

# Bi9540 Biotechnology and practical use of algae and fungi

# Lecture 6 – Algae in food industry



History of algae as food source

- Ancient records show that algae were consumed also by populations of cavemen
- 500 BC macroalgae were collected in China
- 14<sup>th</sup> century report Aztecs harvesting Arthrospira using it for preparation of tecuitlatl
- Harvesting of Arthrospira in Chad dates back to Kanem Empire (9<sup>th</sup> century AD)

| Table 1 | Algal | biotechnology | historical | data |  |
|---------|-------|---------------|------------|------|--|
|---------|-------|---------------|------------|------|--|

| Alga                             | Year of first record |                 |           |  |  |
|----------------------------------|----------------------|-----------------|-----------|--|--|
|                                  | Collected            | Cultivated      | Processed |  |  |
| Macroalgae                       |                      |                 |           |  |  |
| Porphyra                         | 530                  | 1640            | _         |  |  |
| Chondrus/Gelidium/<br>Gracilaria | 80                   | 1950            | 1658      |  |  |
| Laminaria/Macrocystis/<br>Fucus  | 00                   | 1731            | 1925      |  |  |
| Eucheuma                         | 00                   | 1971            | 1965      |  |  |
| Microalgae                       |                      |                 |           |  |  |
| Diatoms                          | 00                   | 1863            | 1914      |  |  |
|                                  |                      | (selective use) |           |  |  |
| Spirulina                        | 00                   | 1965            | 1985      |  |  |
| Chlorella                        | _                    | 1975            | 1994      |  |  |
| Dunaliella                       | _                    | 1982            | 1985      |  |  |
| Odontella                        | _                    | 2002            | 2003      |  |  |

### Traditional food

- Algae were traditionally consumed worldwide, however, during modern age the consumption vanished
- Strong tradition is in Asian countries (Japan, China, Korea, Philipines,...), Chad, Mexico
- Once traditional consuments, Ireland is now renewing interest in algae

### Global market

- 42 countries currently report commercial macroalgae activity
- China is the top producent of algae (*Laminaria* as prime)
- North Korea, South Korea, Japan, Philippines, Chile, Norway, Indonesia, USA, India – 10 countries contribute about 95 % to the global macroalgae market
- About 90 % of production is culture-based
- Asia covers 99 % of production (China 75 %)

### Global market

- Porphyra, Kappaphycus, Undaria, Euchema, Gracilaria and Laminaria make up 99 % of produced macroalgae
- World's total harvest increased from 3 million tons in 1981 to 13 million tons in 2002 (according to FAO)

#### Total Macroalgae Harvest in All Fishing Areas of the World

| All Fishing Areas of the World | 2000      | 2001      | 2002      |
|--------------------------------|-----------|-----------|-----------|
| Red Macroalgae                 | 2,275,141 | 2,472,253 | 2,791,006 |
| Brown Macroalgae               | 5,608,074 | 5,453,534 | 5,782,535 |
| Green Macroalgae               | 96,235    | 93,688    | 76,265    |

#### Porphyra is the most valuable macroalgae

#### Summary of Edible Algae and the Corresponding Food Item

#### Scientific Name

#### Common Name

Nostoc flagelliforme Arthrospira sp. Chondrus crispus Porphyra spp. Palmaria (Rodimenia) palmata Callophyllis variegata Asparagopsis taxiformis Gigartina spp. Gracilaria coronopifolia Gracilaria parvisipora Gracilaria verucosa Sargassum echinocarpum Dictyopteris plagiogramma Undaria pinnatifida Laminaria spp. Nereocystis spp. Hizikia fusiforme Alaria esculenta Cladosiphon okamuranus Codium edule Enteromorpha prolifera Ulva fasciata Caulerpa lentillifera Monostroma nitidum

Facai Dihé/Tecuitlatl Pioca/Irish moss Nori/Laber/Zicai Dulse Carola Limu kohu **Botelhas** Limu manauea Ogo Ogo-nori/Sea moss Limu kala Limu lipoa Wakame Kombu Black kelp Hiziki/Hijiki Oni-wakame Mozuku Limu wawale'iole Limu 'ele'ele/green laver Limu palahalaha Limu Eka Aonori

#### Class

Cyanophyceae Cyanophyceae Floridophyceae Bangiophyceae Floridophyceae Floridophyceae Floridophyceae Floridophyceae Floridophyceae Floridophyceae Floridophyceae Pheophyceae Pheophyceae Pheophyceae Pheophyceae Pheophyceae Pheophyceae Pheophyceae Pheophyceae Bryopsidophyceae Ulvophyceae Ulvophyceae Charophyceae Ulvophyceae

