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SUMMARY

Identifying molecular cancer drivers is critical for
precision oncology. Multiple advanced algorithms
to identify drivers now exist, but systematic at-
tempts to combine and optimize them on large da-
tasets are few. We report a PanCancer and
PanSoftware analysis spanning 9,423 tumor
exomes (comprising all 33 of The Cancer Genome
Atlas projects) and using 26 computational tools
to catalog driver genes and mutations. We identify
299 driver genes with implications regarding their
anatomical sites and cancer/cell types. Sequence-
and structure-based analyses identified >3,400
putative missense driver mutations supported by
multiple lines of evidence. Experimental validation
confirmed 60%–85% of predicted mutations as
likely drivers. We found that >300 MSI tumors are
associated with high PD-1/PD-L1, and 57% of tu-
mors analyzed harbor putative clinically actionable
events. Our study represents the most comprehen-
sive discovery of cancer genes and mutations to
date and will serve as a blueprint for future biolog-
ical and clinical endeavors.

INTRODUCTION

Over the past decade, the Cancer Genome Atlas (TCGA) has

coordinated a monumental enterprise of data generation and

genomic investigation across 33 cancer types. Numerous

notable findings have emerged from this project (https://
This is an open access article under the CC BY-N
cancergenome.nih.gov/publications). The individual TCGA

projects motivated the development of many bioinformatic

algorithms oriented toward discovery, characterization, and

prioritization of cellular processes driving cancer based on

pathways (Creixell et al., 2015), genes (Ding et al., 2014),

or individual variations (Gonzalez-Perez et al., 2013) (Key

Resources Table; STAR Methods). Despite this remarkable

progress, algorithms do not entirely agree on certain candi-

date cancer driver genes and mutations, necessitating

expert curation to filter likely false positive findings. Previous

PanCancer analyses (Tamborero et al., 2013b) have been

limited to fewer cancer types and have largely avoided nomi-

nating rare driver mutations.

TCGA is now concluding the most sweeping cross-cancer

analysis yet undertaken, namely the ‘‘PanCancer Atlas project.’’

This project includes the uniform analysis of all TCGA exome

data by the Multi-Center Mutation-Calling in Multiple Cancers

(MC3) network, yielding unbiased interpretation of the entire

10,437 tumor samples dataset (Ellrott et al. 2018). Here, we

describe our analysis of the MC3 somatic mutation set using

26 diverse bioinformatics tools (Figure S1A). Merging results

from these tools and manual curation ultimately identified 299

cancer genes. In parallel with functional validation in cell lines,

eight other tools and one novel aggregating algorithm charac-

terized mutations having the strongest phenotypic conse-

quences. Four additional tools leveraged protein structural

data to elucidate clusters of mutations in three-dimensional

space. Finally, the five remaining tools expounded on copy

number, RNA abundance, and clinical association using net-

works, machine learning, and database mining algorithms to

further corroborate mutation level findings. The systematic

and deep nature of these findings will serve cancer research

far into the future.
Cell 173, 371–385, April 5, 2018 Published by Elsevier Inc. 371
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://cancergenome.nih.gov/publications
https://cancergenome.nih.gov/publications
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.02.060&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Isidro Cortés-Ciriano,21,22,23 Daniel Cui Zhou,1,2 Wen-Wei Liang,1,2 Julian M. Hess,13 Venkata D. Yellapantula,1,2

David Tamborero,20 Abel Gonzalez-Perez,20 Chayaporn Suphavilai,7 Jia Yu Ko,7 Ekta Khurana,19 Peter J. Park,21,22

Eliezer M. Van Allen,13,14 Han Liang,16,17 The MC3 Working Group, The Cancer Genome Atlas Research Network,
Michael S. Lawrence,13,24 Adam Godzik,6 Nuria Lopez-Bigas,19,25 Josh Stuart,26 David Wheeler,27 Gad Getz,13

Ken Chen,17 Alexander J. Lazar,28 Gordon B. Mills,16 Rachel Karchin,3,4,29,32 and Li Ding1,2,12,30,32,33,*
10Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
11Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
12Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
13The Broad Institute, Cambridge, MA 02142, USA
14Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
15Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA
16Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
17Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
18Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
19Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
20Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028

Barcelona, Spain
21Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
22Ludwig Center at Harvard, Boston, MA 02115, USA
23Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
24Department of Pathology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114, USA
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RESULTS

Mutational Dataset and Driver Gene
Identification Power
Mutation calls were produced by theMulti-Center Mutation Call-

ing inMultiple Cancers (MC3) working group that harmonized the

results of seven algorithms (Ellrott et al. 2018) (STAR Methods).

To reduce the false-positive rate for driver gene discovery, we

implemented three strategies to optimize driver detection and

data quality (Figure S1B; STAR Methods). Briefly, we excluded

344 hypermutator samples because of artifactual sensitivity to

high background mutation rates (Figure 1A). All mutations that

passed the MC3 filter criteria were included. In addition, a less

stringent filter was applied to samples from ovarian serous cys-

tadenocarcinoma (OV) and acute myeloid leukemia (LAML) pro-

jects, as exome data for these two cancer types have distinct

characteristics not amenable to our standard filtering. Finally,

samples marked with inconsistent pathology were excluded.

Our driver detection dataset ultimately consisted of 9,079 sam-

ples having 1,457,702 total mutations (Figure S1B), where the

number of mutations per sample was widely distributed across

cancer types, as previously noted (Figures 1B and 1C) (Kandoth

et al., 2013; Lawrence et al., 2013; Tamborero et al., 2013b).

For individual cancer types, analyses were sufficiently pow-

ered to detect genes mutated at a median of 6.1% above back-
372 Cell 173, 371–385, April 5, 2018
ground mutation rates (Figure 1D). Power largely correlated with

cohort size, with lower values observed for lymphoid neoplasm

diffuse large B cell lymphoma (DLBC) (25.5%, n = 37), cholangio-

carcinoma (CHOL) (20.5%, n = 34), and uterine carcinosarcoma

(UCS) (14.9%, n = 55) and the highest statistical power for breast

invasive carcinoma (BRCA) (2.3%, n = 779), brain lower grade

glioma (LGG) (2.8%, n = 510), and thyroid carcinoma (THCA)

(2.3%, n = 491). We saw modest increase in statistical power

for 12 individual cancer types previously analyzed by the TCGA

PanCancer effort (Kandoth et al., 2013), but the addition of 21 in-

dividual cancer types to our current PanCancer analysis

increased power to <1% prevalence (Figure S1C).

Landscape of Cancer Driver Genes
The final consensus list consists of 299 unique genes: 258 genes

obtained from a systematic approach and 41 additional genes

recovered after manual curation of previous TCGA marker pa-

perswith themajority (26 out of 41, 63%) supported by additional

-omics network tools not used in original significantly mutated

gene (SMG) detection studies (Figures 1A and S2; Table S1;

STAR Methods). Here, we focus on the 258 genes set, but

acknowledge the limitations of a systematic approach by

including the 41 manually rescued genes in our final list.

The list recoversmost of the previously described driver genes

for the majority of cancer types. In fact, in 20 out the 31 cancer

mailto:lding@wustl.edu
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Figure 1. Cancer Driver Gene Discovery Strategy, Power, and Mutations

(A) We identified sixmain steps to identify and discover driver genes in cancer: data curation, tool development, outlier adjustment, manual curation, downstream

tool analysis, and functional validation.

(B) Somatic mutations per sample are plotted for each sample and cancer type. Mutations are separated into SNVs (blue) and indels (green). The selected

hypermutator cutoff for each cancer is shown in red.

(C) Transition and transversion proportions are shown for six nucleotide changes. The stacked proportion bar chart is sorted by increasing transition/transversion

fraction.

(D) Statistical power for detection of cancer driver genes at defined fractions of tumor samples above the backgroundmutation rate (effect sizewith 90%power) is

depicted. Circles indicate each of 33 cancer types placed according to the study sample size and median background mutation rate.

See also Figures S1 and S2 and Table S6.
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Figure 2. Cancer Driver Gene Discovery Workflow

(A) Circos (Krzywinski et al., 2009) plot displays 299 cancer genes. Each sector indicates a unique cancer type (text in blue) with predicted drivers unique to that

cancer type listed (gene name in black). Only tissues having at least one unique driver gene are shown. The top right sector shows all genes found significant in

multiple cancer types. Next, a categorical score of gold, silver, or bronze is assigned to each gene based on the highest consensus score. If a genewas not scored

and required rescue, then the field is empty. The next ring illustrates the mutation frequency of a gene. For the top-right wedge the PanCancer frequency is used,

(legend continued on next page)
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types included in our study that had either been previously pub-

lished or for which we had an internal list of known cancer driver

genes, the recovery rate is 80%or higher (Figures S2D and S2E).

The most significant outliers are stomach adenocarcinoma

(STAD) and the previous PanCancer study, for which we only

recovered around 70% of the previously described genes (Fig-

ure S2D). The consensus list also includes 59 novel genes that

had not been described previously and other known drivers

not previously associated with a given tissue (Table S1; STAR

Methods). Predictions of known cancer driver genes in new can-

cer types include ATRX in adrenocortical carcinoma (ACC),

KMT2C, CTNNB1, and PTEN in bladder urothelial carcinoma

(BLCA), and ARID1A and KRAS in BRCA. Entirely novel predic-

tions include GNA13 in BLCA (a homolog of the known drivers

GNAQ and GNA11), RRAS2 in uterine corpus endometrial

carcinoma (UCEC) (with shared homology in KRAS and HRAS),

and KIF1A in head and neck squamous cell carcinoma (HNSC)

(a kinesin of the same family of the cancer driver KIF5B).

The number of detected cancer driver genes varies among

cancer types, with kidney chromophobe (KICH) having the

fewest (2 genes) and UCEC having the most (55 genes). Further-

more, the ratio of predicted tumor suppressor genes to

oncogenes widely varies by tissue (Figure S4B). We observed

a significant positive correlation (Pearson’s R = 0.66, p value =

4.1 3 10�5) between average mutation burden in a cancer type

and the number of identified consensus genes (Figure S3B).

Study-based calculations for powered effect size in each

cancer type did not entirely explain this phenomenon (Pearson’s

R = �0.31, p value = 0.09) (Figure S3C). Regarding the associa-

tions of driver genes with different cancer types, many genes

(142 out of 258) are associated with a single cancer, whereas

87 genes have driver roles in two or more cancer types, with

an additional 29 genes uniquely identified using PanCancer ap-

proaches on all samples combined. As expected, TP53 is the

most extreme case (27 cancer types), followed by PIK3CA,

KRAS, PTEN, and ARID1A, each of which is associated with

15 or more cancer types (Figures 2A and S4A).

We clustered cancer types according to the consensus scores

of their associated genes. Remarkably, some cancer types are

grouped by tissue of origin, such as LGG and glioblastomamulti-

forme (GBM), and others by cell of origin. The most significant of

the cell origin clusters spans all squamous cancer types (BLCA,

cervical squamous cell carcinoma and endocervical adenocarci-

noma [CESC], esophageal carcinoma [ESCA], HNSC, and lung

squamous cell carcinoma [LUSC]) (permutation test, adjusted

p < 0.01) and includes several transcription factors (ZNF750,

NFE2L2, or KLF5), chromatin and histone modifiers (KMT2D,

EP300, or NSD1), and various PI3K pathway genes (PIK3CA,
whereas cancer-type-specific frequencies are used in the remaining sectors. Whe

frequency (not shown are PIK3CA = 11.8% and TP53 = 37.5%). The final ring uses

suppressor to likely oncogene, respectively, according to the 20/20+ algorithm

consensus scores for genes that were found in more than one cancer type (no

clusters (permutation test) identified pan-gastrointestinal (red), pan-squamous (

genes that were found only using PanCancer results or were otherwise rescued.

