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SUMMARY

We conducted the largest investigation of predispo-
sition variants in cancer to date, discovering 853
pathogenic or likely pathogenic variants in 8% of
10,389 cases from 33 cancer types. Twenty-one
genes showed single or cross-cancer associations,
including novel associations of SDHA in melanoma
and PALB2 in stomach adenocarcinoma. The 659
predisposition variants and 18 additional large dele-
tions in tumor suppressors, including ATM, BRCA1,
and NF1, showed low gene expression and frequent
(43%) loss of heterozygosity or biallelic two-hit
events. We also discovered 33 such variants in
oncogenes, including missenses in MET, RET, and
PTPN11 associated with high gene expression. We
Cell 173, 355–370
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nominated 47 additional predisposition variants
from prioritized VUSs supported by multiple evi-
dences involving case-control frequency, loss of het-
erozygosity, expression effect, and co-localization
with mutations and modified residues. Our integra-
tive approach links rare predisposition variants to
functional consequences, informing future guide-
lines of variant classification and germline genetic
testing in cancer.
INTRODUCTION

A sizable fraction of cancer is heritable (Lichtenstein et al., 2000),

but known common variants explain only a limited percentage of

the genetic burden in cancer (Bodmer and Tomlinson, 2010).

More than 100 genes, mostly tumor suppressors, have been
, April 5, 2018 ª 2018 The Authors. Published by Elsevier Inc. 355
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found to harbor rare, predisposing alleles (Rahman, 2014). Most

reports on germline variants have focused on single cancer

types, although mounting evidence has suggested shared pre-

disposition factors across cancer types. Previous pan-cancer

studies have highlighted pathogenic germline variants in tumor

suppressor genes, including ATM, BRCA1, BRCA2, BRIP1,

and PALB2 in adult cancers in The Cancer Genome Atlas

(TCGA) (Lu et al., 2015) and the Collaborative Oncological

Gene-environment Study (COGS) (Southey et al., 2016), as well

as TP53, APC, BRCA2, NF1, PMS2, and RB1 using 1,120 pedi-

atric cancer cases from the Pediatric Cancer Genome Project

(PCGP) (Zhang et al., 2015). As sequencing projects expand,

large-scale, systematic analyses are needed to increase statisti-

cal power and to compare predisposition factors among gene

categories and cancer types.

Clinical interpretation of germline variants is a pressing chal-

lenge. Conflicting claims resulting from variability in sequencing

technologies, analysis pipelines, and interpretations hinder the

application of such knowledge (Amendola et al., 2016). Recent

American College of Medical Genetics and Genomics–

Association for Molecular Pathology (ACMG-AMP) guidelines

provide a systematic method for interpretation of sequence var-

iants for genetic disorders (Richards et al., 2015); however, a

high fraction of variants is relegated to the uncertain significance

(VUS) category, often due to rarity and conflicting results in exist-

ing databases and the primary literature. Systematic analyses of

high-throughput data associated with germline variants, such as

matching tumor sequencing and mRNA sequencing data, can

provide evidence of functional consequences and further inform

clinical interpretation. For example, allele fraction derived from

sequencing analysis of matched tumor and normal samples

can validate whether variants of tumor suppressors are undergo-

ing positive selection in the context of the classic two-hit model

(Knudson, 1971; Knudson, 2001; Lu et al., 2015), and mRNA

analysis can validate whether a germline truncation results in

reduced expression. Of note, the current ACMG-AMP guidelines

do not make use of this type of somatic analysis evidence for

evaluation of germline variants.

In this study, we analyzed the landscape of pathogenic vari-

ants from 10,389 individuals across 33 cancer types in the

TCGA cohort. We identified 8% of cases carrying pathogenic

or likely pathogenic germline variants, ranging in prevalence

from a striking 22.9% in PCPG to a scarce 2.2% in CHOL.

Notably, we identified 33 such variants within oncogenes. In

contrast to variants of tumor suppressor genes showing associ-

ation with low expression (47.6% in bottom 25% of the carrier

sample’s respective cancer cohort) and loss of heterozygosity

(LOH; 38.5%), variants in oncogenes are associated with high

expression (62% in top 25%). We further investigated the

functionality of these variants through validation in other cancer

cohorts and experiments on RET alleles. Finally, we discovered
Figure 1. Predisposition Variant Discovery in 10,389 Adult Cancers of

(A) A scalable variant-calling and data-sharing model using ISB Cancer Genome

(B) Number of germline variants at each step of discovery from more than 1.46

manual-reviewed related to cancer predisposition. The 853 pathogenic or likely

(C) Attributes of the 10,389 cases of 33 cancer types included in the final analyses,

See also Figure S1 and S2 and Table S1.
another 18 copy number deletions and nominated 47 VUSs

based on multiple lines of evidences suggesting functionality.

Altogether, our study represents the largest systematic discov-

ery of rare, germline predisposition variants and provides a

firm basis for addressing their functionality in cancer.

RESULTS

Data Generation and Sharing on Cloud
The TCGA PanCanAtlas Germline Working Group analyzed

germline predisposing variants in 10,389 samples across 33

cancer types (Figure 1). A focus group conducted variant calling

on the Institute for Systems Biology Cancer Genomics Cloud

(ISB-CGC), and the resulting calls were shared among all inves-

tigators for quality control and downstream analyses (Figure 1A).

Specifically, we dockerized the GenomeVIP variant calling

system (https://github.com/ding-lab/GenomeVIP) (Mashl et al.,

2017) and deployed more than 121,000 virtual machines running

for over 600,000 hr on the ISB-CGCduring the course of the proj-

ect. Variant calls from Genome Analysis Toolkit (McKenna et al.,

2010), VarScan2 (Koboldt et al., 2012), and Pindel (Ye et al.,

2009; Ye et al., 2015) were merged, filtered, and annotated

(STAR Methods), resulting in 286,657,499 total exonic variants,

ranging from an average of 33,037 exonic variants per individual

of African ancestry to 26,640 of European ancestry (Figure 1B).

Our data-sharing paradigm effectively facilitated the analyses

required by such an enormous project, avoiding both redundant

computation in variant calling and storage of intermediate anal-

ysis files in various local computational clusters.

The final set of 10,389 samples passed stringent quality

control criteria, showing good coverage, no outlying numbers

of variants called, and high concordance with single-nucleotide

polymorphisms (SNP) array data (STARMethods). Across germ-

line-normal samples, quality control analysis revealed a

coverage of 18 �174X for the 152 cancer susceptibility genes

known to harbor rare, pathogenic variants (STAR Methods,

Table S1, and Figure S1). The passed variant calls achieved an

average precision above 0.99 when compared to the genotypes

obtained through SNP array data (Figure S1). The germline

exomes displayed high quality, with an average transition-trans-

version (TiTv) ratio of 2.88 ± 0.17 and lambda value (Koire et al.,

2016) of 0.034 ± 0.003. The median predicted percent false pos-

itive calls across 33 cancer types was less than 5%, ranging from

1.2% (MESO) to 16.1% (KIRC, Figure S1). These resources are

shared with the cancer researcher community on the cloud for

further evaluation across institutions worldwide.

Pathogenic Variant Discovery across 33 Cancer Types
We developed an automatic variant classification pipeline

called CharGer (Characterization of Germline Variants, https://

github.com/ding-lab/CharGer) by adopting and extending the
the TCGA PanCanAtlas Cohort

Cloud (ISB-CGC).

billion total germline variants called from WES bam files to 1,393 prioritized,

pathogenic variants are used in downstream analyses.

including TCGA abbreviation of the cancer type, gender ratio, and age at onset.
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ACMG-AMP guidelines (Richards et al., 2015) specifically for

rare variants in cancer. CharGer queries information fromClinVar

(Landrum et al., 2016), including variant entry submissions and

disease-gene associations reported. We also generated gene-

specific databases for known susceptibility genes, including

TP53, BRCA1, BRCA2, RET, and TERT (STAR Methods).

Further, in total, we curated 152 genes that contribute to cancer

susceptibility, adding 15 genes from the St. Jude PCGP germline

study (Zhang et al., 2015), 11 from Cancer Gene Census-Germ-

line, and 12 from recent literature (reference listed in Table S1) to

a published list of 114 known predisposition genes (Rahman,

2014) (Table S1). Overall, each variant is evaluated using data

available for any of 12 pathogenic evidence levels and 4 benign

evidence tags from ACMG-AMP that contribute to a composite

score used for automatic classification. After CharGer evalua-

tion, known pathogenic variants in ClinVar and curated data-

bases aremarked as pathogenic, whereas variants with CharGer

score > 8 as likely pathogenic, and those with CharGer score > 4

as prioritized VUSs (STAR Methods, Figure S2, and Table S1).

We bench-marked this automated classification and demon-

strated its high performance: achieving a sensitivity of 88%

and a false-positive rate of 4.9% for detecting pathogenic vari-

ants out of 883 germline variants found in pediatric cancer

classified by the PCGP expert panel (Zhang et al., 2015).

We applied CharGer to classify variants found in our TCGA

cohort into pathogenic, likely pathogenic, and prioritized VUS

groups. CharGer initially prioritized 31,963 variants in these sam-

ples, 1,393 of which were labeled as rare variants (%0.05%AF in

1000 Genomes and complete ExAC r.3.0.1) relevant to cancer,

passing manual review in both normal and tumor samples

(STAR Methods). Combining existing database curation and

CharGer results, we classified these into 435 pathogenic vari-

ants, 418 likely pathogenic variants (Table S2), and 540

prioritized VUSs (Table S2 and Figure 1C). This catalog of 853

pathogenic or likely pathogenic germline variants expanded

significantly from our previous study, which had focused solely

on variants that truncate tumor suppressors in 12 TCGA cancer

types (Lu et al., 2015).

