec-
tive, such as the combination of MDM2 and CDK4 inhibitors
(Laroche-Clary et al., 2017), and the combination of PI3K inhibi-
tors and HER2 inhibitors in HER2-positive/PIK3CA mutant
breast cancer patients, even when single gene-therapy ap-
proaches (e.g., PISBK monotherapy for PIK3CA mutant tumors)
have thus far not had definitive clinical impact.

Although we cover a diverse range of oncogenic processes
that spans most tissues and organ systems (Figures 1 and 3),
we did not include some tumor types in the scope of this
TCGA project, including most hematologic cancers. Further-
more, in spite of the relatively large set of samples, this effort is
still underpowered to reliably discover tumor-type specific alter-
ations that occur at very low frequencies; these will require
further exploration using larger tumor-type specific sample sets.

The original aim and scope of TCGA was to genomically
characterize primary, untreated tumors with a basic set of
genetic alterations and transcript profiles. As the program is
now completed, a future challenge is to expand these analyses
to larger sample sets, additional data types, such as metabo-
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lite levels, a wider range of epigenetic states, post-transla-
tional modifications of proteins, and to investigate metastatic
disease and genomic alterations that arise in post-treatment
samples, as well as analyzing the role of a wider range of
germline alterations and their interplay with somatic events.
These new avenues of research will benefit from pathway-level
analysis for which the templates and template curation pipe-
lines presented here constitute a promising starting point.
Similarly, as the catalog of clinically actionable alterations
continues to grow, understanding intra- and inter-pathway de-
pendencies, such as the ones considered here, will be crucial
for the development of effective combination therapies that
address or prevent resistance to initially successful single
agent therapies.

The curated pathway templates and the uniformly processed
dataset of alteration calls in 9,125 tumor samples are publicly
available (Tables S3 and S4) and can be easily accessed through
the PathwayMapper tool (http://pathwaymapper.org/), which
allows alteration frequencies to be visually overlaid on the
pathway templates; and, via the cBioPortal for Cancer Genomics
(http://www.cbioportal.org/). This pathway landscape in The Can-
cer Genome Atlas is meant to provide a valuable resource for clin-
ical oncologists, for cancer researchers and for a broad scientific
community interested in cancer precision medicine.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited Data

Raw and processed clinical,
array and sequence data.

Digital Pathology Images

NCI Genomic Data Commons

Cancer Digital Slide Archive

https://portal.gdc.cancer.gov/

https://gdc.cancer.gov/about-data/publications/pancanatlas

cBioPortal: http://www.cbioportal.org
http://cancer.digitalslidearchive.net/

Software and Algorithms

PathwayMapper (Bahceci et al., 2017) http://www.pathwaymapper.org/

SELECT (Mina et al., 2017) http://ciriellolab.org/select/select.html

GISTIC 2.0 (Mermel et al., 2011) http://archive.broadinstitute.org/cancer/cga/gistic

MutSigCV (Lawrence et al., 2014) http://software.broadinstitute.org/cancer/software/

genepattern/modules/docs/MutSigCV

STAR-Fusion Hass et al., bioRxiv https://github.com/STAR-Fusion/STAR-Fusion/wiki
https://doi.org/10.1101/120295

Breakfast See link https://github.com/annalam/breakfast

EricScript (Benelli et al., 2012) https://sites.google.com/site/bioericscript/

RESET (Saghafinia, Mina et al., http://ciriellolab.org/
manuscript under review)

Other

OncoKB (Chakravarty et al., 2017a) www.oncokb.org

CancerHotspots (Chang et al., 2016) www.cancerhotspots.org

3D Hotspots (Gao et al., 2017) www.3dhotspots.org

cBioPortal Cerami et al., 2012 http://www.cbioportal.org/

TCGA Batch Effects

Pathway Commons

The University of Texas MD
Anderson Cancer Center

(Cerami et al., 2011)

http://bioinformatics.mdanderson.org/tcgambatch/

http://www.pathwaycommons.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nikolaus
Schultz (schultz@cbio.mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with 45-CFR-46
(the “Common Rule”). The program has obtained documentation from every contributing clinical site to verify that IRB approval has
been obtained to participate in TCGA. Such documented approval may include one or more of the following:

® An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the
protocol was not TCGA-specific, the clinical site Pl provided a further finding from the IRB that the already-approved protocol is
sufficient to participate in TCGA.

o A TCGA-specific IRB waiver has been granted.