(B) Heatmap showing clustering of different cancer types by pathway/biological

gynecological, pan-gastrointestinal, and pan-squamous are colored as indicated

See also Figures S2, S3, and S4 and Tables S1, S2, S3, S4, and S7.
PTEN, or MAPK1). We found two additional significant clusters

(permutation test, adjusted p < 0.05) that group gynecological

(UCS, CESC, UCEC, OV, and BRCA), as well as gastrointestinal

cancers (COADREAD, pancreatic adenocarcinoma [PAAD],

ESCA, and STAD) (Figures 2A and S4A; STAR Methods).

Finally, we classified the consensus driver genes by cancer-

related biological processes and associated pathways (Fig-

ure 2B; Table S2). For most genes, the categories (excluding

‘‘other’’ and ‘‘other signaling’’) clearly reflect known processes

involved in carcinogenesis, namely ‘‘transcription factor’’

(39 genes), ‘‘RTK signaling’’ (16) and ‘‘RNA abundance’’ (15),

‘‘protein homeostasis/ubiquitination’’ (15), ‘‘chromatin histone

modifiers’’ (15), ‘‘genome integrity’’ (14), ‘‘chromatin other’’

(14), and ‘‘immune signaling’’ (10). The last group is of particular

interest, given the connection between driver genes and immune

response (Thorsson et al., 2018). In terms of cancer types, most

have at least one cancer driver that belongs to either genome

integrity (28 out of 33 cancer types) or the MAPK or PI3K

signaling pathways (24 and 22 cancer types, respectively).

Notably, squamous cancer types have higher proportions of

chromatin histone modification genes, as well as receptor-tyro-

sine kinase and immune signaling.

Approaches to Driver Mutation Discovery
Not all mutations in a cancer driver gene have equal impact

(Torkamani and Schork, 2008), with consequences frequently

depending on position within the protein and amino acid change

(Carter et al., 2009). We explored this issue across the entire

PanCancer dataset, classifying 751,876 unique missense muta-

tions by examining the 299 identified cancer driver genes, ac-

cording to their predicted oncogenic effect. We combined the

output of three different categories of tools into consensuses ap-

proaches (STARMethods): (1) tools distinguishing benign versus

pathogenic mutations using sequence (CTAT population); (2)

tools distinguishing driver versus passenger mutations using

sequence (CTAT cancer); and (3) tools discovering statistically

significant three-dimensional clusters of missense mutations

(structure based). These tool groups identified 10,098 (1.3% of

total missense mutations), 4,595 (0.6%), and 1,469 (0.2%)

unique amino acid substitutions, respectively (Figure 3A). Differ-

ences in the number of predicted driver mutations for each

approach are likely due to tool design and requirements, i.e.,

dependence of structural clustering tools on available three-

dimensional protein structures (either experimental or homol-

ogy-based) yields fewer predicted driver mutations.

When benchmarked against OncoKB (Chakravarty et al.,

2017), a manually curated dataset of cancer mutations anno-

tated according to likely oncogenic effect, cancer-focused
re frequencies exceed the y axis limit of 10%, the innermost label indicates the

a five-point scale from orange to teal to represent each gene from likely tumor

. Finally, in the top-right slice, we show hierarchical clustering of the gene

te: CRC refers to the COADREAD cancer type). Additionally, significant gene

purple), and pan-gynecological tissues (green). The middle ring illustrates all

process affected by associated consensus driver genes. Cell of origin for pan-

above.
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Figure 3. Driver Mutation Discovery Approaches, Overview, Overlap, and Contrasts

(A) Venn diagram indicates the total number of mutations overlapping among three consensus approaches: CTAT population, CTAT cancer, and structural

clustering. Adjacent bar chart indicates the top 20 genes sorted by three-set intersecting mutation counts.

(B) Driver gene discovery identified gene-tissue pairs (canonical genes) in tumor suppressors and oncogenes. However, some gene-tissue pairs were not

identified in driver discovery (non-canonical). Mutation frequency from canonical and non-canonical cancer genes are displayed and divided among four mu-

tation classes: truncation/frameshift mutations (gray); missensemutations uniquely identified by only one approach (yellow, see A); missensemutations identified

by multiple approaches (red, see A); and missense passenger mutations not identified by any approach (off-white).

(C) Mutation percentage out of all missense and truncating/frameshift mutations within a gene is shown on the y axis (log scale). Point size is log scaled and

represents amino acid position frequency. The top 23 genes ordered by increasing mutational diversity (normalized entropy) and only the 9 most frequently

mutated amino acid positions for each gene are shown.

See also Figure S5 and Table S4.
algorithms had superior predictive value than algorithms distin-

guishing benign and pathogenic mutations (Figure S5). The

CTAT cancer score outperformed all individual sequence-based

approaches.

Overall, 9,919 predicted cancer driver mutations in our cohort

(3,437 uniquemutations) were identified byR2 approaches from

CTAT population, CTAT cancer, or structural clustering. These

mutations affect 5,782 tumor samples. These missense driver

mutations represent a greater fraction of the total mutations in

oncogenes than in tumor suppressors (Figure 3B). In this latter
376 Cell 173, 371–385, April 5, 2018
group, most mutations seem to be truncations or frameshifts,

consistent with previous observations (Vogelstein and Kinzler,

2004). Nevertheless, some tumor suppressor genes also have

high numbers of missense driver mutations, such as EP300,

CREBBP, CASP8, PIK3R1, and TP53 (Figure 3B). An interesting

example is CDH1, which is primarily affected by truncating or

frameshift mutations in BRCA (75 out of 85 mutations), but

mostly targeted by missense driver mutations in STAD (21 out

of 25 mutations). This suggests differing roles for CDH1 in these

two cancer types.
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Figure 4. Driver Mutation Discovery and Validation

(A) Steps taken to assess consensus among mutation-level predictions using sequence-based and structural clustering tools and comparing them to an

orthogonal set of functionally validated mutations. From left to right: gray box represents missense mutations that were processed by 12 tools from three

categories (population-based, cancer-focused, and structural clustering tools) and combined into three consensus approaches (CTAT population, CTAT cancer,

and structural clustering). The total number and percentage of functionally validated/tested mutations are also shown.

(B) Number of mutations (y axis) found by structural tools for each gene (x axis) are shaded according to support by structural tools (green). Those mutations

without support are distinguished by two categories, with (gray) and without (white) available protein structure.

(legend continued on next page)
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We were intrigued by missense driver mutations detected in

cancer types where the gene was not predicted to be a driver.

This subset is particularly important for genotype-driven clinical

trials (Gagan and Van Allen, 2015). Overall, there are 1,719 tis-

sue-unmatched likely driver mutations (19% of the total) in 1,431

patients (16%) and 502 patients whose only predicted missense

driver mutations affect genes not yet known to play a role in that

cancer type. For example,we identified 28patientswith predicted

EGFRdrivermutations incancer typeswhereEGFR is not yet iden-

tified as a common driver gene, such as HNSC, STAD, LUSC,

UCEC, ESCA, and liver hepatocellular carcinoma (LIHC). In

extremecases, suchasERBB4orGNAS, thesemutationsactually

represent the majority of predicted driver missense mutations in

the gene (Figure 3B). Additionally, we found that 2% (10/457) of

IDH1 missense events that occur at position R132 are found in

cancers not typically known to carry such mutations, i.e., BLCA

(n = 2), BRCA (2), COADREAD (2), lung adenocarcinoma (LUAD)

(2), pheochromocytoma and paraganglioma (PCPG) (1), and thy-

moma (THYM) (1) (Figure 3C). Furthermore, we observed that

RRAS2Q72, a predicted oncogene in UCEC (n = 5 samples) with

strong homology to KRASQ61 and HRASQ61, was exceptionally

mutated in cancer types where it was not previously recognized:

UCS (n = 1), LUSC (1), LUAD (1), prostate adenocarcinoma

(PRAD) (1), HNSC (1), and TCGT (1). Any analysis focusing only

on driver genes and mutations known in that cancer type would

very likely miss presumed driver mutations for those patients.

Functionally Validated Mutations Confirm
Structure-Based Analysis
We used an independent dataset of 1,049 experimentally tested

somatic mutations to validate our driver mutation prediction

(Ng et al., 2018). Briefly, mutations were introduced in two cancer

cell lines, Ba/F3 and MCF10A, and were evaluated for oncoge-

nicity based on survival and growth (STAR Methods). In total,

160 mutations from 19 genes were validated in this dataset. The

percentage of functionally validated mutations increased from

60% predicted with CTAT population, to 61% for those found

by CTAT cancer, and 78% for structure-based analysis (Fig-

ure 4A). Among the 579 mutations predicted by all three ap-

proaches (Table S4), 39 of the 46 tested (85%) were validated.

Further, the sensitivity and specificity of identifying driver muta-

tions annotated by OncoKB suggests performance is generaliz-

able to larger gene sets (Figure S5E). These results support the

valueof thepredictionalgorithmsused inourstudyand theadvan-

tage of combining multiple tools. Also, we would like to note that

this approach only addresses true positive findings and repre-

sents a floor estimate for computational predictions.

Structural-basedmutations clustered on 66proteins, including

one cluster on KLF5, a gene not previously identified in
(C–H) Heatmaps (D, F, and H) coupled with protein structures (C, E, and G) are s

KEAP1/NFE2L2 (3ZGC), respectively, and display whether a particular mutatio

structure-based approaches (at least two structural tools). Purple/teal colors distin

by structure-based approaches, and pink boxes indicate mutations found only b

gradient), OncoKB status (red gradient), testing status (tan), and validation status (

of the three genes are shown with a few additional mutations that are only found b

and labeled with white, gray, and tan labels referring to novel, validated, and tes

See also Table S4.
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PanCancer studies and ranked among the top 30 clusters by

PanCancer mutation frequency (Figure 4B). We sought to further

examine predictions of the three approaches in various well-es-

tablished cancer driver genes, such as PIK3CA/PIK3R1, BRAF,

and KEAP1/NFE2L2 (Figures 4C–4H). The interface between

PIK3CA and PIK3R1 contains a cluster of mutations found by at

least two of the approaches and includes both validated muta-

tions and some not tested. D560G, N564D, and K567E are vali-

dated mutations that closely cluster to non-tested mutations

R577P/Q, S565R, and P568T in PIK3R1. Similarly, PIK3CA con-

tains validated mutations C378Y, V344G/M, N345T/I/K, P471L,

C420R, and E418K clustering with non-tested mutations

S379T, N380S, and E418K. These non-tested mutations are

excellent candidates for further experimental validation due to

both their close proximity to known validated driver mutations

and their support from sequence-based approaches (Figures

4C and 4D). BRAF also contains clusters similar to this PIK3CA/

PIK3R1 cluster, with a mixture of validated and novel mutations

(Figures 4E and 4F).