Across all cancer types, 4.1% of cases (n = 428) harbored

pathogenic variants, and another 3.8% (n = 390) carried likely

pathogenic variants (Figure 2A). The frequencies of pathogenic

or likely pathogenic variants vary greatly across cancer types

(Table S3), with the expected high rates in OV (19.9%) and

BRCA (9.9%). Other cancer types that involve tissue types that

are exposed to environmental factors, such as SKCM (6.2%)

and UVM (5%), had lower percentages of carriers. Notably,

22.9% of PCPG (Fishbein and Nathanson, 2012), 14.1% of

PAAD (Solomon et al., 2012), and 12.5% of SARC (Ballinger

et al., 2016) cases carried such variants, suggesting significant

contributions of rare germline predisposition in these cohorts.

We investigated genes with enriched pathogenic or likely

pathogenic variants in each cancer type. Briefly, we first identi-

fied cancer types with potential higher enrichment by comparing

to pathogenic or likely pathogenic variants identified in the

Exome Aggregation Consortium (ExAC) non-TCGA cohort. We

then conducted total frequency testing (TFT) (Basu and Pan,

2011) for one cancer type against all other cancer types, sub-

tracting the ones with potential enrichment for each gene
358 Cell 173, 355–370, April 5, 2018
(STAR Methods). We identified 28 specific cancer-gene associ-

ations (FDR < 0.05) and 16 additional suggestive (FDR < 0.15)

associations (Figure 2C and Table S3). Themajority of these find-

ings from the burden test are known associations. For example,

pathogenic or likely pathogenic variants of BRCA1 and BRCA2

are highly enriched in OV and BRCA (FDR < 1.15E�05), as

expected, while BRCA2 also showed significant enrichment in

PAAD (FDR = 0.012). PCPG is associated with a wide array of

predisposition factors, including RET, SDHB, VHL, NF1, SDHD,

and MAX.

There were several new findings that may suggest unexpected

germline susceptibility gene and tumor associations (Table S3).

For example, five stomach adenocarcinoma patients carried

five different PALB2 loss-of-function (LOF) variants (FDR =

0.038, nonsense and frameshift) with variable LOH (2 of 5

tumors) similar to that seen in other PALB2-associated tumors.

Only one other recent report suggests this potential association

(Sahasrabudhe et al., 2017). Similarly, three melanoma patients

carried three different LOF variants in SDHA (FDR = 0.035, and

very low expression levels)—a gene that was not previously

associated with melanoma susceptibility. Strikingly, two LUSC

and three GBM patients carry the same rare BUB1B missense

variant, namely p.Q912H. A prior mouse model suggested that

haploinsufficiency for BUB1B increases the development of

carcinogen-induced lung carcinomas (Dai et al., 2004). Thus,

our results may have revealed novel cancer susceptibility asso-

ciations that require further study.

At the variant level, we identified 659 pathogenic or likely path-

ogenic variants in 66 tumor suppressor genes (TSGs) (Figure 2D).

We also discovered 33 pathogenic or likely pathogenic variants

in five oncogenes: RET, AR, PTPN11, MET, and CBL. 21 RET

variants were found across 11 cancer types. Some appear to

be cancer specific; for example, all of the three pathogenic

MET p.H1112R variants are observed in KIRP (papillary renal

carcinoma), validating the previously observed co-segregation

of the variant in hereditary KIRP (Schmidt et al., 1998). For tumor

suppressors, we identified a total of 57 ATM variants, 36 BRIP1,

and 29PALB2, all in at least 18 cancer types. In contrast, multiple

other tumor suppressor genes showed enrichment in specific

cancer types, such as BRCA1, BRCA2 variants in BRCA, and

OV (Figure 2C). For example, all four of the tumors containing

the pathogenic BRCA1 p.C61G variants in the ring domain are

breast-invasive carcinoma.

Two-Hit Events
To better understand the biological impacts of the discovered

variants, we examined the extent of LOH using a statistical test

we developed previously (Lu et al., 2015) (STAR Methods). We

discovered 157 significant (FDR < 5%) LOH of pathogenic or

likely pathogenic germline variants in tumors (Figure 3A), 148

of which were found in tumor suppressor genes. In contrast, sig-

nificant LOH is only observed in four variants of oncogenes,

possibly due to their gain-of-function nature and less selection

requirement for the activated mutated allele to be homozygous.

To validate the allele specificity of the discovered LOH events,

we further characterized both the normal and tumor read-count

data and tumor copy number variation (CNV) calls using GISTIC

(Table S4, STAR Methods). Variants showing suggestive LOH
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Figure 2. Distribution of Pathogenic Germline Variants across Genes and Cancer Types

(A) Percentage of TCGA cases carrying pathogenic and likely pathogenic variants in each of the 33 cancer types.

(B) Count of pathogenic or likely pathogenic variants in tumor suppressors, oncogenes, and other genes in each of the cancer type.

(C) Carrier frequency of pathogenic variants in genes enriched in cancers. The numbers in each box (carrier frequency) indicates the percentage of carriers of

pathogenic variants of each gene in the specified cancer cohort. The black outlines indicate that the cancer type is significantly (FDR < 0.05) enriched for

pathogenic variants of that gene. The gray outlines indicate suggestive (FDR < 0.15) enrichment.

(D) Counts of pathogenic and likely pathogenic variants in the oncogenes and tumor suppressors enriched in cancers.

See also Figurse S2 and S7, and Tables S2, S3, and S7.
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Figure 3. Systematic Identification of Two-Hit Events in TCGA Cancers
(A) Identification of LOH in oncogenes and tumor suppressors through comparison of variant allele frequencies in tumor and normal samples. Each dot depicts

one variant. The diagonal line denotes neutral selection of the germline variant where the normal and tumor variant allele frequencies (VAFs) are identical.

(B) Somatic copy number changes detected for the tumors showing significant LOH in each gene. Significant, suggestive, and no evidence of LOH are shown in

red, green, and gray, respectively.

(C) Counts of germline variants showing the various types of classified LOH in cancer predisposition genes, highlighting LOH due to deletion of the wild-type

alleles in tumor suppressors (shown in orange).

(D) Candidate biallelic events of pathogenic or likely pathogenic variants coupled with somatic mutations on gene products ofATM,BRCA2, andMSH6. Germline

variants are colored in red, and somatic mutations are colored in blue. Coupled germline and somatic events observed in the same case are linked with gray lines.

See also Figure S3 and Table S4.
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(FDR < 0.15 or tumor VAF > 60%, STAR Methods) showed

similar extents of deletion to variants with significant LOH (Fig-

ure 3B). Thus, many of these are likely to be true events failing

to reach statistical significance due to insufficient sequencing

reads, adding up to 38.5%of variants (n = 254) in tumor suppres-

sors showing LOH. We further confirmed that 154 of these LOH

events in tumor suppressors are due to deletion of the wild-type

allele (Figure 3C).

As expected, strong LOH is observed in cancer types having

high hereditary predisposition. The four OV samples containing

BRCA1 p.Q1777fs, p.D825fs, p.W372*, and p.E797* each

showed highly significant LOH (FDR % 3.43E�20), whereas

BRCA2 p.E1857fs, p.E294*, and p.Y1762* also showed strong

LOH in the other three OV samples (FDR % 3.27E�11). We

further compared rates of LOH in BRCA1/2 across cancers,

finding that most BRCA1/2 variants exhibit LOH in OV and a

slightly lower fraction in BRCA and an even lower fraction but

notable 11 such events in other cancers (Figure S3). The

BRIP1 p.S624* variant showed pathogenic evidence from three

independent ClinVar submitters and displayed strong LOH evi-

dence (FDR = 1.31E�16) in an OV sample. RAD51C p.R193*

showed LOH in both BRCA and OV (FDR = 3.04E�12 and

5.79E�05, respectively), but not SKCM (FDR = 0.933). MET

p.H1112R, which was previously shown to cause malignant

transformation of NIH 3T3 cells (Schmidt et al., 1998), showed

LOH due to amplification of the variant allele in two of the three

KIRP samples (FDR = 2.24E�05, 6.98E�3, 0.26, respectively).

The positive selection of these germline variants in the tumor

further validates their clinical relevance.

Another manifestation of the two-hit hypothesis is a patho-

genic or likely pathogenic germline variant coupled with a so-

matic mutation in the other copy of the predisposition gene.

We identified 37 candidate biallelic events when analyzing the

tumors in our cohort (STAR Methods, Exact Poisson test,

p < 1E�5, Figure 3D and Table S4). Six germline variants of

ATM, including two p.T2333fs and one each of p.S2289fs,

p.R23*, p.E1267fs, and a start loss variant, were coupled with

somatic ATM mutations. Three cases carrying distinct BRCA2

germline truncations, including p.T1598fs, p.A2314fs, and

p.Q1037*, also harbored BRCA2 somatic mutations (Figure 3D).

A COAD case carried an MSH6 p.R248fs germline variant and a

p.R248* somatic mutation that are mutually exclusive in all

sequencing reads, clearly supporting the two-hit abruption of

both alleles (Figure S3).

Multiple tumor suppressor genes also showed expression

patterns consistent with the two-hit hypothesis—an African

American KIRP patient with onset at age 35 carried the patho-

genic FH p.S187* germline variant and a somatic splice site FH

mutation—and showed low FH expression (at 2.07% of KIRP).

