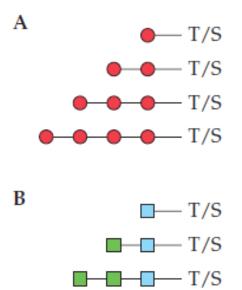
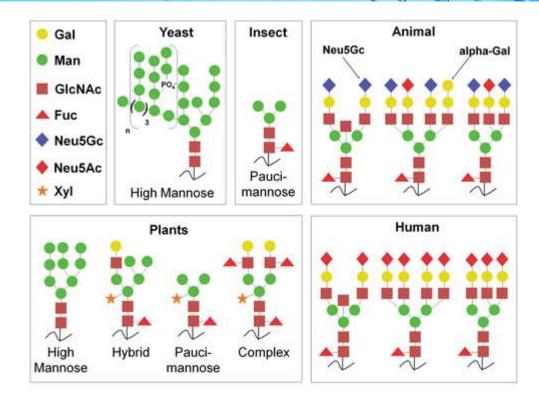
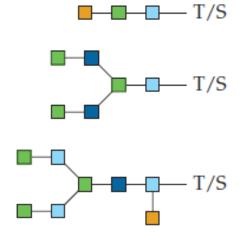


Bi9540 Biotechnology and practical use of algae and fungi

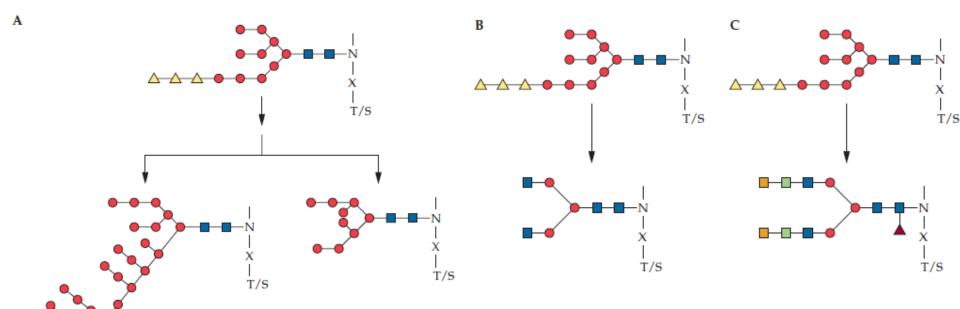

Lecture 12 – Fungal and algal platforms for recombinant expression

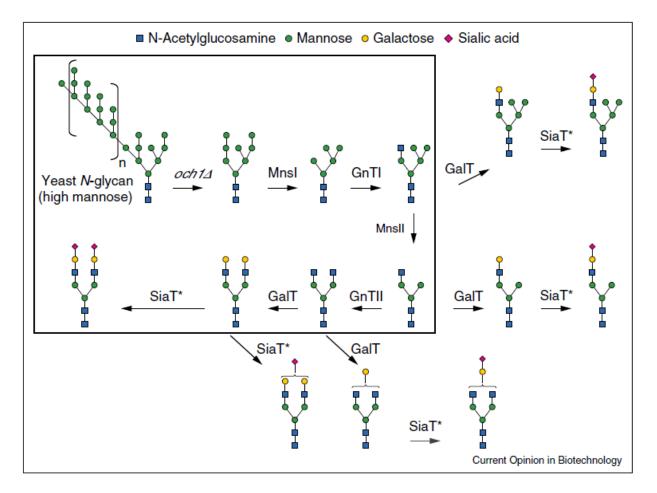



Advantages of fungal platforms

- As eukaryotes, yeasts and filamentous fungi have many of the advantages of higher-eukaryotic cells, such as posttranslational modifications.
- Yeast cell growth is faster, easier and less expensive than other eukaryotic cells, and generally gives higher expression levels.
- Three main species of yeast are used for the production of recombinant proteins – Saccharomyces cerevisiae, Pichia pastoris and Schizosaccharomyces pombe.

1						Ta				
Expression system	Classification	Development of system	Disulfide bonds	Glycosylation	Secretion	Costs of fermentation	Use of antibiotics	Safety costs	Processes developed	Products on market
Mammalian cells	higher eukaryote	completely developed	yes	yes; typically human-like	possible	high	not required	high costs	industrial scale	yes
Plant cells	higher eukaryote	completely developed	yes	yes; terminal fucose	possible; size- restrictions	moderate	not required	low costs	pilot scale	no
Sordaria macrospora	filamentous fungus	earlys stages	yes	yes; exact features yet unknown	possible	low	not required	low costs expected	lab scale	no
Aspergillus sojae	filamentous fungus	completely developed	yes	yes; exact features yet unknown	possible	low	not required	low costs	pilot scale	no
Arxula adeninivorans	dimorphic yeast	early stages	yes	yes; exact features yet unknown	possible	low	not required	low costs expected	lab scale	no
Yarrowia lipolytica	dimorphic yeast	early stages	yes	yes; exact features yet unknown	possible	low	not required	low costs expected	lab scale	no
Pichia pastoris	methylo- trophic yeast	completely developed	yes	yes; no terminal α1, 3 mannose	possible	low	not required	low costs	industrial scale	yes
Hansenula polymorpha	methylo- trophic yeast	completely developed	yes	yes; no terminal α1, 3 mannose	possible	low	not required	low costs	industrial scale	yes
Staphylococcus carnosus	gram-positive bacterium	completely developed	limited	no	possible	low	typically required	low costs	pilot scale	no
Pseudomonas fluorescens	gram-negative bacterium	completely developed	(yes); in the periplasm	no	periplasmic secretion	promoter-de- pendent low to moderate	not required	low costs	pilot scale	no
Escherichia coli	gram-negative bacterium	completely developed	(yes); in the periplasm	no	periplasmic secretion	promoter-de- pendent low to moderate	typically required	low costs	industrial scale	yes



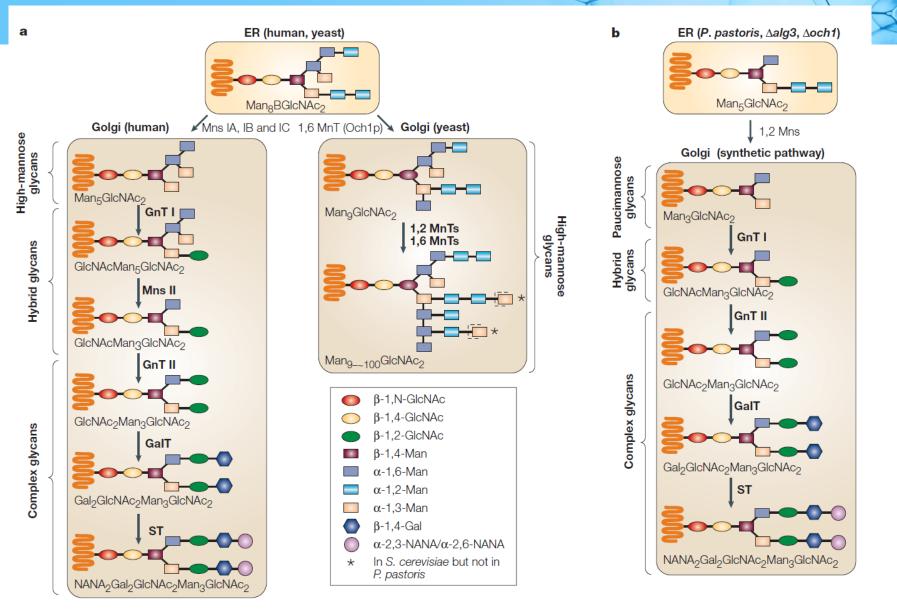
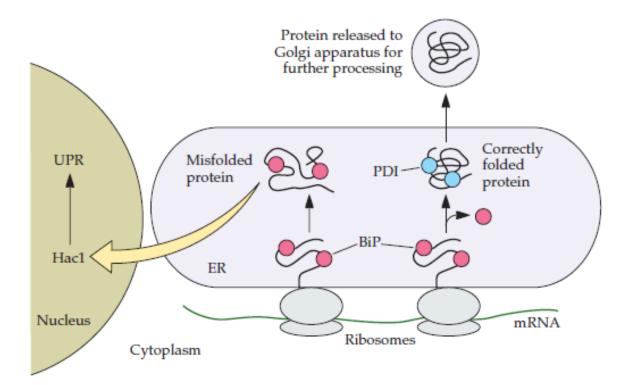
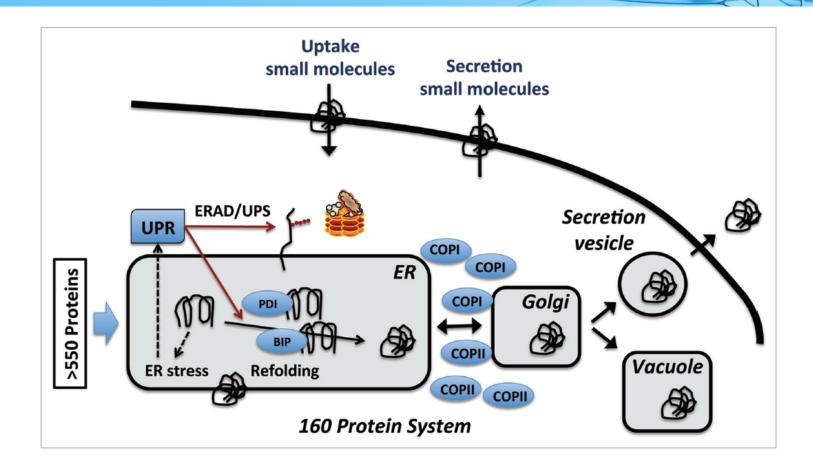

-T/S

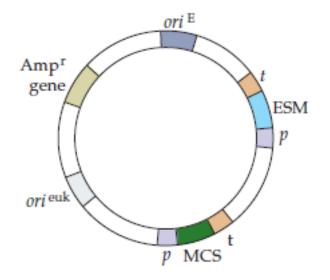
С

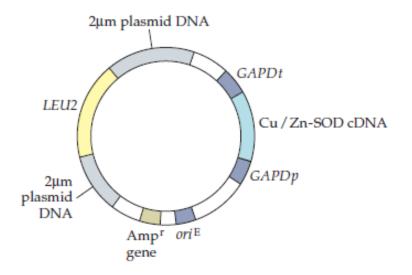
FIGURE 7.2 Examples of some O-linked oligosaccharides in yeasts (A), insects (B), and mammals (C). O-linked oligosaccharides have a number of arrangements with different combinations of sugars. Some of the more prevalent forms are shown here. S, serine; T, threonine; red circles, mannose; darkblue squares, *N*-acetylglucosamine; light-blue squares, *N*-acetylgalactosamine; green squares, galactose; orange squares, sialic acid.

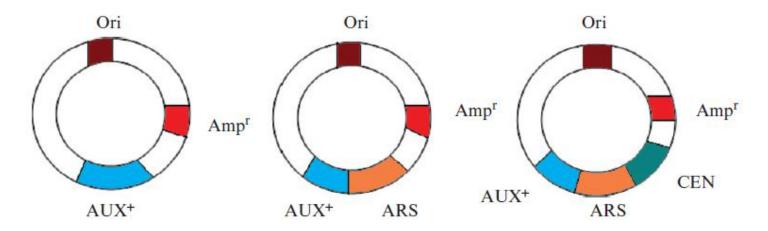
FIGURE 7.3 Examples of some N-linked oligosaccharides in yeasts (**A**), insects (**B**), and mammals (**C**). All N-linked glycosylations in eukaryotes start with the same initial group, which is subsequently trimmed and then elaborated in diverse ways within and among species. Some yeast sites have 15 or fewer mannose units (core series), and others have more (outer-chain family). In *S. cerevisiae*, the chains frequently have 50 or more mannose units. An asparagine (N) residue next to any amino acid (X) followed by either threonine (T) or serine (S) can be targeted for glycosylation. Red circles, mannose; dark blue squares, *N*-acetylglucosamine; yellow triangles, glucose; green squares, galactose; orange squares, sialic acid; maroon triangle, fucose.

Yeast *N*-glycan engineering. The *N*-glycosylation pathway of glycoengineered *Pichia pastoris* was previously reviewed [34]. Glycoproteins harboring predetermined glycoforms [78] are obtained depending on the glycoengineered yeast host used, each of which contains a unique set of gene deletions and glycosylation enzymes, as indicated by arrows. The main glycosylation pathway to obtain mammalian biantennary glycans is shown in the upper left rectangle. As indicated by (*), sialic acid linkages may be exclusively α -2,6 or α -2,3 depending on the chosen sialyltransferase. Other yeast modifications (e.g. beta-linked mannose, mannosylphosphate) are not depicted in the figure.


Figure 1 | Major N-glycosylation pathways in humans and yeast. a | Representative pathway of N-glycosylation pathways in humans (left) provides a template for humanizing N-glycosylation pathways in yeast (right). b | Early oligosaccharide assembly mutants can be used to recreate synthetic glycosylation pathways that lead to complex N-glycosylation in yeast (see main text). ER, endoplasmic reticulum; GaIT, galactosyltransferase; GlcNAc, N-acetylglucosamine; GnT I, N-acetylglucosaminyl transferase I; GnT II, N-acetylglucosaminyl transferase II, Man, mannose; Mns II, mannosidase II; MnTs, mannosyltransferase; NANA, N-acetylneuraminic acid; ST, sialyltransferase.


FIGURE 7.8 Summary of protein folding in the endoplasmic reticulum of yeast cells. During synthesis on ribosomes associated with the endoplasmic reticulum (ER), nascent proteins are bound by the chaperones BiP and calnexin, which aid in the correct folding of the protein. Protein disulfide isomerases (PDI) catalyze the formation of disulfide bonds between cysteine amino acids that are nearby in the folded protein. Quality control systems ensure that only correctly folded proteins are released from the ER. Proteins released from the ER are transported to the Golgi apparatus for further processing. Prolonged binding of BiP to misfolded proteins leads to activation of the *S. cerevisiae* transcription factor Hac1, which controls the expression of several proteins that mediate the unfolded-protein response (UPR). Adapted from Gasser et al., *Microb. Cell Fact.* 7:11–29, 2008.


Figure 1. Schematic overview of the secretory pathway in yeast. Proteins targeted for secretion enter the endoplasmic reticulum (ER). If they fold correctly they can enter the secretory pathway, whereas misfolded protein cause ER stress leading to the activation of the unfolded protein response (UPR) that results in activation of a very large number of cellular processes, including activation of chaperones and foldases (like BIP and PDI) that assist with refolding. UPR is also upregulating ER-associated degradation (ERAD) where the unfolded proteins are exported from the ER, ubiquitinated and hereby targeted for degradation by the proteasome (ubiquitin-proteasome system, UPS). Correctly folded proteins can be exported to the Golgi for further processing (including additional glycosylation). The COPI- and COPII-complexes facilitate the ER-Golgi transfer, and from the Golgi the protein may be secreted via the endosome or be targeted to the vacuole for storage and/or degradation. Different colors represent different types of vesicular compartments of the secretory pathway.

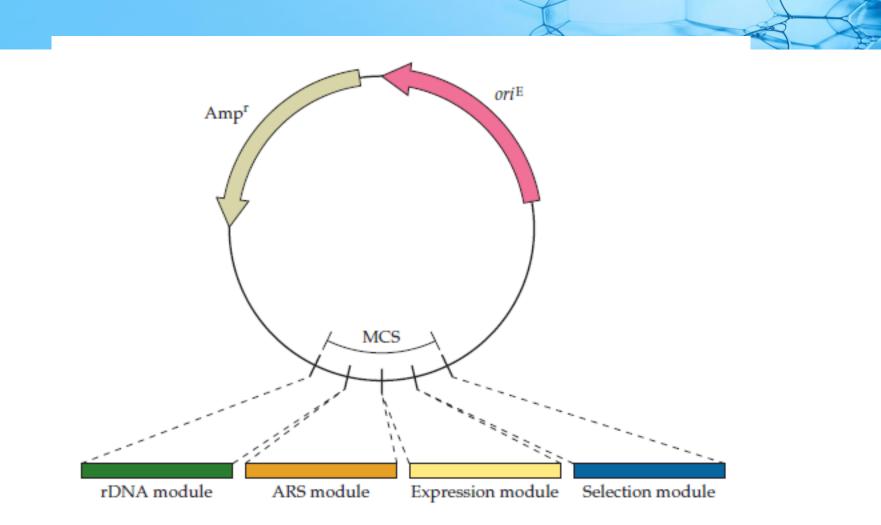
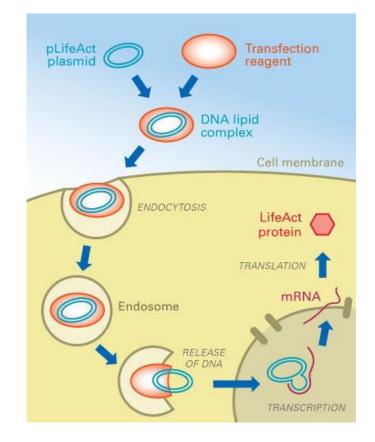

FIGURE 7.4 Generalized eukaryotic expression vector. The major features of a eukaryotic expression vector are a eukaryotic transcription unit with a promoter (p), a multiple cloning site (MCS) for a gene of interest, and a DNA segment with termination and polyadenylation signals (t); a eukaryotic selectable marker (ESM) gene system; an origin of replication that functions in the eukaryotic cell (ori^{euk}); an origin of replication that functions in $E. \ coli \ (ori^{E})$; and an $E. \ coli$ selectable marker (Amp^r) gene.