Additionally, there are many genes that contain mutations

found by all three approaches, but that were not tested experi-

mentally, including KEAP1, NFE2L2, RHOA, MTOR, MAP2K1,

and VHL. Nevertheless, many of these driver mutations have

orthogonal evidence from OncoKB. For example, G333D/S mu-

tations in KEAP1 have an OncoKB status of likely oncogenic and

oncogenic, respectively (Figures 4G and 4H). Also, NFE2L2 mu-

tations cluster closely with KEAP1 mutations along the protein-

protein interface (D77, E82, G81, and E79). While they were not

experimentally validated, all have an OncoKB status of either

likely oncogenic or oncogenic. Other KEAP1 mutations in the

same cluster found by all three approaches are R483C,

Y525C, G524C, G571D, and R413H. However, none of these

mutations were tested in our dataset, nor have evidence from

OncoKB. Given their proximity to the validated KEAP1 sites

and the bioinformatic evidence that we found, these mutations

are ideal candidates for follow-up validation experiments.

Overall, this analysis demonstrates the complementarity

of sequence-based and structure-based approaches. For

example, E365V, C604R, and C901F in PIK3CA, F646S in

PIK3R1, and H725Y and P731S in BRAF were found only by

the former and were experimentally validated (Figures 4D and

4F). Conversely, R462T in BRAF was only found by the latter

and is annotated as likely oncogenic in OncoKB (Figures 4F

and 4H).

Hypermutated Phenotypes and Immune Infiltrates
Environmental and biological factors, such as tobacco expo-

sure, UV, and microsatellite instability (MSI), contribute to the

tumorigenic hypermutator phenotype (Roberts and Gordenin,
hown in panels for proteins PIK3CA/PIK3R1 (PDB: 4OVU), BRAF (4MBJ), and

n was detected by sequence-based (CTAT population or CTAT cancer) or

guish proteins (PIK3CA/PIK3R1 and KEAP1/NFE2L2 pairs) for mutations found

y sequence-based approach. Additionally, for each mutation, frequency (blue

gray) are provided. All mutations found by structure-based approaches in each

y sequence-based approaches. Key mutations are highlighted from heatmaps

ted (not validated) mutations, respectively.



2014). Because many hypermutated samples were excluded in

the driver-discovery dataset, we performed additional analyses

to explore genes associated with this phenotype. Usingmutation

signature analysis, we found that 90% (309/344) of the samples

that we labeled as hypermutated haveMSI, UV, POLE, APOBEC,

or smoking as their primary signature (Figure 5A). MSI and POLE

are particularly prevalent, accounting for 56% of the hypermu-

tated samples. As expected, many cancer genes involved in

MSI and mismatch repair (MMR), i.e., POLE, MLH1, MSH3,

and MSH2 (Alexandrov et al., 2013; Kim et al., 2013), are

frequently mutated in these samples (Table S5; STAR Methods).

We expanded our analysis on mutation signatures by esti-

mating MSI status using MSIsensor (Niu et al., 2014) across all

samples (n = 9,423). 338 tumors have a score 4 (indicative of

an MSI-high phenotype). MSIsensor scores were correlated

with validated gel assays in a subset of hypermuated samples

(n = 180, multiple regression model, p value < 2 3 10�16,

r2 = 0.504; STAR Methods). We identified canonical MSI cancer

types (UCEC, colon adenocarcinoma [COAD], and STAD) as

having the highest average MSI scores across all samples (Fig-

ure 5B). We also observed 73 tumors with high MSI scores

from non-canonical cancers, i.e., 2% of OV (n = 7), and 2% of

CESC (n = 5). We observed that OV tumors have a higher

mean MSIsensor score when compared to other tissues, which

is consistent with previous findings (Cortes-Ciriano et al.,

2017). 4 of 5 CESC MSI samples harbored mutations in genes

known to be involved in MSI, including 1 sample with 2,644

somatic mutations that carried frameshift deletions in both

MLH3 and MSH3.

MSI cases show improved response to immune checkpoint

therapy, independent of histology (Brahmer et al., 2012; Gryfe

et al., 2000; Le et al., 2015). Thus, we testedwhether the samples

with high MSIsensor scores exhibited similar patterns of immune

infiltration between environmental and biological mechanisms.

Using RNA-seq abundance data, we calculated PD-L1, PD-L2,

PD-1, CD8A, and CD8B expression in MSI-high and micro-

satellite stable (MSS) samples to identify via association those

samples that would likely benefit from immunotherapy (Fig-

ure 5C; STAR Methods). We observed a significant difference

between immune infiltrates when comparing samples with high

MSIsensor scores (R4) to others with low MSIsensor scores

(<4) from COADREAD, STAD, and UCEC (Figures 5C), in agree-

ment with previous findings about these cancer types. We then

tested whether the other three most prevalent signatures in hy-

permutators, i.e., smoking, UV, and APOBEC, have similar pat-

terns of immune infiltrate expression. However, only suggestive

evidence (t test, p value < 0.05) was found for PD-1 overexpres-

sion in hypermutated bladder cancer (BLCA) samples with the

APOBEC signature (Figure 5D). Together, these findings corrob-

orate the known relationship between total mutational burden

and expression of immune modulators, but suggest that MSI

may be particularly immunogenic. Additionally, an examination

of BRCA samples revealed that 11 of 12 hypermutated samples

harbor at least one mutation in MSI associated genes (1 with hy-

permethylated MLH1) and had increased expression in PD-L1,

PD-L2, and CD8A when compared to non-hypermutated cases

(t test p values < 0.01, < 0.01, and < 0.05, respectively; Fig-

ure S6A). Similar findings in CESC and LUSC illustrate potential
driver mechanisms in a subset of cases often overlooked in

driver gene discovery analysis (Figures S6B and S6C).

Therapeutic Implications of Molecular Events
We used two different databases to assess therapeutic implica-

tions of molecular events in our dataset: Precision Heuristics for

Interpreting the Alteration Landscape (PHIAL) (Van Allen et al.,

2014) and Database of Evidence for Precision Oncology

(DEPO; http://depo-dinglab.ddns.net). Both databases cast

therapeutic projections based on FDA-approved therapies, clin-

ical trials, published clinical evidence, and, in the case of PHIAL,

the TARGET database. PHIAL works at the gene level, whereas

DEPO focuses on specific mutations (STAR Methods). We

emphasize that, while the implications and results of this section

have been curated based on the literature, many of these results

are still undergoing rigorous scientific/clinical testing. However,

eligibility for clinical trials based on demonstration a particular

driver mutation still falls within the rubric of a clinically actionable

mutation.

We observed that both the fraction of samples and proportion

of alteration types varied across tissue types. By PHIAL heuris-

tics, 52% of all samples contained at least one putatively action-

able alteration (Figure 6A), while 65%of samples had at least one

putatively actionable or biologically relevant alteration from

TARGET. Using DEPO, we found that 30% of samples in our da-

taset had at least one clinically actionable mutation (Figure 6B).

Using PHIAL, the most common putatively actionable alter-

ations across the entire dataset were CDKN2A deletions

(13%), PIK3CA mutations (12%), MYC amplifications (8%),

BRAF mutations and amplifications (8%), and KRAS mutations

(7%). CDKN2A loss may predict sensitivity to CDK4/6 inhibitors

and affects over 40%of GBM,mesothelioma (MESO), and ESCA

patients. PIK3CA mutations, which may predict sensitivity to

PIK3CA inhibitors, affected 45% of patients with UCEC; MYC

amplifications, prognostic in glioma and pancreatic cancer,

were also present in 33% of OV samples. BRAFmutant samples

made up over half of THCA and skin cutaneous melanoma

(SKCM) patients, suggesting sensitivity to RAF inhibitors. Finally,

we also found high fractions of patients with pancreatic, colon,

rectum, and lung adenocarcinomas with KRAS mutations (be-

tween 70% and 30% in all cases). While these mutations are

currently of limited utility in untreated pancreatic and lung adeno-

carcinomas, they predict resistance to anti-EGFR therapies in

colorectal adenocarcinoma.

Similar to PHIAL, PIK3CA,BRAF, andKRAS contributed to the

most number of samples with potentially actionable alterations

from DEPO. SKCM, uveal melanoma (UVM), LGG, PAAD,

COAD, and THCA have higher prevalence of clinically actionable

alterations. When looking at the most common clinically action-

able alterations by cancer type (Figure S7D), some of the same

genes as PHIAL are key avenues for potential targeting, such

as BRAF (V600E) for SKCM. Some key differences occur for

uveal melanoma (UVM), in which GNAQ (Q209P) and GNA11

(Q209P/L) mutations are present in 34% and 43% of cases,

respectively. Thesemutationsmay be sensitive toMEK inhibitors

in SKCM undergoing clinical trials. Additionally, MEK inhibitors

are being deployed for UVM to target the GNAQ/GNA11 muta-

tions, but may require additional agents to show clinical benefit
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Figure 5. Hypermutators Exhibit Multiple Signatures, Microsatellite Instability, and Immune Infiltration Expression

(A) UpSetR (Conway et al., 2017) plot highlights the intersection of multiple signatures and phenotypes with hypermutated samples.

(B) MSI scores segregated by cancer types. MSI score threshold is displayed with a vertical line. The percentage of samples with highMSI is displayed to the right

of each cancer type. Boxplots indicate median MSI score with 25th and 75th percentile hinges and whiskers that extend to 1.5*IQR.

(C and D) RNA-seq abundance of different immune biomarkers across signatures and MSI phenotypes defined by MSIsensor (C) and mutation signatures (D).

Stars indicate significance levels using a two-sided t test to calculate p values (* < 0.05, ** < 0.01, and *** < 0.001).

See also Figure S6 and Table S5.
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Figure 6. Putative Actionability across TCGA Studies

(A) Percentage of samples (y axis) with at least 1 putatively actionable SNV/indel/CNV (orange), SNV/indel (blue), and CNV only (green) for each cancer type (x

axis) from the TARGET database. Sample size is also given for each cancer type in x axis labels. Only 8,775 samples are represented because of limitations of

copy number data.

(B) Percentage of samples (y axis) with a druggable mutation (missense, indel, frameshift, and nonsense) fromDEPO in each cancer type (x axis) at various stages

of approval: FDA approved (red), Clinical Trials (blue), Case Reports (green), and Preclinical (orange). 9,079 samples are represented.

See also Figure S7.
(Carvajal et al., 2014). For THCA, in addition to BRAF,NRASmu-

tations (Q61R/K) are present in 8%of samples and could be sen-

sitive to MEK inhibitors via repurposing; some NRAS mutations

are sensitive in SKCM to MEK inhibition in clinical trials, particu-

larly when combined with CDK4 inhibition (Adjei et al., 2008; As-

cierto et al., 2013; Dummer et al., 2017; Iams et al., 2017).

PIK3CA mutations (H1047R/E545K/E542K) are also prevalent

in BRCA, CESC, and COAD at 24%, 20%, and 16%, respec-

tively, in addition to UCEC, and each of these cancer types could

also benefit from PI3K inhibition. Due to clinical realities and

context specific pathogenesis, these percentages likely repre-

sent a ceiling of current molecular intervention potential.

DISCUSSION

We performed a PanCancer and PanSoftware analysis of one of

the largest available cancer genomics datasets, identifying 299

cancer driver genes. The gene list is limited by focus on point
mutations and small indels without consideration of copy-num-

ber variations (Zack et al., 2013), genomic fusions (Yoshihara

et al., 2014), or methylation events (De Carvalho et al., 2012).

Nevertheless, it represents the most comprehensive effort thus

far to identify cancer driver genes and will serve as an important

research asset.