® A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-
tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,
because the received data and material do not contain directly identifiable private information.

® A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This
was most common for collections in which the donors were deceased.
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Sample Selection and Exclusions

We started from the set of 11,276 patients that were included in the final whitelist for the TCGA PanCanAtlas project. We only used
samples that had available data across these four genomic platforms: mutations, copy number, DNA methylation and mRNA expres-
sion. Our analyses excluded certain molecular platforms that have previously been used in TCGA, such as protein levels from
reverse-phase protein arrays (RPPA), microRNA, and IncRNA, as their inclusion would have implied a sharp decrease in the total
number of samples with data available across all platforms. Additionally, we excluded samples that had been flagged during pathol-
ogy review by an expert committee or due to quality control (QC) issues identified by the individual tumor-type or PanCanAtlas anal-
ysis working groups. After these filters had been applied, a total of 9,125 patients were used. Samples consisted of primary solid
tumors for a large majority of these patients (8602/9125, 94%), plus a small number of blood tumors corresponding to the AML subset
(162/9125, 2%) and a small subset of metastatic samples from melanoma patients (361/9125, 4%).

METHOD DETAILS

Somatic mutation calling

We used version 2.8 of the mutation annotation format (MAF) file provided by the MC3 (“Multi-Center Mutation Calling in Multiple
Cancers”) group within the TCGA Network (Ellrott et al., 2018). The mutation data can be found here (https://gdc.cancer.gov/
about-data/publications/mc3-2017). We augmented this file in collaboration with the MC3 group and included all validated mutation
calls from the original AML publication. The final MAF that was used for our analyses, including OncoKB annotations, can be dow-
loaded from the TCGA PanCancer Atlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

Pathway Template Curation

We manually curated the gene annotation of the ten selected pathways using the following workflow.

Selection and classification of genes in pathways

Genes were assigned to pathways based on a combined revision of pathway analyses in previous TCGA marker papers published
between 2008 and 2017, a review of the scientific literature (including but not limited to the references in Table S2) and expert
curation. We applied two different kinds of expert curation. 1) several of the pathways, such as TGF-Beta, Myc and PI3K, had specific
analysis working groups. These groups were led by experts in each pathway and published separate manuscripts (Ge et al., 2018;
Korkut et al., 2017; Peng et al., 2018; Schaub et al., 2018; Wang et al., 2018; Way and Greene, 2017). 2) for some of the pathways, we
consulted experts from outside of TCGA in order to validate or improve our curated pathway templates (e.g., Frank McCormick for
RTK-RAS or Mitchell Frederick for Notch). After the lists of pathway members were finalized, each gene was annotated as Tumor
Suppressor (TSG) or Oncogene (OG) using OncoKB and prior knowledge from the scientific literature. The final gene lists that
were selected for each pathway are provided in Table S3.

Identification of mutational hotspots

The cancer hotspots algorithm that we used identifies recurrent alterations based on a cohort of 24,592 tumor samples (Chang et al.,
2016, 2018). Identification of 3D hotspots was based on recurrence of mutations in the context of spatial neighborhoods in protein
structures (Gao et al., 2017).

Annotation of functionally relevant mutations

We used information about oncogenic and clinically actionable mutations from the OncoKB database (Chakravarty et al., 2017a),
which provides information on variants in more than 400 genes. For template curation, we used OncoKB to filter out putative
passenger mutations and copy number changes, by discarding somatic alterations that were not labeled as oncogenic, likely
oncogenic or predicted oncogenic in the database. For the analysis of therapeutic implications, we used annotations about different
levels of clinical actionability as described in the text. These had originally been compiled and curated by OncoKB by combining a
diverse set of sources, including FDA-, NCCN- and other guidelines, ClinicalTrials.gov and the scientific literature.

