

Bi9540 Biotechnology and practical use of algae and fungi

Lecture 2 – Culturing techniques

Upstream And Downstream Processes

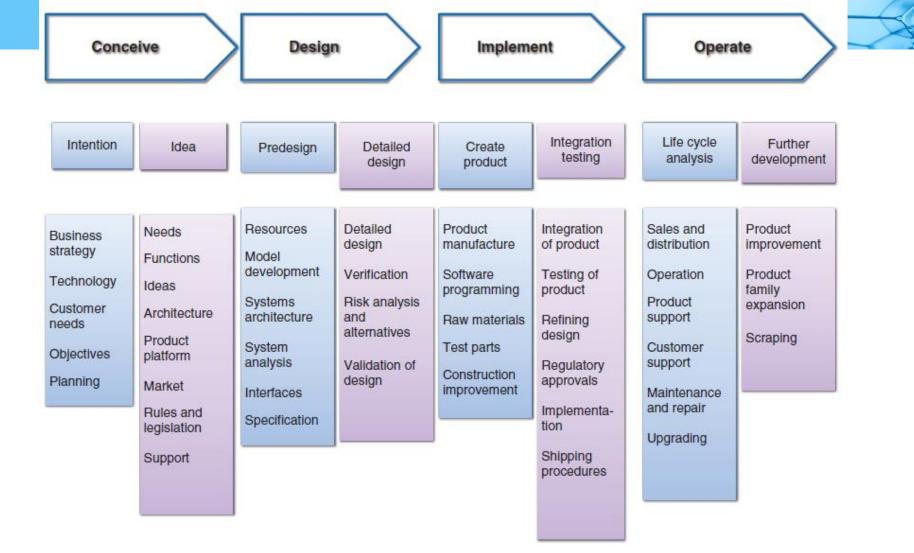
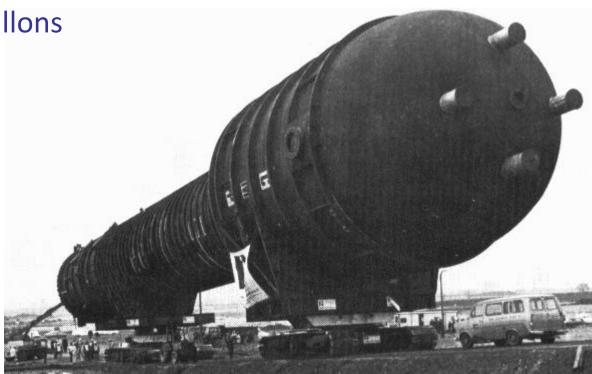


Figure 1.4 The CDIO concept: the process of developing a new product or production system is considered as a consecutive activity spanning from conceiving the product and production concept, designing the product or production system, implementing it into full-scale production, and finally operating it continuously for regular production. It is advocated that The CDIO is applicable to all industrial development work and should, therefore, be the framework for all engineering activity – from training and education till operating a process (from [18]).

FERMENTATION TECHNOLOGY


- Production of microbial biomass
- Upstream processing
- Scale
 - Laboratory (< 30 L)
 - Pilot (< 100 L)</p>
 - Semi-industrial (100 5,000 L)
 - Industrial (> 5,000 L)

World largest fermenter

WORLD LARGEST FERMENTER

- Built in 1978 in Birmingham
- Height 200 ft (61 m)
- Diam. 25 ft (7.6 m)
- Volume 736,300 gallons
 - **3** 347 000 L

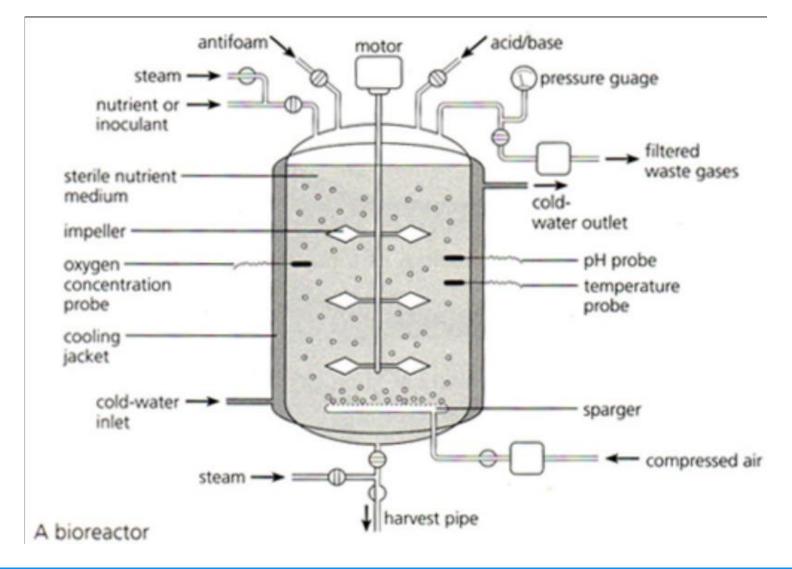
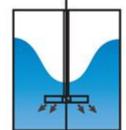
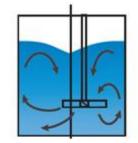


Table 1.1 Milestones in industrial biotechnology.

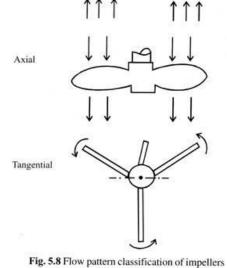
Major achievement	Discoverers	Year	Impact on industry applications	Implication on bioreactor design
Understanding of	L. Pasteur	1857	Initiating wider application	The needs for efficiency of
fermentation principles			of fermentation in industry	design recognized
Anthrax bacteria	R. Koch	1876	Disease effect of bacteria and the uniqueness of a specific bacterium	
Use of antiseptics realized	I. Semmelweis	1846	Chemical control of	The success of large-scale
r			infections	microbial production and its dependency of sterility
The existence of biological	M. Traube	1877	The catalytic action of	The optimization of the
catalysis			microorganisms	biocatalytic activity in a bioreactor
Glycerol from yeast	Neuberg et al.	1914-1918	Need for glycerol in the war	Cultivation of yeast for other
cultures			industry	products than beer and wine
Acetone-butanol	C. Weizmann	1914-1918	Supply of bulk chemicals	Scale-up technology
fermentation			for explosives and car tires	challenged to meet market demand
Penicillin discovered	A. Fleming	1929	Pharmaceutical	Strain improvement
	C C		biotechnology initiated	-
Penicillin isolation	H.W. Florey and colleagues	1939	Product characterization	Yield improvements
Cephalosporin fermentation	Brotzu and Abraham	1948	Other microbial metabolites could act as antibiotics	Fed-batch operations
Antibiotic strain improvement	S. Waksman and others	1940s-1950s	Higher yield per volume	Process intensification

Amino acid fermentation	Kyowa Hakko Co.	1957	Metabolism in strains for	Scale-up of microbial
Organic acid fermentation	Food industries	1940	amino acids is exploitable	fermentations Large-scale fermenters
Vitamin fermentation	A. Guilliermond Reichstein	1930s	Riboflavin (B2) (vitamin C)	Bioreactor processes including semisynthetic steps
Genetic engineering and recombinant DNA technique	P. Berg, D. Glaser	1971	Improved metabolism and expression in cells	Induction procedures in bioreactor
Recombinant insulin, growth hormone	H. Boyer and R. Swanson, Genentech	1978	The recombinant DNA-technique open for a biotherapeutic production	A new methodology of culturing recombinant microorganisms with induction protocols
Monoclonal antibodies in hybridoma cultures	G. Köhler, C. Milstein	1975	Diagnostics and therapeutics based on antibodies	Bioreactors to be developed for cell culture requirements, in particular, hybridoma
Recombinant DNA technique applied industrially in animal cell cultures	Pharmaceutical industries	1990s	Recombinant products in mammalian cells human-like biotherapeutics (e.g., EPO, tPA, IFN, Factor VIII)	Bioreactors to be developed for other cell cultures such as CHO, HEK, and other cell lines
Pluripotent stem cells and derived cells	S. Yamanaka	2006	Cells from hES and iPS cells the potential to become new products for cell therapy	Bioreactors must be adapted to new cultivation conditions


Construction of bioreactor


Ipellers

Rushton type impeller



11 1

Radial

Ex. Marine propeller, Hydrofoil impeller.