#### Major microalgae commercialized for human nutrition

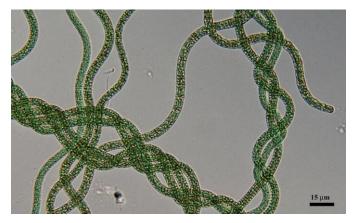
| Alga                                               | Annual<br>production<br>(t/year)      | Producer<br>country                        | Applications and products                                                                                                                  |
|----------------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Spirulina (Arthrospira)                            | 3000                                  | China, India,<br>USA,<br>Myanmar,<br>Japan | Human and animal nutrition,<br>cosmetics<br>(phycobiliproteins, powders,<br>extracts, tablets, beverages,<br>chips, pasta, liquid extract) |
| <i>Chlorella</i> sp.                               | 2000                                  | Taiwan,<br>Germany,<br>Japan               | Human nutrition, aquaculture,<br>cosmetics<br>(tablets, powders, nectar,<br>noodles)                                                       |
| Dunaliella salina                                  | 1200                                  | Australia,<br>Israel, USA,<br>China        | Human nutrition, cosmetics<br>(ß-carotene, powders)                                                                                        |
| Aphanizomenon flos-<br>aquae                       | 500                                   | USA                                        | Human nutrition<br>(capsules, crystals, powder)                                                                                            |
| Haematococcus pluvialis                            | 300                                   | USA, India,<br>Israel                      | Aquaculture, astaxanthin                                                                                                                   |
| Crypthecodinium cohnii                             | 240t DHA oil                          | USA                                        | DHA oil                                                                                                                                    |
| Shizochytrium sp.<br>Source: Adapted from Spolaore | 10t DHA oil<br>e et al. (2006) and Go | USA<br>uveia et al. (2008b)                | DHA oil                                                                                                                                    |

#### Ge-Xian-Mi

- Nostoc sphaeroides
- Regional use as food or ingredient
- Traditionally in China where it can be found in rice fields
- Colonies can reach 2.5 cm in diameter
- Dried Nostoc can be sautéed with oysters, used in soups or as thickener for food



### Nostoc flagelliforme


- also known as faat choy, fa cai, black moss, hair moss or hair weed
- Chinese delicacy for about 2000 years
- Appreciated for herbal values and spiritual image





### Arthrospira

- Filamentous cyanobacterium
- Also called Spirulina
- Favorite in Mexico and Chad



- In 1940 Dangeard reported on dihé consumed in Chad and suggested it was Arthrospira
- Dihé is an important source of vitamin A



### Arthrospira

Aztecs collected and consumed Arthrospira



 Tecuitlatl (stone excrement) was consumed to boost energy. The food was some kind of dry cake



### Collected in Chad

• Consumed with maize, ...

| Diet                                    | Protein efficiency ratio |
|-----------------------------------------|--------------------------|
| Spirulina                               | 1.90                     |
| Maize                                   | 1.23                     |
| Rice                                    | 2.20                     |
| Wheat                                   | 1.15                     |
| Rice + spirulina (3:1)                  | 2.35                     |
| Rice + spirulina (1:1)                  | 2.40                     |
| Wheat + spirulina (3:1)                 | 1.42                     |
| Wheat + <i>spirulina</i> (1:1)          | 1.90                     |
| Maize + spirulina (3:1)                 | 1.80                     |
| Maize + <i>spirulina</i> (1:1)          | 1.72                     |
| Maize + oats + <i>spirulina</i> (3:2:5) | 1.90                     |
| Maize + rice + spirulina (2:2:1)        | 1.95                     |





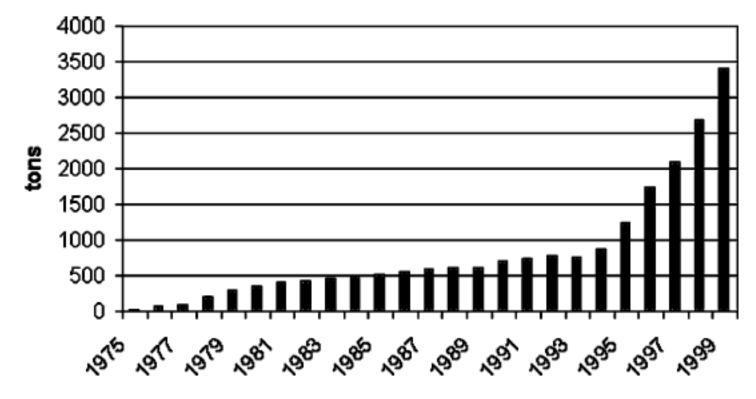
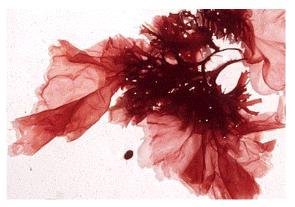




Fig. 2 World production of *Spirulina* biomass between 1975 and 1999 (1,000 tons = 1,016 t)

### Porphyra sp.

- Popularly known as Nori (Japan, Gim (Korea) or Zacai (China)
- One of the most nutritious macroalgae
- Protein content 25-50 % (75 % digestible)
- Source of trace elements and vitamins
- Excellent source of iodine
- Low in sugars (only 0.1 %)
- Taste of nori caused by content of

alanine, glycine and glutamic acid





## Porphyra

- First cultivations in Japan and Korea date back to 17<sup>th</sup> cent.
- Common names are found in 16 languages, which proves widespread usage of the alga
- Nearly 133 species are known (28 from Japan)
- In Japan, the annual production of *Porphyra* species is valued at 100 billion yen (USD 1.5 billion)
- Sushi (Japan), Gimbap (Korea) are most important foods using nori