A BLCA sample carried the CHEK2 germline p.W93* com-

pounded by four different CHEK2 somatic mutations subse-

quently showing low CHEK2 expression (at 1.7% of BLCA).

Overall, these results provide supporting evidence of the two-

hit hypothesis through LOH and biallelic events of predisposing

alleles across many tumor types.

Altered Gene Product Expression in Variant Carriers

In addition to expression associated with two-hit events, we

systematically investigated the gene and protein expression in
carriers of pathogenic or likely pathogenic germline variants of

the respective gene. Briefly, we calculated the percentile of

gene expression for variant carriers relative to other cases in

the same cancer cohort. We then conducted a differential

expression analysis to look for genes expressed at different

levels in variant carriers (STAR Methods). We identified 15

significant (FDR < 0.05, linear regression) and 6 suggestive

(FDR < 0.15) gene-cancer associations (Figures 4A, 4B, S4,

and Table S5).

In breast cancer, FANCM, ATM, BRCA2, CHEK2, and BRCA1

carriers all showedsignificantly lower expressionof the respective

gene (Figures 4A and 4B). In PCPG, RET carriers showed higher

RET expression, whereas SDHB, NF1, and SDHD carriers have

lower expression. In addition to breast cancer, ATM carriers ex-

hibited significantly lower expression in LUAD and LGG. We

then conducted the same analysis usingRPPAdata, investigating

whether the effects extend to the protein and phosphoprotein

levels (Figures 4C and 4D and Table S5). Notably, ATM carriers

were significantly associated with lower protein expression

in five cancer types, namely STAD, PAAD, PRAD, BRCA,

and LGG. CHEK2 carriers also showed lower protein expression

of the Chk2 marker in BRCA and suggestively in BLCA

(FDR = 0.053).

Overall, the associated gene expression showed distinct dis-

tributions for oncogenes versus tumor suppressors (Figure 4B).

Pathogenic or likely pathogenic germline variants in tumor sup-

pressors are associated with lower distributions in gene expres-

sion than those in oncogenes (two-sample Kolmogorov-Smirnov

test, p = 5.70E�7): 47.6% of such variants in tumor suppressors

were associated with the bottom quartile of gene expression. In

contrast, 62.1% of those in oncogenes were associated with the

top quartile, suggesting divergent transcriptional regulation of

tumor suppressor genes and oncogenes carrying pathogenic

or likely pathogenic variants.

On the variant level, all three tumors with the MET p.H1112R

variant were in the top 25% MET gene expression in KIRP.

Twelve cases carrying predisposing RET alleles showed high

RET expression in their respective cancer cohorts, including 9

PCGP cases and, notably, 3 RET carriers from other cancer

types not typically associated with multiple endocrine neoplasia

type 2, including p.I852M in LGG (96%), p.D631Y in KIRP (84%),

and p.R912P in READ (80%). The two breast cancer carriers of

PTPN11 variants p.N58S and p.T411M also showed high

expression (> 88%). The high expression of the variant-associ-

ated oncogenes in tumor, many without detected copy number

amplifications, suggests that cancer cells may preferentially

upregulate pathogenic alleles in these oncogenes.

Rare Germline Copy Number Alterations
We systematically scanned for rare, germline copy number varia-

tions (CNVs) in the same 10,389 samples using both SNP-array

data and exome hidden Markov model (XHMM) analysis on

whole-exome sequencing (WES) data as previously described

(Fromer and Purcell, 2014; Ruderfer et al., 2016) on whole-

exome-sequence data (STAR Methods). We identified 42,208

rare (AF<0.6%considering 50%overlaps) CNVsusingSNP-array

data and 53,726 using XHMM on the WES data (Figure 5A). 3,584

of overlapping CNVs in both datasets passed rare, frequency
Cell 173, 355–370, April 5, 2018 361
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Figure 4. Germline Variants Associated with Expression Impacts

(A) Plot showing cancer types where the carrier of each gene’s germline variant is associated with significantly higher or lower expression of the gene transcript.

Each dot represents a gene-cancer association, where the color depicts the cancer type and the shape shows significance.

(B) Distribution of gene expression of pathogenic variant carriers. Each dot corresponds to the gene expression percentile in a case carrying germline variants

relative to other cases of their corresponding cancer cohort. Variants in oncogenes associated with high expression are labeled.

(C) Plot showing cancer types where the carrier of each gene’s germline variant is associated with significantly higher or lower expression of the reverse phase

protein array (RPPA) protein and phosphoprotein marker. Each dot represents a gene-cancer association, where the color depicts the cancer type and the shape

shows significance.

(D) Distribution of protein and phosphoprotein expression of pathogenic variant carriers. Each dot corresponds to the expression percentile of the RPPAmarker in

a case carrying germline variants relative to other cases of their corresponding cancer cohort.

The genes shown in (B) and (D) are based on their significant enrichment of pathogenic variants.

See also Figure S4 and Table S5.
filters. On average, each case had 0.38 overlapping deletions

and 0.96 overlapping duplications; 44% of the CNVs affected a

single gene, while 56% impacted multiple genes (Figure 5B).

Given the large amount of discovered CNVs, we hypothesized

that the pathogenic CNVs likely reside in genes showing enrich-

ment in specific cancers. Using the 28 associated cancer-gene

pairs from this cohort (Table S3), we found 18 events (2 were
362 Cell 173, 355–370, April 5, 2018
jointly identified using both WES and SNP array) that marked

copy number deletions of 11 tumor suppressor genes (Figures

5C and S5). We found 3 BRCA and 2 OV cases showing

BRCA1 deletions. Two KIRC cases carried VHL deletions, and

one each of BRCA and PRAD cases carried ATM deletions.

Other genes affected by deletions included FH, MSH6, NF1,

PALB2, and PTEN.
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Figure 5. Rare Germline Copy Number Variations

(A) Copy number variations (CNVs) identified through SNP array data, where the CNV value is measured by the log2-transformed segment mean.

(B) CNVs identified through whole-exome sequencing data using XHMM, where the CNV value is measured by the normalized read depth of the genomic region.

(C) Characteristics of the 3,582 overlapping CNVs identified using both technologies, including fractions of samples carrying deletions or duplications and the

number of genes affected by each type of CNVs.

(D) CNVs identified in predisposition genes associated with specific cancer types, along with its CNV value, corresponding gene expression and technology used

for detection. Asterisks (*) denote the two pairs of events discovered by both the SNP array and WES data in the same CNV carrier.

(E) Expression quantile associated with each CNV events in their respective cancer types. Each dot represents one CNV event shown in (D) colored by the

cancer type.

See also Figure S5.
Notably, we further validated the transcriptional effect of these

deletions detected in predisposition genes for specific cancer

types: 9 of the 14 cases with highlighted events with expression

datashowedbottomquantileexpression in their respectivecancer

cohorts (Figure 5D), whereas other deletions did not correspond

with lower gene expression in the affected samples (Figure S5).

Independent Genomic Evidence Supporting
Pathogenicity
We then sought independent evidence to corroborate the path-

ogenicity of the 853 identified pathogenic or likely pathogenic
variants, including the following: (1) significant enrichment in

cancer versus non-cancer cases at a single variant level, (2)

co-localization of variants with pathogenic germline alleles found

in pediatric cancers or with recurrent somatic mutations, and (3)

co-localization with post-translational modification (PTM) sites.

To determine whether the pathogenic or likely pathogenic var-

iants are enriched in cancer cases, we conducted association

testing by comparing allele frequencies in TCGA cases versus

non-TCGA cases in the most-powered Non-Finnish European

cohort in the Exome Aggregation Consortium (ExAC r.0.3.1)

data comprised of 33,370 individuals (Lek et al., 2016) (STAR
Cell 173, 355–370, April 5, 2018 363
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Figure 6. Independent Evidence Supporting Functionality of Pathogenic Variants

(A) Pathogenic germline variants showing significant enrichment in TCGA cases compared to non-TCGA cases in the ExAC Non-Finnish European cohort.

(B) Variants with co-localizing recurrent somatic mutations (N R 3 in the TCGA PanCanAtlas MC3 dataset) or pathogenic germline variants in 1,120 pediatric

cancers.

(C) Site-specific interaction network of predisposition proteins shows how germline substitutions occur in or near experimentally determined binding sites of

upstream kinases and other enzymes.

See also Figure S6 and Table S6.
Methods). We found 30 unique variants showing suggestive

associations (one-tailed Fisher’s exact test, p < 0.05, Figure 6A

and Table S6). The top four associated variants passing multi-

ple-testing threshold (FDR < 0.05) include ATM p.E1978*

(p = 3.50E�06), BRCA1 p.Q1777fs (p = 2.97E�05), POT1

p.R363* (p = 3.11E�05), and PALB2 p.R170fs (p = 5.20E�04).

The results also provided supporting evidence of pathogenicity

for oncogenic variants such as MET p.H1112R (p = 2.00E�03)

and MPL p.F126fs (p = 0.0161).

In our TCGA cohort, we observed 28 pathogenic or likely path-

ogenic variants previously discovered in 1,120 pediatric cancers

(Zhang et al., 2015) (Figure 6B), including stop-gained variants in

BRIP1, ERCC3, FANCC,MSH2, andWRN. Further, we observed

23 incidences of germline variants co-localizing with recurrent

(n R 3) somatic mutations found in the TCGA Multi-Center

Mutation CallingMulti-tumor Completion (MC3) cohort data (Fig-

ure 6B and Table S6). Considering unique variants, these include

8 missense variants in TP53, 4 NF1 truncations, and 2 RET
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missenses. For example, the TP53 p.R248W is a highly recurrent

somatic mutation (n = 94) while being observed as a germline

variant in both pediatric rhabdomyosarcoma (Zhang et al.,

2015) and LGG. The MEN2 (multiple endocrine neoplasia

type 2)-associated allele RET p.M918T seen in PCPG and asso-

ciated with MEN2B disorder was also found as a recurrent

somatic mutation (n = 4). Overall, we observed significant over-

laps between both recurrent somatic mutations and PCGP vari-

ants and pathogenic or likely pathogenic variants we found in

TCGA (exact Poisson test, p < 2.2E�16 in both tests), implying

shared oncogenic processes in predisposition across pediatric

and adult cancers, as well as germline and somatic genomes.