FBT is a non-swirling, low viscosity system

is an ideal example.

Any impeller at a low apparent viscosity if swirl exist, occurs usually with paddle at high viscosities.

Mixing in propelled bioreactor

Impellers

Turbine vortex blade

Flat blade turbine type

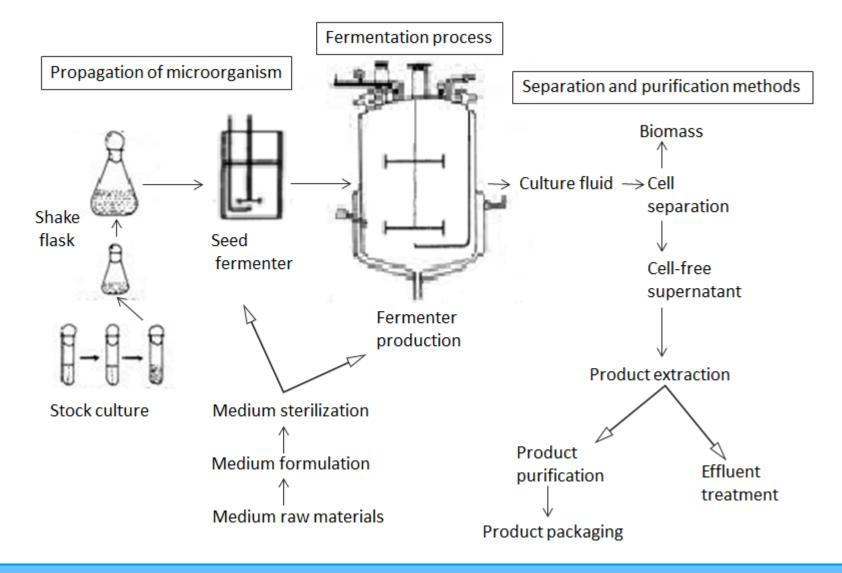
Anchor blade

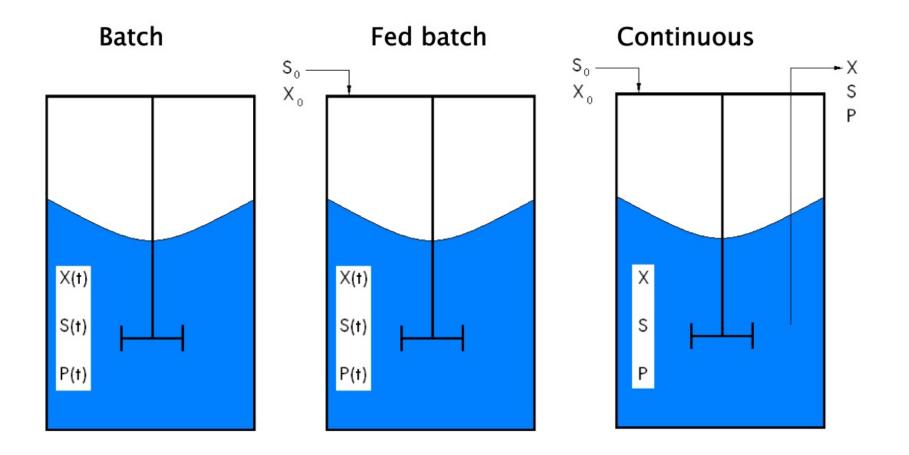
Spiral Propeller blade

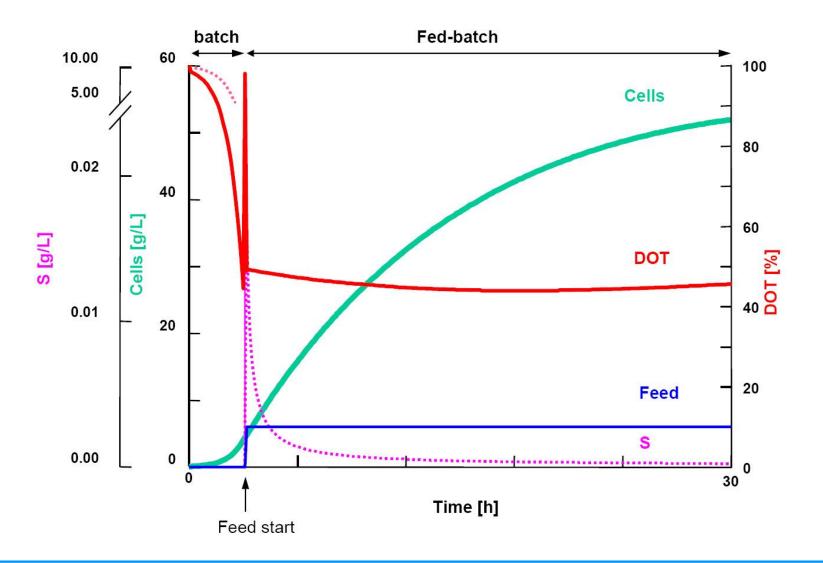
Ruvastar cyclo

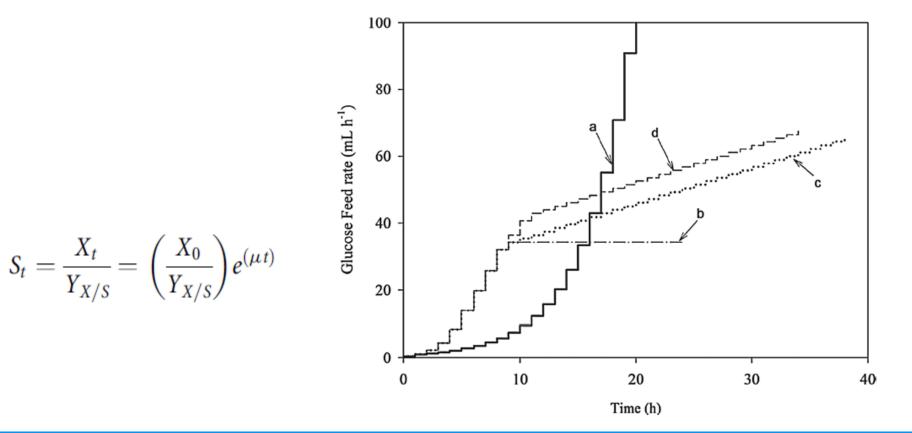
Dispersing Homogenizing blade

Open blade

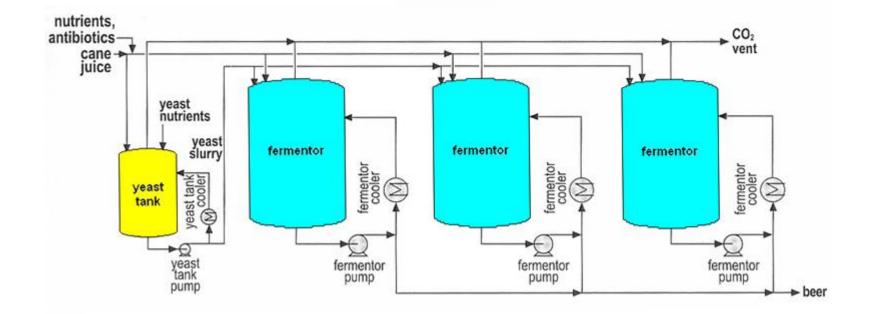


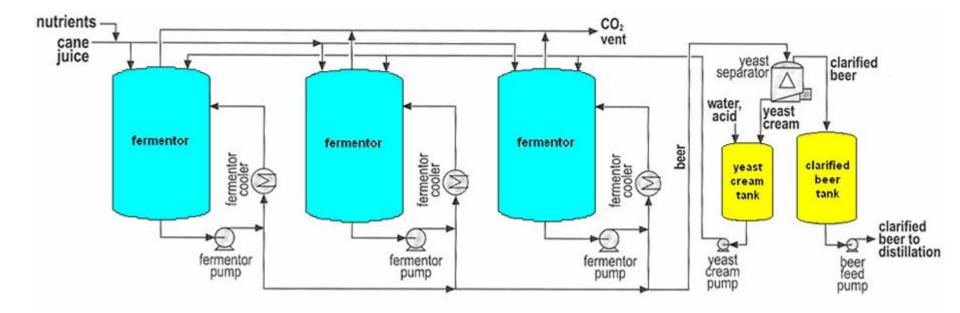

High shear homogenizer


Fermentation process

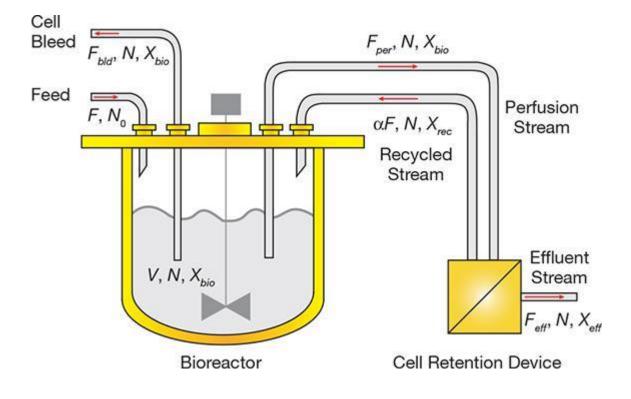

Culture types

Batch, fed-batch, continuous culture




 Feeding strategy is important to avoid substrate depletion or overfeeding of the culture

Industrial fed-batch fermentation of sugar juice



Fed-batch fermentation with yeast cell recycle

Continuous culture

- Influx of fresh medium, efflux of cell culture
- Can be operated for weeks or months

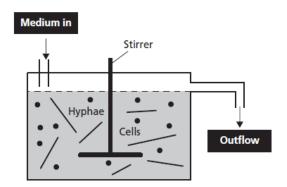
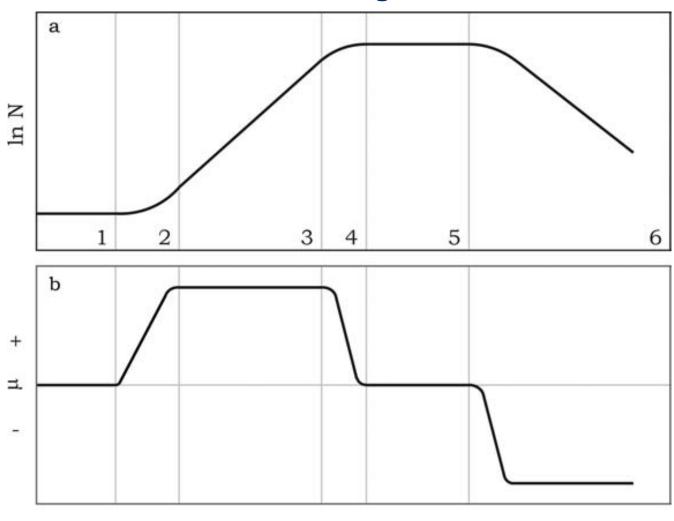
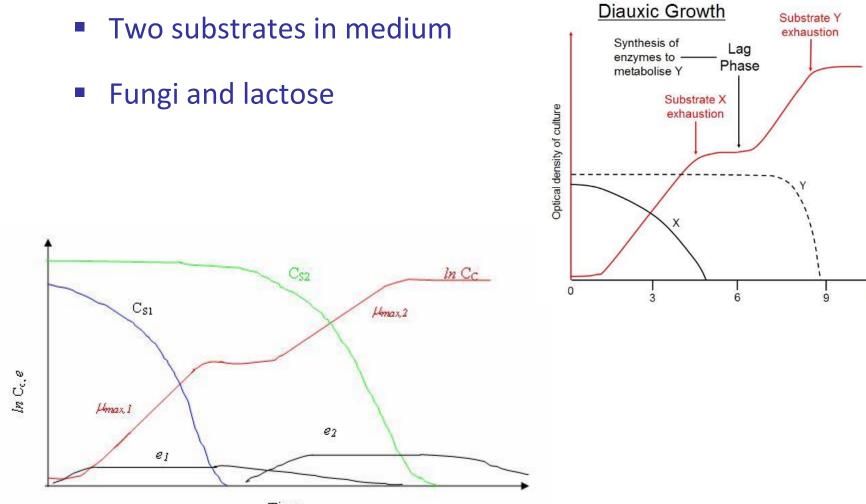



Fig. 4.16 Diagram of a continuous culture system to produce fungal biomass. Culture growth



time

Diauxic growth

Relative concentration of substrate X(---) and substrate Y(---)

Time (hours)

Time

Microbial growth

Growth rate