Many important issues in the field remain unresolved, for

example the similarity of driver gene sets across cancer types

(Hoadley et al., 2014), mutation order and timing (founder vs.

progression mutations) (Ding et al., 2012; McGranahan et al.,

2015), interactions among mutations (Raimondi et al., 2016),

the consequences of different mutations affecting the same

gene (Torkamani and Schork, 2008), reliable tools for distin-

guishing driver mutations from passengers (Greenman et al.,

2007), relationships between mutational signatures and driver

genes (Alexandrov et al., 2013), differences between mutation

burden and neoantigen load (Rizvi et al., 2015), and the implica-

tions for therapeutics (Van Allen et al., 2014). Using the
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consensus genes and the functional mutations found in this

study, we provided partial answers to these important questions.

For example, we identified a series of clusters grouping various

cancer types according to their cellular origin, highlighting

the importance of the pan-squamous, pan-gynecological, and

pan-gastrointestinal studies of the PanCancer Atlas.

Another important result is the dataset of 3,442 predicted

driver mutations from both sequence-based and three-dimen-

sional structure-based approaches. Because not all mutations

in driver genes are actually drivers themselves, identifying the

true-driver mutation subset remains a key challenge. We also

used an external, independent experimental dataset to success-

fully validate predictions from three different approaches that

predict cancer driver mutations. Our results suggest that can-

cer-specific sequence-based approaches outperform those

aimed at detecting pathogenic variants in general. Structure-

based approaches are more specific than sequence-based

approaches at predicting driver mutations, but with reduced

sensitivity. While functional validation confirmed true positive

predictions, it gives no information regarding false negatives.

Thus, what is reported here represents a lower bound. Our assay

was unable to capture other factors relevant to positive selec-

tion, such as tumor microenvironment, metastasis, interactions

with treatment, or the immune system. While caution must be

taken when extrapolating, these observations are consistent

with other functional studies on individual proteins or a subset

of the proteome that have shown that mutations affecting the

same three-dimensional functional regions are likely to have

similar phenotypes (Brenan et al., 2016). However, we also found

several instances in which sequence-based approaches

captured driver mutations overlooked by structure-based ap-

proaches. Considering both approaches as complementary

can improve prediction sensitivity.

We estimate that approximately half of the 10,000 TCGA sam-

ples studied here harbor a clinically relevant mutation, by pre-

dicting either sensitivity or resistance to certain treatments or

clinical trial eligibility. For instance, the finding of GNAQ or

GNA11 mutation in uveal melanoma does not have a standard

of care treatment, but a canonical activating mutation in one of

these genes does allow consideration of a suite of rationally de-

signed clinical trials (such asMEK ± PI3K inhibitors and other ap-

proaches). Under these broader considerations, we estimate

that 57% (SD = 26.7%) of the TCGA cases harbor at least one

potentially clinically actionable target.

The findings reported here and by the larger TCGA enterprise

represent early steps toward a new era in cancer research and

ultimately in cancer treatment. Studies will move beyond

focusing on individual genes toward systematically integrating

the myriad aspects of the cancer genome, including the interre-

lationships among its somatic and germline variations (Carter

et al., 2017) and the tumor microenvironment and the immune

system (Thorsson et al., 2018). Although this study represents

the largest cancer gene andmutation study to date, we aremind-

ful that the corpus of cancer driver genes and mutations may still

be incomplete. However, it is likely that the community is nearing

the beginning of the end of this phase of research, as larger co-

horts continue to be examined with longer-range and longer-

read sequencing technologies.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Li Ding

(lding@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 10,224 human samples with

informed consent under authorization of local institutional review boards (https://cancergenome.nih.gov/abouttcga/policies/

informedconsent). Here we used variants recently uniformly re-annotated that are publically available in mutation annotation file

(MAF) format at the GDC (https://gdc.cancer.gov/about-data/publications/mc3-2017).
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METHOD DETAILS

Data Preparation
A publicly available MAF file (syn7824274, https://gdc.cancer.gov/about-data/publications/mc3-2017) was recently compiled by the

MC3 Working Group and is annotated with filter flags to highlight potential artifacts or discrepancies. This dataset represents the

most uniform attempt to systematically provide mutation calls for TCGA tumors. The MC3 effort provided consensus calls from 7

software packages (Ellrott et al., 2018). Flagged artifacts include: non-exonic regions, whole-genome amplified (WGA) samples,

exclusion lists, blood/tumor derived pairs, strand-bias, contamination estimations, oxo-guanine artifacts, low normal read depth,

polymorphisms common in EXAC (Lek et al., 2016), mutations present in a panel of normal samples, non preferred tumor normal

pairs, and mutations outside the regions of interest for any caller. If a mutation was not assigned any flag and was called by 2 or

more variant calling software packages, it received a ‘PASS’ identifier. We restricted our analysis to PASS calls with the exception

of samples from OV and LAML, which were some of the earliest sequenced by TCGA. Preparations for these samples utilized whole

genome amplified (WGA) DNA, an important factor in that the WGA process can induce artifactual mutations. Of the 412 OV and 141

LAML samples present in our data 347 (84%) and 141 (100%), respectively, had variants derived fromWGADNA. In order tomaintain

sample sizes and uniformity in mutation calling, we did not filter mutations containing only ‘wga’ filter tags from these two cancer

types.We recognize multiple limitations of this mutation call set, including the lack of structural variants and copy number alterations,

as well as variability in sequencing depth and tumor purity. The above limitations may lead to variability in mutation detection; how-

ever, the MC3 dataset reflects the state-of-the-art in consensus mutation detection.

We also excluded highlymutated samples. These hypermutators were defined as samples with amutation count exceeding Tukey’s

outlier condition, i.e., greater than1.5 times the interquartile rangeabove the thirdquartile in their respectivecancer types (3Q+1.5*IQR).

Designation as a hypermutator also required the number ofmutations in a sample to exceed 1,000, a heuristic that limited the number of

discarded samples in low mutation rate cancer types (Figure S1). LUAD, SKCM, and UCEC had hypermutator thresholds greater than

1,000mutations (1,047,2,122, and2,545, respectively) (Figure1B).Wealsoexcludedsamples thatwereflaggedby theanalysis-working

group based on pathology, but allowed ‘‘RNA degradation’’ samples to remain, as this factor is not particularly relevant for most driver

prediction tools based on mutations (https://www.dropbox.com/sh/wglgggbgketh982/AABJEqQ2QdCEruy9c6UXBdjba?dl=0)

(Table S6). The final driver-discovery dataset consisted of 9,079 samples having a total of 791,637 missense mutations, 323,884 silent

mutations, 96,196 30 UTR mutations, 57,900 nonsense mutations, 42,251 intronic mutations, 42,251 Frameshift deletions, 34,266

50 UTR, 21,804 splice sitemutations, 19,856 RNAmutations, 11,305 frameshift insertions, 7,622 30 flankingmutations, 6,419 50 flanking
mutations, 6,144 in-frame deletions, 1,362 translation start site mutations, 964 nonstop mutations, and 632 in-frame insertions.

Driver Discovery Approach
Using multiple tools can overcome numerous technical issues that confound individual statistical analyses to find driver genes, such

as heterogeneous mutation rate across the genome (Lawrence et al., 2013), inflated significance for long genes (Watson et al., 2013),

and false positive calls in cancers with high mutation rates (Tokheim et al., 2016b). We used 26 computational tools, spanning 10

different institutions, to identify mutation-based driver genes and driver mutations (Figure S1A). We divided the analysis into two

phases: (I) driver gene-discovery and (II) gene and in-silico mutation validation (Figure 1C; STAR Methods). In the first phase, we

applied 8 different tools comprising algorithms based on mutation frequency (MuSiC2 [Dees et al., 2012] and MutSig2CV [Lawrence

et al., 2014]), features (20/20+ [Tokheim et al., 2016b], CompositeDriver [https://github.com/khuranalab/CompositeDriver] and

OncodriveFML [Mularoni et al., 2016]), clustering (OncodriveCLUST [Tamborero et al., 2013a]), and externally defined regions

(e-Driver [Porta-Pardo and Godzik, 2014] and ActiveDriver [Reimand and Bader, 2013]). The second phase used an additional 16

tools to further characterize the consensus genes from phase one. The collection was comprised of 8 mutation-level algorithms

(SIFT [Ng and Henikoff, 2002], PolyPhen2 [Adzhubei et al., 2013], MutationAssessor [Reva et al., 2011], transFIC [Gonzalez-Perez

et al., 2012], fathmm [Shihab et al., 2013], CHASM [Carter et al., 2009], CanDrA [Mao et al., 2013] and VEST [Carter et al., 2013]),

4 structure-based (HotSpot3D [Niu et al., 2016], HotMAPS [Tokheim et al., 2016a], 3DHotSpots.org [Gao et al., 2017] and e-Driver3D

[Porta-Pardo et al., 2015]), 2 network and –omic integration tools (OncoIMPACT [Bertrand et al., 2015], DriverNet [Bashashati et al.,

2012]), and 2 algorithms to identify clinically-actionable events (PHIAL [Van Allen et al., 2014] and DEPO [S.Q. Sun, R.J. Mashl, S.

Sengupta, A.D. Scott, W. Wang, P. Batra, L.-B. Wang, M.A. Wyczalkowski, L. Ding, unpublished data]). Each tool reported gene

or mutation level scores and/or p values along with a brief description of recommended cutoff thresholds or filters. Finally, the

CTAT algorithm was applied separately to population based and cancer based tools. This accounts for the remaining 2 tools (this

manuscript) for a total of 26 tools (https://gdc.cancer.gov/about-data/publications#/?groups=PanCanAtlas).

Tools integrating –omics data analyzed a smaller subset of TCGA, sincewe had to remove 75 samples that had problems regarding

RNA-degradation. This issue did not affect the algorithms based only on somatic mutation data, so these 75 samples were included

in their analyses (Table S6).

Standardized Result Reporting
Despite the variety in available data within the TCGA cohort, each of the 26 tools supplied tissue and PanCancer level predictions and

results. We defined a standardized file format to facilitate multi-tool comparison, so each tool supplied information on genes, tran-

scripts, missense mutations, scores, p values, q-values and additional information needed for tool specific requirements.
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Creation of A High Confidence Gene Set
We identified a preliminary total of 2,101 potential drivers by taking the union of genes predicted by the eight driver-gene discovery

tools. As illustrated in Figure S2A, the increased number of false positive genes is likely due to any individual tool’s capability to

maintain sound statistical properties that handle a complex set of factors such as tumor heterogeneity, increased mutation rates,

and variable sample sizes. We refined this list by calculating, for each gene predicted in each cancer type, a consensus score

that compensated for outlier results and correlation among tools (Figure S2 and Table S1; https://gdc.cancer.gov/about-data/

publications#/?groups=PanCanAtlas). The consensus score was defined as a weighted sum of the number of tools that predicted

the gene to be a driver in each cancer type (see Gene Discovery Weighting Strategy). We required a minimum of two tools to agree,

where both could not be outliers (scoreR 1.5). Although it is difficult to distinguish the overall performance improvement on a small

number of held out CGC genes (Figure S3A), the weighting strategy did have higher specificity (p = 4.3e-8, McNemar test), which is

preferable given concerns of false positives. Regardless, the consensus score performance on identifying CGC genes (Figure S3A)

support previous reports thatmerging the results fromdifferent algorithms improve cancer driver discovery (Tamborero et al., 2013b).