To further evaluate whether this set of 853 pathogenic or likely

pathogenic variants discovered in TCGA can impact a broader

patient population, we examined the direct overlap with these

variants in an independent (primarily metastatic) tumor cohort

collected at The University of Texas MD Anderson Cancer

Center (MDACC), which consists of 3,026 patients in 19 tumor



types. Targeted panel sequencing of 201 cancer-related genes,

covering 39 out of 99 genes with pathogenic variants, were previ-

ously sequenced from these patients based on an institutional

clearinghouse protocol for cancer patients (Chen et al., 2015).

We rediscovered 29 specific variants found in TCGA (0.96% car-

rier frequency) in the MDACC cohort from eight tumor types,

including breast, colorectal, melanoma, head and neck, and glio-

blastoma multiforme (Table S6). In comparison, we identified

0.58% carriers of these variants of the same genes in the 53,105

non-TCGA samples in the ExAC cohorts, validating the enrich-

ment of these variants in cancer (Fisher’s Exact Test, p = 0.015).

Variants in Post-Translational Modification (PTM) Sites
To investigate the potential functional impact of germline variants

on protein signaling, we mapped the 853 variants to 316,216

experimentally collected known post-translational modification

(PTM) sites from ActiveDriverDB (Krassowski et al., 2018),

PhosphoSitePlus (Hornbeck et al., 2015), and the UniProt Knowl-

edge Base (The UniProt Consortium, 2017) (STAR Methods).

Overall, we found that 65 amino acid substitutions (missenses)

directly overlap or sit adjacent to 34 unique PTMs (Table S6),

showing a significant enrichment to those variants observed in

the 1000 Genomes dataset (STAR Methods, permutation test,

p < 2x10�11). The top six geneswith pathogenic PTM-associated

substitutions include VHL (n = 10), CHEK2 (n = 9), BUB1B (n = 9),

TP53 (n = 8), and RET (n = 6). This agrees with our earlier obser-

vation that PTM sites are depleted of substitutions in the general

human population, while the sites are enriched in disease muta-

tions (Reimand et al., 2015).

To illustrate putative mechanisms of germline variants on

signaling networks, we systematically mapped the PTM-associ-

ated substitutions to known site-specific enzyme-substrate

interactions (Hornbeck et al., 2015; Krassowski et al., 2018)

(STAR Methods, Figures 6C and S6). Over 60% (21/34) of unique

substitutions in 9/18 genes occur in known protein sites bound by

upstream kinases and other classes of enzymes. For example,

five substitutions in TP53 potentially affect binding sites of ki-

nases, such as Aurora kinase A (AURKA) and CHEK2 (checkpoint

kinase 2), and other signaling enzymes, such as MDM2 and

EP300, that are known to activate or inhibit TP53 in response to

cellular stimuli. Five VHL variants occur in binding sites of the

NEK1 kinase that promotes its degradation (Patil et al., 2013).

Similarly, CHEK2 p.S428F may affect the auto-phosphorylation

and activation of CHEK2 kinase (Gabant et al., 2008). RET

p.V804M and p.R921P potentially affect its auto-phosphorylation

sites that are required for RET kinase activity (Kawamoto et al.,

2004; Plaza-Menacho et al., 2016). BRCA1 p.R1699W signifi-

cantly weakens binding to the BACH1 peptide through disruption

of the BRCT repeats (Shiozaki et al., 2004). Collectively, these

results suggest that a subset of pathogenic germline cancer pre-

disposition variants may manifest their function by disrupting and

rewiring complex protein signaling networks.

Functional Assessment of Germline RET Alleles
We adapted HotSpot3D (Niu et al., 2016) to conduct co-clus-

tering analysis of pathogenic or likely pathogenic germline vari-

ants and somatic mutations on 3D protein structures (STAR

Methods). We identified 56 hybrid clusters containing somatic
mutations and 21 pathogenic germline variants in 35 genes

(Table S6). For example, we observed co-localized VHL germline

variants p.C162F, p.L188V, and p.R167Q/W co-clustering with

somatic mutations affecting seven other nearby residues.

Interestingly, we observed hybrid clusters in the kinase

domain of RET: one includes the co-localized germline variants

p.R912P/p.M918T and 10 other somatic mutations (Figures 7A

and 7B), while the other adjacent cluster includes p.I852M along

with five somatic mutations. Additionally, we also observed

germline VUSs co-clustering with somatic mutations in the

kinase domain of RET and MET (Figure 7B), potentially providing

additional evidence for pathogenicity. One MET kinase domain

cluster centered around residue p.H1112, where the known

pathogenic germline variant p.H1112R and the somatic mutation

p.H1112Y resides. This cluster contained additional somatic

mutations including p.T1114S and the pathogenic p.V1110I

and a germline VUS p.H1097R. We further identified a RET

kinase domain cluster containing co-localized germline VUSs

p.R844L/Q and p.R846V and co-clustered VUSs p.R817C and

p.E843K (Figure 7B), some of which show additional evidence

of functionality. For example, RET p.E843K is associated with

high expression (97th percentile) and potential enrichment in

the cancer population (p = 1.7E�4) (Table S2).

Because of the preponderance of variants in RET especially in

and around the kinase domain, we assessed their functionality

by conducting experimental validation of 12 unique germline

variants in RET, including 3 pathogenic variants and 9 VUSs

(STARMethods). Additionally, we selected a constitutively active

positive control p.C618F and a kinase-dead negative control

p.K758M (Table S6).

We evaluated the activity of theRET variants bymonitoring the

downstream pMAPK levels by western blot in the absence of its

ligand GDNF (STAR Methods). We first measured RET activity

through the ratio of pMAPK/RET/GAPDH (Figure 7C). As ex-

pected, the constitutively active p.C618F showed ligand-inde-

pendent activation, whereas the kinase-dead p.K758M showed

background levels of pMAPK. The MEN2B syndrome-associ-

ated p.M918T also exhibited higher activity, consistent with the

severe disease phenotype, whereas all other germline VUSs

found in this study did not show significant change in activity

when pMAPK was used as a readout.

Activating mutations tend to couple with upregulation of the

oncogenes, as seen for RET MEN2 alleles and MET p.H1112R

in our cohort (Figure 4B) and somatic mutations of receptor tyro-

sine kinases (Bose et al., 2013). We thus analyzed the results by

measuring RET activity by pMAPK/GAPDH not controlled for the

dynamic RET expression (Figure 7C). While p.R912P was previ-

ously shown to co-segregate in familial medullary thyroid carci-

noma (Jimenez et al., 2004), our results demonstrate that it may

also show ligand-independent activation (t test using pooled

standard deviation [SD], unadjusted p = 0.0019). Multiple other

variants also showed minor upregulation of activity that could

be adaptive in a permissive environment, warranting further

investigation (Figure 7D).

Nomination of VUSs Using Combined Evidences
Promisingly, our integrative approaches can be further applied to

nominate VUSs, connecting them to potential functionality.
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Figure 7. Germline Variants in the Kinase Domain of the Receptor Tyrosine Kinase RET

(A) Pathogenic or likely pathogenic germline variants along the RET protein observed in the TCGA cohort.

(B) Co-clustering of somatic mutations and germline variants in the kinase domain of RET and MET shown on 3D protein structures (PDB structures, from left to

right: PDB: 21VT; PDB: 1R0P; and PDB: 1XPD). Germline variants are colored in red; somatic mutations are colored in blue; amino acid residues affected by both

type of mutations are colored in salmon.

(C) Experimental assessment of the signaling functionality of RET germline alleles. In the top bar plot, ligand-independent RET activity was measured through

pMAPK/RET/GAPDH normalized to the ratio observed in wild-type. In the bottom barplot, experimental assessment of RET germline alleles measured through

pMAPK/GAPDH normalized to the ratio observed in wild-type. See also Table S6.
Among the 540 prioritized VUSs (Figure 1), we discovered 47

additional predisposition variants while requiring at least two

lines of evidence involving case-control frequency, LOH, expres-
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sion effect, and co-localization with recurrent mutations and

PTMs (Figure S2 and Table S2). These include six incidences

of cancer-enriched (p = 1E�4) ERCC2 p.F544fs, three each of



FANCC and FANCL truncations and one each of LOH-associ-

ated POLH and FANCM variants, whose carriers all showed

bottom 25% expression in their respective cancer cohorts.

These approaches of functional assessment will likely inform

future guidelines of variant classification.

DISCUSSION

We present the largest catalog of germline variants of cancer to

date in 10,389 individuals spanning 33 cancers (Figure 1). A total

of 853 pathogenic or likely pathogenic variants were discovered

in 8% of adult cancer cases, a fraction comparable to recent

investigations in smaller cohorts of pediatric and adult cancers

(Cheng et al., 2017; Parsons et al., 2016; Zhang et al., 2015).