$$\mu = \mu_{\max}\left(\frac{S}{K_S + S}\right)\left(\frac{O}{K_O + O}\right)$$

Oxygen mass transfer

$$N_{A,02} = k_L a (C_L^* - C_L)$$

Mass Balances

Nutrient utilization

$$q_s = \frac{\mu}{Y_{x/s}}$$

$$q_o = \frac{\mu}{Y_{x/o}}$$

$$\frac{dX}{dt} = \mu X$$

$$\frac{dS}{dt} = -q_s X$$

$$\frac{dO}{dt} = -q_o X$$

$$\frac{dNH_4}{dt} = -q_{NH4}X$$

$$q_{NH4} = \frac{\mu}{Y_{x/NH4}}$$

Potential limiting factors

- Dissolved oxygen tension
- pH
- Temperature, mixing speed
- Nutrient concentration
- Product concentration
- Secondary metabolites
- Population dynamics
- Genomic/plasmid instability

Table 1.2 Bioreactor design criteria.

Design issue	Purpose	Design means	Parameters
Gas transfer in submerged culture	Ensure high growth rate, avoiding oxygen starvation	Reactor geometry Sparger design Baffles Overpressure Impeller geometry	Aspect ratios K _L a OTR OUR CER
Mixing efficiency	Avoiding gradients of heat, nutrients and additives, stress Reduce power	Impeller geometry Baffles Mixing analysis CFD	Aspect ratios Mixing time <i>t</i> Power number
Nutrient supply and addition Liquid–solid transfer	Efficient transfer to bioreactor volume Enhance reaction rate Reduce gradients	Feeding regime Multiple ports Flow distributors Porous support	Linear and exponential profile Thiele modulus
Heat transfer	Efficient removal of metabolic heat	Internal coils Recycling of media Jacket Cooling media	Dimensionless numbers