Annotation of functionally relevant CNVs

We applied a two step procedure to determine whether the annotated genes were functionally amplified or deleted in each specific
sample. First, a collection of functional relevant amplifications and deletions was curated by integrating the GISTIC 2.0 analysis of the
PancanAtlas dataset and the OncoKB database. GISTIC was run separately on each individual tumor type, and then globally on the
entire PanCanAtlas dataset, yielding a list of recurrently amplified and deleted regions of interest (ROIs). Default parameters of
GISTIC 2.0 were used, with the confidence level set to 0.95. For Genes within ROls, copy number variants consistent with the
role of the gene (amplification of OGs and deletions of TSGs) were retained. Gene-specific copy number variants that were labeled
as oncogenic, likely oncogenic or predicted oncogenic in OncoKB were also retained, yielding a list of gene-level functional CNVs. As
an additional validation step, we individually inspected each of the gene level calls to ensure that there was a good correlation
between copy-number status and gene expression, and we excluded calls in genes for which this correlation was non-existent.
Thresholded gene-level amplification/deletion values produced by GISTIC were used for pathway analysis, considering only ampli-
fications (+2) and deep deletions (—2). In total, 7,532 gene amplifications and 5,602 deletions were selected, for a total of 13,134
occurrences.
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Epigenetic silencing

Curated analysis of CDKN2A promoter hypermethylation

CDKN2A promoter methylation was assessed using lllumina Infinium HumanMethylation450 probe cg13601799 located within Exon
1a of CDKN2A (p16™K4%) We described the selection of this probe for CDKN2A methylation calling in a prior report (Cancer Genome
Atlas Research Network, 2012). We introduced a further refinement of DNA methylation calling to avoid artifactual hypermethylation
calls due to deep deletion in a gene. In brief, we used Level 1 IDAT files to calculate out-of-band (‘oob’) probe intensities as a sur-
rogate for background intensity, superior to internal negative controls (Triche et al., 2013). cg13601799 is a Type | probe with both
methylated (M) and unmethylated (U) versions in the red color channel, and therefore dye bias is not a concern. We compared the
foreground intensities (M and U) to the empirical distribution of the background intensities (as measured by the ‘oob’ probes). We first
called a sample to be methylated when the methylated (M) signal was higher than the 95th percentile of the background (‘oob’)
probes (FDR = 5%). As this locus is unmethylated in normal tissues, the U signals are generally higher than the M signal due to
the presence of contaminating normal cell types. We required a Log2(foreground/background) log-ratio of 2 or greater for the U probe
to ensure that the U signal was derived from tumor cells and not from contaminating normal cells in the case of a tumor with CDKN2A
deletion. If Log2(foreground/background) was < 2 for U and < 0 for M for this probe, then we concluded that this locus was deleted in
the tumor cells, and we then denoted these cases as containing “no signal” (Table S4). We identified 681 such samples, and we had
GISTIC copy number change data for 627 out of these 681. Out of these 627, 471 were called to have high-level deletion for CDKN2A
(—2 in GISTIC calls) and 120 had low level deletion for this gene (—1 in GISTIC calls), validating this approach.

Analysis of DNA hypermethylation at the promoters of other tumor suppressor genes

Epigenetic DNA hypermethylation events at promoters of tumor suppressor genes that are associated with decreased gene expres-
sion were systematically identified using the RESET bioinformatic tool (Saghafinia, Mina et al. manuscript in preparation). RESET
extracts probes that (i) map to gene promoter regions, (ii) are significantly hypermethylated compared to normal tissue samples,
and (jii) are associated with lower transcript levels of the corresponding gene. More specifically, only probes overlapping gene
promoter regions extracted from the FANTOMb5 cohort of robust promoters are considered (FANTOM Consortium and the RIKEN
PMI and CLST (DGT) et al., 2014). The status of a probe (dichotomized in hypermethylated and not hypermethylated) is determined
by comparing its beta value to the beta value distribution from adjacent normal tissue samples available in the TCGA sample collec-
tion. Finally, RESET determines whether a hypermethylation event is associated with mMRNA downregulation by checking whether the
mRNA expression of the associated gene is significantly decreased in hypermethylated tumors, compared to the not hypermethy-
lated ones. To avoid biases due to intrinsic gene expression and methylation differences between tumor samples of different origins,
we separately applied RESET within each tumor type. For tumor types without normal adjacent samples, the entire set of normal
samples from the TCGA cohort was used to define the background beta value distribution.