FIGURE 7.7 *S. cerevisiae* expression vector. The cDNA for human Cu/Zn-SOD was cloned between the promoter (*GAPDp*) and termination–polyadenylation sequence (*GAPDt*) of the *S. cerevisiae* glyceraldehyde phosphate dehydrogenase gene. The *LEU2* gene that was cloned between segments of the yeast 2µm plasmid DNA encodes a functional enzyme of the leucine biosynthesis pathway. The yeast origin of replication is included in the 2µm plasmid DNA. The ampicillin resistance (Amp^r) gene and the *E. coli* origin of replication (*ori*^E) are derived from plasmid pBR322.


Fig. 16.1 Yeast transforming vectors. Ori: origin of replication; Amp^r: ampicillin resistant gene; AUX⁺: wild type allele of yeast auxotrophic marker; ARS: autonomous replication sequence; CEN: centromere sequences from yeast

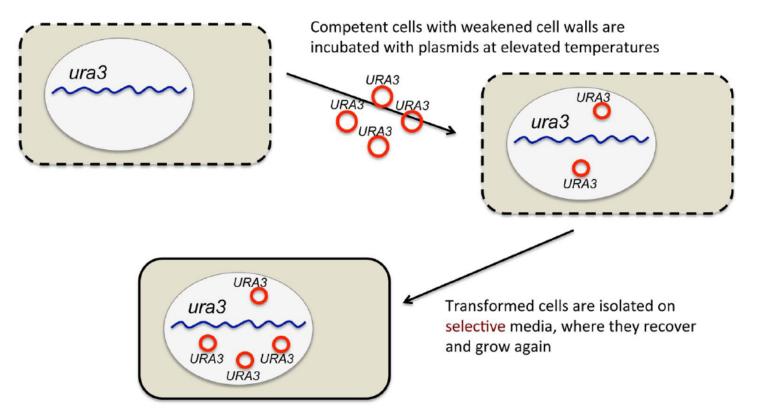


FIGURE 7.13 A wide-range yeast vector system for expression of heterologous genes in several different yeast hosts. The basic vector contains a multiple cloning site (MCS) for insertion of selected modules containing appropriate sequences for chromosomal integration (rDNA module), replication (ARS module), selection (Selection module), and expression (Expression module) of a target gene in a variety of yeast host cells (Table 7.3 shows examples of interchangeable modules). Sequences for maintenance (*ori*^E) and selection (Amp^r) of the vector in *E. coli* are also included.

Methods of DNA transfer

- Chemical transformation of intact cells and spheroplasts
- Electroporation
- Micromanipulation
- Biolistic method
- Glass beads method
- Magnetic beads method
- Liposome transformation
- Agrobacterium-based method

Transformation and plasmid complementation

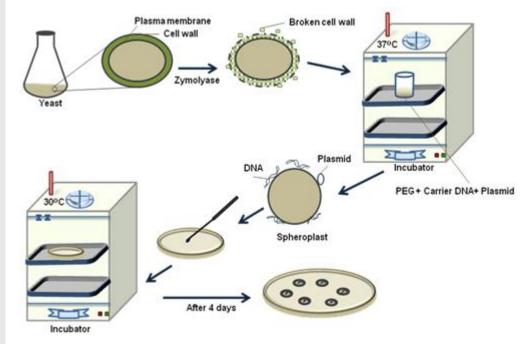

Competent *ura3* yeast cells are transformed incubating cells with a plasmid containing the yeast *URA3* gene at an elevated promoter (top). Transformed cells are selected on media that does not contail uracil (bottom).

 Table 1. Protocol for the spheroplast method developed by Burgers and Percival⁷

Centrifuge cells and spheroplasts at 400–600 g and 200–300 g, respectively.

- Grow the cells overnight with vigorous aeration in 50 ml of YPD (1% yeast extract, 2% bactopeptone, and 2% dextrose) to a concentration of about 3 x 10⁷ cells/ml and harvest.
- 2. Wash the cells successively with 20 ml of sterile water and 20 ml of 1 M sorbitol by resuspension, followed by 5-min spins. Resuspend them in 20 ml of SCEM [1 M sorbitol, 0.1 M sodium citrate (pH 5.8), 10 mM EDTA and 30 mM 2-mercaptoethanol], add 1,000 U of lyticase, and incubate at 30°C with occasional inversion.
- 3. After spheroplasting, measure the decrease in the OD₈₀₀ of a 10-fold dilution of spheroplasts in water. Harvest the spheroplasts for 3–4 min when the spheroplasting proceeds to 90% (~15–20 min).
- 4. Gently resuspend the spheroplasts in 20 ml of 1 M sorbitol by using a 1-ml pipette and pellet for 3–4 min. Then, gently resuspend them in 20 ml of STC [1 M sorbitol, 10 mM Tris-HCl (pH 7.5) and 10 mM CaCl₂] and pellet again for 3–4 min. Resuspend this pellet in 2 ml of STC.
- 5. Mix aliquots (100 μ l) with plasmid DNA and carrier DNA (calf thymus or *E. coli*) added to a total of 5 μ g of DNA in <10 μ l.
- 6. After 10 min at room temperature, add 1 ml of PEG [10 mM Tris-HCI (pH 7.5), 10 mM CaCl₂ and 20% PEG 8000; filter-sterilized], gently resuspend the spheroplasts, and harvest them for 4 min after another 10 min.
- 7. Resuspend the pellet in 150 μ l of SOS (1 M sorbitol, 6.5 mM CaCl₂, 0.25% yeast extract and 0.5% bactopeptone; filter-sterilized) and leave at 30°C for 20–40 min. Dilutions of the spheroplasts are made in the same medium.
- 8. Add 8 ml of TOP [1 M sorbitol and 2.5% agar in selective SD medium (0.67% yeast nitrogen base and 2% glucose)] kept at 45–46°C. Invert the tube quickly several times to mix and plate the suspension immediately on selective SORB plates (SD plates containing 0.9 M sorbitol and 3% glucose).

Spheroplast transformation

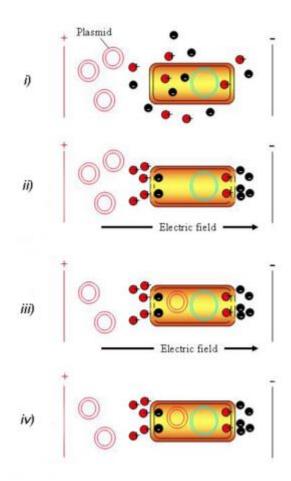
Lithium acetate transformation

Table 2. Original protocol for the lithium method developed by Ito et al.²

- Grow the yeast cells aerobically on 100 ml of YPD medium at 30°C with reciprocation. At the mid-log phase, harvest the cells by centrifugation, wash once with TE [10 mM Tris-HCI (pH 8.0) and 1.0 mM EDTA] and suspend in TE to a final concentration of 2 x 10⁸ cells/ml.
- To a 0.5-ml portion of this cell suspension, add an equal volume of 0.2 M metal ions (LiAc). After 1 h at 30°C with shaking (140 rpm; stroke, 7.0 cm), incubate 0.1 ml of the cell suspension statically with 15 μl of a plasmid DNA solution (670 μg/ml) at 30°C for 30 min.
- 3. Add an equal volume of 70% PEG 4000 dissolved in water and sterilized at 120°C for 15 min and mix thoroughly on a vortex mixer. After standing for 1 h at 30°C, incubate the suspension at 42°C for 5 min.
- 4. Immediately cool the cells to room temperature, wash twice with water, and suspend in 1.0 ml of water.
- 5. For selecting the yeast transformants, directly spread 0.1 ml of the cell suspension on selective solid medium.

Table 3. Protocol for the LiAc/single-stranded carrier DNA/PEG method developed by Gietz and Woods¹¹

- Inoculate the yeast strain into 5 ml of liquid medium (2x YPAD or synthetic complete [SC] selection medium) and incubate overnight at 30°C. Place a bottle of double-strength YPAD broth (2x YPAD) and 250 ml culture flask in the incubator as well.
- 2. Determine the titer of the yeast culture by measuring the OD₆₀₀ of a solution of 10 μ l of the cells added to 1.0 ml of water in a spectro-photometer cuvette. For many yeast strains, a suspension containing 1 x 10⁶ cells/ml will give an OD₆₀₀ of 0.1.
- 3. Transfer 50 ml of the pre-warmed 2x YPAD to the pre-warmed culture flask and add 2.5 x 10⁸ cells to give a density of 5 x 10⁶ cells/ml. Incubate the flask on a rotary or reciprocating shaker at 30°C and 200 rpm. (Note: It is important to allow the cells to complete at least 2 divisions. Transformation efficiency remains constant for 3 to 4 cell divisions).
- 4. When the cell titer is at least 2 x 10⁷ cells/ml, which should take about 4 h, harvest the cells by centrifugation, wash the cells in 25 ml of sterile water, and wash again in 1 ml of sterile water.
- 5. Add water to a final volume of 1.0 ml and vigorous vortex-mixing to resuspend the cells. Pipette 100 μl samples (~10⁸ cells) into 1.5-ml microcentrifuge tubes, one for each transformation, centrifuge at top speed for 30 s, and discard the supernatant.
- Add 360 μl of transformation mix, consisting of 240 μl PEG 3350 [50% (w/v)], 36 μl LiAc (1.0 M), 50 μl boiled single-stranded DNA (2.0 mg/ml), and 34 μl plasmid DNA plus water, to each transformation tube and resuspend the cells by vigorous vortex-mixing.
- 7. Incubate the tubes in a 42°C water bath for 40 min. [Note: The optimum time can vary for different yeast strains].
- 8. Microcentrifuge at top speed for 30 s and remove the transformation mix with a micropipette. Pipette 1.0 ml of sterile water into each tube, stir the pellet with a micropipette tip, and vortex.
- 9. Plate appropriate dilutions of the cell suspension onto SC selection medium.


Table 5. Effects of LiAc, heat shock and PEG on the transformation of intact cells and spheroplasts

	Intact cells	Spheroplasts
LiAc	Enhances the transformation efficiency and frequency (although not indispensable). ^{2,38}	No effect on the transformation frequency. ³⁸
	Increases the permeability of intact cells. ³⁷	
Heat shock	Enhances the transformation efficiency (although not indispensable). ^{2,15}	No effect on the transformation efficiency. ⁷⁴
	Increases the permeability of intact cells. ³⁷	
PEG	Indispensable for transformation efficiency. ^{2,15}	Not indispensable for transformation frequency but enhances the frequency. ³⁸
	Pre-incubation enhances the transformation efficiency and frequency. ³⁶	
	Increases the permeability of intact cells. ³⁷	
	Indispensable for DNA attachment. ³⁸	Indispensable for DNA attachment. ³⁸

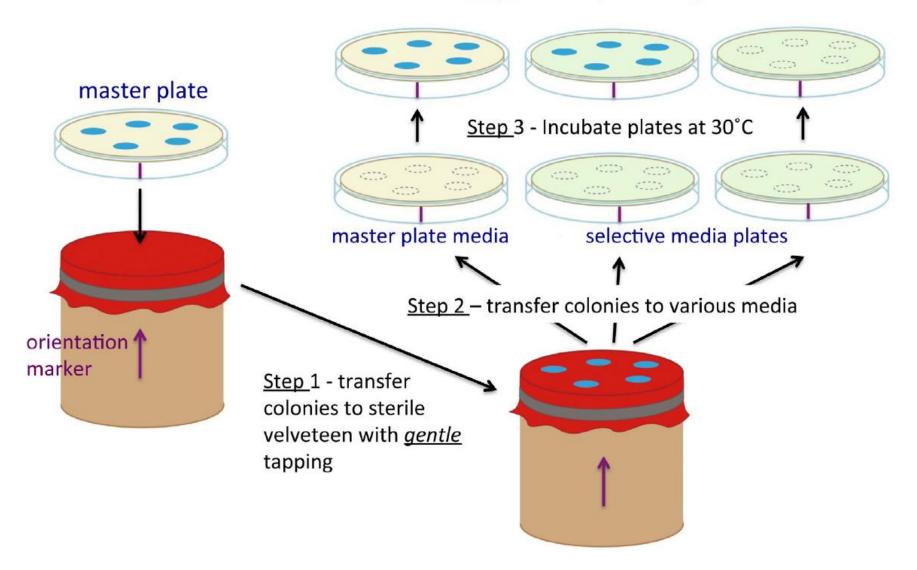
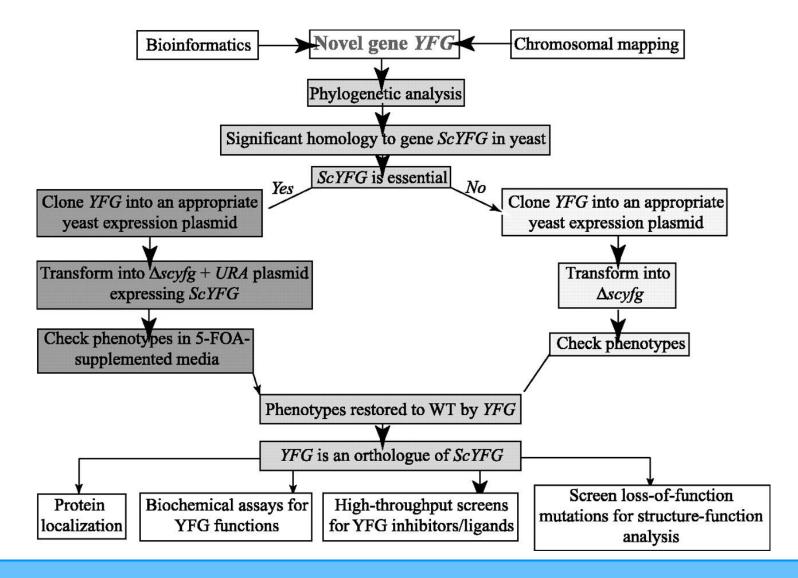
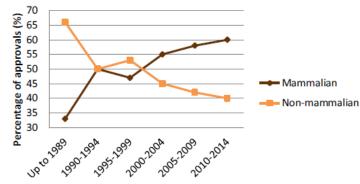
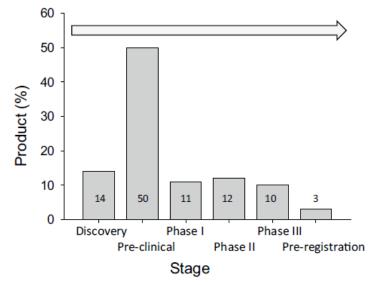


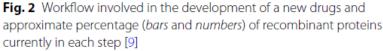
 Table 4. Protocol for electroporation of frozen competent cells developed by Suga and Hatakeyama¹⁸

- Grow S. pombe cells in SD medium supplemented with appropriate nutrients to a density of approximately 1 x 10⁷ cells/ml at 30°C. Grow S. cerevisiae cells in YPD medium to a density of approximately 1 x 10⁷ cells/ml at 30°C.
- Place the cultures on ice for 15 min just before harvesting. Collect the cells by centrifugation and wash the resulting pellet thrice with ice-cold sterilized water. Suspend this pellet in ice-cold freezing buffer containing 0.6–2.5 M sorbitol, 5–10 mM CaCl₂ and 10 mM 2-(4-[2-hydroxyethyl]-1-piperazinyl)ethanesulphonic acid (HEPES; pH 7.5) to give a density of approximately 5 x 10⁸ cells/ml.
- 3. Dispense aliquots (0.1 ml) of the cell suspension in 1.5-ml microcentrifuge tubes, slowly freeze them, and store by placing them directly in a -80°C freezer (cooling rate = ~10°C/min).
- 4. For each electroporation, quickly thaw the frozen competent cells in a water bath at 30°C (warming rate = \sim 200°C/min) and wash once with 1 ml of ice-cold 1.0 M sorbitol by centrifugation. Resuspend the final pellet in 1.0 M sorbitol to give a density of 1–2 x 10° cells/ml.
- 5. Mix the cell suspension with 0.5–10.0 ng of purified plasmid DNA and then transfer to a chilled cuvette with a 0.2-cm electrode gap. Apply a high electric pulse to the cell suspension, by using the Bio-Rad Gene Pulser II with Pulse Controller Plus.
- Immediately dilute the electroporated cells in 1 ml of ice-cold 1.0 M sorbitol and spread an aliquot (0.1–0.2 ml) on minimal selection plates. For S. cerevisiae, the minimal selection plates contain 1.0 M sorbitol as an osmotic stabilizer.
- 7. The transformant colonies appear within 4-6 days at 30°C.