Sterility	Ensure whole unit is	Sterilization	Sterilization time
	devoid of foreign microorganisms to	procedure Overpressure	and temperature
	avoid infection	Barriers Containment Microfilters	
Strain selection	Finding strain with	Microbial analysis	Specific rates (μ , q_p ,
	properties adapted	Omics	q_S)
	to media and reactor constraints		Inhibition constants
Scale-up procedure	Ensuring same	Design geometry of	Aspect ratio
	conditions at large	vessels and impellers	Scale-up rule
	scale	Range of mixing	parameters
			Dimensionless numbers
Rheology		Additives affecting	Reynold's number
		viscosity	CFD data
		CFD	
Homogeneity of culture	Avoiding gradients for ideal reactor conditions	CFD	Zonal analysis data
Media composition	Balanced culture	Factorial analysis	Model fit parameters
	media	Omics methods	

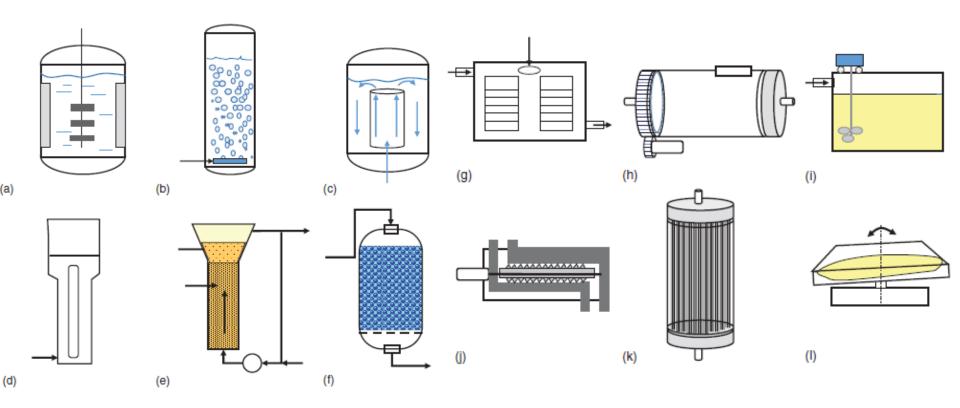
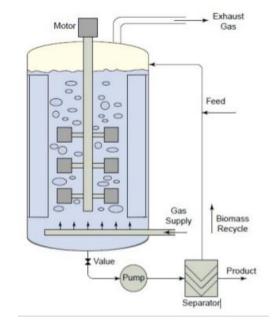
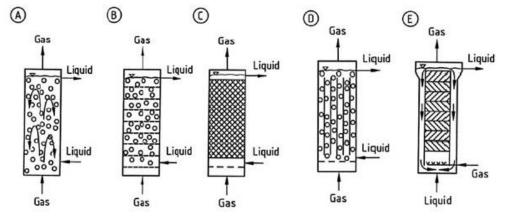



Figure 1.2 Twelve examples of bioreactor designs: (a) stirred-tank reactor, (b) bubble reactor, (c) airlift reactor, (d) loop reactor, (e) reactor with immobilized cells, (f) fluidized reactor with recycling of cells, (g) solid-phase tray reactor, (h) rotary drum bioreactor, (i) agitated-tank reactor with movable impeller, (j) continuous screw bioreactor, (k) hollow-fiber reactor, and (l) wave bioreactor

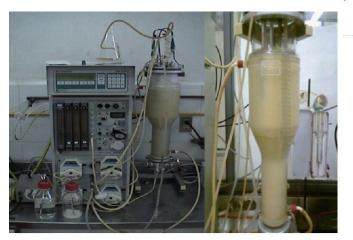
Stirred tank bioreactor

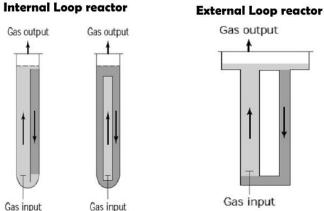
- Most common in biotechnology
- Easy cleaning and parameter control
- Well described scale-up
- Good gas transfer
- Higher investment and maintenance cost
- Mixing is not optimal
- Max volume 1,000 m³



Bubble column

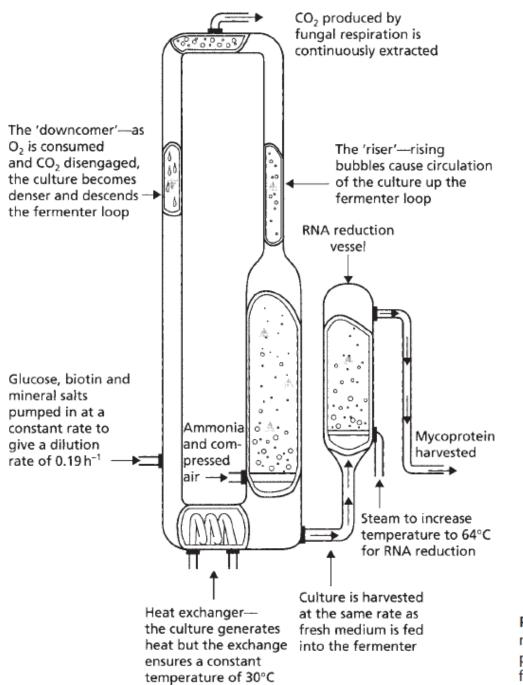
- Low investment cost, no moving parts, even over 1,000 m³
- Easy cleaning, good gas transfer and mixing
- Foaming, difficult condition control
- Limited viscosity

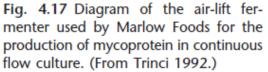



A) Simple bubble column; B) Cascade bubble column with sieve trays;

- B) C) Packed bubble column; D) Multishaft bubble column;
- C) E) Bubble column with static mixers

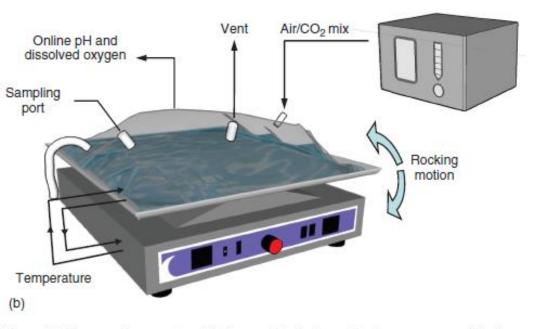
Airlift reactor


- Low investment, no moving parts, easy cleaning
- Good gas transfer
- Loop can be used for cooling
- Foaming, difficult condition control
- **Poor mixing**



Gas output Gas input

Gas input



Bioreactor comparison

	STR	BC	ALR
Mixing	+	+++	++
Gas transfer	+++	+	++
Heat transfer	++	+++	+++
Energy input	++	+	+
Control options	++	+	+
Handling of viscous broth	+++	+	+
Very large scale operation	+	+++	++
Ease of cleaning	++	++	++
Low maintenance	+	+++	+++

Single-use bags

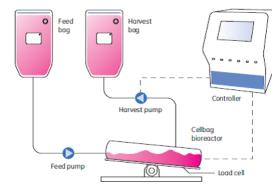


Fig 1. WAVE Bioreactor in perfusion set-up.

Figure 1.3 An emerging new trend is the replacement of old stainless steel fermenter with single-use wave-bioreactors. It is a striking example of how smart designs based on fabrication technology use compatible lowcost materials and new conceptual thinking lead to a leap in design (from [17], with permission).

Absence of free water

(a)

NFORS HT

Sugar Cane Bagasse

Saw Dust

Tea Waste

Apple Pomace www.technologyinscience.blogspot.com

Coconut oil Cake

Wheat Bran

Table 2. Production of xylanase and 6-pentyl- α -pyrone by some filamentous fungi using different bioprocesses — Production de xylanase et de 6-pentyl- α -pyrone par les champignons filamenteux en utilisant des bioprocédés variés.