To maximize the coverage of our analysis and ensure the accuracy of our final list, we reviewed previous findings in 31 individual

cancer types and PanCancer-12 from TCGA. For cancer types not yet having a TCGA publication, we consulted with the relevant

analysis working groups (LIHC, testicular germ cell tumors [TGCT], UVM, sarcoma [SARC], PAAD, and THYM). We included in our

final consensus list all those genes that were previously described as drivers by experts in the cancer-specific analysis of TCGA data-

sets and were also identified by at least one of the eight algorithms, even if they did not meet our consensus score threshold (R1.5)

(Figure 2A). This resulted in an additional 54 gene-cancer pairs, such as ATR, CHEK2, IDH2, and ERCC2 in the PanCancer dataset

and FOXA1 in BLCA,HRAS in SKCM, andMET in LUAD (Figures S2B–S2F). Themajority of this effort resulted in linking cancer genes

identified by our strategy to additional cancer types based on previous literature (32/54).

The process of identifying genes in previous TCGA publications consisted in the following steps:

1. We manually reviewed all the official marker papers for each cancer type of The Cancer Genome Atlas. When no official paper

was yet available, we contacted the lead analyst of the cancer type to access the official list of cancer driver genes.

2. We listed all the genes that were identified in themain text of one of themain figures of the corresponding paper as significantly

more mutated than expected by chance.

3. Oncewe had the genes from each cancer type, we checkedwhether these genes had also been identified in our analyses by, at

least, one algorithm. Note that both the mutation calls and the samples from the original TCGA paper and our analysis of each

cancer type differ to some extent, so it is possible that genes which were previously identified by MutSigCV or MuSiC are not

found by these algorithms in our analysis.

4. If a gene had been identified in the dedicated cancer type, deemed important enough to be highlighted in themain text/figure of

the paper, and was also identified by at least one of our 8 gene-level discovery tools, we rescued it for our final list (Table S1).

To limit false positives in the expanded list, we applied linear discriminant analysis (Figure S2C) (see Likely False Positive Gene

Filter). We identified and removed 45 genes from the consensus we detected as likely false positives. These included CACNA1E

in PanCancer,COL11A1 in LUAD,DST in GBM, and TTN in SKCM. The consensus list from the above systematic approach consisted

of 258 unique genes (Table S1). The average number of non-silent mutations per sample in our consensus gene list varied substan-

tially by cancer type ranging from < 1 in 12 cancer types (ACC, CHOL, KICH, kidney renal papillary cell carcinoma [KIRP], LAML,

MESO, PCPG, PRAD, SARC, TGCT, THCA, and THYM) to 7.3 in UCEC. A median of 85% of tumors harbored non-silent mutations

in consensus genes across cancer types (Figure S3F).

Given the limitations of a systematic approach, we additionally manually rescued 41 genes (Table S1). In the rescue attempt, we

started with a list of genes identified from previous TCGA marker papers but not found from our systematic approach. We rescued

genes with supportive evidence from the following sources: hypermutator phenotype related genes (since we excluded hypermu-

tated samples in our systematic discovery; 6 genes), established cancer genes from LAML because of low quality variant calling

originating from liquid tumor contamination of the normal samples (6 genes), genes supported by omic network tools (DriverNet

and OncoIMPACT; 25 genes), and a gene supported by all three approaches from the driver mutation discovery (1 gene). Addition

of genes to the final list was subjected to expert manual curation (3 genes).

The final consensus gene list consisted of 299 unique genes across 33 cancer types and the PanCancer dataset (Figure 2A;

Table S1). The list captures most previously described driver genes for the majority of cancer types. We overlapped the cancer driver

genes obtained from the consensus approach without manual curation with those from 5 independent studies in 4 cancer types

(BRCA, PRAD, PAAD, and LIHC) of which one is whole-genome sequencing. The consensus approach always had a greater in-

ter-study overlap, with an average increase of 26% over only using a single tool, either MuSiC2 or MutSig2CV (Barbieri et al.,

2012; Biankin et al., 2012; Nik-Zainal et al., 2016; Schulze et al., 2015; Stephens et al., 2012) (Table S3). Among the 299 genes

we identified 59 novel genes that were not previously identified in 6 previous PanCancer publications (Frampton et al., 2013; Kandoth

et al., 2013; Lawrence et al., 2014; Pritchard et al., 2014; Tamborero et al., 2013b; Vogelstein et al., 2013) or the cancer gene census

list (http://cancer.sanger.ac.uk/census/) (Futreal et al., 2004) (Table S1).
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Gene Discovery Weighting Strategy
Toolspredictingcancergeneswereweightedaccording to their performance ineachcancer type, receivinghalf theweight if a resultwas

deemedanoutlier, therebyobligatingadditional tool agreement (FigureS2A). Specifically, weexaminedqualitymetrics across tools and

within the same tool, which allowed us to identify outlier results. We marked outliers based on the quasi-majority of three criteria: low

concordancewith known cancer genes, high divergence of p value distribution from theoretical expectation, and abnormally high num-

ber of significant genes. The first criterion evaluated the fraction overlap of significant genes with a previously manually curated set of

driver genes from (Vogelstein et al., 2013) comparedwith themedian across all tools. The second criterion examinedwhether the diver-

gence of observedp values from those theoretically expectedby theMeanLogFoldChange (MLFC) (Tokheimet al., 2016b)was greater

than the median of all tools, which may indicate a tool’s statistical assumptions may not be well satisfied. The third criterion examined

whether a tool’s prediction for particular cancer types appeared as an outlier in terms of the number of significant genes compared

against all of the results for that tool (Tukey’s outlier criterion: number significant > 3Q+1.5*IQR).Wecalculateda geneconsensus score

by summing the tools that declared the gene as being significant, with a weight of 1 for non-outlier results and 0.5 for outlier results.

We also provided a score that ismore stringent, which could be used by others to create a somewhat smaller set of confident driver

genes (Table S1). Here, due to similarities in algorithmic decisions, we adjusted these consensus gene scores to compensate for

correlation between tools of the same class (i.e., frequency, feature, and domain based tools). The contribution of a tool whose infer-

ence is uncorrelated with other tools is recorded by simple addition of its score to the running total. However, some tools show cor-

relation at sufficient levels that their contributions should properly be considered in aggregate. For example, MuSiC2 andMutSig2CV

are highly correlated, as are CompositeDriver and OncodriveFML (Figure S2G). For such tool pairs, we actually add the union of their

scores, S1 U S2, to the running total in the form of

S1 WS2 =S1 +S2 � S1 XS2 =S1 +S2 � 9

2
S1 +S2ð Þ= 1� 9

2

� �
S1 +S2ð Þ (Eq. 1)
where r is the Pearson’s coefficient between these two tools. We a
pplied this procedure for pairs of tools whose variances exceeded

10%, i.e., for correlations greater than 0.32. Small changes of this threshold did not have any meaningful effect.

Driver Mutation Discovery
Tomaximize the coverage of our analysis we used 12 tools that look for three distinct hallmarks of ‘‘driverness.’’ We utilized four tools

that distinguish pathogenic mutations from benign polymorphisms on a population level (SIFT [Ng and Henikoff, 2002], PolyPhen2

[Adzhubei et al., 2013], VEST (version 3 scores) [Carter et al., 2013] and MutationAssessor [Reva et al., 2011]), four tools specifically

designed to distinguish between driver and passenger somatic mutations (CHASM [Wong et al., 2011], CanDrA [Carter et al., 2013],

fathmm [Shihab et al., 2013] and transFIC [Gonzalez-Perez et al., 2012]) and four tools that leverage information from protein struc-

tures (HotSpot3D [Niu et al., 2016], HotMAPS [Tokheim et al., 2016a], 3DHotSpot.org [Gao et al., 2017] and e-Driver3D [Porta-Pardo

et al., 2015]). In order to combine the predictions from the sequence-based approaches we used principal component analysis to

develop a Combined Tool Adjusted Total (CTAT) scores for both, population-based and cancer-specific scores (STAR Methods).

Principal component analysis has been previously shown successful in a similar task of prioritizing germline mutations (Ionita-

Laza et al., 2016). We also combined the results from three-dimensional tools by adding the number of tools that predicted a specific

position as belonging to a cancer-mutation cluster. Finally, to limit the number of false positives, we focused our analysis on the genes

of our consensus driver list.

To define the CTAT score thresholds, we used the maximum balanced accuracy when predicting OncoKBmutations ‘‘oncogenic’’

or ‘‘likely oncogenic’’ (Figures S5C and S5D). This yielded a threshold of 1.2 for CTAT-population and 2.4 for CTAT-cancer. For the

structural algorithms, we report a mutation as likely driver if at least 2 algorithms identify it within a cluster. Finally, we evaluated the

performance of each CTAT score using mutations from OncoKB labeled as ‘‘likely oncogenic’’ or ‘‘oncogenic’’ as true-positives.

Experimental Validation Data
For experimental validation to assess tool performance, we utilized experimental data provided by Gordon Mills at MD Anderson

Cancer Center (Ng et al., 2018). 1049 mutations were tested in 2 growth-factor dependent cell models, Ba/F3 and MCF10A. Both

models depend on specific growth factors for survival, with which they cease proliferating. It is hypothesized that a mutation is a

driver if it confers survival advantage to cells even in the absence of these growth factors. Mutations were introduced in the cells

and the dependent growth factors were withdrawn; subsequently, cell viability was measured. Every experiment had 2 negative

controls, 3 positive controls, and a corresponding wild-type (WT) of the mutation tested. In general, we considered a mutation to

be ‘validated’ if the cell viabilities of the mutations were higher than those of the wild-type.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Power Analysis of Driver Gene Identification
We performed the statistical power analysis of driver gene identification at various prevalences (effect size = 0.1, 0.05, 0.02, and

0.01, fraction of samples above background) with 90% power, based on a previously established approach of elevated mutation

rate (Lawrence et al., 2014). We used a binomial model implementation (https://github.com/KarchinLab/cancerSeqStudy),
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previously described (Tokheim et al., 2016b). Default parameters were used. We placed each cancer type or PanCancer analysis

according to the median mutation rate (per mega base) and number of samples (n shown in Figure 1C). Mutation rate per mega

base was calculated through using sequencing coverage of samples obtained from the MuSiC2 analysis.

Anatomical Clustering of Cancer Driver Genes
We performed hierarchical clustering of the gene consensus scores for the 87 genes that were found in more than one cancer type

(Figure S3E), thereby clustering both genes and cancer types (n = 32 cancer types, COADandREADmerged bymaximumconsensus

gene score). The correlation distance metric and average linkage were used to avoid clustering purely based on the total number of

consensus genes for a cancer type. Clusters of genes were defined based on cutting the dendrogram at a depth chosen by manual

inspection. Each gene cluster was tested for enrichment in three groups of cancer types using a permutation test: Pan-squamous

(BLCA, CESC, LUSC, HNSC, and ESCA), Pan-gynecological (BRCA, UCEC, UCS, CESC, and OV), and Pan-gastrointestinal

(STAD, COADREAD, ESCA, and PAAD). This involved, for each cluster and group of cancer types, an initial calculation of the total

gene consensus score from the observed data. Labels for the cancer types were then permuted 10,000 times and the total gene

consensus score was subsequently recalculated based on the permuted cancer type labels. Lastly, P values were calculated as

the fraction of permuted iterations that met or exceeded the observed total gene consensus score. P values were then multiple

test corrected across all genes using the Benjamini-Hochberg FDR method.