#### Laminaria

- One of the biggest algae
- Native to Japan and Korea (cultivation since 1730)
- Millions of tons of kombu produced annually
- 10 % proteins, 2 % fat
- Source of minerals
- Served with salmon



### Undaria

- Second most valuable edible macroalga
- Millions of tons of *wakame* produced annually
- Processed as variety of food products
  - Salted wakame
  - Haiboshi wakame
  - Cut wakame
- 16.3 g protein / 100 g







#### Ulva

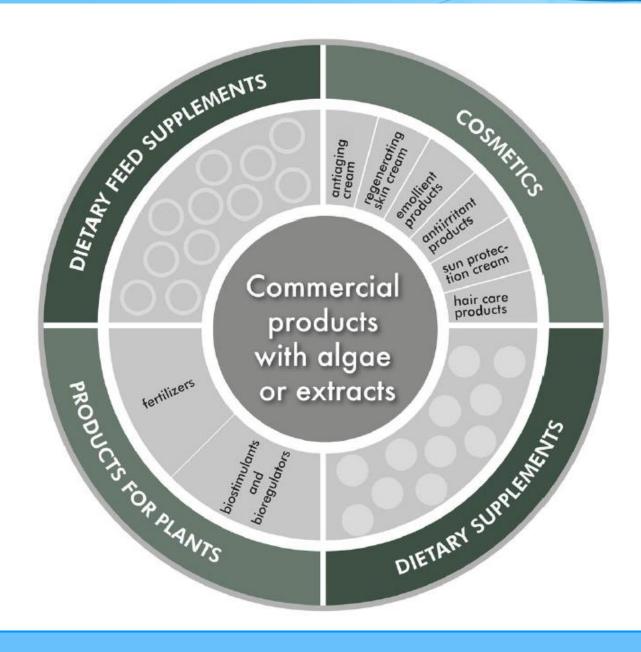
- Known as Sea lettuce
- Abundant around British Isles, China, Japan
- Ulva lactuca consumed in Scotland in soups and sallads
- Ulvas consumed by manatees <sup>(2)</sup>
- High in protein and minerals
- Rotting algae expel hydrogen sulfide



## Chlorella

- Unicellular nonmotile green algae
- Although it is the most promising taxon concerning health issues, the production doesn't reach Arthrospira and others
- Widely used for processing of human dietary supplements and animal feed
- Rich in protein, PUFAs, and minerals




- Study from 2002 suggesting endotoxin presence in Chlorella was never proved
- Favorite for detoxification of organism

#### Interkosmos program

 Chlorella was tested in microgravity conditions by soviet space program







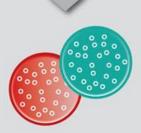
#### Algal extracts

### POLYSACCHARIDES

Brown algae (Phaeophyta):

- alginate
- cellulose
- fucoidan
- laminarin




Red algae (Rhodophyta):

- agar
- carrageenan
- cellulose
- furcellaran
- mannan
- porphyran
- xylan

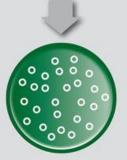


Green algae (Chlorophyta):

- amylose, amylopectin
- cellulose
- inulin
- mannan
- pectin
- xylan
- ulvan



#### Phycobilins


- phycocyanin
- cyanobacteria (Blue-green algae)
- · phycoerythrin
- Red algae (Rhodopyta)



PIGMENTS

#### Carotenoids

- carotene:
  - a-carotene
  - $\beta$ -carotene
- lycopene
- xanthophyll:
- astaxanthin
- fucoxanthin
- zeaxanthin
- lutein