Biocompound	Production	Microorganism	Fermentation appl	ied	Reference
Xylanase	630 IU·ml ⁻¹	Trichoderma reesei Rut C-30	SbmF	Flask	Xiong et al., 2004
	1,350 IU·ml ⁻¹	Trichoderma reesei Rut C-30	SbmF (Fed-batch)	Bioreactor (21)	Xiong et al., 2004
	14,790 IU·ml ⁻¹ ·h ⁻¹	Aspergillus niger KK2	SSF wheat raw	Flask	Park et al., 2002
	844 IU·ml ⁻¹	Penicillium canescens 10-10c	SbmF	Shake flask	Gapar et al., 1997
	7,448 IU·ml ⁻¹	Penicillium canescens 10-10c	SbmF	Shake flask	Bakri et al., 2003
	9,632 IU·g ⁻¹	Penicillium canescens 10-10c	SSF	Flask	Bakri et al., 2003
	9,300 IU·g ⁻¹	Penicillium canescens 10-10c	SSF	Plastic gags	Assamoi et al., 2008a
	10,200 IU·g ⁻¹	Penicillium canescens 10-10c	SSF	Multi-layer	Assamoi et al., 2009
	18,895 IU·g ⁻¹	Penicillium canescens 10-10c	SSF	Flask	Assamoi et al., 2009
6-pentyl-α-pyrone	455 mg·l ⁻¹	Trichoderma harzianum Rifai	LSC	Flask (500 ml)	Kalyani et al., 2000
	474 mg·l ⁻¹	Trichoderma harzianum	SbmF	Flask	Serrano-Carreon et al., 2004
	3,000 mg·kg ⁻¹	Trichoderma harzianum	SSF	Flask	de Aroujo et al., 2002
	7,100 mg·l ⁻¹	Trichoderma atroviride AG2755-5NM398	SbmF Ext-LSI	Plate (50 ml)	Shinobu et al., 2009
	230 mg·l ⁻¹	Trichoderma harzianum IMI206040	SbmF	Shake flask (500 ml)	Rocha-Valadez et al., 2006
	230 mg·l ⁻¹	Trichoderma harzianum IMI206040	SbmF	Stirred tank (101)	Rocha-Valadez et al., 2006
	5,000 mg·kg ⁻¹	Trichoderma harzianum 4040	SSF	Flask (250 ml)	Ramos et al., 2008

SbmF: Submerged Fermentation; SSF: Solid Substrate Fermentation; Ext-LSI: Extractive Liquid-Surface Immobilisation.

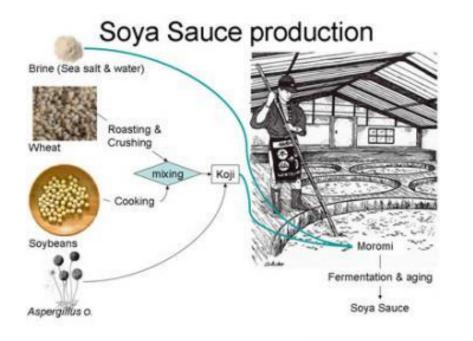
Fungi wall growth in bioreactor at the end of fermentation

Infiltration and flow point

Support colonized by microorganism

Metallic support before colonization by microorganism

Tank without wall growth

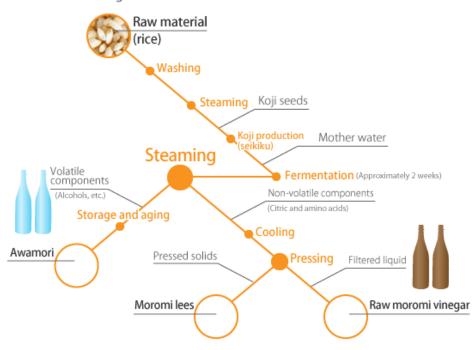

- Low-cost raw materials
- Easy down-stream processing
- Reduced waste and pollution
- Cost-effective (no water), easy control
- Resembles natural environment of the microbes

Tank without wall growth

Economic Sector	Applications	Examples
Agro-Food Industry	Traditional Food Fermentations	Koji, Tcznpch, Rae, Attickc, Fermented cheeses
	Mushroom Production & spawn	Agaricus, Pleurotus, Shn-take
	Bioconversion By-products	Sugar pulp Bagasse Composting, Detoxication
	Food Additives	Flavours. Dyestuffs.
Agriculture	Biocontrol, Bioinsecticide	Beauveria Metarhizium, Tricho derma
	PlantGrowth Hormones / Enhancers	Giberellins, Rhizobium, Trichoderma
Industrial Fermentation	Enzymes production	Amylases, Cellulases Proteases, Pectinases, Xylanases
	Antibiotic production	Pencillin, feed & Probiotics
	Organic acid Production	Citric acid, Fumaric acid,etc
	Fungal Metabolites	Alkaloids
	Ethanol Production	Malting and Brewing

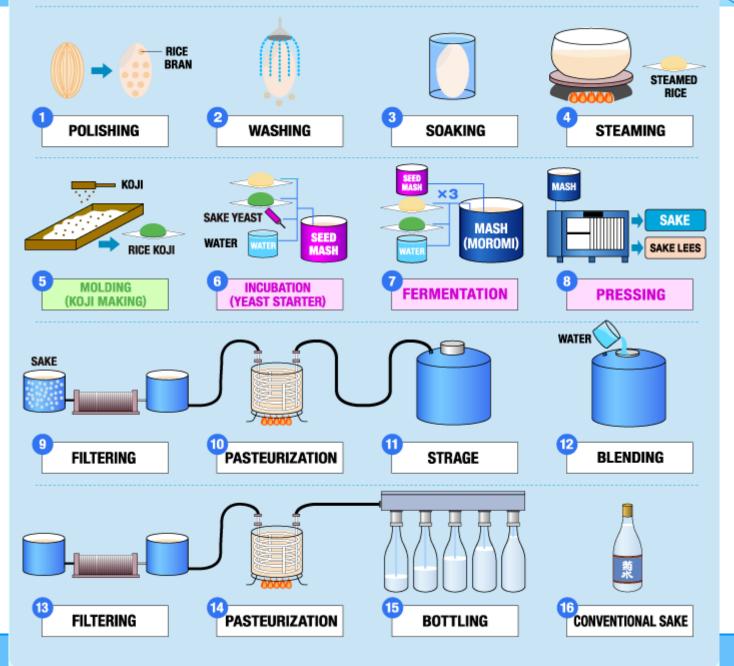
Koji fermentation

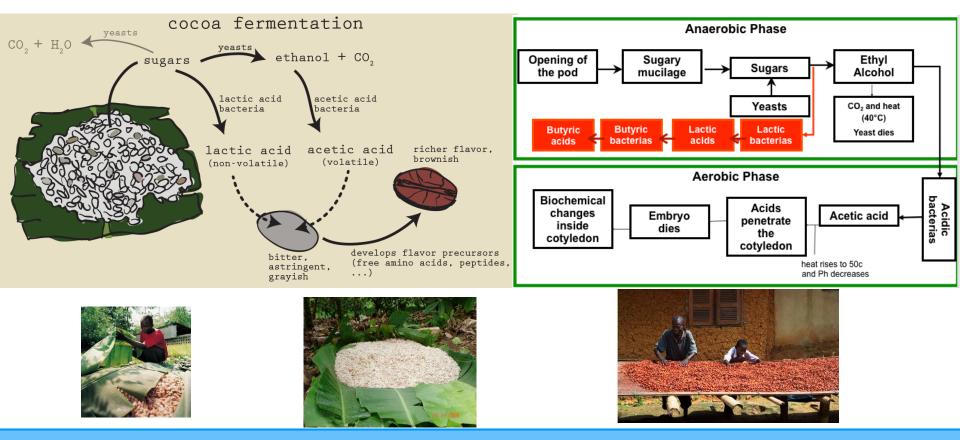
- Aspergillus oryzae = Kanji 麹
- Traditional Japanese fermentation process