Electroporation


Step 4 – Score plates for growth


Strategies for heterologous expression in yeast



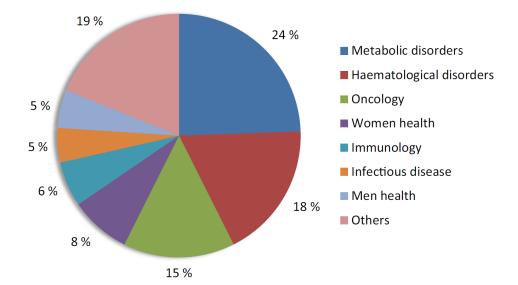

Therapeutic proteins

Fig. 1 Number of recombinant protein products approved for use as drugs in humans, depending on the type of production platform

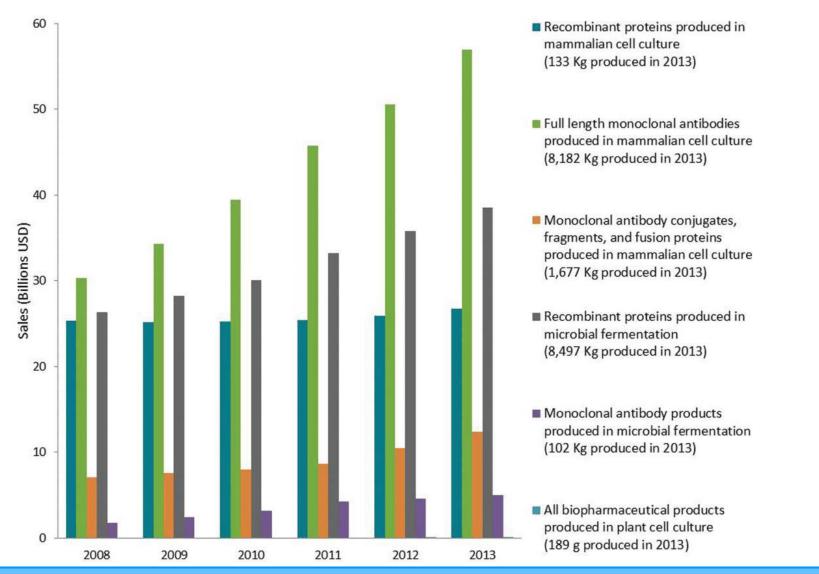
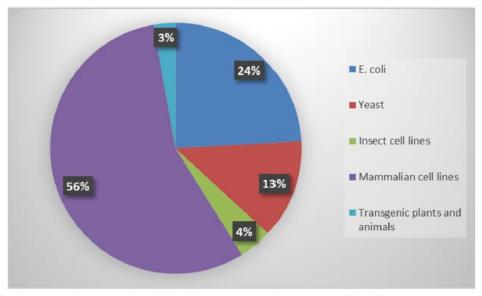
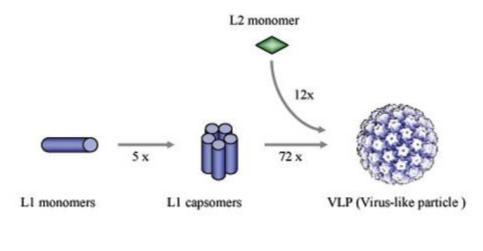


Fig. 3 Amount of marketed recombinant proteins (expressed in percentages) applied to each therapeutic area. Coloured in pink, other therapeutic areas (<5 % each) include diseases related to cardiology, central nervous system, ophthalmology and dermatology among others

Biopharmaceuticals production




Figure 1 Percentage of biopharmaceuticals produced in different expression systems [5-13].

Source	E. coli	E. coli	S. cerevisiae	P. pastoris
Destination of product	Cytoplasm	Secreted	Secreted	Secreted
Biomass cell dry weight (g/l)	80, in bioreactor with fed-batch culture	1.2, in shake flask with batch culture	5, in shake flask with batch culture	59, in bioreactor with fed-batch culture
Typical spec. growth rate (1/h)	0.08-0.12	not specified	< 0.33	< 0.03
Typical spec. production rate (mg/gh)	14.2	3.4	0.21	0.375
Product concentration (g/L)	4.34	0.009	0.075	3.075
Productivity (mg/l h)	1,085	4.01	1.04	17
Reference	[71]	[72]	[19]	[73]

Table '	1	Comparison	of	human	insulin	production	systems [70]
---------	---	------------	----	-------	---------	------------	--------------

HPV vaccine

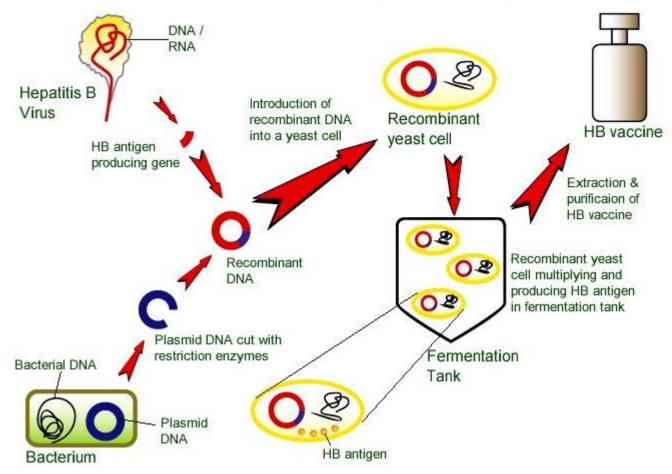

- Virus-like particles
- Cervarix , Silgard, Gardasil, ...
- Available in CZE since 2006

Table I Comparisons between Cervarix and Gardasil

Category	Cervarix	Gardasil
HPV types Included	HPV 16 and 18	HPV 16, 18, 6, 11
Production system	Insect cells infected with recombinant baculovirus	Yeast
Adjuvant	ASO4 (aluminium salt + MPL (3-O-desacyl- 4'-monophosphoryl lipid A))	Alum
Diseases covered	Anogenital cancers, including cervical, vulval, vaginal, and anal cancers and their associated precursor lesions (and a subset of head and neck cancers)	Anogenital cancers, including cervical, vulval, vaginal, and anal cancers and their associated precursor lesions (and a subset of head and neck cancers) Genital warts and laryngeal papillomas
Available data regard- ing Length of protec- tion	5.5 years	At least 5 years
Dose	0.5 mL dose containing 20 μg HPV 16 L1 and 20 μg HPV18 L1	0.5 mL dose contain- ing 20 μg HPV6 L1, 40 μg HPV 11 L1, 40 μg HPV16 L1 and 20 μg HPV18 L1
Recommended admin- istration Route and regimen	Three intramuscular injections at 0, 1, and 6 months	Three intramuscular injections at 0, 2, and 6 months
Recommended age group for vaccination	10–25	9–26
Price (US\$)	Approx. \$100 per dose	Approx. \$120 per dose

Production of Recombinant HB Vaccine

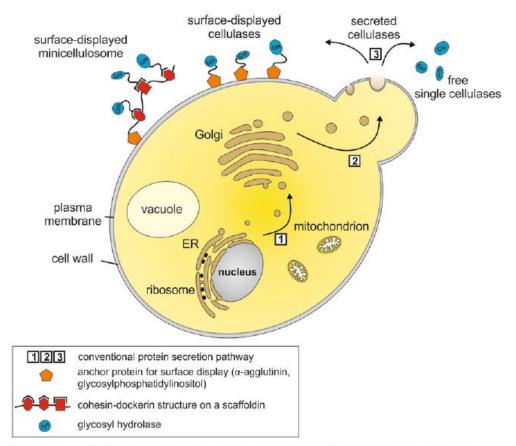


Figure 2 Illustration of a single yeast cell showing the main cell compartments involved in recombinant protein expression. Arrows indicate the secretory pathway, whereby cellulases are expressed on the ER (1) and transferred via the Golgi apparatus (2) to the medium (3) in secretory vesicles. Cellulases are either free in solution or surface-displayed via an anchor protein (such as α -agglutinin) as single cellulases or as mini-cellulosomes. ER: endoplasmic reticulum; GH: glycosyl hydrolase.

Saccharomyces cerevisiae

Favorable public acceptance

GRAS status

The most well studied of simple eukaryotes

Amenable to both classical genetics and modern recombinant DNA techniques

Versatile vector systems (episomal, integrative, copy-number regulated) are available (Invitrogen)

A wide range of mutant strains

Well-established fermentation and downstream processing

Hypermannosylation with immunogenic terminal α -1,3-linked mannose residues

Genome sequencing: Reference strain S288C; 12 157 Kb (6273 ORFs); Accession number PRJNA128

Vector	Yeast sequences	Copy number/ cell	Transformation frequency/μg DNA	Stability	Advantages	Disadvantages	Reference
Yip	Homologous DNA	≥ 1	101-102	Less than 1%	 Provide most stable maintenance of cloned genes Integrated YIp behave as genetic marker Used to introduce inversions, deletions & transpositions 	Transformation frequency low	Hinnen et al., 1978
Yep (2µ based)	ORUI, STB, REP1, REP2, FLP	50–200	104	1%	 High copy no. plasmid High transformation frequency Readily recovered from yeast cells Useful for complementation studies 	 Novel recom- binants can gen- erate in vivo by recombination with endogene- ous 2µm plas- mids 	Futcher and Cox, 1984
YCp	ARS/CEN	1–2	$10^{2}-10^{4}$	Less than	• High transformation frequency	• Low copy no.	Clarke and
				1%	 Useful for complementation studies Show Mendelian segregation at meiosis Low copy no is useful if product of gene is deleterious to cells 	• Recovery of vec- tor is more diffi- cult than YEp & YRp plasmids	Carbon, 1980
YRp	ARS	1–20	$10^{3}-10^{4}$	20%	High copy no.Readily recovered from yeast	• Transformants are unstable	Murray, 1987
Ty/Y Ip	Ty & DNA	Depends on the vectors used to introduce Tv into the	≤ 20	Stable	• Amplification following chromo- somal integration	• Needs to be intro- duced into cell in another vector	Sakai et al., 1991; Shuster et al., 1990
YAC	TEL, ARS, CEN			Stability depends upon length longer the YAC is more stable it is	• Very long DNA molecules > 40 Kb can be cloned	• Difficult to map by standard techniques	Sambrook and Russell, 2001

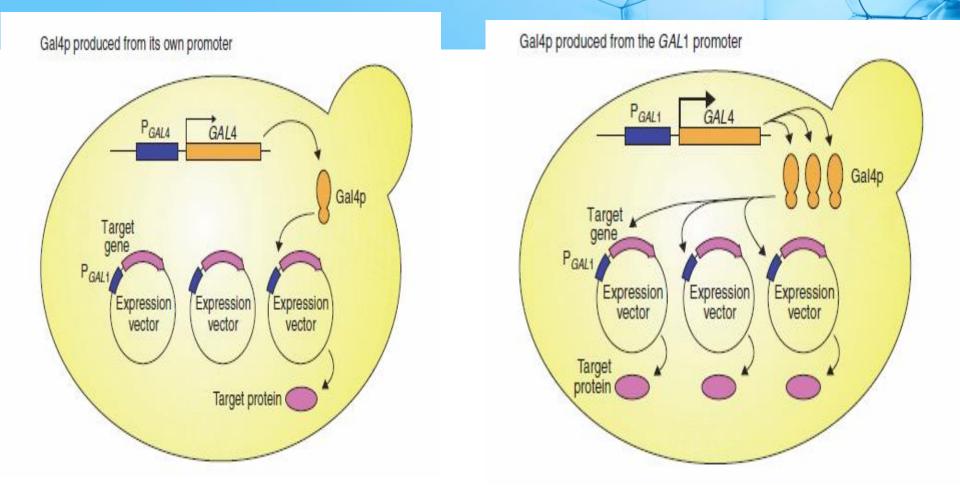
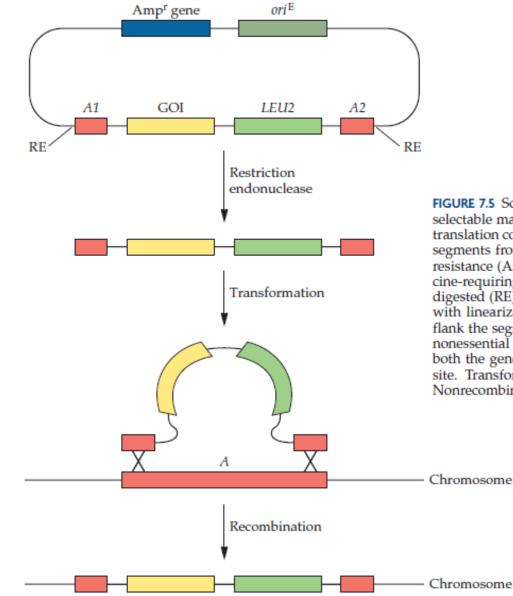

Table 16.2 Some commonly used S. cerevisiae vectors and their important features

TABLE 7.2 Promoters for S. cerevisiae expression vectors

Promoter	Expression conditions	Status
Acid phosphatase (PH05)	Phosphate-deficient medium	Inducible medium
Alcohol dehydrogenase I (ADHI)	2–5% Glucose	Constitutive
Alcohol dehydrogenase II (ADHII)	0.1-0.2% Glucose	Inducible
Cytochrome c_1 (CYC1)	Glucose	Repressible
Gal-1-P Glc-1-P uridyltransferase	Galactose	Inducible
Galactokinase (GAL1)	Galactose	Inducible
Glyceraldehyde-3-phosphate dehydrogenase (GAPD, GAPDH)	2–5% Glucose	Constitutive
Metallothionein (CUP1)	0.03-0.1 mM Copper	Inducible
Phosphoglycerate kinase (PGK)	2–5% Glucose	Constitutive
Triosephosphate isomerase (TPI)	2–5% Glucose	Constitutive
UDP-galactose epimerase (GAL10)	Galactose	Inducible


 Table 16.3 Promoter systems used for expression of heterologous proteins in S. cerevisiae

Promoter	Gene	Protein encoded	Regulation	Strength	References
Constitutive	ADH1	Alcohol dehydrogenase1		+++	Hitzeman et al., 1981; Bennetzen and Hall, 1982
	PYK1	Pyruvate kinase	20-fold induced by glucose	+++	Burke et al., 1983
	PGK1	Phosphoglycerate kinase		++++	Tuite et al., 1982; Dobson et al., 1982
	ENO	Enolase	10-fold induced by glucose		Holland et al., 1981
Regulated	ADH2	Alcohol dehydrogenase 2	1000 fold-induced by galactose	++	Johnston and Davis, 1984
	GAL1.10.7	Galactose metabolic enzymes	100-fold repressed by glucose	+++	
	GALS	Galactokinase variant	-	+++	Mumberg et al., 1995
	MET25	O-acetyl homoserine sulphydrylase	200-fold repressed by phosphate	+	
	CUP1	Copper metallothionein	20- fold induced by Cu ²⁺	+	Karin et al., 1984
	PHO5	Acid phosphatase	100 to 200-fold induction with inorganic phosphate	++	Meyhack et al., 1982; Kramer et al., 1984
	tetO-CYC1	Tetracycline promoter	1000-fold induction with tetracycline	+++	Gari et al., 1997
Heterologous	CaMV	Cauliflower mosaic virus 35S promoter	RAS/cAMP pathway		Ruth et al., 1992
	ARE	Androgen response element	Dihydrotestosterone/testosterone		Eldridge et al., 2007

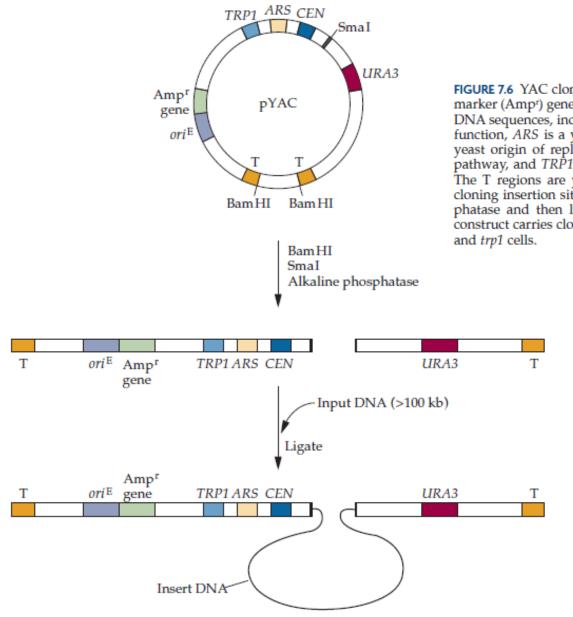


Figure: Galactose inducible gene expression in yeast. The expression of genes from multicopy vectors under the control of the GAL1 promoter (PGAL1*) can be increased* substantially if the gene encoding the transcriptional activator of GAL1, GAL4, is also placed under the control of PGAL1. In this case, induction by galactose will produce more Gal4p and consequently more of the target protein.