#### Chlorophylls

- chlorophyll a
- chlorophyll b
- chlorophyll c

#### PLANT GROWTH-PROMOTING SUBSTANCES/HORMONES

sterols dolabellanes hydroazulenoids

xenicanes

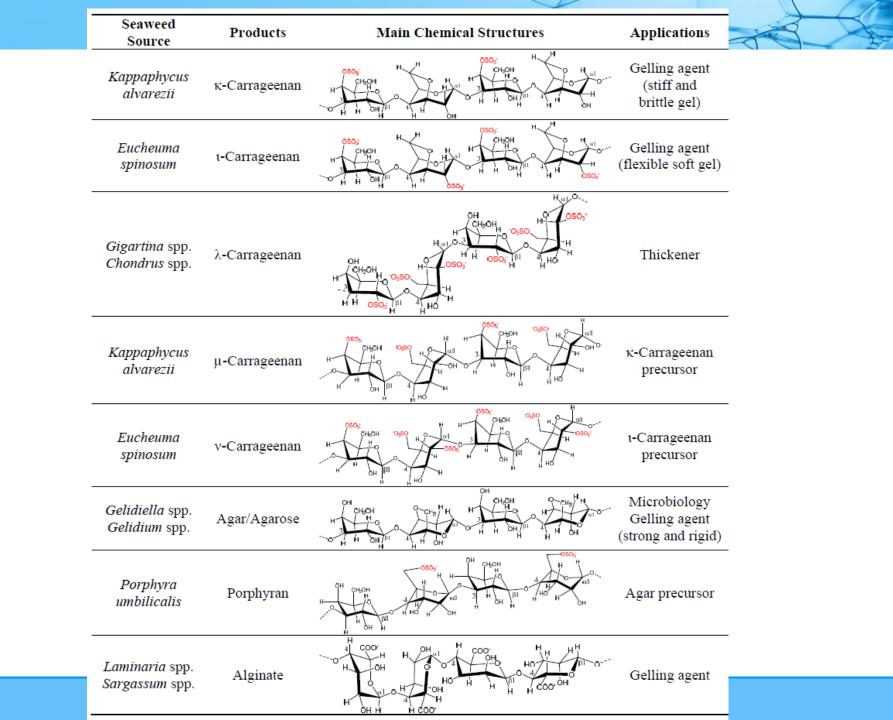
extended sesquiterpenoids

|                                 |                                          |                                                                                                                                                                                                                                                                              |                                   | cytokinins                             |                                |                                                                      |
|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|--------------------------------|----------------------------------------------------------------------|
|                                 |                                          |                                                                                                                                                                                                                                                                              |                                   | auxins                                 |                                |                                                                      |
|                                 |                                          |                                                                                                                                                                                                                                                                              | plant hormones<br>(phytohormones) | gibberellins                           |                                |                                                                      |
|                                 |                                          |                                                                                                                                                                                                                                                                              | (phytonormones)                   | abscisic acid (ABA)                    |                                |                                                                      |
|                                 |                                          |                                                                                                                                                                                                                                                                              |                                   | ethylene                               |                                |                                                                      |
| COMPOL                          | JNDS WITH ANTI-OXID                      | ANT ACTIVITY                                                                                                                                                                                                                                                                 | betaines                          |                                        |                                |                                                                      |
| glutathione (GSH)               |                                          |                                                                                                                                                                                                                                                                              | polyamines                        |                                        |                                |                                                                      |
|                                 | ascorbate (vitamin C)                    |                                                                                                                                                                                                                                                                              |                                   | fucosterol                             | AK                             |                                                                      |
| vitamins                        | tocopherol (vitamin E)                   | • α-, γ-, δ- tocopherol                                                                                                                                                                                                                                                      |                                   |                                        |                                | Brown algae<br>(Phaeophyta)                                          |
|                                 | a-carotene and $\beta$ -carotene         |                                                                                                                                                                                                                                                                              |                                   | cholesterol                            |                                | 9                                                                    |
| carotenoids                     | fucoxanthin and astaxanthin              |                                                                                                                                                                                                                                                                              |                                   |                                        | AL                             |                                                                      |
|                                 | phlorotannin<br>– brown algal polyphenol | <ul> <li>fucol</li> <li>phlorethol</li> <li>fucophlorethol</li> <li>fuhalol</li> <li>isofuhalol</li> <li>eckol</li> <li>catechin (3-hydroxyflavan)/<br/>catechin gallate</li> <li>epigallocatechin gallate</li> <li>epigallocatechin/epigallocatechin<br/>adllate</li> </ul> | cholesterol                       |                                        | Red algae<br>(Rhodophyta)      |                                                                      |
|                                 |                                          |                                                                                                                                                                                                                                                                              |                                   | ergosterol                             | 32                             | K Green algae                                                        |
|                                 |                                          |                                                                                                                                                                                                                                                                              |                                   | 24-methylenecholesterol<br>cholesterol |                                | (Chlorophyta)                                                        |
| olyphenols                      | catechin                                 |                                                                                                                                                                                                                                                                              | OTHER COMPO                       | UNDS                                   |                                |                                                                      |
|                                 | phenolic acid                            |                                                                                                                                                                                                                                                                              | vitamins                          |                                        |                                |                                                                      |
|                                 |                                          | <ul> <li>anthocyanins</li> <li>flavonols</li> </ul>                                                                                                                                                                                                                          | / viramins                        | B <sub>12</sub> , K, C, E, A, D        |                                |                                                                      |
|                                 | flavonoids                               | flavanols     flavanones     flavones                                                                                                                                                                                                                                        | > minerals                        | K, Ca, Mg, Na, Zn, Cu,<br>Co, I, B     |                                |                                                                      |
|                                 |                                          | <ul><li>isoflavones</li></ul>                                                                                                                                                                                                                                                | peptides and proteins             |                                        |                                |                                                                      |
|                                 | tannins                                  |                                                                                                                                                                                                                                                                              | lectins                           |                                        |                                | 1.                                                                   |
|                                 | lignans                                  |                                                                                                                                                                                                                                                                              | / 1001110                         |                                        |                                | • y-linolenic acid (GLA)                                             |
| mycosporine-like<br>amino acids | mycosporine-glycine                      |                                                                                                                                                                                                                                                                              |                                   | r                                      | polyunsaturated<br>fatty acids | <ul> <li>arachidonic acid (GLA)</li> <li>eicosapentaenoic</li> </ul> |
|                                 |                                          |                                                                                                                                                                                                                                                                              | lipids                            | fatty acids                            | (PUFAs)                        | acid (EPA)<br>• docosahexaenoic<br>acid (DHA)                        |

diterpenes

 $\rightarrow$ 

### Polysacharides


#### Agar, alginate, carragenan

The market for seaweed-derived hydrocolloids, agars, alginates, and carrageenans [1].