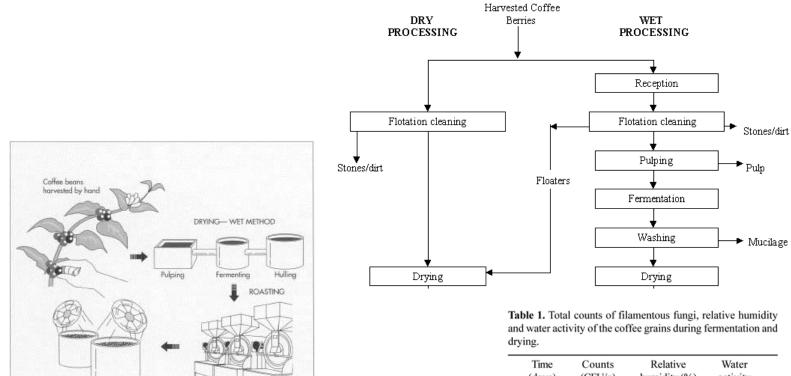
Koji fermentation

Shōchū production


Production flow chart for moromi vinegar



JAPANESE SAKE BREWING PROCESS

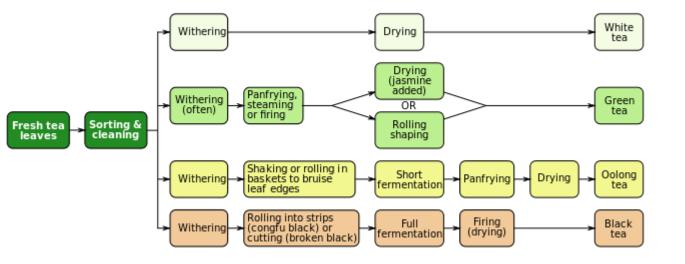


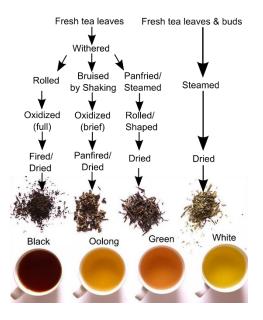
Cocoa bean fermentation

- Beans are fermented 2-7 days covered with banana leaves
- Without fermentation, there would be no chocolate

Coffee beans skin removal

Time (days)	Counts (CFU/g)	Relative humidity (%)	Water activity	
0	$1.5 \ge 10^3$	67.45	>0.85	
2	2.8×10^{3}	60.83	>0.85	
4	5.9×10^{3}	38.85	>0.85	
6	$7.6 \mathrm{x} 10^3$	29.35	>0.85	
8	2.0×10^4	28.56	>0.85	
12	$4.0 \ge 10^4$	19.72	0.82	
14	$6.8 \mathrm{x} 10^4$	19.30	0.82	
16	$9.0 \ge 10^4$	19.70	0.82	
18	$1.7 \mathrm{x} 10^5$	15.78	0.71	
20	2.0 x 10 ⁵	12.90	0.63	
22	1.6 x 10 ⁵	11	0.52	

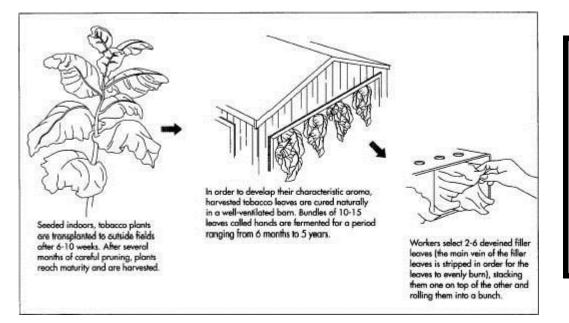

Fermented tea


- Aspergillus niger, luchuensis
- Pu-erh and some other black teas

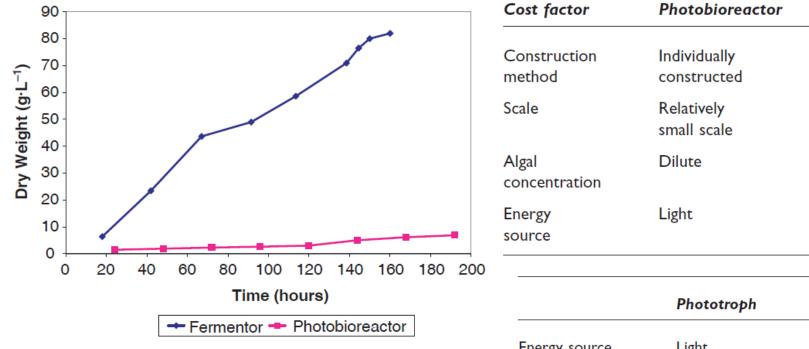
Tea (Camellia Sinensis) Processing Chart

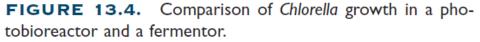
Tea leaves spread out on fermentation rack.

Kombucha fermentation


- Variety of fermented black or green tea
- Saccharomyces cerevisiae, Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, and Zygosaccharomyces bailii

Tobacco fermentation


- Harvested leaves are fire-cured and moistened
- Debaryomyces hansenii is predominant in early stage
- Fermentation can take from weeks to years



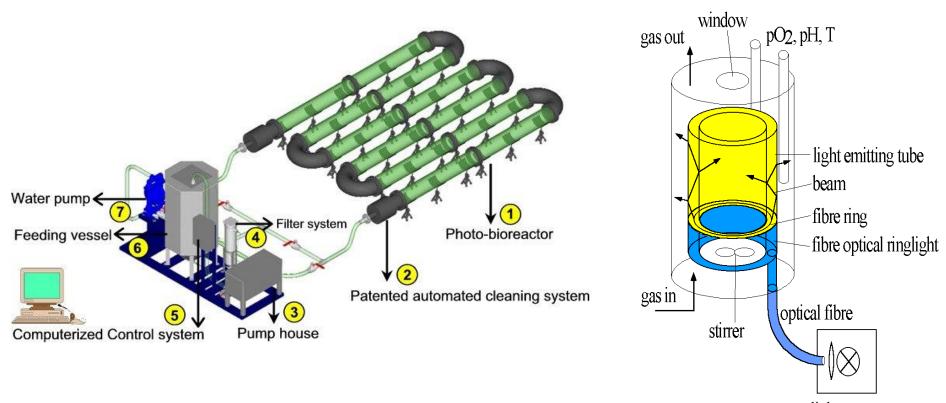
Feature	Photobioreactor	Fermentor
Energy source	Light	Organic carbon
Cell density/dry weight	Low	High
Limiting factor for growth	Light	Oxygen
Harvestability	Dilute, more difficult	Denser, less difficult
Vessel geometry	Dependent on light penetration	Independent of energy source
Control of parameters	High	High
Sterility	Usually sanitized	Can be completely sterilized
Availability of vessels	Often made in-house	Commercially available
Technology base	Relatively new	Centuries old
Construction costs	High per-unit volume	Low per-unit volume
Operating costs	High per-kg biomass	Low per-kg biomass
Applicability to algae	Photosynthetic algae	Heterotrophic algae