In this study, we evaluated all tumor suppressors in ten pathway templates (Table S3). We considered as significant only silencing
events with a false discovery rate FDR < 10% and a RESET score > 1. The results were further manually curated to exclude cases
where the methylation event might be tissue-associated, leading to a list of 15 genes silenced by DNA methylation (Table S7) Consis-
tently with the procedure used for copy number calls, all hypermethylation occurrences for these 15 genes in all tumor samples were
retained, even if the silencing event was only significantly recurrent in a subset of tumor types. This pancan set of occurrences was
further filtered to increase the likelihood of functional relevance: only the hypermethylation occurrences with a gene expression lower
than the 25 percentile of the gene expression distribution from the unmethylated samples were retained as functional and considered
in the downstream analyses. The sample-specific epigenetic silencing calls are provided as part of the genomic alteration matrix
described below (Table S4).

Gene fusion detection and filtering

TCGA RNA-Seq data were downloaded from Cancer Genomics Hub (CGHub, http://cghub.ucsc.edu) and analyzed using Google
cloud. For each sample, the fastq file was mapped to the human genome (build 38) followed by fusion calling using STAR-Fusion
(parameters:—annotation —coding-effect), EricScript (default parameters) and BREAKFAST (two different minimum distance cut-
offs were used: 5 kb and 100 kb). STAR-Fusion showed higher sensitivity in detecting the fusions reported in previous TCGA studies.
Therefore, we focused on the STAR-Fusion output and integrated EricScript and BREAKFAST output in one of the following filtering
steps: 1) an exclusion list of genes was curated, including uncharacterized genes, immunoglobin genes, mitochondrial genes, etc.
Fusions involving these genes were filtered; 2) Fusions from the same gene or paralog genes (downloaded from https://github.com/
STAR-Fusion/STAR-Fusion_benchmarking_data/tree/master/resources) were filtered; 3) Fusions reported in normal samples were
filtered, including the ones from TCGA normal samples, GTEXx tissues (reported in STAR-Fusion output), and non-cancer cell study
(Babiceanu et al.); 4) For the fusions reported by only STAR-Fusion but not EricScript, a minimum value of FFPM (fusion fragments per
million total reads) was required, as suggested by the author; For the fusions reported by both callers, no requirement. 5) Finally,
fusions with exactly the same breakpoints in > 10 samples across different cancer types were removed unless they were reported
in previous TCGA studies (e.g., FGFR3-TACC3).

For our pathway analyses, we included only the fusions that (a) involved at least one gene labeled as TSG in one of our pathway
templates, or (b) involved at least one gene labeled as OG in one of our pathway templates and such that the fusion is labeled as
oncogenic, likely oncogenic or predicted oncogenic in OncoKB. We also included a small set of additional fusions (MAML3-
UBTF, NOTCH2-SEC22B and PIKSCA-TBL1XR) based on recent evidence from the literature. Any fusion failing to satisfy at least
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one of these requirements was excluded from subsequent pathway analyses (although some additional fusions that are clinically
actionable based on OncoKB where included in Figure 7 for completeness). The final set of all fusion calls used in our manuscript
is provided as Table S8.

Generation of Genomic Alteration Matrices (GAMs)

To integrate all the genomic data in a format readily usable in the downstream analyses, the complexity of mutation and CNV data
was summarized into a binary Genomic Alteration Matrix (GAM) representing the occurrence of gene alterations across samples,
provided as Table S4. This matrix includes the set of functionally relevant mutations and CNVs selected for each gene and summa-
rized in the onco-query language column provided as part of each pathway template in Table S3. In the alteration level version of this
matrix, copy number events and point mutation events affecting the same gene were kept distinct. We also included epigenetic
silencing of CDKN2A based on DNA methylation analysis of the gene promoter and the epigenetic silencing of 15 additional genes
uncovered by RESET. The resulting table has entries for 9,125 samples and 411 alterations, for a total of 33,324 occurrences. For
completeness, in Table S4 we also provide a version of the GAM where alterations are aggregated at the gene level and a third version
were alterations are aggregated at the pathway level for the ten pathways in our analysis.