| Product      | Global Production<br>(ton/year) | Retail Price<br>(US\$/kg) | Approximate Gross Market Value<br>(US\$ million/year) |
|--------------|---------------------------------|---------------------------|-------------------------------------------------------|
| Agars        | 10,600                          | 18                        | 191                                                   |
| Alginates    | 30,000                          | 12                        | 339                                                   |
| Carrageenans | 60,000                          | 10.4                      | 626                                                   |

Physico-chemical properties for agar and carrageenans. The numbers are estimates. Viscosity values are given as (centipoise, cP) that is equivalent to  $N \cdot s \cdot m^{-2}$  [56].

| Properties                   | Agar                       | Carrageenan               |
|------------------------------|----------------------------|---------------------------|
| Solubility                   | Boiling water              | Boiling water             |
| Gel Strength (1.5% at 20 °C) | 700–1000 g/cm <sup>3</sup> | 100-350 g/cm <sup>3</sup> |
| Viscosity (1.5% at 60 °C)    | 10-100 centipoise          | 30-300 centipoise         |
| Melting point                | 85–95 °C                   | 50–70 °C                  |
| Gelling point                | 32–45 °C                   | 30–50 °C                  |



#### Summary of Commercially Exploited Algae and the Corresponding Extracts

#### Scientific Name

Gracilaria chilensis Ahnfeltia plicata Gelidium lingulatum *Pterocladia* spp. Hypnea spp. Chondrus crispus Gigartina skottsbergii Gigartina canaliculata Mazzaella laminaroides Sarcothalia crispata Kappaphycus alvarezii Eucheuma denticulatum *Iridaea* spp. Laminaria hyperborea Laminaria digitata Laminaria japonica Laminaria saccarina Macrocystis pyrifera Ascophyllum nodosum Durvillea potatorum *Ecklonia* spp. Lessonia nigrescens Lessonia trabiculata

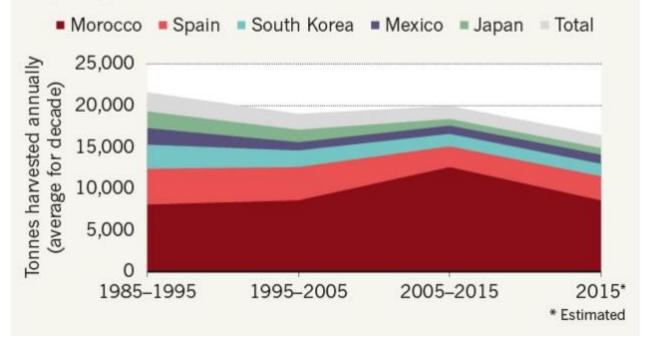
#### Class

Floridophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae

#### Extracts

Agar Agar/Carrageenan Agar Agar Agar Carrageenan Carrageenan Carrageenan Carrageenan Carrageenan Carrageenan Carrageenan Carrageenan Alginate Alginate Alginate Alginate Alginate Alginate Alginate Alginate Alginate Alginate

### Agar


- D- and L-galactopyranose
- Name derived from Malaysian word 'agar-agar,' which literally means 'macroalgae'.
- As gelling agent katen it is know from Japan sice 17<sup>th</sup> cent.
- Most importantly is agar used as solidifier for media in microbiology
- Non-ionic purified fraction is known as agarose

### Agar

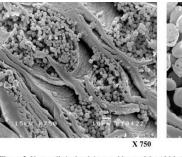
- High-grade (bacteriological) agar is extracted from
   *Pterocladia* and *Gelidium*
  - Spain, France, Portugal, Morocco, California, Mexico, New Zealand, South Korea, India, Chile, Japan, ...
- Food-grade is extracted from Pterocladia
- Low grade agars can be isolated from Gracilaria and Hypnea
- Agar production is valued at approx. \$200 million annually

### **SEAWEED SHORTAGE**

Harvests of *Gelidium* seaweed, from which the agar used in labs is made, are shrinking — particularly in Morocco, which is the world's major supplier.