This comprehensive survey allowed us to establish enrichment

of pathogenic or likely pathogenic factors in each cancer (Fig-

ure 2) from BRCA1/2 in OV and BRCA to RET/SDHB/VHL/NF1/

SDHD in PCPG. Our analysis also identified putative new asso-

ciations, e.g., PALB2 in STAD and BUB1B in GBM/LUSC that

warrant further study. Further, the concurrent systematic discov-

ery of CNVs revealed 18 rare events, including deletion of ATM,

BRCA1, andNF1 associated with clear expression changes (Fig-

ure 5), suggesting the importance of other genomic events

beyond SNPs and small insertions and deletions.

We fully acknowledge that although this cohort presents one

of the largest systematic analysis to date, our power to detect

predisposition genes harboring rare variants is still limited,

potentially requiring 100,000 samples to achieve 80% power

for rare variants of 95% penetrance (Figure S7). Similar power

limitation applies to clinical association. We validated previously

found predisposition genes associated with earlier onset ages in

various cancer types (Table S7). We also investigated variants

found in 552 cancer caseswith known familial history (Figure S7).

While difficulties abound for collecting family information (i.e.,

non-cohesive family history collection, absent family history for

many projects), improved curation of such data will be pivotal

for investigation of predisposing variants.

Most of the known predisposing factors in cancer are found in

tumor suppressors; however, an intriguing smaller set of condi-

tions are associated with heritable activating mutations in onco-

genes, such as MET p.H1112R in hereditary papillary renal

carcinoma (Schmidt et al., 1998). By conducting the first system-

atic discovery of germline variants, we discovered 33 such

variants in oncogenes, including missenses in MET, RET, and

PTPN11. Particularly, we found pathogenic RET variants associ-

atedwith high gene expression not only in PCPGbut also in LGG,

KIRP, and READ. The pathogenic RET allele p.R912P (Figure 7)

showed potential ligand-independent activation. However, our

assay failed to establish functional change in other alleles of

familial medullary thyroid cancer, including p.I852M (currently

with conflicting evidence in ClinVar) and p.R844Q (currently a

VUS in ClinVar). It is possible that MEN2-associated alleles

exhibit higher expressivity and have easier-to-detect molecular

functional changes. Weaker gain-of-function RET alleles may

exhibit activity depending on cellular context. Additional epige-

netics mechanisms such as upregulation of gene expression

may be required for these alleles to achieve their activating po-

tential, such as the candidate germlineRET VUS p.E843K, which
is associated with enrichment in cancer population, high gene

expression, and conservation among homologs, but showed

no gain of activity in our assay. Further, several cancer genes,

including PTPN11 (Li et al., 2012) show both tumor-promoting

or suppressing roles depending on the context. Our results

demonstrate the importance of experimental investigation of

the pathogenic variants in adequate conditions.

Historically, germline variants have often been overlooked by

classification systems due to the lack of evidence in currently

available databases and the lack of somatic mutation informa-

tion in the current ACMG-AMP classification system. In partic-

ular, our approach demonstrated the utility of tumor and

normal-matched sequencing for germline variant interpretation

in that they are required to discover two-hit events, including

LOH or biallelic events (Figure 3). Within each individual cancer

case, we observed that 34% and 4.3% of pathogenic or likely

pathogenic germline variants exhibit LOH and biallelic events,

respectively (Figure 3C). At the cohort level, we identified

germline variants and somatic mutations affecting the same res-

idues. While these approaches provide systematic evaluation of

germline variants, careful assessments are required to separate

effects from compounding factors, such as passenger somatic

copy number events that may induce LOH. Such information

may also help validate oncogenic effects of variants in pleio-

tropic genes (Table S2).

Further, by analyzing tumor expression data fromRNA-seq, we

identified that approximately half of the variants in tumor suppres-

sors were associated with low gene expression, and 62% of var-

iants in oncogenes were associated with high expression (Fig-

ure 4B), confirming and expanding findings of germline variants

in BRCA1/2 and mismatch repair genes associated with low

gene expression (Hilton et al., 2002; Morak et al., 2017). While

the association between truncating mutations and reduced

gene expression is intuitive, it should not be taken for granted:

even for predisposition genes, we observed various degrees of

reduced gene expression in truncation carriers (Figure S4). Such

evidence was used to highlight potentially functional genes

affected by somatic mutations (Ding et al., 2015) and can also

likely validate transcriptional effect of germline variants (Figure 4).

Germline variants overlapping PTMs suggest signaling as a

possible predisposition mechanism of cancer. Beyond the two

pathogenic variants that directly overlapped PTM sites (TP53

and PTEN) and additional proximal variants (Figure 6C), selected

prioritized VUSs also showed the potential of modulating PTMs

(Table S6). For example, multiple TP53 variants directly replace

arginine residues affected by protein methylation (R156H,

R158C, R290C, and R333G), potentially affecting the target

gene specificity of TP53 (Jansson et al., 2008). The BRCA1

p.Q1281P variant occurs in a known binding site of the ATR

kinase that phosphorylates BRCA1 site p.S1280 in response to

DNA damage (Tibbetts et al., 2000). The substitution replaces

a known kinase binding motif of ATR and induces a new motif

preferred by cyclin dependent kinases (CDKs) (Figure S6) and

potentially rewires signaling.

Overall, we systematically examined predisposition variants

and their corresponding functional evidence of more than

10,000 samples. The catalog of pathogenic variants in 33 cancer

types informs our knowledge of genetic inheritance of cancer.
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Further, the results showed that each germline allele should be

carefully evaluated within the relevant context of its correspond-

ing somatic genome and downstream expression. Such evi-

dence will not only aid validation of pathogenic variants but

also prioritization within large pools of VUSs and discovery into

the non-coding genome.
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Antibodies

Rabbit monoclonal anti-phosphor-p44/42 MAPK

(Erk1/2) (Thr202/204)

Cell Signaling Technology Cat# 3879S

Rabbit monoclonal anti-RET (C31B4) Cell Signaling Technology Cat# 3223S

Rabbit monoclonal anti-GAPDH Cell Signaling Technology Cat# 5174

Rabbit monoclonal anti-phopho-RET (Tyr905) Cell Signaling Technology Cat# 3221

Rabbit monoclonal anti-phospho-AKT (Ser473) Cell Signaling Technology Cat# 4060

Mouse monoclonal anti-RET (C-3) antibodies Santa Cruz Biotechnologies Cat# sc-365943

Donkey anti-rabbit antibodies conjugated

with 680nm

LI-COR Cat# 926-6807

Donkey anti-mouse antibodies conjugated

with 800nm

LI-COR Cat# 926-32212

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human GDNF Protein R&D Cat# 212-GD-010

RIPA Buffer Cell Signaling Technology Cat# 9806S

Lipofectamine 2000 Invitrogen Life Technologies Cat# 11668019

Critical Commercial Assays

Q5 Site-Directed Mutagenesis Kit New England Biolabs Cat# E0554S

Deposited Data

TCGA Unified Ensemble ‘‘MC3’’ Call Set Ellrott et al. http://www.synapse.org/#!Synapse:syn7214402

TCGA PanCanAtlas Data Freeze 1.3.1 Various TCGA PanCanAtlas

papers

https://www.synapse.org/#!Synapse:syn4557014

TCGA PanCanAtlas Germline Variant Call

Release 1.1

This Paper Protected data available to approved researchers

on ISB-CGC; see gaining access guide: http://isb-

cancer-genomics-cloud.readthedocs.io/en/latest/

sections/webapp/Gaining-Access-To-Contolled-

Access-Data.html

Experimental Models: Cell Lines

Human: 293T cells The Chen Laboratory N/A

Recombinant DNA

RET pcDNA3RET9 Chatterjee et al., 2012 N/A

Software and Algorithms

GenomeVIP Mashl et al., 2017 https://github.com/ding-lab/GenomeVIP

GATK McKenna et al., 2010 https://software.broadinstitute.org/gatk/

VarScan2 Koboldt et al., 2012 http://varscan.sourceforge.net/

Pindel Ye et al., 2009 https://github.com/genome/pindel

XHMM Fromer and Purcell, 2014 http://atgu.mgh.harvard.edu/xhmm/tutorial.shtml

CharGer This paper https://github.com/ding-lab/CharGer

Custom Scripts This paper https://github.com/ding-lab/PanCanAtlasGermline
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

TCGA Samples
The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 10,224 human samples with

informed consent under authorization of local institutional review boards (https://cancergenome.nih.gov/abouttcga/policies/

informedconsent). TCGA sequence information was obtained from the database of Genotypes and Phenotypes (dbGaP). Sequence

data from germline and tumor samples were downloaded by the Institute for Systems Biology Cancer Genomics Cloud (ISB-CGC)

from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive. For a complete list of the TCGA cancer type abbreviations,

please see https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations.

Cell Lines
For the RET functional assay, we used HEK293T cells. The sex of the HEK293T cells is female. Cells were cultured at 37�C in DMEM

(Corning) supplemented with 5% fetal bovine serum (FBS) (Thermo Fisher).

METHOD DETAILS

Data Generation
Germline variant calling and filtering

For TCGA sequence data downloaded from the GDC, we selected one germline sample and up to one tumor sample per case

according to the following procedure. Files designated as TCGAMC3BAMswere prioritized due to their harmonization. A dockerized

version of GenomeVIP (Mashl et al., 2017) was used to coordinate germline variant calling in the guise of integrating multiple tools:

Germline SNVs were identified using Varscan (Koboldt et al., 2012) (version 2.3.8 with default parameters, except where –min-var-

freq 0.10,–p value 0.10,–min-coverage 3,–strand-filter 1) operating on a mpileup stream produced by SAMtools (version 1.2 with

default parameters, except where -q 1 -Q 13) and GATK (McKenna et al., 2010) (version 3.5, using its haplotype caller in single-sam-

ple mode with duplicate and unmapped reads removed and retaining calls with a minimum quality threshold of 10). Germline indels

were identified using Varscan (version and parameters as above) and GATK (version and parameters as above) in single-sample

mode. We also applied Pindel (Ye et al., 2009) (version 0.2.5b8 with default parameters, except where -x 4, -I, -B 0, and -M 3 and

excluded centromere regions (genome.ucsc.edu)) for indel prediction. For all analyses, we used theGRCh37-lite reference and spec-

ified an insertion size of 500 whenever this information was not provided in the BAM header.