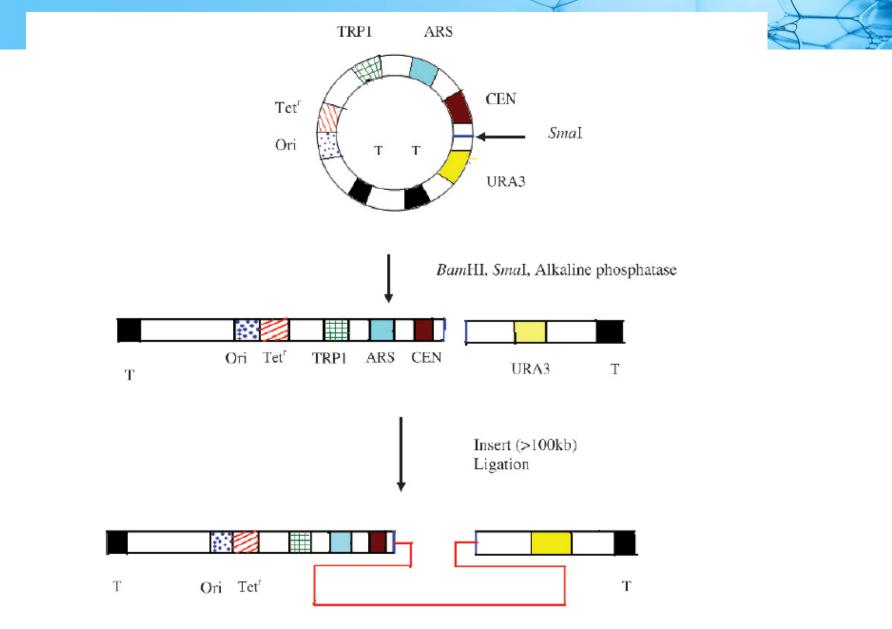

Table 16.1 Selectable n	narkers used in S. cer	revisiae transformation	
	Marker type:		
	dominant (D)/		
Markers	Auxotrophic(A)	Comments	References
URA3	А	(a) Selection possible	
		in casamino acid	
		(CAA)	Deales at al. 1090
		(b) Counter selection with 5- fluoro-ortic	Boeke et al., 1989
		acid (5-FOA)	
		(c) URA3-d for high	Loison et al., 1989
		copy no. selection	
LYS2	А	(a) Counter selection	Barnes and
		using α -amino	Thorner, 1986;
		adipate	Chattoo et al., 1979; Fleig et al.,
			1979, Fielg et al., 1986
TRP1	А	Selection in CAA	1,00
HIS3	А		
LEU2	А	LEU2-d for high copy	
		no. selection	
Cm ^r (Chloramphenicol-	D	(a) Selection using	Hadfield et al., 1986
resistance) gene		chloramphenicol in	
		glycerol medium (b) Effective only	
		using yeast	
		promoter	
Herpes simplex virus	D	(a) Thymidine/	Zealey et al., 1988
thymidine Kinase		Sulphanilamide/	
gene [HSV TK]		amethopterin selec- tion	
		(b) The level of resist-	
		ance dependent on	
		gene dosage	
S. pombe triose	D	(a) Marker used in	Kawasaki, 1986
phosphate		S. cerevisiae	
isomerase gene		tpi⁻ host	
		(b) autoselection in glucose	
Tn903 Kam ^r	D	(a) Selection using	Hadfield et al., 1990
11/05 14111	5	G418	figuriera et al., 1990
		G418	

FIGURE 7.5 Schematic representation of integration of DNA with a YIp vector. A selectable marker gene (*LEU2*) and a gene of interest (GOI) with transcription and translation control elements (not shown) are inserted into a YIp vector between two segments from the ends of a nonessential yeast gene (*A1* and *A2*). The ampicillin resistance (Amp^r) gene and the origin of replication (ori^{E}) function in *E. coli*. A leucine-requiring (*leu2*) yeast strain is transformed with restriction endonuclease-digested (RE) vector DNA because chromosomal DNA is more likely to recombine with linearized DNA than with circular DNA. The restriction endonuclease sites flank the segments from the nonessential gene. The DNA sequences at the ends of nonessential gene *A* undergo recombination (×) that leads to the incorporation of both the gene of interest and the *LEU2* gene into the corresponding chromosome site. Transformants grow on medium that is not supplemented with leucine. Nonrecombined DNA is degraded.

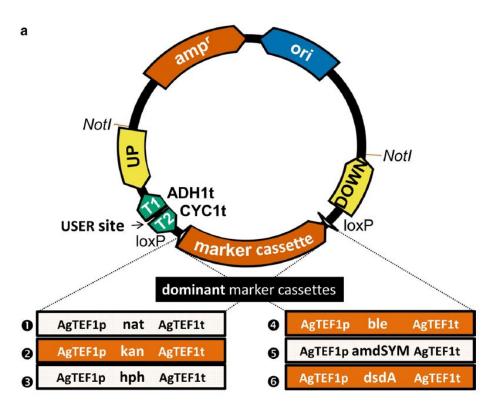


FIGURE 7.6 YAC cloning system. The YAC plasmid (pYAC) has an *E. coli* selectable marker (Amp^r) gene; an origin of replication that functions in *E. coli* (*ort*^E); and yeast DNA sequences, including *URA3*, *CEN*, *TRP1*, and *ARS*. *CEN* provides centromere function, *ARS* is a yeast autonomous replicating sequence that is equivalent to a yeast origin of replication, *URA3* is a functional gene of the uracil biosynthesis pathway, and *TRP1* is a functional gene of the tryptophan biosynthesis pathway. The T regions are yeast chromosome telomeric sequences. The SmaI site is the cloning insertion site. pYAC is first treated with SmaI, BamHI, and alkaline phosphatase and then ligated with size-fractionated (100-kb) input DNA. The final construct carries cloned DNA and can be stably maintained in double-mutant *ura3* and *trp1* cells.

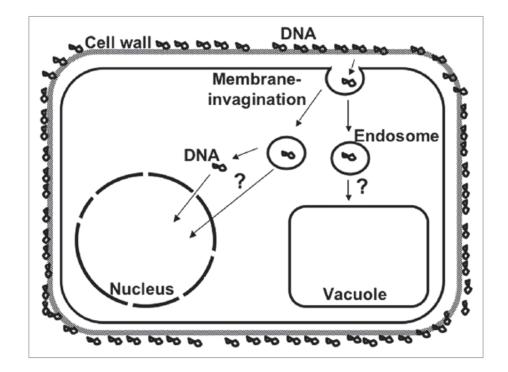


Fig. 16.2 YAC cloning system- pYAC has *E.coli* ori and selectable marker gene (Tet^r); and yeast DNA sequences TRP1, URA3, ARS and CEN. T represents telomeric sequences. URA3 is a gene in uracil biosynthesis pathway and TRP1is a gene of Tryptophan biosynthesis pathway

Fig. 1 New set of Easy-Clone2.0 vectors with dominant markers. a Schematic illustration of the vector structure and the dominant marker cassettes. b Table of the vectors presenting combinations of particular vector (integration site) with the dominant markers

m	marker integration site		2	3	4	5	6
integra			kanMX	hphMX	bleMX	amdSYM	dsdAMX
×	X-2	pCfB2193		pCfB2513			
chr X	X-3		pCfB2223				
ပ	X-4			pCfB2194			
	XI-1	pCfB2375					
×	XI-2		pCfB2224				
Chr XI	XI-3			pCfB2195			
	XI-5				pCfB2196	pCfB2399	
	XII-1	pCfB2197					pCfB2400
	XII-2		pCfB2225				
Chr XII	XII-4			pCfB2198			
	XII-5			pCfB2337			

Figure 2. Putative mechanism of *S. cerevisiae* transformation. DNA initially attaches to the cell wall. PEG is indispensable for this attachment and for successful transformation of intact cells. PEG also possibly acts on the membrane to increase the transformation frequency and efficiency as well as the permeability to YOYO-1. The attached DNA passes through the cell wall. LiAc and heat shock help DNA to pass through the cell wall. DNA then enters into the cell via endocytotic membrane invagination. Some DNA in the endosomes is delivered to the vacuoles and digested. However, the manner in which DNA escapes digestion, reaches the nucleus and enters it through the nuclear pore is still unclear.

<i>S. cerevisiae</i> medium	Components (L ⁻¹)
YPD (rich medium)	10 g bacto yeast extract 20 g bacto peptone 20 g glucose
YPG (rich medium with non-fermentable carbon source)	10 g bacto yeast extract 20 g bacto peptone 30 mL glycerol
CSM (complete synthetic medium)	 1.7 g bacto yeast nitrogen base (without amino acids) 5 g ammonium sulphate 20 g glucose 100 mL 10× amino acid solution (see Table 2)
2× CBS (Centralbureau voor Schimmelcultures medium)	 10 g ammonium sulphate 6 g potassium dihydrogen phosphate 1 g magnesium sulphate heptahydrate 20 g glucose 100 mL 1 M MES, pH 6 200 mL 10× amino acid solution (see Table 2) 2 mL vitamin solution (see Table 2) 2 mL trace element solution (see Table 2)

Table 16.4 Eukaryotic				
Recombinant protein	Commercial name	Company	Therapeutic indication	
Recombinant blood factor				
Hirudin/lepirudin	Refludan	Hoechst Marion Roussel (US)	Anticoagulant for heparin-associated thrombocytopenia	
Hirudin/desirudin	Revasac	Canyon pharmaceuticals	Prevention of venous thrombosis	
Recombinant hormone		I		
Insulin	Novolog	Novo Nordisk	Diabetes mellitus	
Insulin	Exubera	Pfizer(New York) Aventis(Kent, UK)	Diabetes mellitus	
Insulin	Apidra	Aventis (Germany)	Diabetes mellitus	
Insulin	Liprolog	Eli Lilly	Diabetes mellitus	
Somatotropin	Valtropin	Biopartners	Growth disturbances in children and adults	
Glucagon Recombinant enzyme	Glucagen	Novo Nordisk	Hyperglycemia	
r urate oxidase Recombinant Vaccine	Fasturtec	Sanofi-Synthetalco	Hyperuricemia	
Hepatitis B	Ambirix	Glaxo Smith Kline	Immunization against hepatitis A and B	
Hepatitis B	Pediarix	Glaxo Smith Kline	Immunization against hepatitis B	
Hepatitis B	HBVAXPRO	Aventis Pharma	Immunization against hepatitis A and B	
Hepatitis B	Infanrix-Penta	Glaxo Smith Kline	Immunization against diphtheria, tetanus, pertussis, polio and hepatitis B	
Hepatitis B	Procomvax	Aventis Pasteur	Immunization against <i>H. influenzae</i> type b and hepatitis B	
Hepatitis B	Primavax	Aventis Pasteur	Immunization against diphtheria, tetanus and hepatitis B	
Hepatitis B	Twinrix	Glaxo SmithKline	Immunization against	

hepatitis A & B

Table 2. Commercial biopharmaceuticals produced by yeast

System	Protein*	Brand name	Therapeutic area	Company
S. cerevisiae Hepatitis (or plus other infectious disease) vaccines (I)	Comvax	<i>H. influenzae</i> type B and hepatitis B infection in infants	Merck	
		Recombivax	Hepatitis B	
		Euvax B		Sanofi Pasteur (France)
		Engerix-B		GlaxoSmithKline (GSK)
		Fendrix		
		Ambirix	Hepatitis A and B	
		Twinrix		
		Pediarix8	Various conditions inducing hepatitis B in children	
		Tritanrix-HB	Diphtheria, tetanus, pertussis, and hepatitis B	
		Infanrix Hep B	·	
		Infanrix-Penta	Diphtheria, tetanus, pertussis, polio, and hepatitis B	
	Infanrix-Hexa	Diphtheria, tetanus, pertussis, hepatitis B, polio, and <i>H. influenzae</i> type B		
		Hexavac		Aventis Pasteur
		Procomvax	<i>H. influenzae</i> type B and hepatitis B	
		Primavax	Diphtheria, tetanus, and hepatitis B	
		HBVaxPro	Hepatitis B in children and adolescents	Aventis Pharma

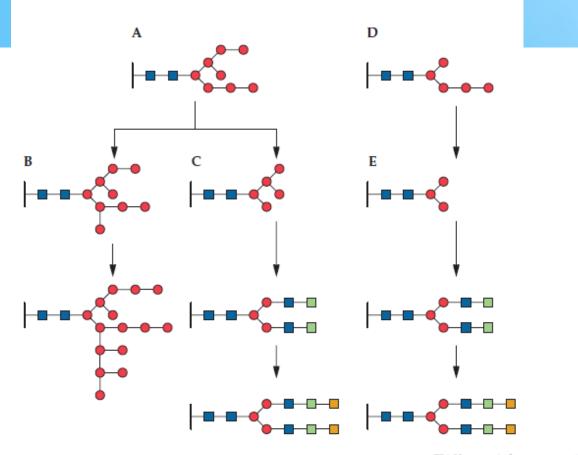
Lepirudin (S)	Refludan	Heparin-induced thrombocytopenia type II	Hoechst Marion Rousse (USA), Behringwerke AG (Germany)
Desirudin (S)	Revasc	Venous thrombosis	Canyon Pharmaceuticals (UK)
Insulin (S)	Actrapid, Velosulin, Monotard, Insulatard, Protaphane, Mixtard, Actraphane, Ultratard	Diabetes mellitus	Novo Nordisk
Insulin aspart (S)	Novolog, Novolog FlexPen, Novolog Penfill, NovoRapid, NovoRapid Penfill, Novomix 30, Novolog mix 70/30		
Insulin detemir (S)	Levemir, Levemir FlexPen		
GLP-1 (S)	Victoza	Type 2 diabetes	
Glucagon (S)	GlucaGen	Hypoglycemia	
	Glucagon		Eli Lilly
GM-CSF (S)	Leukine	Cancer, bone marrow	Berlex Laboratories
	Leucomax	transplant	Novartis
HGH (S)	Valtropin	Dwarfism, pituitary turner syndrome	Biopartners
PDGF (I)	Regranex	Lower extremity diabetic neuropathic ulcers	Ortho-McNeil Pharmaceutical (USA), Janssen-Cilag
	GEM 125	Periodontal defects	Luitpold Pharmaceuticals (USA) BioMimetic Pharmaceuticals (USA)
HPV vaccine (I)	Gardasil	Cervical cancer caused by human papillomavirus (HPV)	Merck, Sanofi Pasteur, Merck Sharp & Dohme
Rasburicase (I)	Fasturtec, Elitex	Hyperuricemia	Sanofi-Synthelabo (France), Sanofi- Aventis (France)

Pichia pastoris

GRAS status

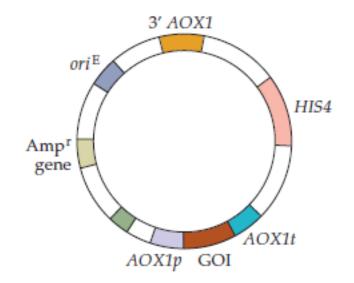
Tightly regulated, methanol-inducible AOX promoters

A Crabtree-negative yeast allowing for high dilution rates and high biomass yields in fermentation processes


Can grow rapidly on inexpensive media at high cell densities (up to 150 g DCW L^{-1})

Integrated vectors developed that help genetic stability of the recombinant elements, even in continuous and large-scale fermentation processes

Well-established commercial vector systems and host strains (Invitrogen)


A lesser extent of hypermannosylation compared to *S. cerevisiae;* No terminal α -1,3-linked mannose residues

Genome sequencing: Reference strain GS115; 9216 Kb (5040 ORFs); Accession number PRJNA39439, PRJEA37871

FIGURE 7.9 Differential processing of glycoproteins in *P. pastoris*, humans, and "humanized" *P. pastoris*. Initial additions of sugar residues to glycoproteins in the endoplasmic reticulum are similar in human and *P. pastoris* cells (**A**). However, further N glycosylation in the Golgi apparatus differs significantly between the two cell types. N-glycans are hypermannosylated in *P. pastoris* (**B**), while in humans, mannose residues are trimmed and specific sugars are added, leading to termination of the oligosaccharide in sialic acid (**C**). *P. pastoris* cells have been engineered to produce enzymes that process glycoproteins in a manner similar to that of human cells. In "humanized" *P. pastoris*, a recombinant glycoprotein produced in the endoplasmic reticulum (**D**) is transported to the Golgi apparatus, where it is further processed to yield a properly sialylated glycoprotein (**E**). Blue squares, *N*-acetylglucosamine; red circles, mannose; green squares, galactose; orange squares, sialic acid. Adapted from Hamilton and Gerngross, *Curr. Opin. Biotechnol.* **18:**387–392, 2007.