## Alginate


- Constituents of Phaeophyceae cell wall
- Mannuronic and guluronic acid
- Composition of heteropolysacharide blocks depends on species and extraction procedure
- Most suitable for alginate extraction are brown algae (Laminariales and Fucales) grown in cold water (<20°C)</li>
- Approx. 50,000 tons are produced annually
  - Scotland, Norway, China, USA
  - Production is valued approx. USD 215 mil annually

### Alginate

- Alginates have variety of applications
  - Thickening of food (E401) sodium alginate
  - Stabilizers of ice cream

- Bandager, fabrics
- Thickening paste for printing





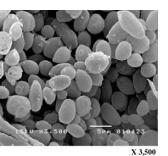



Figure 3. Yeast cells in the alginate gel layer of the ALM after 72 h of ethanol fermentation









Knedilky s jahodovou napini

Knediky s borūvkovou napini





Oliven gefüllt mit paprikapaste

Oliven zelené oliva

**Best of Mixed Cookie** 







Olivy piněné paprikovou pastou

La Explanada pimiento

Bagetová Vlašská pomazánka

Spička Maková náplň

Best

**Best of Mixed cookies** 

Sledové filety ve smetanové omáčce

Siedové filety v hořčičné omáčce

VLASSK/





Apfelstrude

Mřížka se šunkou a sýrem

Bagetová Camping pomazánka

Zelené olivy piněné ančovičkovou pastor









7 Days Double Coconut







### Carrageenan

- D-galactopyranose units
- *Carrageenan* is colloquial Irish word for macroalgae
- Known from Ireland since 1810
- Chondrus crispus used to be sole source, nowadays
   Euchema, Ahnfeltia and Gigartina are also exploited
- 30,000 tons of carrageenan produced annually
- As of 2011, global sales of carrageenan were estimated at \$640 million

#### Carrageenan

- Most raw material now comes from the Phillipines
- There are three main commercial classes of carrageenan:
  - Kappa forms strong, rigid gels in the presence of potassium ions; it reacts with dairy proteins. It is sourced mainly from *Kappaphycus alvarezii*
  - Iota forms soft gels in the presence of calcium ions. It is produced mainly from *Eucheuma denticulatum*
  - Lambda does not gel, and is used to thicken dairy products.

### Algal nutritional values

| Commodity            | Protein | Carbohydrates | Lipids |               |      |        |
|----------------------|---------|---------------|--------|---------------|------|--------|
| Egg                  | 47      | 4             | 41     | Soy vs. Algae | Soy  | Algae* |
| Meat                 | 43      | 1             | 34     | Protein       | 44%  | 55%    |
| Milk                 | 26      | 38            | 28     | Protein       |      |        |
| Rice                 | 8       | 77            | 2      | Lipids        | 2%   | 18%    |
| Soybean              | 37      | 30            | 20     | Carbohydrates | 39%  | 15%    |
| Anabaena cylindrica  | 43 - 56 | 25 - 30       | 4-7    | Ash           | 15%  | 12%    |
| Chlorella vulgaris   | 51-58   | 12-17         | 14-22  | ASII          | 1370 | 12/0   |
| Dunaliella bioculata | 49      | 4             | 8      |               |      |        |
| Haematococcus        | 48      | 27            | 15     |               |      |        |
| Spirulina platensis  | 64      | 25            | 7      |               |      |        |

#### Chemical composition of different algae (w/w)

| Alga                             | Proteins             | Carbohydrates | Lipids |
|----------------------------------|----------------------|---------------|--------|
| Aphanizomenon flos-aquae         | 62                   | 23            | 3      |
| Chlorella pyrenoidosa            | 57                   | 26            | 2      |
| Chlorella vulgaris               | 51–58                | 12–17         | 14–22  |
| Porphyridium cruentum            | 28–39                | 40–57         | 9–14   |
| Schizochytrium sp.               | -                    | -             | 50-77  |
| Arthrospira maxima               | 60–71                | 13–16         | 6–7    |
| Source: Adapted from Becker (200 | 7) and Chisti (2007) | · · ·         |        |

#### Kombu and Wakame nutritional values

Vitamin Contents of Marine Algae *Wakame* (*U. pinnatifida*) and *Kombu* (*L. japonica*) (in mg  $[100 \text{ g d.w.}]^{-1}$ ) Mineral Composition of *Wakame* (*U. pinnatifida*) and *Kombu* (*L. japonica*) (in mg  $[100 \text{ g d.w.}]^{-1}$ )