Likely False Positive Gene Filter
We attempted to harness the collective ability of the analysis tools in order to remove remaining genes that were likely false positives

using Fisher’s linear discriminant analysis (LDA). This is a PanCancer filter in the sense that we selected features by manually exam-

ining 4 attributes for each of the tools. Specifically, for each gene, we compiled average P value over all cancers and the Pearson

correlation coefficient, regression slope, and y-intercept of a least-squares fit between the cancer background mutation rates and

tool P values. We then looked for the largest difference of means in units of standard deviations for these 4 attributes between a

set of true positive list in the form of the 127 genes from Kandoth et al., 2013 versus an internally-curated list of 488 false positives

(Table S7).We ultimately chose 4 features: the correlation coefficient fromMuSiC2, the average P values fromOncodriveFML and 20/

20+, and the y-intercept from 20/20+. To harness these features collectively, we then solved the LDA linear algebra problem using

decomposition, where the coefficient matrix is comprised of the within-groups variances, the vector of unknowns contains the

feature weights, and the right hand side is the vector of the difference of means of the features. We then chose a conservative

cut-point such the true positives were unlikely to be caught in the filter, reflecting 90% sensitivity for keeping associations found

in Cancer Gene Census genes. Using the 4 LDA weights and the cut-point, we then ran the candidate gene list through the filter,

removing all genes that failed the cut-point. However, we omitted from this filtering any gene already established as being a cancer

gene and any ‘‘out-of-context’’ gene, meaning ones that showed obvious specificities to a single cancer.

Ctat Score
We developed the Combined Tool Adjusted Total (CTAT) score to distinguish missense mutations that are cancer drivers from pas-

senger mutations. The CTAT score combines multiple individual tools that prioritize missense mutations. To normalize each score,

we calculated the z-score by subtracting the mean score and then dividing by the standard deviation. We then performed principal

component analysis (PCA) using ScikitLearn v0.18.0 and used the score along the first principal component as our CTAT score, rep-

resenting the scalar projection onto the first eigenvector. Only missense mutations that had no missing values for each of the com-

bined tools were used in generating the principal component analysis. We performed this procedure on two distinct categories of

tools, ‘‘population-based’’ tools that distinguish damaging/pathogenic germline missense variants from common polymorphisms

(SIFT, PolyPhen2, VEST, and MutationAssessor), and ‘‘cancer-focused’’ tools designed to distinguish somatic missense mutations

that are drivers from passengers (CHASM, CanDrA, fathmm, and transFIC). To score the remainingmissensemutations that did have

a missing score, we imputed missing scores of the individual tool with the mean for the method. Imputation was only performed for

the cancer-focused tools as the population-based tools had too many missing values.

Normalized Entropy Score
We calculated a score to characterize consensus genes on their diversity of amino acid positions that contain either missense, frame-

shift, or truncating mutations. Because genes may be of different length and have different background mutation rates, we used a

normalized entropy score (E) (Tokheim et al., 2016b):

E =
�Pn

i = 1pðiÞlog2ðpðiÞÞ
log2ðnÞ ; (Eq. 2)
where, for each gene, n is the total number of mutated positions
 and p(i) represents the fraction of mutations for the i-th mutated

position. The normalized entropy score takes values between 0 and 1, with values closer to one indicating an even spread of muta-

tions across all mutated positions.
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Hypermutators and Immune Infiltrates
Hypermutator sampleswere defined above as those tumors withmutation counts greater than 1.5 times the interquartile range above

the third quartile in their respective cancer types (3Q + 1.5*IQR). Additionally, mutations in a sample needed to exceed 1000, a

heuristic that limited the number of discarded samples in low mutation rate cancer types (Figure S1). Three cancer types, LUAD,

SKCM, and UCEC, had hypermutator thresholds greater than 1000 mutations (1047, 2122, and 2545 respectively) (Figure 1B).

18 global mutational signatures were originally calculated for each of the hypermutator samples according to Alexandrov et al.,

2013 with a minimum cosine similarity ranging from 0.57 to 0.99. These signatures were then aggregated into the 9 representative

signatures presented: POLE was comprised of ‘‘POLE’’ and ‘‘MSI - COSMIC14 (POLE+MSI)’’; MSI combined ‘‘MSI - COSMIC15,’’

‘‘MSI - COSMIC20 (POLD+MSI),’’ ‘‘MSI - COSMIC21,’’ ‘‘MSI - COSMIC26,’’ and ‘‘MSI - COSMIC6’’; COSMIC signature 5 combined

‘‘COSMIC5,’’ and ‘‘ERCC2 - COSMIC5,’’ unknown is comprised of ‘‘Unknown’’ (many of which were attributable to noise fromWGA

and 3 hypermutated samples were not performed in this analysis); UV, smoking, APOBEC, COSMIC1, and COSMIC5 signatures did

not require aggregation; and other was comprised of ‘‘COSMIC17,’’ ‘‘COSMIC22 - aristolochic acid signature’’ and ‘‘COSMIC3 –

BRCA’’ (Figure 5A). A primary signature for each sample was calculated by identifying as the max score from each signature.

MSIsensor (Niu et al., 2014) was applied to all 9,423 samples in our dataset. We used the authors’ recommended cut-off of greater

than or equal to 4 in order to indicate MSI-High status. Scores below 4 cannot reliably distinguish been MSI-Low and MSS. More

information on this tool is found in DATA AND SOFTWARE. 357 scores were generated from BAM files other than those used for

variant calling by the MC3Working group. Of the 357 samples, 29 had MSIscores greater than or equal to 4. 16 of these 29 samples

(55%) had at least one frameshift/nonsense, missense mutatiation in gene involved in MSI or MMR phenotype (POLE, MLH1, MLH3,

MGMT, MSH6, MSH3, MSH2, PMS1, or PMS2) or had high MLH1 methylation. Results from 180 gel-assays were provided by The

Broad Institute to assess MSIsensor scores. Using a multiple regression model, quantitative MSI scores correlated with qualitative

results from the gel-assay (MSI-H, MSI-l, and MSS, p value < 2x10�16, r2 = 0.504); thus, justifying the use of MSIsensor.

PD-L1, PD-L2, PD-1, CD8A, and CD8B RPPA expression data were collected from FIREHOSE (January 28, 2016). By cancer type,

samples were stratified by MSIsensor score status (Figure 5C), hypermutatator and mutation signatures status (Figure 5D), and hy-

permutator status alone (Figures S7A–S7C). Significance was calculated using two-sided t test statistics.

Druggability and Clinical Association
PHIAL is a heuristic clinical interpretation algorithm and database of tumor alterations relevant to genomics-driven therapy (TARGET)

and was created in 2014 to identify putatively actionable or biologically relevant alterations in patient tumor sequence data. Although

it was developed to study patients individually, PHIALwas applied to all 8775 samples that had both SNV/indel and thresholded copy

number data available across TCGAMC3 and all 33 individual TCGA studies. PHIAL (1.2.0) using TARGET 1.4.2 and Cosmic v79 was

applied to all 8775 samples that had both SNV/indel and thresholded copy number data available across TCGA MC3 and all 33 in-

dividual TCGA studies. TARGET contains 50 alteration-therapeutic assertions based on FDA-approved therapies, clinical trials, or

published clinical evidence of genetic alteration-therapeutic action relationships which was leveraged by PHIAL to bin variants as

putatively actionable, if both the gene and alteration type match an assertion, or biologically relevant, if only the gene matches.

DEPO version 1.0 (S.Q. Sun, R.J. Mashl, S. Sengupta, A.D. Scott, W. Wang, P. Batra, L.-B. Wang, M.A. Wyczalkowski, L. Ding,

unpublished data; http://depo-dinglab.ddns.net) is a manually curated database of single nucleotide polymorphisms or SNPs

(missense, frameshift, and nonsense mutations), in-frame insertions and deletions (indels), copy number variations (CNVs), and

expression changes that are paired with drug responses. For present purposes, we focused strictly on SNPs and indels. For each

variant-drug pair, there is an associated tumor type, an effect (sensitive or resistant), and a level of evidence describing the quality

of data supporting the pair at various stages of approval: FDA-approved, clinical trials, case reports, and preclinical. We queried our

samples for presence of druggable alterations from DEPO regardless of cancer type. The cancer type that had the highest level of

evidence for a drug-variant pair was considered the ‘‘on-label’’ cancer type and all other cancer types were deemed to be ‘‘off-label’’

(Figure S7D). Cancer types containing an off-label variant were still considered to be ‘druggable’ via repurposing.

DATA AND SOFTWARE AVAILABILITY

Algorithms used to create the consensus list
20/20+

20/20+ is a Random Forest machine learning algorithm for predicting oncogenes and tumor suppressor genes from somatic muta-

tions. 20/20+ uses features capturing mutational clustering, evolutionary conservation, predicted functional impact of variants, mu-

tation consequence types, gene interaction network connectivity, and other relevant covariates. 20/20+ version 1.1.0 was run using

default parameters, as described previously (Tokheim et al., 2016b), except where the number of simulations was increased to

100,000. We applied gene hold-out cross-validation to perform predictions without over-fitting. Additionally, for cancer type specific

predictions, we held out all mutations from the corresponding cancer type in our training set. P value QQ-plots suggest well-cali-

brated predictions that are not inflated for false positives and results show substantial overlap with the cancer gene census (Futreal

et al., 2004) and curated driver genes (Vogelstein et al., 2013). Genes were deemed significant if either the oncogene, tumor suppres-

sor gene, or driver score had a q-value of less than or equal to 0.05. 20/20+ was also used to categorize the consensus genes as
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either a oncogene, tumor suppressor gene, or unknown. A ‘‘likely’’ oncogene or tumor suppressor gene was determined using

q-value threshold of 0.05, while ‘‘possible’’ status was assigned to the remaining genes with a p value less than or equal to 0.05.

MutSig2CV

MutSig2CV (Lawrence et al., 2014) analyzes somatic pointmutations discovered in DNA sequencing, identifying genesmutatedmore

often than expected by chance given inferred background mutation processes. Genes were deemed significant at a q-value

threshold of 0.1. MutSig2CV consists of three independent statistical tests, described briefly below:

Abundance (CV)

Themost important step for inferring genes’ mutational significance is to properly classify whether the gene is highly mutated relative

to some backgroundmutation rate (BMR), which varies on amacroscopic level across patients and genes and on amicroscopic level

across sequence contexts. MutSig accounts for all three of these aspects, renormalizing BMR on a per-gene, -patient, and

-context level.

Clustering (CL)

Genes often harbor mutational hotspots, specific sites that are frequently mutated. While abundance calculations bin mutations on

the gene level, clustering bins mutations on the local site level, which allows MutSig to differentiate between genes with uniformly

distributed mutations and genes with localized hotspots, assigning higher significance to the latter.

Conservation (FN)

MutSig uses evolutionary conservation as a proxy for determining the functional significance of a mutated site. It assumes that ge-

netic sites highly conserved across vertebrates have greater functional significance than weakly conserved sites. MutSig assigns a

higher significance to genes that experience frequent mutations in highly conserved sites.