FIGURE 7.10 P. pastoris integrating expression vector. The gene of interest (GOI) is cloned between the promoter (AOX1p) and termination-polyadenylation sequence (AOX1t) of the P. pastoris alcohol oxidase 1 gene. The HIS4 gene encodes a functional histidinol dehydrogenase of the histidine biosynthesis pathway. The ampicillin resistance (Amp^r) gene and an origin of replication (ori^E) function in E. coli. The segment marked 3' AOX1 is a piece of DNA from the 3' end of the alcohol oxidase 1 gene of P. pastoris. A double recombination event between the AOX1p and 3' AOX1 regions of the vector and the homologous segments of chromosome DNA results in the insertion of the DNA carrying the gene of interest and the HIS4 gene.

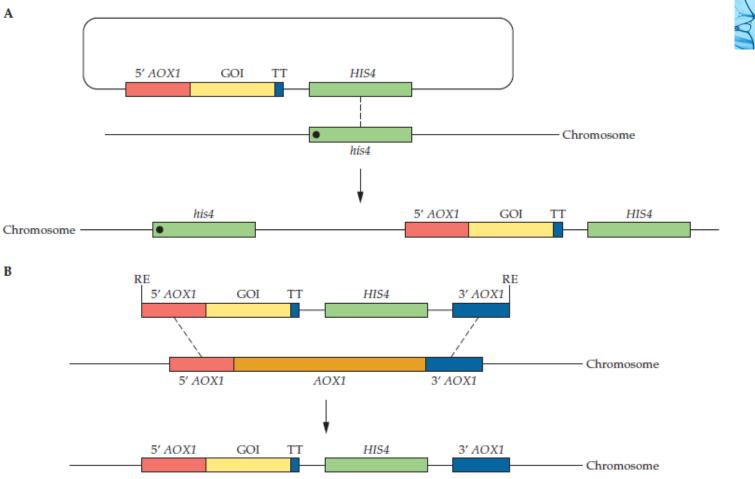


FIGURE 7.11 Integration of DNA into a specific P. pastoris chromosome site by single (A) or double (B) recombination. (A) A single recombination (dashed line) between the HIS4 gene of an intact circular plasmid and a chromosome his4 mutant gene results in the integration of the entire vector, including the gene of interest (GOI) with the AOX1 promoter in the 5' AOX1 DNA segment and the transcriptionpolyadenylation sequence from the AOX1 gene (TT), into the chromosome. The inserted DNA is flanked by recombined mutant his4 and functional HIS4 genes. The dot in the his4 gene represents the mutation. (B) A double recombination (dashed lines) between the cloned 5' AOX1 and 3' AOX1 DNA segments of a restriction endonuclease (RE) linearized DNA fragment from the vector and the corresponding chromosome regions results in the integration of the gene of interest (GOI) with the AOX1 promoter in the 5' AOX1 segment, the termination-polyadenylation sequence from the AOX1 gene (TT), and a functional HIS4 gene. The chromosome AOX1 coding region is lost as a result of the recombination event.

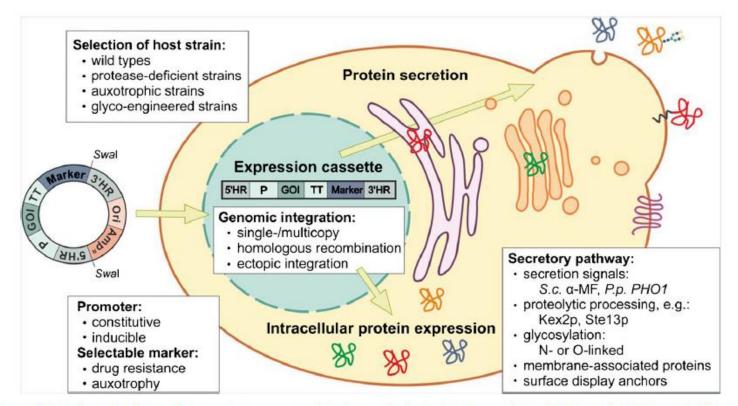


Fig. 1 General considerations for heterologous gene expression in *P. pastoris*. Expression plasmids harbouring the gene(s) of interest (*GOI*) are linearized prior to transformation. Selectable markers (e.g., Amp^{R}) and origin of replication (*Ori*) are required for plasmid propagation in *E. coli*. The expression level of the protein of interest may depend on (i) the chromosomal integration locus, which is targeted by the 5' and

3' homologous regions (5'HR and 3'HR), and (ii) on the gene copy number. A representative promoter (*P*) and transcription terminator (*TT*) pair are shown. Proper signal sequences will guide recombinant protein for intracellular or secretory expression, and will govern membrane integration or membrane anchoring

Inducible	Corresponding gene	Regulation	Reference
AOX1	Alcohol oxidase 1	Inducible with MeOH	(Tschopp et al. 1987a)
DAS	Dihydroxyacetone synthase	Inducible with MeOH	(Ellis et al. 1985; Tschopp et al. 1987a)
FLD1	Formaldehyde dehydrogenase 1	Inducible with MeOH or methylamine	(Shen et al. 1998)
ICL1	Isocitrate lyase	Repressed by glucose, induction in absence of glucose/by addition of ethanol	(Menendez et al. 2003)
PHO89	Putative Na ⁺ /phosphate symporter	Induction upon phosphate starvation	(Ahn et al. 2009)
THI11	Thiamine biosynthesis gene	Repressed by thiamin	(Stadlmayr et al. 2010)
ADH1	Alcohol dehydrogenase	Repressed on glucose and methanol, induced on glycerol and ethanol	(Cregg and Tolstorukov 2012)
ENO1	Enolase	Repressed on glucose, methanol and ethanol, induced on glycerol	(Cregg and Tolstorukov 2012)
GUT1	Glycerol kinase	Repressed on methanol, induced on glucose, glycerol and ethanol	(Cregg and Tolstorukov 2012)
Constitutive	Corresponding gene	Regulation	Reference
GAP	Glyceraldehyde-3-P dehydrogenase	Constitutive expression on glucose, to a lesser extent on glycerol and methanol	(Waterham et al. 1997)
TEF1	Translation elongation factor 1	Constitutive expression on glycerol and glucose	(Ahn et al. 2007)
PGK1	3-Phosphoglycerate kinase	Constitutive expression on glucose, to a lesser extent on glycerol and methanol	(de Almeida et al. 2005)
GCW14	Potential glycosyl phosphatidyl inositol (GPI)-anchored protein	Constitutive expression on glycerol, glucose and methanol	(Liang et al. 2013b)
G1	High affinity glucose transporter	Repressed on glycerol, induced upon glucose limitation	(Prielhofer et al. 2013)
<u>G</u> 6	Putative aldehyde dehydrogenase	Repressed on glycerol, induced upon glucose limitation	(Prielhofer et al. 2013)

 Table 1
 The most prominently used and very recently established promoters for heterologous expression in P. pastoris

Supplier	Promoter	Signal sequences	Selection in yeast	Selection in bacteria	Comments
Life Technologies [™]	AOX1, FLD1, GAP	S. cerevisiae α-MF; P. pastoris PHO1	Blasticidin, G418, Zeocin™, <i>HIS4</i>	Zeocin [™] , Ampicillin, Blasticidin	c-myc epitope, V5 epitope, C-terminal 6× His-tag available for detection/purification
Life Technologies —PichiaPink [™]	AOX1	 α-MF; set of eight different signal sequences – not ready to use^a 	ADE2	Ampicillin	Low- and high-copy vectors available, <i>TRP2</i> sequence for targeting
BioGrammatics	AOX1	α-MF	Zeocin [™] , G418, Nourseothricin	Ampicillin	Intracellular or secreted expression
BioGrammatics - GlycoSwitch®	GAP	_	Zeocin [™] , G418, Hygromycin, <i>HIS4</i> , Nourseothricin	Zeocin [™] , Ampicillin, Kanamycin, Nurseothricin	Human GlcNAc transferase I, rat Mannosidase II, human Gal transferase I
DNA2.0	AOX1	Ten different signal sequences – ready to use ^b	Zeocin [™] , G418	Zeocin [™] , Ampicillin	Intracellular or secreted

Table 2 Commercial vector systems

^a The different secretion signals have to be cloned into the vector by a three-way ligation step

^b The α-MF secretion signal is provided once with Kex2p (KR) and Ste13p cleavage sites (EAEA), once lacking EA repeats, and once as truncated version (pre-region only)

Vector	Comments	Marker	Reference
pA0815	Expression cassette is between <i>Bam</i> HI & <i>Bgl</i> II for generation of multi copy expression vector	HIS4	Thill et al., 1990
pPIC3K	MCS for foreign gene expression; G418 selection for multicopy strains	Kan ^r	Scorer et al., 1993b
pHIL-D2	NotI sites are present for AOX1 gene replacement	HIS4	Sreekrishna, 1993
PHW 010	Constitutive promoter GAP controls the expression	HIS4	Waterham et al., 1997
pP1C9K	AOX1 is fused to α-MF prepro signal sequence; NotI, SnaI1, EcoRI, XhoI, Avr II restriction sites for for- eign gene insertion	<i>HIS4</i> & Kan ^r	Scorer et al., 1993b
pGAP	GAP promoter fused to α-MF pre-pro signal sequence	ble ^r	Invitrogen (Carlsbad CA)
pPICZα	MCS for cloning, <i>AOX1</i> promoter fused to α-MF pre-pro signal sequence	ble ^r	Higgins and Cregg, 1998

 Table 16.5
 Commonly used P. pastoris expression vectors and their important features

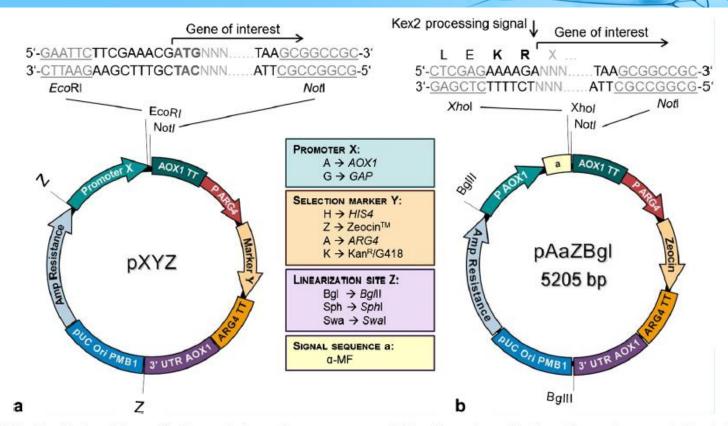


Fig. 2 Novel 'Pichia Pool' plasmid sets for intracellular and secretory expression. a General features of pXYZ vector for intracellular expression. Letters refer to the choice of promoters (X), selection markers (Y), and restriction enzymes (Z) for linearization. Available elements are shown in boxes. The vector backbone harbours an ampicillin resistance marker and origin of replication for maintenance of the plasmid in *E. coli*. The GOI is *Eco*RI–*Not*I cloned directly after the promoter of choice. The Kozak consensus sequence for yeast (i.e., CGAAACG), should be restored between the *Eco*RI cloning site and the start codon of the GOI in order to achieve optimal translation. In addition, sequence variation

within this region will allow fine-tuning translation initiation efficiency. Expression in *P. pastoris* is driven either by the methanol inducible *AOX1* or the constitutive *GAP* promoter. Positive clones can be selected for by antibiotic resistance (i.e., to ZeocinTM or geneticin sulphate) or by selection for His or Arg prototrophy. Selection marker expression is uniformly driven by the *ARG4* promoter–terminator pair. b Plasmid pAaZBgl from '*Pichia* Pool' is shown as an example of a vector made for secretory expression encoding *S. cerevisiae* α -MF signal sequence in front of the GOI cloning site. The Kex2 processing site AAAAGA should be restored between the *XhoI* cloning site and the fusion point of the GOI

Secretion signal	Source	Target protein(s)	Length	Reference
α-MF	S.c. α-mating factor	Most commonly used secretion signal in <i>P. pastoris</i>	85 aa, with or without EA repeats	(Brake et al. 1984)
PHO1	P.p. acid phosphatase	Mouse 5-HT5A, porcine pepsinogen,	15 aa	(Payne et al. 1995; Weiss et al. 1995; Yoshimasu et al. 2002)
SUC2	S.c. Invertase	Human interferon, α -amylase, α -1-antitrypsin	19 aa	(Moir and Dumais 1987; Paifer et al. 1994; Tschopp et al. 1987b)
PHA-E	Phytohemagglutinin	GNA, GFP and native protein	21 aa	(Raemaekers et al. 1999)
KILM1	Kl toxin	CM cellulase	44 aa	(Skipper et al. 1985)
pGKL	pGKL killer protein	Mouse α -amylase	20 aa	(Kato et al. 2001)
CLY and CLY-L8	C-lysozyme and syn. leucin-rich peptide	Human lysozyme	18 and 16 aa	(Oka et al. 1999)
K28 pre-pro-toxin	K28 virus toxin	Green fluorescent protein	36 aa	(Eiden-Plach et al. 2004)
Scw, Dse and Exg	<i>P.p.</i> Endogenous signal peptides	CALB and EGFP	19, 20 and 23 aa	(Liang et al. 2013a)
Pp Pir1	<i>P.p.</i> Pir1p	EGFP and Human α 1-antitrypsin	61 aa	(Khasa et al. 2011)
HBFI and HBFII	Hydrophobins of Trichoderma reesei	EGFP	16 and 15 aa	(Kottmeier et al. 2011)

Table 3 Signal sequences used to secrete the protein into the extracellular space

Table 4 P. pastoris host strains				
Strain	Genotype	Phenotype	Source	
Wild-type strains				
CBS7435 (NRRL Y-11430)	WT	WT	Centraalbureau voor Schimmelcultures, the Netherlands	
CBS704 (DSMZ 70382)	WT	WT	Centraalbureau voor Schimmelcultures, the Netherlands	
X-33	WT	WT	Life Technologies [™]	
Auxotrophic strains				
GS115	his4	His ⁻	Life Technologies [™]	
PichiaPink [™] 1	ade2	Ade	Life Technologies [™]	
KM71	his4, aox1::ARG4, arg4	His ⁻ , Mut ^S	Life Technologies TM	
KM71H	aox1::ARG4, arg4	Mut ^S	Life Technologies [™]	
BG09	$arg4::nourseo^{R} \Delta lys2::hyg^{R}$	Lys ⁻ , Arg ⁻ , Nourseothricin ^R , Hygromycin ^R	BioGrammatics	
GS190	arg4	Arg	(Cregg et al. 1998)	
GS200	arg4 his4	His ⁻ , Arg ⁻	(Waterham et al. 1996)	
JC220	ade1	Ade ⁻	(Cregg et al. 1998)	
JC254	ura3	Ura ⁻	(Cregg et al. 1998)	
JC227	ade1 arg4	Ade ⁻ Arg ⁻	(Lin-Cereghino et al. 2001)	
JC300-JC308	Combinations of ade1 arg4 his4 ura3	Combinations of Ade ⁻ , Arg ⁻ , His ⁻ , Ura ⁻	(Lin-Cereghino et al. 2001)	
YJN165	ura5	Ura	(Nett and Gerngross 2003)	
CBS7435 his4 ^a	his4	His ⁻	(Näätsaari et al. 2012)	
CBS7435 Mut ^S his4 ^a	aox1, his4	Mut ^s , His ⁻	(Näätsaari et al. 2012)	
CBS7435 Mut ^S arg4 ^a	aox1, arg4	Mut ^S , Arg ⁻	(Näätsaari et al. 2012)	
CBS7435 met2 ^a	met2	Met	(<i>Pp</i> 7030) ^b	
CBS7435 met2 arg4 ^a	met2 arg4	Met Arg	(<i>Pp</i> 7031) ^b	
CBS7435 met2 his4 ^a	met2 his4	Met ⁻ His ⁻	(<i>Pp</i> 7032) ^b	
CBS7435 lys2 ^a	lys 2	Lys	(<i>Pp</i> 7033) ^b	
CBS7435 lys2 arg4 ^a	lys2 arg4	Lys ⁻ Arg ⁻	(<i>Pp</i> 7034) ^b	
CBS7435 lys2 his4 ^a	lys2 his4	Lys ⁻ His ⁻	(<i>Pp</i> 7035) ^b	
CBS7435 pro3 ^a	pro3	Pro	(<i>Pp</i> 7036) ^b	
CBS7435 tyr1 ^a	tyr 1	Tyr	(<i>Pp</i> 7037) ^b	