Photobioreactor vs fermentor

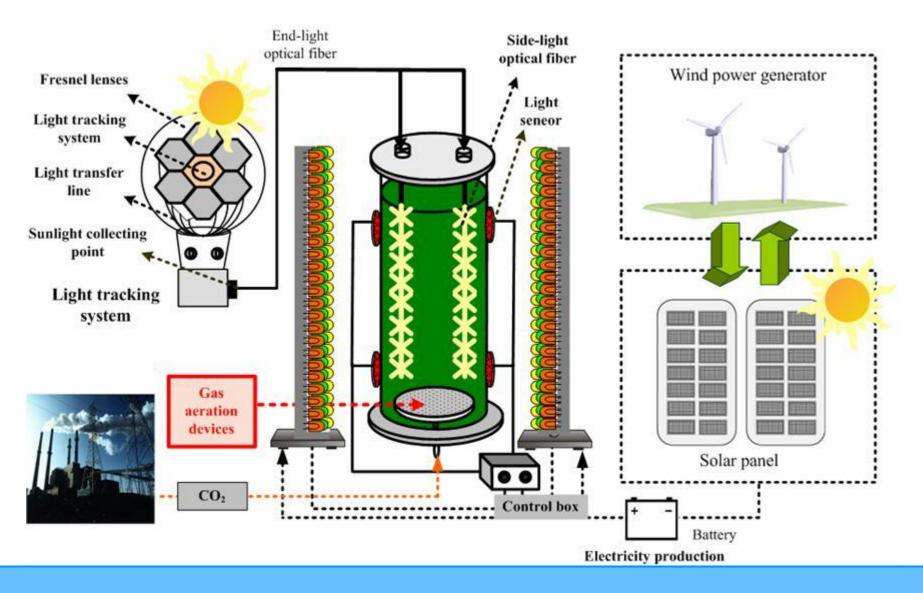
ource	Light	
	Phototroph	Heterotroph
Energy source	Light	Glucose
Energy cost	\$0.07/kW-hr	\$0.67 /kg
Estimated cost/kg of dry weight	\$11.22	\$0.81
Actual cost/kg of dry weight	Less than \$11.22	\$2.01
Productivity	0.4 g · L ⁻¹ · day ⁻¹	5.8 g · L ⁻¹ · day ⁻¹

Fermentor

Mass produced


Up to 500,000

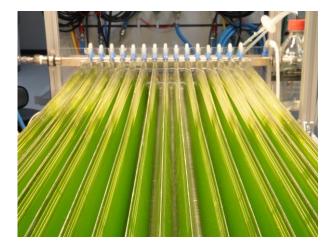
Organic carbon


liters

High

by craftsmen

light source

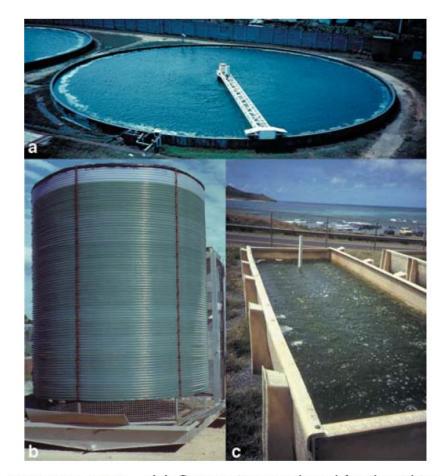

Tubular glass photobioreactor

Christmass tree photobioreactor

Plastic plate photobioreactor

Horizontal photobioreactor with zig-zag geometry

Outdoor ponds


TABLE 14.1 Summary of growth conditions for typical microalgal strains cultured in outdoor ponds; variation between strains means that some strains have optima outside the limits listed.

Species condition	Chlorella vulgaris	Dunaliella salina	Haematococcus pluvialis	Phaeodactylum tricornutum	Spirulina platensis
Natural habitat Salinity, optimum (% [w/v] NaCl)ª	Freshwater 0	Hypersaline brines 22% (growth) 35% (carotenogenesis)	Freshwater 0	Marine 3%	Alkaline soda lakes 0 to 1%
Salinity, maximum (% [w/v] NaCl)ª	~ %	35%	~ %	~5% (?)	<3%
Temperature (°C), optimum pH, optimum Commonly used media ^b	~25 6.5–7.5 Bolds basal	30–40 ~9.0 Modified Johnson's	~18–22 ~7.0 Bolds basal	~18–24 ~8.0 Guillard's f	30–38 ~9.0 (–10.0) Zarrouk

^aFor practical reasons salinity is expressed here as % (w/v) NaCl rather than the usual unit of p.s.u., given the great variability in the salt composition of algal media and the fact that salinity is generally adjusted by the addition of NaCl. ^bReferences for medium composition: Borowitzka 1988, Vonshak 1997a.

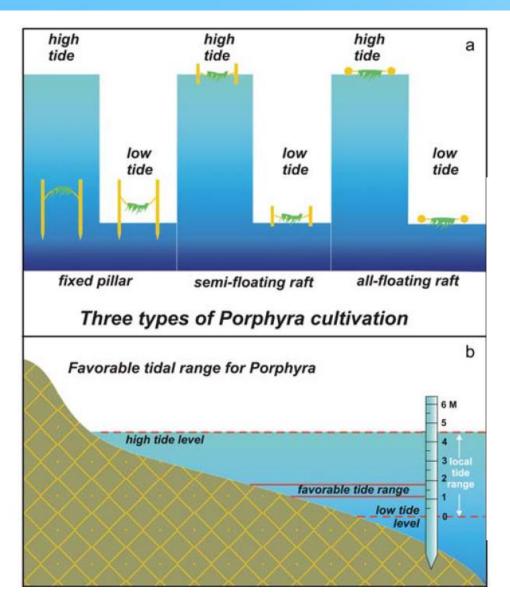
FIGURE 14.1. (a) Extensive open ponds at the Hutt Lagoon, Western Australia, plant operated by Cognis Nutrition & Health, growing *D. salina* as a source of natural beta-carotene. The largest ponds are about 200 ha in area. **(b)** Raceway ponds used for the culture of *Spirulina* by Microbio Inc. at Calipatria, California (photo courtesy of Dr. Ahma Belay).

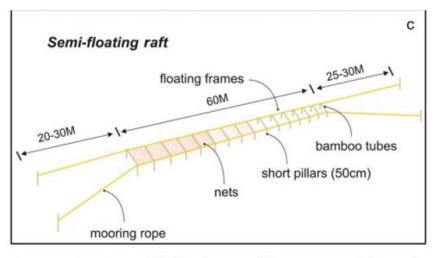
FIGURE 14.2. (a) Center-pivot pond used for the cultivation of *Chlorella* in Taiwan. Note the variable mixing effectiveness, as illustrated by the foaming at the pond perimeter. (b) Biocoil, a 1,000-liter helical tubular photobioreactor. (c) Deep aerated tank used for the culture of *Nannochloropsis* for aquaculture.

Maricultures of seaweed

 Marine algae can be cultured in sea water

TABLE 15.1 Top cultivated seaweed genera in the world during 2000 (FAO 2003).


Taxon	Value (10 ⁶ U.S.\$)	Raw material (metric tons)	U.S.\$ þer metric ton
Laminaria	2,811	4,580,000	613
Porphyra	1,118	1,011,000	1,105
Undaria	149	311,105	480
Eucheuma and Kappaphycus	46	628,576	73
Gracilaria	П	12,510	879
Total	4,632	5,972,737	


Table-1. The species of marine algae cultured and quantities harvested in (million tonnes) in Indo-Pacific region

Name of the marine algae	Countries cultivated	Utilization	Quantities harvested (Million tonnes)
Laminaria japonica (Kombu)	China, Japan, North Korea and South Korea	Food	4.8
<i>Undaria pinnatifida</i> (Wakame)	China, Japan, North Korea and South Korea	Food	1.8
Gracilaria verrucosa	China, Taiwan	Food and Phycocolloid	1.15
Gracilaria spp.	Indonesia, Korea, Philippines, Vietnam	Food and Phycocolloid	0.25
Kappaphycus alvarezii	Malaysia, Myanmar, Philippines, India	Food and mainly Phycocolloid	0.24
Eucheuma spp	China, Fiji Island, and Indonesia	Food and Phycocolloid	2.0
Eucheuma cottonii	Philippines	Food and Phycocolloid	1.5
Eucheuma denticulatum	Malaysia and Philippines	Food and Phycocolloid	0.1
Porphyra tenera	Taiwan, Japan, North Korea and South Korea	Food	0.57
Porphyra spp	China	Food	0.82
Enteromorpha clathrata Gelidium amansii	China	Food Agar	0.12 1200 (tonnes)
Monostroma nitidum	South Korea	Food	0.80
Caulerpa lentellifera	Philippines	Food	0.43
Codium fragilis	South Korea	Food	0.12
Hizikia fusiformis	Japan and South Korea	Food	N/A
Kappaphycus alvarezii	India	Phycocolloid and Liquid Fertilizer	1500 (tonnes)