| Vitamins               | Kombu               | Wakame                   | Minerals | Kombu             | Wakame            |
|------------------------|---------------------|--------------------------|----------|-------------------|-------------------|
| β-carotene             | $2.99 \pm 0.09$     | $1.30 \pm 0.12$          | Ca       | $880\pm20$        | $950\pm30$        |
| Retinol equivalent     | $0.481 \pm 0.015$   | $0.217\pm0.006$          | Mg       | $550\pm15$        | $405 \pm 10$      |
| Vitamin B <sub>1</sub> | $0.24\pm0.02$       | $0.30\pm0.04$            | Р        | $300 \pm 10$      | $450 \pm 12$      |
| Vitamin B <sub>2</sub> | $0.85 \pm 0.08$     | $1.35\pm0.09$            | Ι        | $170\pm5.5$       | $26 \pm 2.4$      |
| Vitamin B <sub>6</sub> | $0.09\pm0.01$       | $0.18 \pm 0.02$          | Na       | $2532 \pm 120$    | $6494 \pm 254$    |
| Niacin                 | $1.58\pm0.14$       | $2.56\pm0.11$            | K        | $5951\pm305$      | $5691 \pm 215$    |
|                        |                     |                          | Ni       | $0.325 \pm 0.020$ | $0.265 \pm 0.015$ |
|                        |                     |                          | Cr       | $0.227 \pm 0.073$ | $0.072 \pm 0.026$ |
|                        |                     |                          | Se       | < 0.05            | < 0.05            |
|                        |                     |                          | Fe       | $1.19\pm0.03$     | $1.54 \pm 0.07$   |
| Dietary Fiber Cont     | ent of Wakame (U. ) | <i>pinnatifida</i> ) and | Zn       | $0.886 \pm 0.330$ | $0.944 \pm 0.038$ |
| Kombu (L. japonica)    | ) (% d.w.)          |                          | Mg       | $0.294 \pm 0.017$ | $0.332 \pm 0.039$ |
| ·····                  |                     |                          | Cu       | $0.247 \pm 0.076$ | $0.185 \pm 0.016$ |
| So                     | luble Insoluble     | e Total                  | Pb       | $0.087 \pm 0.021$ | $0.079 \pm 0.015$ |
| <b>W</b> 1             |                     | 27.2                     | Cd       | $0.017 \pm 0.007$ | $0.028 \pm 0.006$ |
|                        | 32.6 4.7            | 37.3                     | Hg       | $0.054 \pm 0.005$ | $0.022 \pm 0.003$ |
| Wakame 3               | 5.3                 | 35.3                     | As       | $0.087 \pm 0.006$ | $0.055 \pm 0.008$ |

| Amino acid    | U. pinnatifida     | P. purpurea      |
|---------------|--------------------|------------------|
| Aspartic acid | 75.60±12.12        | 66.58±3.63       |
| Serine        | $33.96 \pm 3.04$   | 46.25±2.47       |
| Glutamic acid | $120.85 \pm 20.26$ | 83.04±6.13       |
| Glycine       | $65.75 \pm 7.8$    | $75.39 \pm 6.26$ |
| Histidine     | $17.11 \pm 1.17$   | 22.04±1.00       |
| Arginine      | $88.19 \pm 8.49$   | 89.98±8.14       |
| Threonine     | $29.22 \pm 1.24$   | $50.10 \pm 3.98$ |
| Alanine       | $97.57 \pm 8.20$   | 80.54±7.29       |
| Proline       | $44.26 \pm 3.89$   | 37.97±0.19       |
| Cystine       | $3.26 \pm 0.30$    | 4.58±0.55        |
| Tyrosine      | $20.99 \pm 0.64$   | 29.38±0.92       |
| Valine        | 58.48±4.77         | 47.98±3.61       |
| Methionine    | $1.41 \pm 0.21$    | 13.73±0.43       |
| Lysine        | $39.96 \pm 3.40$   | 29.91±1.01       |
| Isoleucine    | $50.82 \pm 4.36$   | 34.44±1.03       |
| Leucine       | 86.14±7.39         | 53.23±1.45       |
| Phenylalanine | $48.46 \pm 3.93$   | 78.15±2.50       |
| -             |                    |                  |

| Mineral    | U. pinnatifida   | P. purpurea     |
|------------|------------------|-----------------|
| Calcium    | 693.2±7.6        | 359.2±4.1       |
| Phosphorus | $1070.0 \pm 7.0$ | 720.2±6.1       |
| Iron       | $7.94{\pm}0.80$  | $10.5 \pm 0.11$ |
| Magnesium  | 630.2±8.2        | 233.9±7.2       |
| Zinc       | 3.86±0.27        | 3.29±0.24       |
| Iodine     | 9.6±0.73         | $0.54 \pm 0.05$ |
| Sodium     | 3,511.0±26.0     | 728.2±4.04      |
| Potassium  | 5,679.0±22.3     | 1,602.0±4.03    |
| Manganese  | $0.69 \pm 0.02$  | $2.53 \pm 0.05$ |
| Copper     | $0.19{\pm}0.01$  | $0.57 \pm 0.02$ |
|            |                  |                 |

 Table 3 Vitamin content of wakame (U. pinnatifida) and nori (P. purpurea). Results are expressed in dry weight of sample