Protease-deficient strains			
SMD1163	his4 pep4 prb1	His ⁻	(Glæson et al. 1998)
SMD1165	his4 prb1	His ⁻	(Gleeson et al. 1998)
SMD1168	his4 pep4::URA3 ura3	His ⁻	Life Technologies [™]
SMD1168H	pep4		Life Technologies [™]
SMD1168 kex1::SUC2	pep4::URA3 kex1::SUC2 his4 ura3	His	(Boehm et al. 1999)
PichiaPink 2-4	Combinations of prb1/pep4	Ade ⁻	Life Technologies [™]
BG21	sub2		BioGrammatics
CBS7435 prc1 ^a	prc1		(<i>Pp</i> 6676) ^b
CBS7435 sub2 ^a	sub2		$(Pp6668)^{b}$
CBS7435 sub2 ^a	his4 pep4	His	$(Pp6911)^{\rm b}$
CBS7435 prb1 ^a	prb1		(<i>Pp</i> 6912) ^b
CBS7435 his4 pep4 prb1	his4 pep4 prb1	His	(<i>Pp</i> 7013) ^b
Glyco-engineered strains			
SuperMan ₅	$his4 \ och1::pGAPTr lpha1,2-mannosidase$	His ⁻ , Blasticidin ^R	BioGrammatics
	$och1::pGAPTr\alpha1, 2$ -mannosidase	Blasticidin ^R	BioGrammatics
	$pep4 och1::pGAPTr\alpha1,2$ -mannosidase	Blasticidin ^R	BioGrammatics
Other strains			
GS241	fld 1	Growth defect on methanol as sole C-source or methylamine as sole N-source	(Shen et al. 1998)
MS105	his4 fld1	See GS241; His	(Shen et al. 1998)
MC100-3	his4 arg4 aox1::ScARG4 aox2::PpHIS4	Mut ⁻	(Cregg et al. 1989)
CBS7435 ku70 ^a	ku70	WT	(Näätsaari et al. 2012)
CBS7435 ku70 his4 a	ku70, his4	His ⁻	(Näätsaari et al. 2012)
CBS7435 ku70 gut1	ku70, gut1	Growth defect on glycerol; Zeocin R	(Näätsaari et al. 2012)
CBS7435 ku70 ade1	ku70, ade1	Ade ⁻ , Zeocin ^R	(Näätsaari et al. 2012)

A AN

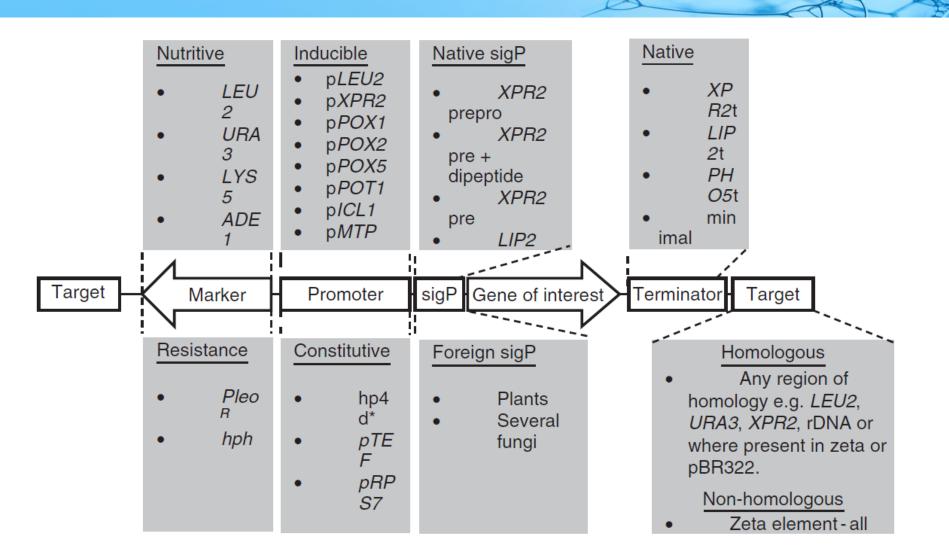
<i>P. pastoris</i> medium	Components (L ⁻¹)
BMGY (buffered glycerol-complex medium)	 10 g bacto yeast extract 20 g bacto peptone 100 mL 10× YNB (see Table 2) 100 mL 1 M potassium phosphate (pH 6) 2 mL 500× biotin (see Table 2) 100 mL 10× glycerol (see Table 2)
BMMY (buffered methanol-complex medium)	 10 g bacto yeast extract 20 g bacto peptone 100 mL 10× YNB (see Table 2) 100 mL 1 M potassium phosphate (see Table 2) 2 mL 500× biotin (see Table 2) 100 mL 10× methanol (see Table 2)
BSM (basal salts medium)	 26.7 mL phosphoric acid 0.93 g calcium sulphate 18.2 g potassium sulphate 14.9 g magnesium sulphate heptahydrate 4.13 g potassium hydroxide 40 g glycerol 4.35 mL PTM₁ salts (see Table 2)

A

System	Protein*	Brand name	Therapeutic area	Company
P. pastoris	Ecallantide (I)	Kalbitor	Hereditary angioedema	Dyax (USA)
	Insulin (S)	Insugen	Type 2 diabetes	Biocon (India)
	Human serum albumin (S)	Medway	Blood volume expansion	Mitsubishi Tanabe Pharma (Japan)
	Hepatitis vaccine (I)	Shanvac	Hepatitis B	Shantha/Sanofi (India)
	IFN-α 2b (S)	Shanferon	Hepatitis C, cancer	Shantha/Sanofi (India)
	Ocriplasmin (I)	Jetrea	Vitreomacular adhesion (VMA)	ThromboGenics (Belgium)
	Anti-IL-6R Ab (I)	Nanobody ALX-0061	Rheumatoid arthritis	Ablynx (Belgium)
	Anti-RSV Ab (S)	Nanobody ALX00171	Respiratory syncytial virus (RSV) infection	Ablynx (Belgium)
	HB-EGF (I)	_	Treatment of interstitial cystitis/bladder pain syndrome (IC/BPS)	Trillium (Canada)
	Collagen (I)	-	Medical research reagents/ dermal filler	Fibrogen (USA)

Hansenula polymorpha

GRAS status


- Stringently regulated strong promoters (MOX, FMDH, etc.)
- A Crabtree-negative yeast allowing for high dilution rates and high biomass yields in fermentation processes
- Stable, multicopy integration of foreign DNA into chromosomal locations
- Thermotolerant (growth up to 45 °C), resistant to heavy metals and oxidative stress
- Can assimilate nitrates
- A lesser extent of hypermannosylation compared to S. cerevisiae; No terminal α -1,3-linked mannose residues
- Genome sequencing: Reference strain DL1; 9056 Kb (5325 ORFs); Accession number PRJNA60503

H. polymorpha	HBV vaccine (I)	Hepavax-Gene	Hepatitis B	Rhein Biotech (Germany), Green Cross
				Vaccine Corp (Korea)

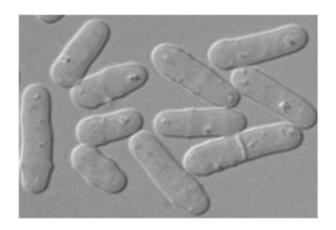
Yarrowia lipolytica

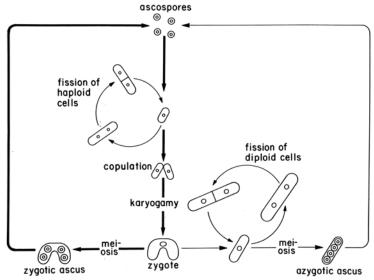
- An oleaginous yeast, based on its ability to accumulate large amounts of lipids GRAS status
- Can grow in hydrophobic environments, that is able to metabolize triglycerides, fatty acids, *n*-alkanes, and *n*-paraffins as carbon sources for the bioremediation of environments contaminated with oil spills
- Can secrete a variety of proteins via cotranslational translocation and efficient secretion signal recognition similar to higher eukaryotes
- Availability of a commercial expression kit (YEASTERN BIOTECH CO., LTD.)
- Salt tolerance
- A lesser extent of hypermannosylation compared to *S. cerevisiae*; a lack of the immunogenic terminal α -1,3-mannose linkages
- Genome sequencing: Reference strain CLIB122; 20 503 Kb (7042 ORFs); Accession number PRJNA12414

Y. lipolytica	Pancrelipase (S)	Creon, Ultresa, Viokase	Exocrine pancreatic	Aptalis Pharma
			insufficiency	

Fig. 18.2 Graphical representation of a typical auto-cloning integrative expression construct used for transformation of *Y. lipolytica*. All elements listed have been reviewed and described in detail by Madzak and co-workers (2004)

Kluyveromyces lactis


GRAS status


- A Crabtree-negative yeast allowing for high dilution rates and high biomass yields in fermentation processes
- Lactose-fermenting present in milk and whey, and the strong, lactose-inducible LAC4 promoter
- Very high cell density (> 100 g DCW L^{-1})
- Able to use both integrative and episomal expression vectors
- An available easy-to-use reagent kit for *K. lactis* protein expression (New England Biolabs) Terminal *N*-acetylglucosamine and no mannose phosphate

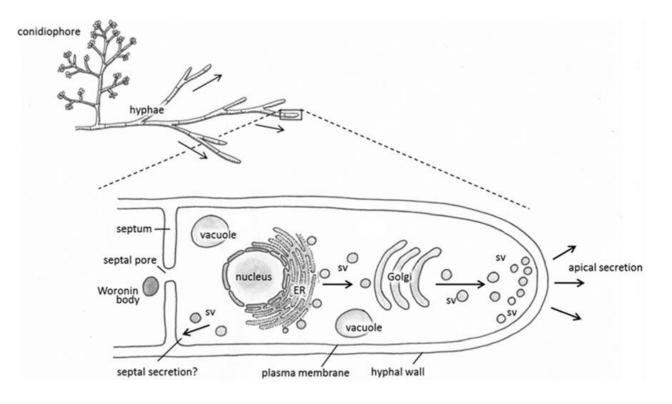
Genome sequencing: Reference strain NRRL Y-1140; 10 689 Kb (5502 ORFs); Accession number PRJNA12377

Schizosascharomyces pombe

A fission yeast, reflecting proliferation of higher eukaryotic cells Many cellular processes similar to those of higher eukaryotes, such as mRNA splicing, posttranslational modification (including protein galactosylation), cell cycle control, etc. Transcription start site similar to that in higher eukaryotes Expression vectors for high-level expression developed Presence of galactose in both *O*- and *N*-linked glycans Genome sequencing: Reference strain 972h-; 12 554 Kb (5364 ORFs); Accession number PRJNA127

Arxula adeninivorans

- Relatively new expression system
- Genome sequence published in 2014
- Dimorphic fungus
 - Budding yeast form up to 42 °C
 - Mycelial form at higher temperatures
- Can grow on variety of substrates including n-alkanes, purines and starch


FIGURE 7.12 Constructs for stable integration of target genes into a chromosome of the yeast *A. adeninivorans.* (A) The target gene (e.g., the *amyA* gene) is inserted into a vector between the *TEF1* promoter (*p*) and the *PHO5* terminator (*t*), and the vector is introduced into a strain of *A. adeninivorans* that is unable to synthesize tryptophan. The vector is integrated into a chromosome by homologous recombination between chromosomal and vector 25S rDNA sequences, and expression of the *ATRP1* gene driven by a strong promoter restores tryptophan biosynthesis, enabling survival of the yeast on media lacking tryptophan. (B) Expression of low levels of ATRP1 from a defective promoter results in chromosomal integration of multiple copies of the target gene and the *ATRP1* gene, is inserted in the middle of the 25S rDNA sequence so that, following a double recombination event, only the expression cassette is integrated into the *A. adeninivorans* genome. Sequences for maintain-ance (*ort*^E) and selection (Amp^r) in *E. coli* are included on the vector.

Other yeast expression platforms

- Endomyces (Dipodascus) magnusii
- Candida boidinii
- Pichia methanolica
- Pichia stipitis
- Schwanniomyces occidentalis
- Debaryomyces hansenii

Filamentous fungi

Table 3 Advantages of fungalexpression systems

High yield Stable production strains Cost effectiveness High density growth Easy scale-up Safety High expression levels Rapid growth in chemically defined media Product processing similar to mammalian cells Can handle S–S rich proteins Can assist protein folding Can glycosylate protein

Method	Advantage	Disadvantage
PEG-mediated protoplast fusion	No requirement for special equipment	Optimization of making and regenerating the protoplast takes time.
Electroporation	Time saving, easily performed	Need to prepare the competent cell
Agrobacterium tumefaciens- mediated transformation (ATMT)	Possibility of recovering T-DNA flanking sequences by PCR-based techniques. Alleviating protoplast preparation	The transformation process takes long time.
Biolistic transformation	No requirement for the protoplast. Transformation protocol is relatively simple	The equipment is expensive

Table 1.1 Transformation methods used in filamentous fungi

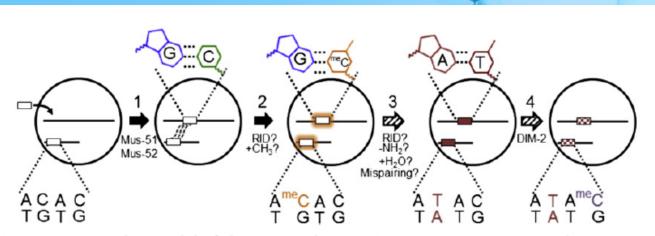
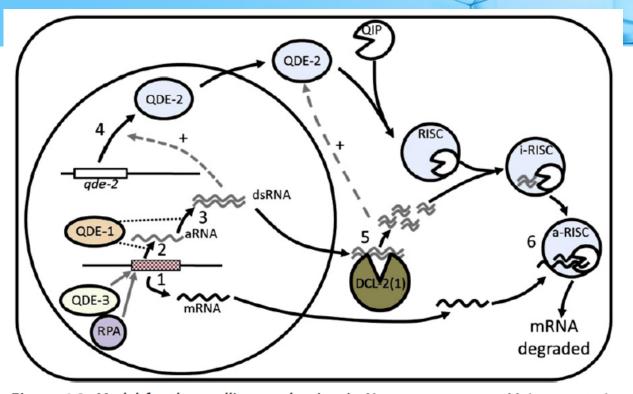



Figure 1.1 Popular model of the RIP mechanism in Neurospora crassa. The events of RIP in N. crassa are shown as numbered arrows. Proteins known or predicted to mediate the events are indicated. Circles represent a single nucleus. For simplicity, only two chromosomes (black lines) are shown. The open rectangle on the short chromosome indicates a native gene, and a short sequence of its dsDNA is indicated below. The open rectangle outside the nucleus indicates a transgene with high similarity to the native gene. In event 1, the transgene DNA is transformed into the cell's nucleus and ectopically integrated into the long chromosome. Integration could occur also in multiple copies or in the same chromosome as the transgene. A normal G:C base pair is symbolized above the nucleus. Letters G, C, A, and T represent normal nitrogen bases guanine, cytosine, adenine, and thymine, and ^{me}C represents 5-methylated cytosine. Wavy lines indicate an unknown mechanism that senses high similarity between the transgene and the native gene. In events 2 and 3, the putative DNA methyltransferase RID is predicted to facilitate methylation and/or deamination (orange glow) of the base cytosine to generate uracil (leading from the G:C-to-A:T transition: closed, brown rectangles). Dashed arrows for events 3 and 4 represent the possibility of multiple steps or several cell cycles. During vegetative growth, DIM-2 methylates many cytosines that survived RIP mutagenesis of the duplications (checkered, brown rectangles). (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this book.)