All resulting variants were limited to coding regions of full-length transcripts obtained from Ensembl release 70 plus the additional

two base pairs flanking each exon that cover splice donor/acceptor sites. Single nucleotide variants (SNVs) were based on the union

of raw GATK and VarScan calls. We required that indels were called by at least two out of the three callers (GATK, Varscan, Pindel). In

addition, we also included high-confidence, Pindel-unique calls (at least 30x coverage and 20% VAF).

We then further required the variants to have an Allelic Depth (AD) R 5 for the alternative allele. A total of 49,123 variants passed

these filters. We then conducted readcount analyses for these variants in both normal and tumor samples. We used bam-readcount

(version 0.8.0 commit 1b9c52c, with parameters -q 10, -b 15) to quantify the number of reference and alternative alleles. We required

the variants to have at least 5 counts of the alternative allele and an alternative allele frequency of at least 20%, resulting in 31,963

variants. Of these, we filtered for rare variants with % 0.05% allele frequency in 1000 Genomes and ExAC (release r0.3.1).

We then selected for cancer-relevant pathogenic variants, based on whether they were found in the curated cancer variant data-

base or in the curated cancer predisposition gene list, and their associated ClinVar trait. This resulted in 1,678 variants for manual

review using the Integrative Genomics Viewer (IGV) software (Robinson et al., 2011). For candidate germline variants having the

same genomic change as somaticmutations, we further filtered for the germline variants that may have originated from contaminated

adjacent normal samples by eliminating variants called from adjacent normal, the VAF in normal < 30%, and co-localizing with any

known somatic mutation. This results in the final 1,393 pass-QC variants for downstream analysis.

We further annotated the corresponding genes of variants as oncogenes or tumor suppressors. We compiled a gene list by

combining the oncogenes and tumor suppressors from Vogelstein et al. (Vogelstein et al., 2013) and the GSEA database (down-

loaded 2014-11-25). We removed NOTCH1 and NOTCH2 from the oncogene classification in GSEA given their controversial roles.

We then further curated several genes, including additional tumor suppressors (ATR, BARD1, ERCC1, FANCI, FANCL, FANCM,

POLD1, POLE, POLH, RAD50, RAD51, RAD51C, RAD51D, RAD54L, MAX) and additional oncogenes (AR, STAT3, TERT, MAP2K2).

Genotype data

We used SNP-array derived genotype data of 522,606 SNPs to infer the ethnicity of each sample. Birdseed genotype files of 11,459

samples were downloaded by ISB-CGC from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive and converted by

us to individual VCF files (https://github.com/ding-lab/birdseed2vcf.) for merging into a single combined VCF file. SNP-array geno-

types were also used to assess the precision of germline variant calling in the exome (median precision: 0.99).

Somatic mutation calls

We used TCGA MC3 MAF v3 (updated 17 June 2016) for comprehensive somatic mutation calls across TCGA cancer samples.

Specifically, we used mc3.v0.2.8.PUBLIC.maf (www.synapse.org/#!Synapse:syn7214402/files/).
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Somatic copy number variation

We used somatic CNV calls generated using GISTIC for the PanCanAtlas analyses working groups (https://www.synapse.org/#!

Synapse:syn5049520.1).

The threshold for calling a somatic CNV was defined using a stepwise process:

(1) We calculated the median log2 copy-ratio level for each arm.

(2) We found the highest and lowest arm medians, H and L.

(3) We opened a small margin H’ = H+delta and L’ = L-delta (delta = 0.1).

(4) We assigned +2 to any segment that is above H’, and �2 to segments below L’.

(5) Segments that were between +delta and H’ get a +1 and segments between -delta and L’ get a �1.

(6) Segments between -delta and +delta get a 0.

�2 scores track with homozygous deletions because whole arms are never homozygously deleted. However, since many tumors

have undergone whole genome doubling, in tetraploid tumors and above the min arm level can be 2 copies, and so these �2 scores

can represent thosewith either 0 or 1 copy of a gene. +2 scores trackwith high level focal amplification since these are usually beyond

the highest arm level change. We considered somatics with �1 or �2 as a deletion and +1 or +2 as an amplification.

Clinical data
We used the clinical data provided by the PanCanAtlas clinical working group (https://www.synapse.org/#!Synapse:syn3241074/

files/). For family history information, we used the Clinical data used by the MC3 working group. Ancestry calls of each sample

was provided by the PanCanAtlas Ancestry Informative Markers (AIM) working group.

Bioinformatics Analyses
Database curation for variant classification

At the gene level, we extended the 114 cancer predisposition genes compiled by Rahman (2014) to a total of 152 genes that

contribute to cancer susceptibility based on literature review (Table S1). We added 15 genes based on the St. Jude PCGP germline

study (both the autosomal dominant and autosomal recessive cancer predisposition genes), 11 genes from our curation of literature,

11 genes from Cancer Gene Census-Germline (Downloaded 1/5/2016 from http://cancer.sanger.ac.uk/census/) and DROSHA

(related to DICER1). Source and reference for each gene is attached in Table S1.

At the variant level, in addition to the ClinVar database, we compiled multiple curated gene-specific databases for more compre-

hensive coverage of known pathogenic variants. These included the IARC TP53 germline mutation database, NHGRI BRCA1 and

BRCA2 BIC database (https://research.nhgri.nih.gov/bic/), ARUP MEN2 database for mutations in RET (http://www.arup.utah.

edu/database/MEN2/MEN2_display.php), and the ASU database (http://telomerase.asu.edu/diseases.html) for TERT mutations.

We included only the BRCA1 and BRCA2 variants marked as clinically important in the BIC database. We also limited our TP53

variants to those that were carried by an affected proband and confirmed as a germline variant in the IARC database. We used

TransVar (Zhou et al., 2015) and customized scripts to convert all variant entries to standard HGVSg format to ensure proper

matching.

Variant classification pipeline and panel review

Briefly, we developed an automatic pipeline termed CharGer (https://github.com/ding-lab/CharGer) to annotate and prioritize

variants by adopting the AMP-ACMG guideline. For the automatic pipeline, we defined 12 pathogenic evidence levels and 4 benign

evidence levels using a number of datasets, including ExAC and ClinVar (parsed through MacArthur lab ClinVar: https://github.com/

macarthur-lab/clinvar), and computational tools including SIFT (Kumar et al., 2009) and PolyPhen (Adzhubei et al., 2013). The detailed

implementation and score of each evidence level is as follows (Table S3):PVS1, PSC1, PM4, PP2, and PPC1: variants in predisposing

genes. Variants in the predisposition gene receive one of these evidence level assignments based on variant type and mode of

inheritance. Truncations in susceptibility genes that harbor variants with a dominant mode of inheritance are assigned PVS1, but

recessive variants in these genes are assigned PSC1. Considering the PVS1 criteria ‘‘null variant in a gene where LOF is a known

mechanism of disease,’’ we only assigned this evidence to truncations in tumor suppressor genes but not oncogenes. Protein length

changes due to inframe insertions or deletions or nonstop variants in genes that harbor variants with a dominant mode of inheritance

receive a PM4, whereas recessives receive a PPC1. Finally, missense variants in susceptibility genes are tagged as PP2.

PS1 and PM5: pathogenic peptide changes. Variants that result in identical peptide changes as a previously known pathogenic

variant on ClinVar (only those marked as Pathogenic but not Likely Pathogenic) or the compiled list are assigned a PS1. Variants

that result in a different amino-acid change at the same position are assigned a PM5.

PM1: hotspot variants. HotSpot3D (Niu et al., 2016) was run on MC3 somatic mutation calls (hypermutators removed). The protein

structure analysis of HotSpot3D identifies mutation clusters, enriched by recurrent and neighboring pockets of mutations. If a

germline variant was found to be a somatic mutation with recurrence in at least two samples among all cancer types in a HotSpot3D

cluster, then the variant is flagged with a pathogenic characterization of PM1.

PM2 and BA1: minor allele frequency in populations. Variants that are absent or that show extremely low frequency (MAF < 0.0005)

in the ExAC dataset are assigned a PM2, whereas common variants (MAF > 0.05) receive a BA1.

PP3 and BP4: in silico analyses. Several ACMG scores use in silico evidence to determine disease association. We used evidence

from SIFT (Kumar et al., 2009) and PolyPhen (Adzhubei et al., 2010), as annotated by VEP (McLaren et al., 2016). Each in silico
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analysis was taken as one piece of evidence and if both analyses identified as ‘‘damaging’’ or ‘‘deleterious’’ in SIFT (score < 0.05) and

‘‘probably damaging’’ from PolyPhen (score > 0.432), the variant was assigned a pathogenic characterization of PP3. Conversely, if

both in silico analyses identify in opposition to PP3 characterization (> 0.05 for SIFT, < 0.432 for PolyPhen), then the variant achieves a

benign characterization of BP4. The score from each fulfilled evidence level is then summed and classified as described in Figure 1C.