FIGURE 15.1. Culture of *Porphyra.* (a) Attaching oyster shells to a net before inoculation with carpospores. (b) Seeding oyster shells in a seeding tank. (c) Young conchocelis growing on oyster shells. (d) Net rotated in a seeding tank containing mature conchospore inoculum from the free-living conchocelis culture. (e) Nets raised daily to expose the young thalli to air and sun to inhibit fouling organisms; the Japanese "Ikada" system. (f) Floating A-frame system in China; raised and lowered to expose the young thalli, inhibiting fouling organisms. (a-c courtesy M. Notoya; e courtesy of I. Levine; f from X. G. Fei.)

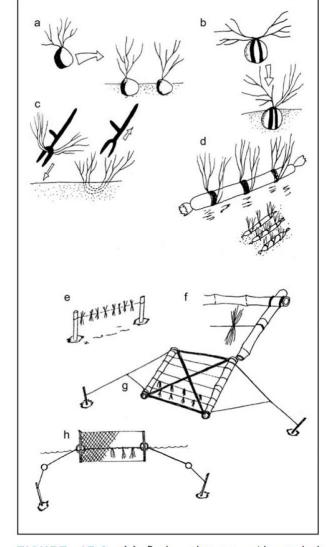


FIGURE 15.2. (a) *Porphyra* seedlings separated from the bundles: fixed pole, semifloating raft, and floating raft. (b) Determining of the best level for fixed pole intertidal *Porphyra* cultivation. (c) Diagrammatic illustration of a semifloating raft. (a after Tseng 1981; b-c courtesy X. G. Fei.)

FIGURE 15.3. (a) Attachment of *Porphyra* nets to a semifloating raft. (b) Korean-style all-floating rafts. (c) Fleet of *Porphyra* harvesting boats. Note the tubular frames that lift the nets (see d). (d) Harvesting boat with *Porphyra* net lifted from the sea. (a courtesy E. Hwang; d courtesy M. Notoya.)

FIGURE 15.4. (a) Rocky substratum with attached *Gracilaria* being transplanted to a new site. (b) *Gracilaria* attached to rocks with rubber bands; method used for anchoring transplants in soft sediments. (c) Plants inserted with a fork directly into soft sediments. (d) Plants attached to sand-filled plastic tubes. (e) *Gracilaria* attached to a rope, which is stretched between two poles pushed into the sediments. (f) Attachment of plants for rope culture. (g) Bamboo floating frame with *Gracilaria* attached to the meshes. (a–d modified from Santelices and Doty 1989, Oliveira and Alveal 1990, Critchley and Ohno 1997; e from Critchley and Ohno 1997.)

FIGURE 15.5. (a) Rope cultivation of *Gracilaria* using monofilament long lines. (b) Enlarged image showing a *Gracilaria* plant held within the twists of the lone line rope. (c) *Eucheuma* farmers harvesting plants from submerged long lines. (d) Open water cultivation and harvesting of *Kappaphycus*; diver bringing a large plant to the boat. (e) Typical outrigger boat used for open water harvesting. (d and e courtesy T. Chopin.)

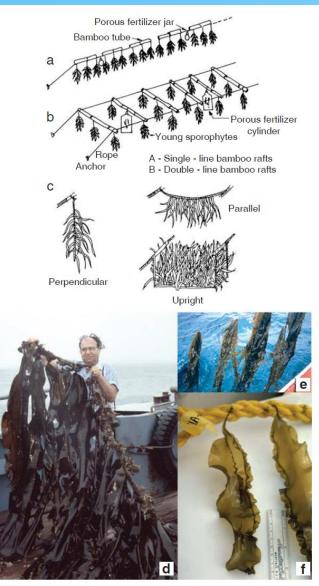
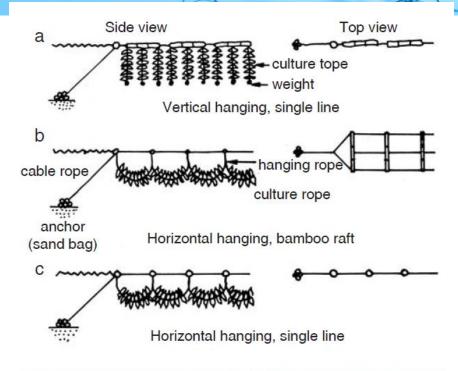
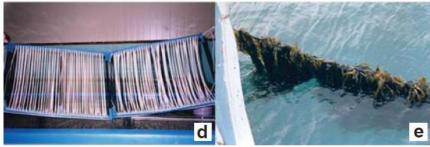
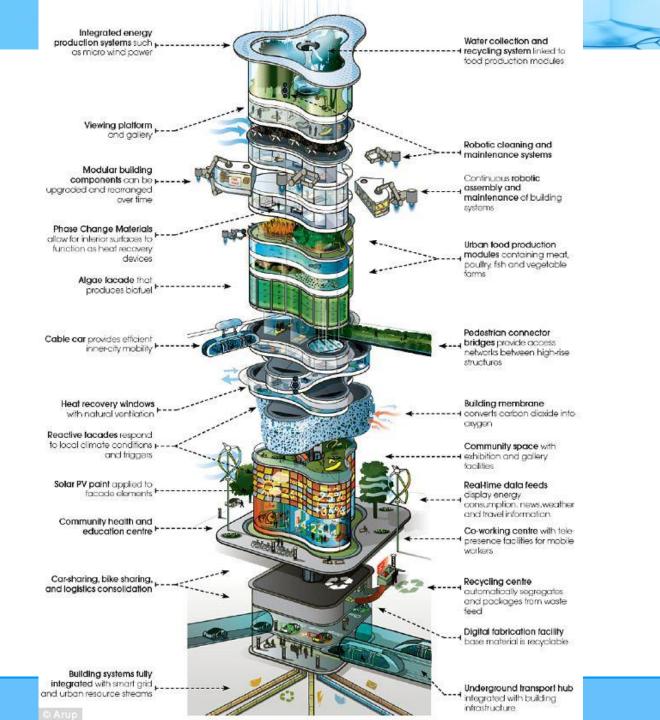




FIGURE 15.6. (a) A single-line bamboo raft for Laminaria sporelings. (b) A double-line bamboo raft used in Japan. (c) Perpendicular, parallel, and upright culture methods. (d) Long line with Laminaria after 8 months of growth (Yellow Sea, China). (e) Long line showing attached Laminaria plants (South Korea). (f) Young sporophytes growing on long line. (a-c from Cheng 1969; e courtesy E. Hwang.)

FIGURE 15.7. (a–c) A bamboo raft and vertical and horizontal single lines used for *Undaria* cultivation. (d) *Undaria* spore collector; frame is 50 by 50 centimeters and a synthetic seed string is wound around the frame. (e) Open water cultivation of *Undaria*. (a–c from Akiyama and Kurogi 1982; e courtesy E. Hwang.)

Algae-powered houses


- 129 bioreactors on south and south-east faces
- Hamburg, Ger

The Arup Journal