Figure 1.2 *Model for the quelling mechanism in Neurospora crassa.* Major events in the quelling mechanism are represented with black arrows and numerals. 1. Host RNA polymerase generates a normal transcript of a transgene (checkered box). 2. The DNA-dependent RNA polymerase activity of QDE-1 generates an aRNA from the transgene. DNA helicase QDE-3 and RPA are involved. 3. The RdRP activity of QDE-1 generates a double-stranded RNA (dsRNA) molecule from the aRNA. 4. The dsRNA induces transcription of the *qde-2* gene. 5. Dicer-like proteins DCL-2 and/or DCL-1 cleave the dsRNA into siRNA duplex molecules. QDE-2 accumulation is positively regulated by either this event or the molecules involved (Choudhary et al., 2007). The siRNA duplex molecules are loaded onto an inactive RISC (i-RISC) molecule, which contains QDE-2 and QIP. 6. The slicer activity of QDE-2 and the exonuclease activity of QIP cooperate to remove the passenger strand of the siRNA duplex, leaving only the guide strand. The guide strand directs the active RISC (a-RISC) molecule to the complementary mRNA transcript, which is then degraded. The precise locations of some events have not been verified. (For color version of this figure, the reader is referred to the online version of this book.)

Organism	Promoter	Heterologous gene	Yield	References
T. reesei	cbh1	Bovine chymosin	40 mg/L	Harkki et al. (1989)
T. reesei	cbh1	Phlebia radiata laccase	20 mg/L	M. Saloheimo and Niku- Paavola (1991)
T. reesei	cbh1	Hormoconis resinae glucoamylase	700 mg/L	Joutsjoki et al. (1993)
T. reesei	cbh1	Fab antibody fragment	150 mg/L	Keranen and Penttila (1995)
T. reesei	cbh1	Barley endopeptidase B	500 mg/L	Saarelainen et al. (1997)
T. reesei	cbh1	A. niger acid phosphatase	≈500 mg/L	Miettinen-Oinonen et al. (1997)
T. reesei	cbh1	A. niger lipase	310 mg/L	Qin et al. (2012)
T. reesei	cbh1	T. harzianum endochitinase	130 mg/L	Margolles-Clark, Hayes, Harman, & Penttila (1996b)
A. nidulans	glaA	Bovine chymosin	146 μg/g dry weight of mycelia	Cullen et al. (1987a)
A. oryzae	glaA	Bovine chymosin	150 mg/kg wheat bran	Tsuchiya, et al. (1994)
A. awamori	glaA	Bovine chymosin	47.5 mg/L	M. Ward, Wilson, Kodama, Rey, & Berka (1990)
A. nidulans	glaA	Cytotoxin restrictocin	0.3 mg/L	Brandhorst, Yang, & Kenealy (1994)
A. nidulans	glaA	Human interleukin-6	0.025 mg/L	Carrez et al. (1990)
A. awamori	glaA	Human lactoferrin	2000 mg/L	P. P. Ward et al. (1995)
A. niger	glaA	Phanerochaete chrysosporium manganese peroxidases	100 mg/L	Punt et al. (2002)
A. niger	glaA	Human tissue plasminogen activator	25 mg/L	Wiebe et al. (2001)
A. oryzae	α -amylase	Human lactoferrin	25 mg/L	P. P. Ward et al. (1992a)
A. nidulans	alcA	Human lactoferrin	5 mg/L	P. P. Ward , May, Headon, & Conneely (1992b)

Table 1.2 Examples of utilization of inducible and constitutive promoters for heterologous gene expression in filamentous fungi

A. nidulans	alcA	Human interferon a2	1 mg/L	Gwynne, Buxton, Williams,
A. nidulans	alcA	Cellulomonas fimi	20 mg/L	Garven, & Davies (1987) Gwynne et al. (1987)
21. manuns	<i>uu</i> 21	endoglucanase	20 mg/L	Gwynne et al. (1967)
A. niger	alcA	Human interleukin-6	100-500 mg/L	Hintz, Kalsner, Plawinski, Guo, & Lagosky (1995)
A. niger	gpdA	P. chrysosporium manganese peroxidases	15-25 mg/L	Punt et al. (2002)
A. niger	gpdA	Human tissue plasminogen activator	12 mg/L	Wiebe et al. (2001)
A. awamori	gpdA	Sweet protein thaumatin II	9.6 mg/L	Moralejo, Cardoza, Gutierrez, & Martin (1999)
A. awamori	B2	Sweet protein thaumatin II	7.7 mg/L	Moralejo et al. (1999)
A. awamori	pcbC	Sweet protein thaumatin II	1.6 mg/L	Moralejo et al. (1999)
A. awamori	gdhA	Sweet protein thaumatin II	10 mg/L	Moralejo et al. (1999)
A. awamori	B2 & gdhA	Sweet protein thaumatin II	14 mg/L	Moralejo et al. (1999)
A. nidulans	tpi	Human tissue plasminogen activator	0.1 mg/L	Upshall et al. (1987)
A. nidulans	alcA	Human tissue plasminogen activator	1 mg/L	Upshall et al. (1987)
N. crassa	ccg-1	Bovine RNase A	0.11 mg/L	Allgaier et al. (2010)
N. crassa	gla-1	Zea mays zeamatin	0.01 mg/L	Rasmussen-Wilson, Palas, Wolf, Taft, & Selitrennikoff (1997)
N. crassa	cfp	Bovine RNase A	0.36 mg/L	Allgaier et al. (2010)
N. crassa	enol	Bovine RNase A	0.09 mg/L	Allgaier et al. (2010)

T. reesei: Trichoderma reesei; T. harzianum: Trichoderma harzianum; A. nidulans: Aspergillus nidulans; A. niger: Aspergillus niger; A. oryzae: Aspergillus oryzae; A. awamori: Aspergillus awamori; N. crassa: Neurospora crassa; dbh1: cellobiohydrolase 1; glaA/gla-1: glucoamylase A; alcA: alcohol dehydrogenase; pcbC: penicillin biosynthesis gene; gdhA: glutamate dehydrogenase gene; B2: the wide-spectrum esterase gene (cesB) of Acremonium chrysogenum; tpi: triose-phosphate isomerase; ccg-1: clockcontrolled gene; cfp: cytoplasmic filament protein; enol: enolase.

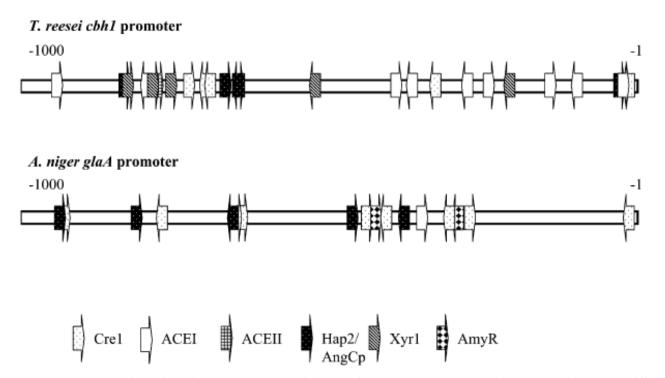
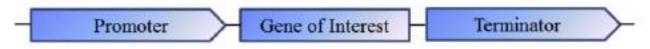



Figure 1.3 Putative binding sites on the Trichoderma reesei cbh1 and Aspergillus niger glaA promoters. A 1.0-kb DNA fragment upstream of the ATG codon was arbitrarily selected. The binding motifs of the transcription factors are as follows: Cre1, 5'-SYGGRG-3', where S = C/G, Y = C/T, and R = A/G; ACEI, 5'-AGGCA-3'; ACEII, 5'-GGCTAATAA-3'; Xyr1, 5'-GGCTAA-3'; Hap2 and AngCP, 5'-CCAAT-3'; and AmyR: 5'-CGGNNNNNNNCGG-3' and 5'-CGGAAATTTAA-3'.

Regular expression

Expression using fusion strategy

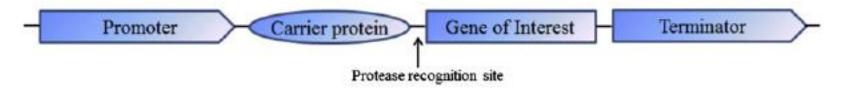


Figure 1.4 Schematic diagram showing the fusion strategy for expression of heterologous genes in filamentous fungi. (For color version of this figure, the reader is referred to the online version of this book.)

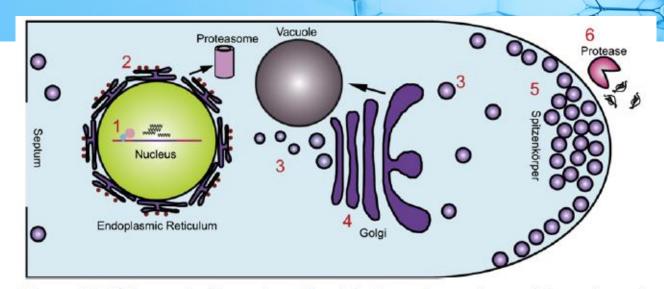


Figure 1.5 Pathways in filamentous fungi that can be engineered for enhanced heterologous gene expression. The numbers indicate the pathways that can be engineered. 1. Transcription/host defense/copy numbers/genome integration locus/intron structure; 2. signal peptide/codon usage/mRNA stability/protein quality control; 3. vesicle sorting; 4. glycosylation; 5. hyphal growth/membrane fusion; and 6. extracellular proteolysis. (For color version of this figure, the reader is referred to the online version of this book.)

FIGURE 7.14 Construct for expression and secretion of the human α_1 -proteinase inhibitor in the filamentous fungus *A. niger*. The expression cassette includes the strong constitutive promoter *gpdAp*, the transcriptional terminator from the *TrpC* gene (*TrpCt*), the cDNA encoding glucoamylase to facilitate secretion, and the coding sequence for the Kex2 recognition site for in vivo removal of the glucoamylase fusion protein by the host Kex2 endoprotease.

Recombinant protein	Host cell	Main application
α-Amylase	A. niger, Aspergillus oryzae	Starch processing, food industry
Aspartyl protease	A. nidulans, A. oryzae	Food industry
Cellulase	T. reesei	Textile, pulp and paper industries
Chymosin	A. niger	Food industry
Immunoglobulin G	A. niger	Pharmaceutical industry
Insulin	A. niger	Pharmaceutical industry
Interleukin-6	A. niger	Pharmaceutical industry
Laccase	A. niger, T. reesei	Textile, pulp and paper industries
Manganese peroxidase	A. niger	Chemical industry
Lactoferrin	A. oryzae	Pharmaceutical industry
Lipase, thermophilic	A. oryzae	Detergent
Lysozyme	A. niger	Pharmaceutical industry
Phytase	T. reesei	Food industry
Xylanase	A. niger, T. reesei	Textile, pulp and paper, food industries

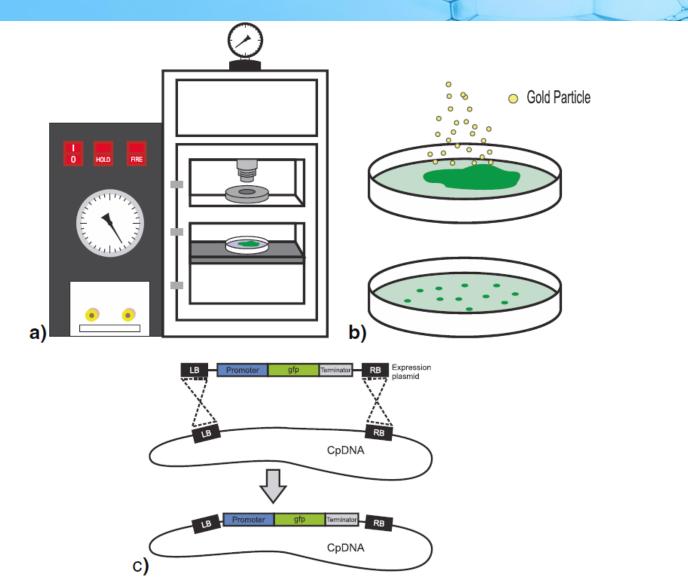
TABLE 7.5 Production of human interleukin-6 in filamentous fungi

Host cell	Relevant host trait	Promoter (donor)	Fusion partner	Yield (mg/liter)
A. nidulans		glaA (A. niger)		< 0.1
		glaA (A. niger)	glaA	5
A. niger		glaA		<0.1
	Protease deficient	gpdA		< 0.1
	Protease deficient	gpdA	glaA	2
	Protease deficient, nonacidifying	gpdA	glaA	10

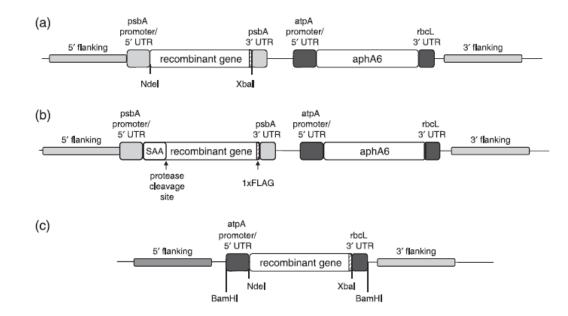
Table 1 Distribution of industrial enzymes and production strainsaccording to the Association of Manufacturers and Formulators ofEnzyme Products (AMFEP) list in 2004

Total enzymes	186
Homologous product	64.5%
Heterologous product	35.5%
Aspergillus strains	36.6%
Trichoderma strains	10.8%
Penicillium strains	8.1%
Kluyveromyces strains	1.6%
Saccharomyces strains	1.1%
Prokaryotic strains	30.6%

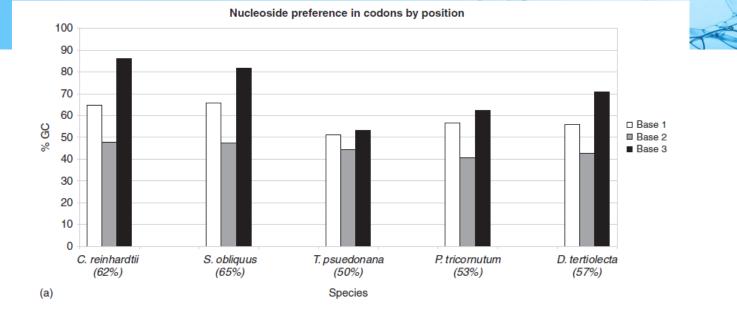
 Table 4 Examples of some important heterologous proteins expressed in Aspergillus


Protein	Yield	Expression system	Reference
Glucoamylase from A. niger	4.6 g/l	A. awamori	Radzio and Kück (1997)
Human interleukin 6	150 mg/l	A. niger	Punt et al. (2002)
Alkaline protease from Fusarium	4 g/l	A. chrysogenum	Morita et al. (1994)
Chymosin (calf)	0.16 mg/l	A. oryzae	Dunn-Coleman et al. (1991)
Interferon-a 2 (human)	0.2 mg/l	A. nidulans	Macrae et al. (1993)
Lactoferrin (human)	2.0 g/l	A. oryzae	Ward et al. (1995)
Lysozyme (hen egg-white)	1.0 mg/l	A. niger	Archer et al. (1990); Gyamerah et al. (2002)

Enzyme	Host organism	Donor organism
Aminopeptidase	Trichoderma reesei	Aspergillus sp.
Arabinofuranosidase	Aspergillus niger	Aspergillus sp.
Catalase	Aspergillus niger	Aspergillus sp.
Cellulase	Aspergillus oryzae	Humicola sp.
Galactosidase (alpha)	Saccharomyces cerevisiae	Guar plant
Glucanase (beta)	Trichoderma reesei	Trichoderma sp.
Glucoamylase	Aspergillus niger	Aspergillus sp.
Glucose oxidase	Aspergillus niger	Aspergillus sp.
Laccase	Aspergillus oryzae	Myceliopthora sp
Lactase or Galactosidase (beta)	Aspergillus oryzae	Aspergillus sp.
Lipase	Aspergillus oryzae	Candida sp.
Mannanase (endo-1, 4-beta)	Trichoderma reesei	Trichoderma sp.
Pectin lyase	Aspergillus niger var. awamori	Aspergillus niger
Phytase	Aspergillus oryzae	Peniophora sp.
Protease	Aspergillus oryzae	Rhizomucor sp.
Pullulanase	Trichoderma longibrachiatum	Hormoconis sp.
Xylanase	Aspergillus niger var. awamori	Aspergillus sp.
Chymosin	A. niger var. awamori	Calf


A

Microalgae


- Promising platforms for heterologous protein expression
- Several systems are currently in use
- Biggest obstacles are in transformation and cell biomass productivity
- Nuclear and chloroplast expression is available
- Limited number of species is being used, most of them belong to *Chlamydomonas*

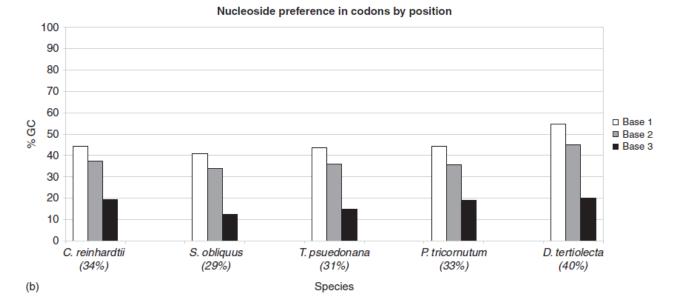


Figure 1 Chloroplast transformation in *Chlamydomonas reinhardtii.* **a)** Introduction of foreign DNA material into the chloroplast of *C. reinhardtii* is carried out using a particle bombardment device. The device uses helium gas to accelerate particles towards algae placed at the interior of a vacuum chamber. **b)** Gold or tungsten particles are coated with a plasmid carrying the genes of interest (in this case the green fluorescence protein GFP) and when accelerated penetrate the cells placed on top of selection medium. After a few weeks, transformed cells proliferate in the presence of a selection antibiotic. **c)** When the plasmid carrying the genes reaches de chloroplast, genes integrate into the plastid genome by homologous recombination between regions present in the plasmid (LB and RB) and in the chloroplast genome (CpDNA).