Detection of germline copy number variation events

Whole exome sequencing data on normal samples from 10,389 cases were used for germline CNV detection. XHMMwas run as pre-

viously described (Ruderfer et al., 2016). Base-resolution coverage was calculated by the GATKDepthOfCoveragemodule (mapping

quality > 20) on 209,486 Ensembl coding exon intervals (build GRCh37) retrieved from UCSC Table Browser. Exon targets with

extreme GC content (> 90% or < 10%) or high fraction of repeat-masked bases (> 25%) or extreme length (< 10bp or > 10kbp) or

low mean depth (< 10) were filtered out. The target-by-sample depth matrix was mean-centered by target dimension. Then principal

component analysis was run to remove the systematic bias, where the top 152 components were removed (whose variances were

higher than 70% of the mean variances of all components). The resulting depth matrix was normalized to sample-level z-score.

During normalization, targets with high variance (standard deviation > 50) were filtered out. CNVs discovery was performed using

the Viterbi hidden Markov model (HMM) with default XHMM parameters. Quality for each called CNV was calculated by the for-

ward-backward HMM algorithm, as previously described (Fromer and Purcell, 2014).

Array-based CNVs were filtered based on the number of probes (> 10), length (> 10kb), frequency (< 1%), and absolute segment

mean value (jlog2(copy-number/ 2)j > 0.1). After filtering, the array-based CNV callset consisted of 209,559 CNVs found across 6464

individuals.

Analysis of germline variants in post-translational modification (PTM) sites

The dataset of pathogenic germline predisposition variants corresponding to amino acid substitutions were mapped to preferred

isoforms and four types of post-translational modification (PTM) sites (phosphorylation, ubiquitination, acetylation, and methylation)

using multiple databases, including ActiveDriverDB (Krassowski et al., 2018), PhosphoSitePlus (Hornbeck et al., 2015) and UniProt

Knowledge Base (The UniProt Consortium, 2017). This compiled dataset contains information about previously published PTM sites

from experimental studies, such as mass spectrometry and western blots. Variants were considered to affect PTM sites if the cor-

responding amino acid substitutions affected protein sequence within ± seven amino acids of the PTM site, similar to earlier studies

(Reimand et al., 2013, 2015). Four categories of PTM site substitutions were considered: direct substitutions replaced the central

amino acid undergoing post-translational modification, proximal substitutions affected amino acids within ± two amino acids around

the nearest PTM site, and distal substitutions affected amino acids within ± three to seven amino acids around the nearest PTM site.

This resulted in a total number of 316,216 experimentally collected sites; 239,559 phosphorylation sites, 39,493 ubiquitination sites,

13,376 methylation sites, and 23,787 acetylation sites. We further noted network-rewiring substitutions that induced or removed an

amino acid near a PTM site that occurred within a kinase binding motif as predicted by the MIMP algorithm (Wagih et al., 2015). Ev-

idence of kinases and other enzymes involved in the mutated PTM sites was also extracted from the databases and associated to

primary literature.

Co-localizing and co-clustering of somatic mutations and germline variants

Weused somaticmutation calls from the TCGAMC3MAF, defining germline variants located at the same protein residue as recurrent

(nR 3) somatic mutations as co-localizing.We adapted our previously published tool HotSpot3D (Niu et al., 2016)(v.1.8.0) to conduct

co-clustering of TCGA MC3 somatic mutations and pathogenic or likely pathogenic germline variants in genes with available PDB

structures.

RET variant function assays

HEK293T cells were authenticated by DNA finger printing targeting short tandem repeat (STR) profiles through Genetica Cell Line

Testing. They are negative for mycoplasma as determined by the absence of extranuclear signals in DAPI staining. Cells were

cultured at 37�C in DMEM (Corning) supplemented with 5% fetal bovine serum (FBS) (Thermo Fisher). Constructions expressing

RET variants were generated by Q5 site-directed mutagenesis (New England BioLabs) using a plasmid expressing a wild-type

RET (pcDNA3RET9) (Chatterjee et al., 2012) as a template. All constructs were confirmed by sequencing. Cells were transiently

transfected with wild-type or mutant RET constructs using Lipofectamine 2000 (Invitrogen Life Technologies) in six-well plates.

Twenty-four hours after transfection, cells were switched to medium containing 0.5% FBS for 24 h before the initiation of 20 minutes

of treatment with GDNF (100nM) in a subset of samples. Cells were lysed in buffer containing 20mMTris-HCl (pH 7.5), 150mMNaCl,

1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate,

1 mM sodium orthovanadate, and 1 mg/ml leupeptin (Cell Signaling Technology). Protease and phosphatase inhibitors (Roche)

were added immediately before use. Samples (15 ug/lane) were boiled in standard commercial SDS-gel loading buffer and run on

SDS 10% polyacrylamide gels. Immunoblotting was performed on Immobilon-P PVDF membrane (Millipore). The following anti-

bodies were used for immunoblotting: rabbit monoclonal anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/204) antibodies (Cell

Signaling #4370S, at 1:1000 dilution), rabbit polyclonal anti-RET (C31B4) antibodies (Cell Signaling #3223S, at 1:1000 dilution), rabbit

monoclonal anti-GAPDH antibodies (Cell Signaling #5174, at 1:1000 dilution), rabbit monoclonal anti-phospho-RET (Tyr905) anti-

bodies (Cell Signaling #3221 1:1000 dilution), rabbit monoclonal anti-phospho-AKT (Ser473) antibodies (Cell Signaling #4060

1:1000 dilution), mouse monoclonal anti-RET (C-3) antibodies (Santa Cruz Biotechnologies #sc-365943 1:100 dilution). Appropriate

secondary antibodies with infrared dyes (LI-COR) were used, such as donkey anti-rabbit antibodies for the 680nm channel (LI-COR
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926-6807) and donkey anti-mouse antibodies for the 800nm channel (LI_COR 926-32212). Protein bands were visualized using the

Odyssey Infrared Imaging System (LI-COR) and further quantified by ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Burden testing of pathogenic variants
We adapted the Total Frequency Test (TFT) (Basu and Pan, 2011) by collapsing pathogenic and likely pathogenic germline variants to

the gene level. We then used total allele counts of pathogenic variants identified in the ExAC nonTCGA cohort using the same

CharGer classification pipeline for comparison. We deemed one cancer type shows potentially increased burden of a specific

gene if the TFT test against ExAC returned FDR < 0.15.

We then tested burden of pathogenic variants for each cancer type and each gene against all other cancer cohorts as controls,

subtracting out the cohorts showing suggestive enrichment for the specific gene in the ExAC analyses. Since all our cohorts are

called using the same variant calling pipeline, it avoids the potential danger of comparing against ExAC, which was done in a different

batch of variant calls. The resulting p values were adjusted to FDR using the standard Benjamini-Hochberg procedure. We subse-

quently defined significant and suggestive events in terms of FDR thresholds of 0.05 and 0.15, respectively.

LOH and biallelic events analysis
We applied our previously developed statistical analysis method regarding LOH (Lu et al., 2015) to individually test the missense and

truncation germline variant sets. We tested variants in genes carrying pathogenic or likely pathogenic variants and used variants in

other genes to build the null distribution. The resulting p values were adjusted to FDR again using the standard Benjamini-Hochberg

procedure. We subsequently defined significant and suggestive events in terms of FDR thresholds of 0.05 and 0.15, respectively. We

further captured additional events of suggestive LOH using a criteria of tumor VAF > 0.6 and normal VAF < 0.6.

We then devised an algorithm to classify observed LOH events (both significant and suggestive, FDR < 0.15) as:

(1) Wild-type allele copy number deletion (of the wild-type allele): GISTIC CNV result shows lower ploidy below threshold in the

gene region. In these reads, the variant allele is significantly enriched compared to the wild-type allele, which is likely loss.

(2) Alternative allele copy number amplification: GISTICCNV result shows higher ploidy above threshold in the gene region. In these

reads, the variant allele, which is likely amplified, is significantly enriched compared to the wild-type allele.

For biallelic events analysis, we systematically examined the cases carrying both a pathogenic or likely pathogenic germline variant

and a missense or truncating somatic mutation in the same gene. The lolliplots are constructed and modified from the PCGP protein

paint (https://pecan.stjude.cloud/proteinpaint) based on the specified RefSeq transcript.

Gene expression analysis
TCGA level-3 normalized RNA expression data were downloaded from Firehose (2016/1/28 analysis archive). The expression

percentile of individual genes in each cancer cohort was calculated using the empirical cumulative distribution function (ecdf), as

implemented in R. We then used the two-sample Kolmogorov-Smirnov test to compare the expression percentile distribution

between variants of oncogenes and tumor suppressors. We also applied the linear regression model to evaluate the protein/phos-

phoprotein expression percentile difference between carriers of pathogenic or likely pathogenic variant and non-carriers in cancers

where there are at least 3 carriers. The resulting p values were adjusted to FDR again using the standard Benjamini-Hochberg

procedure.

To examine the possible location-based effect of truncations, we fitted a linear regressionmodel using expression percentile as the

dependent variable and a Boolean indicator to label whether or not the truncation is located at the last 50 base pair of the transcript,

controlling for variant classification and truncation variant type.

RPPA analysis
TCGA level-3 normalized RPPA expression data of the tumor samples were downloaded from Firehose (2016/1/28 analysis archive).

The expression percentile of individual genes in each cancer cohort was calculated using the empirical cumulative distribution func-

tion (ecdf), as implemented in R. We then applied the linear regression model to evaluate the protein/phosphoprotein expression

percentile difference between carriers of pathogenic or likely pathogenic variant and non-carriers in cancers where there are at least

3 carriers. The resulting p values were adjusted to FDR again using the standard Benjamini-Hochberg procedure.