MuSiC2

MuSiC2 (Dees et al., 2012) version 0.2 is a frequency based tool used to identify significantly mutated genes (https://github.com/

ding-lab/MuSiC2). Significance is determined by comparing a calculated background mutation frequency to a convolution for spe-

cific transition, transversion, and CpG variants. Default parameters were used for initial SMG identification. A recent update to

MuSiC2 provides a long gene filter, which seeks to remove false positives by virtue of finding genes whose elevated mutation tallies

are due primarily to their larger size rather than their mutational significance. Briefly, it systematically tightens the p value threshold for

longer genes (> 5000nt) based on a table test of uncoupling gene status (significant versus not significant) from gene size (long gene

versus typical-size gene).

OncodriveCLUST

OncodriveCLUST (Tamborero et al., 2013a) identifies genes with non-silent mutations that cluster together in protein sequencemore

than expected based on a background distribution of synonymous mutations. OncodriveCLUST was run through a local installation

of IntOGen pipeline (available at https://bitbucket.org/intogen/intogen-pipeline). Different minimum mutation thresholds were set

manually, according to the mutation burden of the different cancer types: 3 (in ACC, CHOL, DLBC, ESCA, GBM, KICH, kidney renal

clear cell carcinoma (KIRC), KIRP, LGG, MESO, PAAD, PCPG, PRAD, READ, SARC and THYM), 5 (in BRCA, CESC, COAD, LAML,

LIHC, OV, TGCT, THCA, UCS, UVM and the PANCANCER run), 7 (in HNSC, SKCM and STAD), 10 (in BLCA) and 12 (in LUAD, LUSC

andUCEC). Next, we applied a custom expression filter in each cancer type by filtering out geneswhosemedian expression level was

lower than 6 log2 RSEM in that particular cancer type. Genes were found significant at a q-value threshold of 0.05.

OncodriveFML

OncodriveFML (Mularoni et al., 2016) identifies genes that have greater accumulation of mutations that have higher predicted func-

tion impact (functional impact bias). The predicted impacts of mutations were scored using CADD (Kircher et al., 2014). The mean

CADD score for mutations was compared to permuted mutations within the same gene to calculate an empirical p value. The results

have been calculated considering all the observed mutations in CDS regions. CDS regions were extracted from Gencode release 19

(https://www.gencodegenes.org/releases/19.html). The annotations include all CDS where both the ‘‘gene_type’’ and the ‘‘tran-

script_type’’ were tagged as ‘‘protein_coding.’’ The analysis was performed usingOncodriveFML version 1.0.2-alpha with the coding

indels option specified. The configuration file contained the default parameters with the following exceptions (https://bitbucket.org/

bbglab/oncodrivefml/downloads/PanCanAtlas.conf). Genes were deemed significant at a q-value of 0.25.

ActiveDriver

ActiveDriver detects genes that are enriched in somatic mutations located in post-translationally modified sites, such as phosphor-

ylation, acetylation, or ubiquitination sites. It identifies driver genes using a logistic regression that takes into account, among other

factors, the position of the PTM sites and the distribution of the mutations (Reimand and Bader, 2013). ActiveDriver (v0.010, default

parameter) was run using the database ActiveDriver_HG38. Due to high mean log fold change (MLFC) values, genes were deemed

significant at a q-value of 0.0001.

e-Driver

This algorithm identifies protein regions that are enriched in somatic missense mutations using a binomial test and assuming muta-

tions are distributed randomly across the protein. The protein regions can be linear (Porta-Pardo and Godzik, 2014) or three-dimen-

sional (Porta-Pardo et al., 2015). The current analysis uses PFAM domains (Finn et al., 2016) and disordered regions predicted by

Foldindex (Prilusky et al., 2005) for the linear analysis. We used the regions described in https://github.com/eduardporta/e-Driver/.
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CompositeDriver

Wehave developed CompositeDriver v0.1 (https://github.com/khuranalab/CompositeDriver), a novel computational method consid-

ering both mutation recurrence and functional impact of mutations to identify signals of positive selection. For all mutations within a

gene’s protein coding region, a composite score was calculated through summation of mutation recurrence multiplied by the func-

tional impact score (Jagadeesh et al., 2016). For each gene, a p value was computed by testing whether the observed composite

score is significantly higher than the null distribution. To build the null distribution from the background, the same numbers of mutated

positions were repeatedly drawn (default is 105 times) from other protein coding regions of similar replication timing and similar mu-

tation context (Alexandrov et al., 2013). The Benjamini-Hochberg method for multiple hypothesis correction and q value cut-off of

0.05 was used.

Population-based sequence algorithms
VEST

VEST (Variant Effect Scoring Tool) is a machine learning method that predicts the functional significance of missense mutations

observed through genome sequencing, allowingmutations to be prioritized in subsequent functional studies based on the probability

that they impair protein activity (Carter et al., 2013; Douville et al., 2016). VEST version 3.0 scores were retrieved from the CRAVAT

web server (v4.3) (Douville et al., 2013).

MutationAssessor

MutationAssessor (Reva et al., 2011) uses residue conservation across species to identify the impact of non-synonymous mutations.

Scores were obtained using the precompiled database ljb26_all from ANNOVAR v20150322 (Wang et al., 2010).

PolyPhen2

Polymorphism Phenotyping v2 (PolyPhen2) (Adzhubei et al., 2013) is a machine learning approach that computes the functional

impact of missense mutations. The method uses sequence-based and structure-based features to train a naive Bayes classifier.

Scores were obtained using the precompiled database ljb26_all from ANNOVAR (Wang et al., 2010).

SIFT

Sorting Intolerant from Tolerant (SIFT) SIFT (Ng and Henikoff, 2002) predicts the functional impact of missense mutations using

sequence homology. Scores were obtained using the precompiled database ljb26_all from ANNOVAR v20150322 (Wang

et al., 2010).

Cancer-focused algorithms
CHASM

CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) is a machine learning method that predicts the func-

tional significance of somatic missense mutations observed in the genomes of cancer cells, allowing mutations to be prioritized in

subsequent functional studies, based on the probability that they give the cells a selective survival advantage (Carter et al., 2009).

CHASM scores (precompute version 3.0) were retrieved from the CRAVAT web server (v4.3) (Douville et al., 2013).

CanDrA

CanDrA (Mao et al., 2013) is a machine learning program that predicts cancer-type specific driver missense mutations based on 96

structural, evolutionary and gene features computed by over 10 other functional prediction algorithms such as CHASM, SIFT, and

MutationAssessor. CanDrA used COSMIC, TCGA, and CCLE data for training and is heavily optimized to perform cancer-type spe-

cific driver mutation analysis (Chen et al., 2016). If a mutation appeared more than once, the maximum CanDrA score was taken. In

this work, the CanDra ‘‘plus’’ version was run under default parameters using the ‘‘general’’ cancer type database.

fathmm

Functional Analysis Through Hidden Markov Models (fathmm) (Shihab et al., 2013) uses Hidden Markov modeling to represent the

protein domain shared across human proteins and to estimate the functional impact of mutations. Using cancer-associated polymor-

phisms from CanProVar and putative neutral polymorphisms from UniProt, fathmm prioritizes mutations that are associated with

cancer versus those that simply impact the function of a protein. Scores were obtained using the precompiled database FATHMM

cancer v2.3 (http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz).

transFIC

Transformed Functional Impact score for Cancer (transFIC) (Gonzalez-Perez et al., 2012) assesses the functional impact of tumor

non-synonymous SNVs by accounting for baseline tolerance of functional variants in relation to genes. This is performed by grouping

genes by ontologies and assessing the tolerance of gene sets using functional scores provided by SIFT, PolyPhen2, and

MutationAssessor. By transforming scores based specific ontologies in cancer datasets, modified transFIC scores outperformed

original scores generated by other cancer specific tools. transFIC (v1.0, default parameters) was run using the gosmf database

and applied to MutationAssessor predictions.

Structure-based algorithms
HotMAPS

Hotspot Missensemutation Areas in Protein Structures (HotMAPS) (Tokheim et al., 2016a) detects somatic mutation hotspot regions

in 3D protein structures residing within a single protein chain or spanning protein chains (https://github.com/KarchinLab/HotMAPS;
Cell 173, 371–385.e1–e9, April 5, 2018 e8

https://github.com/khuranalab/CompositeDriver
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
https://github.com/KarchinLab/HotMAPS


v1.1.3). Protein structures were obtained from the Protein Data Bank (PDB) and homology models from the ModPipe human 2013

dataset (ftp://salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/), built with Modeler 9.11 (Pieper et al., 2011).

Missense mutations were mapped to each protein structure or homology model using the MySQL database of Mutation position

imaging toolbox (MuPIT) (Niknafs et al., 2013). The preferred biological assembly from MuPIT was used when multiple biological as-

semblies were available for a protein structure. HotMAPS calculates a p value formissensemutated residues containing a higher than

expected density of missense mutations. Multiple hypothesis testing correction was performed using the Benjamini-Hochberg

approach, and the significance threshold was set at a q-value of 0.01.

HotSpot3D

HotSpot3D (Niu et al., 2016) is a suite of algorithms (https://github.com/ding-lab/hotspot3d) that identifies spatial mutation clusters

on 3D protein structures. For this manuscript, we used version 1.4.1. A pairwise distance measure is calculated for nearest-atoms/

average-amino-acid on protein structure. Networks are then built by properly linking pairwise distances to corresponding mutations.

Initialized by the distance matrix of the edges, clusters are constructed using the Floyd–Warshall shortest-paths algorithm to obtain

the geodesics. We weighted this algorithm to bias centroid sections toward frequently mutated missense mutations. Finally, a close-

ness-centrality measure, or the sum of centralities over each mutation in a cluster, was used to describe features in the genes we

identified here. For this study we used the following cutoffs: For intra-molecular clusters: 1) no linear amino-acid chain distance cutoff

was enforced, 2) pairwise distances were calculated using the average amino-acid structure difference, 3) only mutation pairs with

protein specific p values less than 0.05, and 4) the maximum network radius was 10 Angstroms. For inter-molecular clusters: 1) no

linear amino-acid chain distance cutoff was enforced, 2) pairwise distances were calculated using the average amino-acid structure

difference, 3) onlymutation pairs with protein specific p values less than 0.05, and 4) themaximumnetwork radius was 20 Angstroms.

3DHotSpots.org

The algorithm behind 3DHotspots.org identifies statistically significant clusters of missense cancer mutations in 3D structures (Gao

et al., 2017). Missense mutations were mapped to 3D protein structures using G2S web services (https://g2s.genomenexus.org/)

(March 2017). Only alignments with a sequence identity of 90% or above were included. The contact map of each structure chain

was then calculated. Two residues with any pair of atoms within 5Å were considered in contact. A 3D cluster is defined by a central

residue and at least one contact neighbor residue. A 3D cluster is identified as significantly mutated if its residues were more

frequently mutated than expected by chance, as determined by a permutation-based test. Details of the methodology and the

tool are available at https://github.com/knowledgesystems/mutationhotspots. Version 1.0.1 with default parameters was used in

this analysis.

e-Driver3D

This algorithm identifies protein regions that are enriched in somatic missense mutations using a binomial test and assuming muta-

tions are distributed randomly across the protein. The three-dimensional analysis is based on a library of protein interaction interfaces

extracted from the Protein Data Bank30. The interaction interfaces are defined for each pair of protein chains in each PDB coordi-

nates file as all the residues of a chain with a carbon atom within 5 Å of a carbon atom of the other chain. We used the interfaces

described in https://github.com/eduardporta/e-Driver/interfaces_human_genome.txt.