Figure 1 Introduction of the recombinant genes into the *Chlamydomonas reinhardtii* chloroplast genome. Schematic diagram of transformation vectors used, including relevant restriction sites. (a) and (b) pD1-Kan: Replacement of the endogenous *psbA* gene with the gene of interest (a), or with the gene of interest fused to the C-terminus of M-SAA (Manuell *et al.*, 2007) (b). The kanamycin-resistance gene *aphA6* under the control of the *atpA* promoter and 5' untranslated region (UTR) is genetically linked to the gene of interest. Grey regions flanking the gene of interest and resistance gene correspond to regions of the chloroplast genome used for homologous recombination between the insertion plasmid and the *C. reinhardtii* chloroplast genome. (c) Schematic diagram of p322 (Franklin *et al.*, 2002) used to transform the genes of interest under the control of the *atpA* promoter and 5' UTR and the *rbcL* 3' UTR into the BamHI silent site near the *psbA* gene (Barnes *et al.*, 2005). (a–c) All recombinant proteins were C-terminally fused to the 1× FLAG-tag sequence (DYKDDDDKS) for Western blotting and purification.

Figure 27.1. Nucleoside preference of codons by position. GC content of each position is presented based on all available coding sequences (CDSs) at the CUTG. The following photosynthetic microalgae (green algae, diatoms) are analyzed and include the average GC content in parenthesis for the (a) nucleus and (b) chloroplast: *Chlamydomonas reinhardtii, Scenedesmus obliquus, Thalassiosira pseudonana, Phaeodactylum tricornutum,* and *Dunaliella tertiolecta*.

Host Promoter Source Description Genome Nannochloropsis oculata Nannochloropsis oculata Violaxanthin/chlorophyll Nuclear vcp1 a-binding protein 1 Violaxanthin/chlorophyll vcp2 Nannochloropsis oculata Nannochloropsis oculata Nuclear *a*-binding protein 2; bidirectional Chlamydomonas reinhardtii psbD Chlamydomonas reinhardtii Photosystem II protein D2 Chloroplast сусб Chlamydomonas reinhardtii Chlamydomonas reinhardtii Cytochrome c6 Nuclear Chlamydomonas reinhardtii Chlamydomonas reinhardtii Photosystem I complex protein psaD Nuclear hsp70A Chlamydomonas reinhardtii Chlamydomonas reinhardtii Heat shock protein 70A Nuclear Chlamydomonas reinhardtii Chlamydomonas reinhardtii Photosystem II protein D1 psbA Chloroplast atpA Chlamydomonas reinhardtii Chlamydomonas reinhardtii ATPase alpha subunit Chloroplast rbcL Chlamydomonas reinhardtii Chlamydomonas reinhardtii Ribulose bisphosphate Chloroplast carboxylase large subunit Chlamydomonas reinhardtii Chlamydomonas reinhardtii Nitrate reductase Nuclear nia1 Nuclear Chlamydomonas reinhardtii Chlamydomonas reinhardtii Chlamyopsin сор pl'2'Agrobacterium tumefaciens Amphidinium sp., Bidirectional promoter Nuclear Symbiodinium microdriaticum rbcs2 Chlamydomonas reinhardtii Chlamydomonas reinhardtii Small subunit of ribulose Nuclear bisphosphat carboxylase Phaeodactylum tricornutum Phaeodactylum tricornutum Fucoxanthin chlorophyll-a or Nuclear fcp -c binding protein Cyclotella cryptica Cyclotella cryptica, Navicula Acetyl-CoA carboxylase Nuclear acc1 saprophila Chlamydomonas reinhardtii CaMV 35S Chlamydomonas reinhardtii Cauliflower mosaic virus 358 Nuclear Nos Agrobacterium tumefaciens Chlamydomonas Nopaline synthase Nuclear Chlamydomonas reinhardtii Chlamydomonas reinhardtii Nopaline synthase from Nuclear Nos Agrobacterium tumefaciens Chlorophyll-ab binding protein cabII-1 Chlamydomonas reinhardtii Chlamydomonas reinhardtii Chloroplast β -2-tub Chlamydomonas reinhardtii Chlamydomonas reinhardtii Nuclear β -2-tubulin

Table 27.2. Nuclear and chloroplast promoters used to express transgenes in microalgae

Table 27.3.	Nuclear and chloroplast selectable markers	used in microalgae	
Marker	Selection	Microalgae transformed	20-
Bsr ARG9 PDS	Blasticydin S resistance (deaminase) Arginine prototrophy (chloroplast encoded) Norflurazon resistance (mutated endogenous	Nannochloropsis sp. (strain W2J3B) Chlamydomonas reinhardtii Chlorella zofingiensis, Haematococcus pluvialis	
aph7"	phytoene desaturase) Hygromycin B resistance (aminoglycoside phosphotransferase)	Chlamydomonas reinhardtii	
ALS	Sulfometuron methyl resistance (mutated endogenous acetolactase gene)	Chlamydomonas reinhardtii	
aphVIII	paromomycin/kanamycin resistance (aminoglycoside phosphotransferase)	Chlamydomonas reinhardtii	
act-2	Cycloheximide resistance (mutated endogenous ribosomal L41)	Chlamydomonas reinhardtii	
aphA-6	Kanamycin/amikacin resistance (aminoglycoside phosphotransferase)	Chlamydomonas reinhardtii	
nat	Nourseothricin resistance (acetyltransferase)	Phaeodactylum tricornutum	
sat-1	Nourseothricin resistance (acetyltransferase)	Phaeodactylum tricornutum	
hup 1	Nutritional marker or trophic conversion (hexose transporter)	Phaeodactylum tricornutum, Cylindrotheca fusiformis	
PPX1	Porphyric herbicide resistance (mutated endogenous protoporphyrinogen oxidase)	Chlamydomonas reinhardtii	
hpt	Hygromycin B resistance (phosphotransferase)	Amphidinium, Symbiodinium, Nannochloropsis sp. (strain W2J3B)	
ble	Zeocin resistance (stoichiometrically neutralizes phleomycins)	Chlamydomonas reinhardtii, Phaeodactylum tricornutum, Nannochloropsis sp. (strain W2J3B)	
NIC7	Nicotinamide prototrophy	Chlamydomonas reinhardtii	
THI-10	Thiamine prototrophy	Chlamydomonas reinhardtii	
cat	Chloramphenicol resistance (acetyltransferase)	Chlamydomonas reinhardtii, Phaeodactylum tricornutum	
CRY1-1	Cryptopleurine/emetine resistance (mutated endogenous ribosomal S14)	Chlamydomonas reinhardtii	
nptII	Neomycin resistance (phosphotransferase)	Chlamydomonas reinhardtii, Symbiodinium sp., Phaeodactylum tricornutum, Amphidinium sp., Cyclotella cryptica, Navicula saprophila	
aadA	Spectinomycin/Streptomycin resistance (adenylyltransferase)	Chlamydomonas reinhardtii	
0ee-1	Oxygen-evolving enhancer protein (restores photosynthesis)	Chlamydomonas reinhardtii	
ARG7	Arginine prototrophy	Chlamydomonas reinhardtii	
NIT1 (NIA1)	Nitrate prototrophy	Chlamydomonas reinhardtii	

Protein	Biotechnological application	Bioassay	Genetic source	Platform organism	Compartment
α-HBsAg full-length IgG1 mAb (CL4mAb)	Binds hepatitis B surface antigen	HBsAg binding ELISA	Homo sapiens	Phaeodactylum tricornutum	Cytosol
Hepatitis B virus surface antigen (HBsAg)	Immunogen	α-HBsAg binding inhibition ELISA	Hepatitis B virus	Phaeodactylum tricornutum	Cytosol
C-terminal domain from the apical major antigen AMA1 fused to a truncated granule-bound starch synthase (GBSS)	Immunogen	Red blood cell entry inhibition assay and lethal dose mouse survivability	Plasmodium berghei	Chlamydomonas reinhardtii	Nuclear encoded, chloroplast directed
C-terminal domain from the Major Surface Protein (MSP1) fused to a truncated granule-bound starch synthase (GBSS)	Immunogen	Red blood cell entry inhibition assay and lethal dose mouse survivability	Plasmodium falcipirum	Chlamydomonas reinhardtii	Nuclear encoded, chloroplast directed
D2 fibronectin-binding domain of <i>Staphylococcus</i> <i>aureus</i> fused with the cholera toxin B subunit (CTB-D2)	Immunogen	IgA and IgG ELISA, pathogen load qtPCR, lethal dose survivability in mice	Staphylococcus aureus, Vibrio cholerae	Chlamydomonas reinhardtii	Chloroplast
High mobility group protein B1 (HMGB1)	Inflammatory cytokine	Fibroblast chemotaxis	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast
Vascular endothelial growth factor (VEGF)	Therapeutic angiogenesis	VEGF receptor binding ELISA	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast
α-PA83 full-length IgG1 mAb (83K7C)	Binds anthrax protective antigen 83 (PA83); anthrax neutralization	PA83 binding ELISA	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast

Bovine lactoferricin (LFB)	Digestive tract bacteriocidal	Fish-feeding survival assay	Bos taurus	Nannochloropsis oculata	Cytosol
Glutamic acid decarboxylase 65 (hGAD65)	Autoantigen	Sera immunoreactivity and spleen cell proliferation in NOD mice	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast
Bovine mammary-associated serum amyloid (M-SAA)	Intestinal infection protectant for livestock	Mucin induction assay	Bos taurus	Chlamydomonas reinhardtii	Chloroplast
Swine fever virus E2 viral protein (CSVF-E2)	Immunogen	Subcutaneous immunization in mice	Classical swine fever virus	Chlamydomonas reinhardtii	Chloroplast
Metalothionein-2 (hMT-2)	UV protectant	Cell survival after UV exposure	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast
A-glycoprotein D large single chain mAb (HSV8-lsc)	Binds herpes simplex virus glycoprotein D	HSV8 binding ELISA	Homo sapiens	Chlamydomonas reinhardtii	Chloroplast
Cholera toxin B subunit fused to FMD virus VP1 (CTBVP1)	Mucosal adjuvant fused to a livestock viral immunogen	GM1-ganglioside receptor binding ELISA	<i>Vibrio cholerae</i> , Foot-and-mouth disease virus	Chlamydomonas reinhardtii	Chloroplast
Flounder growth hormone (fGH)	Agricultural growth hormone	Dietary supplementation and growth promotion		Chlorella ellipsoidea, Nannochloropsis oculata	Cytosol

		Ta
Table 1 Overview of recombinant proteins	produces in the	chloroplast of Chlamydomonas reinhardtii
Recombinant therapeutic protein	Yield	Relevant information
VP1-CTB; Protein VP1 from foot and mouth disease virus (FMDV) fused to cholera toxin B (CTB)	3-4% Total Soluble Protein (TSP)	Demonstrated that the C. <i>reinhardtii</i> chloroplast derived VP1-CTB could bind to GM1-ganglioside receptor <i>in vitro</i>
HSV-lsc; Large single chain (lsc) antibody directed against glycoprotein D protein from Herpes simplex virus (HSV)	Not reported	First report to show that the <i>C. reinhardtii</i> chloroplast can efficiently fold antibodies and form disulfide bonds
TRAIL; Tumor necrosis factor-related apoptosis-inducing ligand	0.43%-0.67% TSP	
M-SAA; Mammary-associated serum amyloid	3%-5% TSP	M-SAA was shown to generate mucin induction in a human intestinal epithelial cell line. Demonstrated that the <i>psbA</i> promoter yields high level or recombinant protein accumulation when the endogenous <i>psbA</i> gene is absent
CSFV-E2; Classical swine fever virus (CSFV) structural protein E2	1.5-2% TSP	Subcutaneous immunization of mice with E2 was shown to induced IgG antibodies
Human glutamic acid decarboxylase (hGAD65)	0.25-0.3% TSP	The protein was shown to immunoreact with sera from diabetic mice
IBDV-VP2; Infectious burial disease virus VP2 protein	4-0.8% Total cell protein (TCP)	This report looked at the expression of 11 proteins. Nine proteins showed some level of accumulation,
IHNV-G; Infectious haematopoietic necrosis virus	< 0.5% TCP	while the rest could not be detected. It showed that there are variations in the level of expression
IPNV-VP2; Infectious pancreatic necrosis virus	< 0.3% TCP	even amongst lines obtained with the
VP2 protein	1-0.1% TCP	transformation construct. Authors postulated the existence of the transformosome, a state in which
IPNV-VP2 SBC; Infectious pancreatic necrosis virus	1-0.2% TCP	particular genomic characteristics, induced incidentally with transformation, affect, negatively or positively the procession of the transported o
Quorum sensing-regulated gene (LecA) p57	< 0.5 TCP	positively, the expression of the transgene
PCV2; Porcine circovirus type 2	0.9-0.2% TCP	
VP-2C	< 0.5% TCP	
VP28	21-0.2% TCP	
HC-83K7C; Heavy chain human monoclonal antibody against anthrax protective antigen 83 (PA83)	0.01% dwt	It was shown that the heavy and light chains expressed in trans could assembled into a fully-functional monoclonal antibody against PA83
LC-83K7C; Light chain human monoclonal antibody against anthrax PA83		

CTB-D2; D2 fibronectin-binding domain of <i>Staphylococcus aureus</i> fused to the cholera toxin B subunit	0.7% TSP	First report to show that an orally-administered alga expressing an antigen in the chloroplast triggers a mucosal and systemic immune response in mice	A
14FN3; Domain 14 of human fibronectin	3%-0.15% TSP	This report looked at the expression of seven	
VEGF; Human vascular endothelial growth factor	2%-0.1% TSP	therapeutic proteins. For three of the proteins, a level of accumulation above 1% was observed,	
HMGB1; High mobility group protein B1	2.5%-1% TSP	whereas for the rest of the proteins, erythropoietin, interferon β , and proinsulin no protein was detected. Biological activity was evaluated for VEGF and HMGB1	
acrV2 and vapA2; antigens from the fish pathogen <i>Aeromonas salmonicida</i>	0.8% and 0.3% TP respectively	Showed that the <i>psaA</i> promoter-exon1 element can be used to drive the expression of foreign genes in non-photosynthetic strains	
Escherichia coli phytase gene (appA)	N.D.	This study showed that algae expressing a bacterial phytase gene in the chloroplast could be lyophilized and administered orally to broiler chicks. The enzyme was active in the gut and reduce the fecal excretion of phytate.	
Pfs25 and Pfs28; surface proteins from Plasmodium falciparum	0.5% and 0.2% TSP respectively	First report to show that Pfs25 and Pfs28 can be produced without glycosilation and in a correct conformation recognized by monoclonal antibodies specific to conformational epitopes	
aCD22PE40; monomeric immunotoxin consisting on the single chain antibody that ecognizes the CD22 surface protein from B-cells, fused to domains II and III of exotoxin A (PE40) from <i>Pseudomonas aeruginosa</i>	0.3%-0.4% TSP	First report to show that immunotoxins can be produced in an eukaryotic system without being toxic to the cell.	
CD22HCH23PE40; dimeric version of CD22PE40	0.2%-0.3% TSP		
EtxB-Pfs25; <i>Plasmodium falciparum</i> surface protein 25 fused to the β subunit of the cholera poxin from <i>Vibrio cholera</i>	0.09% TSP	Demonstrated that the fusion protein can induced IgA antibodies when administered orally as part of a Iyophilized powered. However, IgG antibodies could not be elicited with this route of administration	
CD22Gel; single chain antibody targeting the CD22 receptor from B-cells, fused to the eukaryotic ribosome inactivating protein,	0.2%-0.3% TSP	Demonstrated that immunotoxin can efficiently bind to cancerous B-cells in vitro and kill them without affecting non B-cells	
gelonin, from Gelonium multiflorm			