Association testing of single variants
We conducted association testing of pathogenic germline variants using a one-tailed Fisher’s exact test where the alternative

hypothesis assumes the tested variant is enriched in TCGA cases compared to non-TCGA cases in the ExAC data (release

r0.3.1). To avoid potential false discovery due to population structures, we used the most powered cohort in ExAC, the Non-Finnish

European that included 33,370 samples. For allele numbers (AN) and allele counts (AC), we used the adjusted counts, where only

individuals with genotype quality (GQ)R 20 and depth (DP)R 10 were included. Vcfanno (Pedersen et al., 2016) was used to anno-

tate allele frequencies of the germline variants. TCGA allele counts were inferred through subtracting ExAC non-TCGA allele counts

from ExAC total allele counts. We conducted the single variant association analysis for all alleles.
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Enrichment of variants overlapping somatic mutation and PCGP pathogenic variants
To test whether there is a significant overlap between pathogenic germline variants and (1) recurrent somatic mutation, and (2) PCGP

pathogenic variants, we conducted a one-sided exact Poisson test where the alternative hypothesis is that the true event rate

(overlapping rate) is higher than the background rate. The background event rate is defined as the number of (1) recurrent somatic

mutation and (2) PCGP variants divided by the size of the exon (49,586,385 bp) that we conduct our analysis based on. The time base

of the event is defined as the number of likely pathogenic or pathogenic variants we observed (n = 852).

Enrichment of variants in PTM sites
To evaluate the enrichment of pathogenic variants in PTM sites, we conducted an empirical permutation-based enrichment test by

sampling protein substitutions from the 1000 Genomes dataset as controls. We only focused on the subset of proteins with at least

one PTM site. We then sampled substitutions equal to the number of observed pathogenic amino acid substitutions for 100,000

iterations. The median number of PTM-associated substitutions expected by chance alone was eight. We then used this estimate

as the rate parameter to the Poisson distribution, deriving a p value from the probability of observing an equal or greater number

of PTM-associated substitutions to our observed number of unique PTM-associated substitutions among pathogenic cancer

variants.

Age at onset association analysis
We used a linear regression model to identify associations between age at onset and germline variant carrier of predisposition genes.

We then tested genes with greater than or equal to 3 pathogenic and likely pathogenic variants and 1% carriers in individual cancer

cohorts. For both the ethnicity and age at onset association analyses, the resulting p values were again adjusted using the Benjamini-

Hochberg procedure.

Statistical analysis of activity of RET variants
Statistical testing of the western blotting data quantified using ImageJ was conducted using the R programming language. t test

using pooled SD was applied to compare the normalized ratio of pMAPK/RET/GAPDH or pMAPK/GAPDH for cells carrying each

of the mutant construct versus wilt-type construct.

DATA AND SOFTWARE AVAILABILITY

Data Availability
Researchers who are authorized can apply for access to the data through the germline project hosted on the ISB cancer genome

cloud (ISB-CGC). Detailed procedure can be found on the ISB-CGC website: http://isb-cancer-genomics-cloud.readthedocs.io/

en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html. Resource for familiarizing with related cloud compu-

tational tools are documented in the github page: https://github.com/ding-lab/PanCanAtlasGermline. Intermediate files used in

this study are listed here: https://docs.google.com/document/d/1ymdfAnRR4o4-20bwHI3vPaRPRuoqtqc0pNUVYO2oiPc/edit?

usp=sharing. All final results published in this study used the germline variant call data from release1.1. All de-identified pathogenic

or likely pathogenic variants and prioritized VUSs used in this study, along with their attributes, can be found in Table S2.

Code Availability
Analysis codes are available at https://github.com/ding-lab/PanCanAtlasGermline. GenomeVIP Code for is available at https://

github.com/ding-lab/GenomeVIP. CharGer code is available at https://github.com/ding-lab/CharGer. Birdseed conversion code

is available at https://github.com/ding-lab/birdseed2vcf.
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Figure S1. Quality Control of Samples and Germline Variants, Related to Figure 1

(A) Coverage distribution for each of the samples used for variant calling.

(B) Average coverages of 152 predisposition genes known to harbor rare, pathogenic variants. 10,389 samples were retained after all quality control procedure.

(C) Concordance of variant calls with genotype data. Samples with less than 60% concordance were eliminated in the final set of 10,389 samples.

(D) Estimated false positive rate of variant calls in each cancer types evaluated through negative selection against impactful mutations. Adjacent normals (instead

of blood normals) were predominant for the KIRC and LAML project, presenting special challenges for variant calling; downstream filtering processes ensured the

quality of pathogenic variants found in these samples.

(E) Number of exonic variants identified in each of the normal sample the across 33 cancer types. Each dot indicates an individual colored by their ancestry as

determined by PanCanAtlas AIM working group. Samples with lower than 15,000 exonic variants were filtered out.
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Figure S2. Variant classification workflow. Related to Figure 1.

(A) The process of going frommore than 285 million germline variants in exons to the final set of 1,393 pathogenic/likely pathogenic variants and prioritized VUSs

using CharGer.

(B) Number of pathogenic and likely pathogenic variants identified in each of the 152 cancer predisposition genes curated using different sources. Each dot

represents a gene and the labeled ones are the newly added genes (beyond the 114 from Rahman, 2014) having more than 10 variants.

(C) Pathogenic or likely pathogenic variants identified in this study compared to the previously reported variants from our 2015 pan-cancer germline study (Lu

et al., 2015).

(D) Prioritized VUSs nominated through multiple lines of evidences including case-control frequency, LOH, expression association, and co-localization with

recurrent mutations and PTM residues.
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Figure S3. Further Investigation of Two-Hit Events, Related to Figure 3

(A) Rates of LOH associated with BRCA1/2 germline variants in BRCA, OV and other cancer types.

(B) IGV screen shots showing a biallelic event in mutually exclusive sequencing reads in a COAD case carrying a paired MSH p.R248fs germline variant/p.R248*

somatic mutation.
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Observing Truncating Variants Does Not Guarantee Low Gene Expression in the Carrier, Related to Figure 4
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Figure S5. Germline Copy Number Deletions Identified Using Both Whole-Exome Sequencing and SNP-Array Data, Related to Figure 5

(A) A BRCA1 deletion identified in an OV sample and an NF1 deletions identified in an PCPG sample using both datatypes.

(B) Deletions identified in associated cancer-gene pairs showed reduced gene expression in the carrier sample whereas an average deletion in 152 predisposition

gene does not show such association.
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Figure S6. Cancer-Associated Germline Variants in PTM Sites Implicate Potential Mechanistic Hypotheses, Related to Figure 6

(A) More than 45% of protein amino acid substitutions in our dataset affect post-translational modification (PTM) sites, significantly more than expected from

chance alone. Direct substitutions replace post-translationally modified amino acids with non-modified acids (dark red), and proximal and distal substitutions lie

within 1-2 and 3-7 amino acids from closest PTM site (orange and yellow, respectively).

(B) Themajority of PTM-associated substitutions affect phosphorylation, the largest PTMdataset in our study. Substitutions that affect sites withmultiple different

types of PTM are also apparent.

(C) Genes with germline substitutions in PTM sites include known cancer genes like TP53, BRCA1, RET, VHL, PTEN, and others. Colors represent the impact of

variants on PTM sites.

(D) Analysis of extended germline variant data from TCGA shows that TP53 carries six germline substitutions in three protein methylation sites that are known to

regulate its DNA damage response through altered target gene specificity.

(E) MET and ATM substitutions are predicted to induce motif rewiring events that lead to the loss of an existing AKT1 binding site and the introduction of a new

binding site for AURKA, respectively.

(F) Site-specific interaction network of predicted enzyme-substrate interactions as predicted by the MIMP algorithm.



Figure S7. Variants in Familial Cases and Power to Identify Predisposition Genes in Case-Control Cohorts, Related to Figure 2

(A) Pathogenic variants identified in the 552 cancer cases with known familial history of cancer. Each color indicates the type of familial history recorded in the

TCGA clinical data.

(B) Power analysis of burden analysis to identify predisposition genes in cohort sizes ranging from 100 to 300k.


	Pathogenic Germline Variants in 10,389 Adult Cancers
	Introduction
	Results
	Data Generation and Sharing on Cloud
	Pathogenic Variant Discovery across 33 Cancer Types
	Two-Hit Events
	Altered Gene Product Expression in Variant Carriers

	Rare Germline Copy Number Alterations
	Independent Genomic Evidence Supporting Pathogenicity
	Variants in Post-Translational Modification (PTM) Sites
	Functional Assessment of Germline RET Alleles
	Nomination of VUSs Using Combined Evidences

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	TCGA Samples
	Cell Lines

	Method Details
	Data Generation
	Germline variant calling and filtering
	Genotype data
	Somatic mutation calls
	Somatic copy number variation

	Clinical data
	Bioinformatics Analyses
	Database curation for variant classification
	Variant classification pipeline and panel review
	Detection of germline copy number variation events
	Analysis of germline variants in post-translational modification (PTM) sites
	Co-localizing and co-clustering of somatic mutations and germline variants
	RET variant function assays


	Quantification and Statistical Analysis
	Burden testing of pathogenic variants
	LOH and biallelic events analysis
	Gene expression analysis
	RPPA analysis
	Association testing of single variants
	Enrichment of variants overlapping somatic mutation and PCGP pathogenic variants
	Enrichment of variants in PTM sites
	Age at onset association analysis
	Statistical analysis of activity of RET variants

	Data and Software Availability
	Data Availability
	Code Availability