Additional algorithms
DriverNET

DriverNet (Bashashati et al., 2012) is a package to predict functional important driver genes in cancer by integrating genome data

(non-synonymous SNVs, indels, and copy number alteration) and transcriptome data (gene expression data). The different data types

are integrated using an influence graph (Wu et al., 2010). We ran DriverNet (v1.6.0, numberOfRandomTests = 500, weight = FALSE,

purturbGraph = FALSE, purturbData = TRUE) and genes with q-value of 0.05 were deemed significant.

OncoIMPACT

OncoIMPACT (Bertrand et al., 2015) is a model-driven approach to integrate omics profiles (genomics and transcriptomics) and pro-

vides patient-specific cancer driver gene predictions. It uses a gene interaction network to associate mutations (non-synonymous

SNVs, indels and copy number alterations) with transcriptomic changes (Wu et al., 2010). We measured the transcriptomic change

of each patient as the log2 fold change of the patient gene expression value with the cancer type median gene expression value.

OncoIMPACT (v0.9.4) was run using default parameters. The top 50 predicted genes were used for the consensus gene list building.

MSIsensor

Written in C++, MSIsensor (version 0.2) is an algorithm that distinguishes microsatellite instable (MSI) tumors frommicrosatellite sta-

ble (MSS) samples based on tumor/normal sequence data (Niu et al., 2014). Homopolymer regions of 5 or more nucleotides in length

are aggregated separately in tumor/normal pairs and compared using a c2 statistic. MSI-high was calculated as an MSI score R 4.

Parameters for running MSIsensor ‘‘msi’’ command are as follows: –l (minimal homopolymer size) = 1 and –q (minimal microsatellite

size) = 1. These settings are not minimal number of repeats, but rather the minimal number of nucleotides to consider within the

repeat.
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Supplemental Figures

Figure S1. MAF Filtering and Power Comparison, Related to Figure 1

(A) Overall schema showing how we used the different algorithms and the input from the literature to identify our cancer driver gene consensus list and the driver

mutations.

(B) Fraction of samples filtered through three quality assurance filters: a mutation call filter, hypermutated samples, and samples excluded by pathology review.

Numbers above bars indicate the number of samples completely dropped. N refers to the total samples before filtering.

(C) Statistical power analysis for detection of driver genes at defined fraction of tumor samples above the background mutation rate (effect size). Circles indicate

each of 12 cancer types or all cancer types together (‘‘PANCAN’’) from the original TCGA analysis of 12 cancer types (PanCan-12) placed according to the study

sample size and median background mutation rate across samples.
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Figure S2. Consensus Gene Scores and SMG Filtering, Related to Figures 1 and 2

(A) Left, outlier detection was performed on a per analysis and method basis. Outliers were marked (red) based on the quasi-majority of three criteria: (1) low

concordance with known cancer genes from Vogelstein et al. (lower than median); (2) high divergence of p value distribution from theoretical expectation (higher

than median); and (3) abnormally high number of significant genes (> 1.5x the interquartile range above the third quartile). The first two criteria were assessed

based on the other tools within a single analysis, while the third criterion was assessed based on the same tool’s results over all the individual cancer types

(excluding the PanCancer analysis). Right, example calculation of the gene consensus score for ARID1A in the cancer type LIHC. A result from an outlier is down

weighted, receiving a weight of 0.5 instead of 1.0. The gene consensus score is the sum of weights for tools finding that gene as significant.

(B) Overlap of consensus gene list with prior TCGA marker papers.

(C) Likely false positives were detected with a high Linear Discriminant Analysis (LDA) score threshold representing 90%sensitivity for keeping associations found

in Cancer Gene Census genes. LDAwas trained to distinguish common false positives in exome sequencing from previous TCGA PanCancer marker papers. The

LDA threshold was only applied to the potential source of false positive genes.

(D) Fraction of marker paper genes highlighted in the main text that were also found in our consensus gene list.

(E) Fraction of our consensus gene list found in previous TCGA marker papers.

(F) Fraction of associations found in the Cancer Gene Census (CGC) that were either found only in the consensus gene list or TCGA marker paper.

(G) Four heatmaps indicate the relationship between algorithms used in driver gene discovery for 4 cancer typesGBM, LIHC, ovarian serous cystadenocarcinoma

(OV), UCEC (left to right). Pairwise Pearson 2-tailed correlation coefficients were calculated from driver prediction p values generated by each tool and in each

cancer type. Strength of the correlation coefficient (R) is displayed in colors ranging from yellow (strong) to blue (weak).
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Figure S3. Characteristics of Consensus Genes, Related to Figure 2

(A) Predictive power of each individual driver gene detection method (in gray) and of the weighted and weighted scores (in orange). The predictive power was

measured as prAUC, using all the genes in the Cancer Gene Census and a set that additionally excludes Cancer Genome Landscape genes used in outlier

detection. Error bars, calculated by bootstrapping, indicate one standard deviation.

(legend continued on next page)



(B) The number of consensus genes in each cancer type positively correlated with the average mutation burden. Shaded area indicates 95% bootstrapped

confidence interval.

(C) Given the variability in powered effect size (fraction ofmutated samples above backgroundwith 90%power) in this study, there is a negative but not significant

correlation with the number of consensus genes in each cancer type. COAD and rectum adenocarcinoma (READ) were excluded because analysis was per-

formed separately, but the final consensus genes were merged.

(D) Pearson correlation between the number driver genes identified and median purity was calculated and plotted.

(E) Pearson correlation between the number driver genes identified and mean purity was calculated and plotted. Summary statistics for p value and r-squared

value are reported in the top right corner of panels (D) and (E).

(F) Percent of samples containing a non-silent mutation stratified by cancer type. The red line indicates the median across cancer types (left) and average number

of non-silent mutations in consensus genes per sample (right).

(G) Pie chart showing percent of consensus genes which are found in the Cancer Gene Census with annotations for small somatic mutations (missense, splice

site, indel, and nonsense).

(H) Consensus genes showed a higher probability for loss-of-function intolerance and missense mutation constraint of germline mutations based on ExAC (Lek

et al., 2016) and were expressed (RPKM > 1) in a wider number of tissues fromGTeX (version 6) (Consortium, 2015). Given the high correlation of gene expression

in the 11 brain regions assessed from GTEx, we took the median of multiple brain tissues, as done in Lek et al. (2016).

Boxplots indicate median MSI score with 25th and 75th percentile hinges and whiskers that extend to 1.5*IQR.
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Figure S4. Molecular Properties of Cancer Driver Genes, Related to Figure 2
(A) Hierarchical clustering of the gene consensus scores for genes that were found in more than one cancer type. The correlation distance metric and average

linkagewas used. Each gene cluster was tested for enrichment in three groups of cancer types, in order: Pan-squamous (BLCA, CESC, LUSC, HNSC, and ESCA),

Pan-gynecological (UCEC, UCS, CESC, OV, and BRCA), and Pan-gastrointestinal (STAD, COADREAD, ESCA, and PAAD). Significant gene clusters are based on

a permutation test assessing the total gene consensus score (10,000 iterations) and are progressively colored gray (not significant), blue (Adjusted p < 0.05), green

(Adjusted p < 0.01), and red (Adjusted p < 0.001). P values were multiple test corrected across all genes using the Benjamini-Hochberg FDR method. Gene

clusters are shown as distinct colors in the first column of the row annotation bar. Clusters of genes were defined based on cutting the dendrogram at a depth

chosen by manual inspection.

(B) Percentage of consensus genes predicted as either oncogene (brown), tumor suppressor gene (green), or unknown (gray) by the 20/20+ algorithm, an

improved version of the 20/20 rule (Vogelstein et al., 2013). The 20/20+ algorithm uses a supervised-learning approach (random forests) and bases predictions on

the mutational patterns observed within a gene. ‘‘Likely’’ and ‘‘Possible’’ statuses were determined at a threshold of 0.05 for q-value (Benjamini-Hochberg

method) and p value, respectively. Consensus genes were designated as ‘‘Unknown’’ if they did notmeet these thresholds. N represents the number of significant

genes in each cancer type.
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Figure S5. Characteristics and Implementation of Driver Mutation Analysis, Related to Figure 3

(A–E) Eight sequence-based tools scored missense mutations to prioritize likely driver mutations over passenger mutations. (A) The absolute Spearman cor-

relation between different sequence-based tools is shown, where tools are arranged in order by hierarchical clustering using a Euclidean distance metric. Tools

that distinguish pathogenic missense mutations from neutral polymorphisms are labeled ‘‘population-based’’ (red), while tools focused on distinguishing pas-

senger somatic missense mutations from cancer drivers are colored blue. A consensus score (named (C)ombined (T)ool (A)djusted (T)otal—CTAT) for the

‘‘population-based’’ tools and ‘‘cancer-focused’’ tools was developed. (B) Receiver operator curves (ROC) compared CTAT-population and CTAT-cancer scores

to 8 sequence-based tools. We used OncoKB annotation of ‘‘Oncogenic’’ and ‘‘Likely Oncogenic’’ versus all other missense mutations in consensus genes as a

benchmark. Area under the curve (AUC) calculations are presented for each of the individual 8 sequence-based tools and two sequence-based consensus

approaches. (C) We determined the optimal score threshold based on balanced accuracy (red dashed line) for CTAT-population (left) and CTAT-cancer (right).

Missense mutation hotspots were also detected based on four structural tools that utilize three-dimensional protein structures. (D) The percentage of missense

mutations labeled as ‘‘Oncogenic’’ or ‘‘Likely Oncogenic’’ in OncoKB steadily increased with greater number of structural tools, indicating an amino acid residue

was a hotspot. (E) Fraction of unique missense mutations in this study either in or not in the OncoKB, which is stratified by the number of mutation-level ap-

proaches in agreement (Population-based, Cancer-focused, and Structural clustering). The gray line separates where mutations were found in our consensus

gene list (not found, manually rescued, or official).



n.s. n.s. *** ** *
PD−L1 PD−L2 PD−1 CD8A CD8B

0

5

10

15

lo
g2

(R
S

E
M

+
1)

CESC

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

** ** n.s. * n.s.
PD−L1 PD−L2 PD−1 CD8A CD8B

0

5

10

15

lo
g2

(R
S

E
M

+
1)

BRCA

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

n.s. ** ** * n.s.
PD−L1 PD−L2 PD−1 CD8A CD8B

0

5

10

15

lo
g2

(R
S

E
M

+
1)

LUSC

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

H
yp

er
m

ut
at

or

C
on

tr
ol

A B C

Figure S6. Relationship between Hypermutated Samples and Immune System Markers, Related to Figure 5
(A–C) RNA-Seq abundance of different immune biomarkers for MSI phenotypes defined byMSIsensor. Stars indicate significance levels from a two-sided t test to

calculate p values (* < 0.05, ** < 0.01, *** < 0.001) for BRCA (A), CESC (B) and LUSC (C).
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Figure S7. On-Label/Off-Label Calculations for Druggable Mutations in Cancer, Related to Figure 6

Missensemutations from consensus gene calling were annotated using the DEPO database. Here the proportion of samples in a cancer type (x axis) with on-label

(blue) or off-label (red) therapeutic options are provided for specific missense mutations (y axis). Briefly, on-label refers to mutation specific treatments that have

been clinically tested for a given cancer type. Off-label designations refer to potential drug therapies not heavily tested for said cancer types. Only druggable

mutations present in the largest number of tumor samples across the TCGA cohort are displayed.
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