Analysis of conditional selection between alterations

SELECT, a method that infers conditional selection dependencies between alterations from occurrence patterns (Mina et al., 2017),
was run on the PancanPathway GAM. The default parameters of the R package implementation were used, with 5,000 random
permutations. SELECT analysis was performed at alteration level, considering as separate features the point mutations, copy number
changes, silencing and fusion events affecting the same gene. Alteration type, tumor type and tumor subtype were used as
covariates in the analysis. Only alterations with more than 5 occurrences were considered (0.05% of the samples). In total, SELECT
produced a list of 273 high-scoring motifs between 315 alterations.

Pathway-level analysis of conditional selection

The dependency motifs were summarized at pathway level by considering independently (i) the sum of motif scores between each
pair of pathways, and (i) the number of significant motifs. The significance of pathway-level interactions was empirically estimated by
comparing the observed sum of motif scores and number of significant motifs to the null distribution obtained by randomly permuting
the pathway annotation of the genes. The two metrics were first tested independently, and the two P values were then combined
using Stouffer’s method. Combined P values were then corrected with the Benjamini-Hochberg method. Corrected P values smaller
than 0.25 were deemed to be significant.

Curation of Clinical Trials

The list of clinical trials for genes in pathways not represented in OncoKB was manually curated from ClinicalTrials.gov (http://
clinicaltrials.gov). Clinical trials with drug compounds targeting pathway members or which described pathway members in their
inclusion or exclusion criteria are reported. Focus was given to ongoing clinical trials. A description of data retrieved from particular
clinical trials is in the README worksheet of Table S5. If available, PubChem Compound IDs (https://pubchem.ncbi.nim.nih.gov/) are
given for drug compounds.

QUANTIFICATION AND STATISTICAL ANALYSIS
Quantitative and statistical methods are described above within the context of individual analyses in the Method Details section.
DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/
legacy-archive/search/f) and the TCGA PanCancer Atlas publication page (https://gdc.cancer.gov/about-data/publications/
pancanatlas). The mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017).

Data can also be visualized and downloaded using a dedicated section of the cBioPortal for Cancer Genomics (http://www.
cbioportal.org/).

ADDITIONAL RESOURCES

Pathway diagrams were curated using PathwayMapper (Bahceci et al., 2017), a tool that allows visualization and design of pathway
diagrams stylized as in classical TCGA publications. This tool is publicly available online at www.pathwaymapper.org. Our curated
templates provided in Table S3 are accessible as pre-defined pathway diagrams that have been incorporated to the PahtwayMapper
interface. PathwayMapper also acts as an interactive resource that allows to easily overlay user-inputed alteration frequencies on top
of these predefined diagrams.
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Figure S1. Curated Pathways Including Cross-Cross Pathway Interactions, Related to Figure 2
Same as Figure 2, but including cross-pathway interactions.
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Figure S2. Cell-Cycle, Wnt, p53, Nrf2 and PI3K Pathway Alterations, Related to Figure 5

Detailed heatmap of alteration frequencies in members of the Cell-cycle, WNT, TP53 and NRF2 pathways. Shades of red indicate activating event (mutation,
amplification, activating fusion) and shades of blue indicate inactivating event (mutation, homozygous loss, inactivating fusion, epigenetic silencing). Color side
bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Top color bars show the
proportion of different types of alterations for each cancer subtype.
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Figure S3. Hippo, Myc, TGFf and Notch Pathway Alterations, Related to Figure 5

Detailed heatmap of alteration frequencies in members of the Hippo, Myc, TGFB and Notch pathways. Shades of red indicate activating event (mutation,
amplification, activating fusion) and shades of blue indicate inactivating event (mutation, homozygous loss, inactivating fusion, epigenetic silencing). Color side
bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Top color bars show the
proportion of different types of alterations for each cancer subtype.
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Figure S4. Additional Results for Conditional Selection, Related to Figure 6
(A-E) Mutual exclusivity (in purple) and Co-occurrence (in green) between alterations in (A) PI3K and RTK pathways, (B) Cell-cycle and p53 pathways, (C) p53 and
PI3K pathways, (D) p53 and Hippo pathways, and (E) cell-cycle and Nrf2 pathways.
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