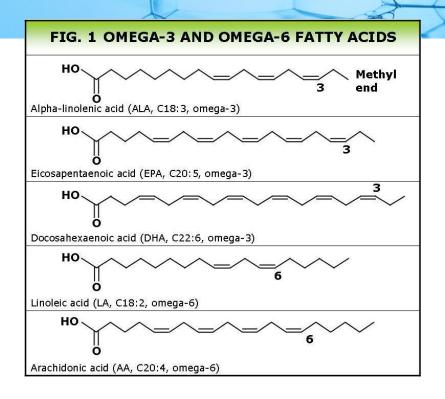
| Vitamin                                                | U. pinnatifida    | P. purpurea       |
|--------------------------------------------------------|-------------------|-------------------|
| Vitamin A (UI kg <sup>-1</sup> )                       | 4,729±23.3        | 23,830±17.2       |
| Vitamin B <sub>1</sub> (mg kg <sup>-1</sup> )          | $0.30 {\pm} 0.03$ | $0.40 \pm 0.02$   |
| Vitamin B <sub>2</sub> (mg kg <sup>-1</sup> )          | $0.68 {\pm} 0.03$ | $1.89 \pm 0.09$   |
| Vitamin B <sub>5</sub> (mg kg <sup>-1</sup> )          | $2.0 \pm 0.11$    | 2.7±0.12          |
| Vitamin B <sub>8</sub> ( $\mu g g^{-1}$ )              | $0.22 \pm 0.01$   | $0.10 {\pm} 0.01$ |
| Vitamin B <sub>12</sub> ( $\mu$ g100 g <sup>-1</sup> ) | $0.16 {\pm} 0.01$ | $2.90 \pm 2.7$    |
| Vitamin B <sub>6</sub> (mg kg <sup>-1</sup> )          | $1.5 \pm 0.02$    | $0.9 \pm 0.08$    |
| Vitamin B <sub>3</sub> (mg kg <sup>-1</sup> )          | <5                | <5                |
| Folic acid ( $\mu g g^{-1}$ )                          | $0.79 {\pm} 0.08$ | < 0.02            |
| Vitamin C (mg100 g <sup>-1</sup> )                     | $3.10 {\pm} 0.11$ | $9.73 \pm 0.31$   |
| Vitamin E (mg kg <sup>-1</sup> )                       | $6.3 \pm 0.12$    | 9.3±0.27          |

Table 1 Amino acid composition in mg  $g^{-1}$  protein of wakame (*U. pinnatifida*) and nori (*P. purpurea*)

# **Table 2** Mineral content (mg100 g<sup>-1</sup> dry weight) of wakame (*U. pinnatifida*) and nori (*P. purpurea*)

| Table 2. Chemica | al composition (g 100 g <sup><math>-1</math></sup> c | lry weight) of Gracilaria salic | ornia and Ulva lactuca |                       |                          |
|------------------|------------------------------------------------------|---------------------------------|------------------------|-----------------------|--------------------------|
| Seaweed          | Crude lipid                                          | Crude protein                   | Crude fibre            | Dry weight            | Ash content              |
| G. salicornia    | $2.00\pm0.92^{\text{a}}$                             | $9.58\pm0.15^{\rm a}$           | $10.4\pm0.89^{\rm a}$  | $9.98\pm0.15^{\rm a}$ | $38.91 \pm 1.62^{\rm a}$ |
| U. lactuca       | $0.99\pm0.00^{\mathrm{a}}$                           | $10.69\pm0.67^{\rm a}$          | $5.6\pm1.69^{b}$       | $5.96\pm0.33^{b}$     | $18.03\pm2.37^{b}$       |

Results are the means of triplicate determinations  $\pm$  SD.


Values in columns with different superscripts are significantly different (P < 0.05). <sup>a,b</sup> Means in columns with different letters are significantly different (P < 0.05).

#### **Table 3.** Amino acid concentrations in Gracilaria salicornia and Ulva lactuca

| Amino acid                             | <i>G. salicornia</i><br>(mg g <sup>-1</sup> protein) <sup>†</sup> | <i>U. lactuca</i><br>(mg g <sup>-1</sup> protein) <sup>†</sup> | Cereal<br>(Pellett <sup>22</sup> ) | Legume<br>(Pellett <sup>22</sup> ) | FAO/WHO/UNU <sup>11</sup><br>requirement pattern |
|----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------|
| Aspartic acid                          | $53.9\pm8.4^{\rm a}$                                              | $49.7\pm5.6^{b}$                                               | _                                  | _                                  | _                                                |
| Glutamic acid                          | $75.9\pm6.3^{a}$                                                  | $70.7\pm6.6^{a}$                                               | -                                  | -                                  | -                                                |
| Serine                                 | $34.6\pm2.1^{a}$                                                  | $28.7 \pm 2.4^{b}$                                             | -                                  | -                                  | -                                                |
| Glycine                                | $75.6\pm3.8^{\mathrm{a}}$                                         | $39.7\pm2.1^{b}$                                               | _                                  | _                                  | -                                                |
| Histidine                              | $14.3\pm2.7^{a}$                                                  | $15.2\pm1.5^{a}$                                               | _                                  | _                                  | -                                                |
| Arginine*                              | $75.78\pm3.5^{a}$                                                 | $37.9 \pm 1.4^{b}$                                             | _                                  | _                                  | -                                                |
| Threonine*                             | $32.9 \pm 2.2^{\rm a}$ (0.96)                                     | 31.1 ± 2.5 <sup>b</sup> (0.91)                                 | 33.6                               | 40                                 | 34                                               |
| Alanine                                | $75.5\pm7.3^{\mathrm{a}}$                                         | $43.3\pm2.4^{b}$                                               | -                                  | -                                  | -                                                |
| Proline                                | $39.8\pm5.6^{\mathrm{a}}$                                         | $37.9 \pm 2.1^{b}$                                             | -                                  | -                                  | -                                                |
| Tyrosine*                              | $75.9\pm5.6^{\mathrm{a}}$                                         | $23.4\pm4.2^{b}$                                               | _                                  | _                                  | -                                                |
| Valine*                                | $41.4 \pm 4.9^{a}$ (1.18)                                         | 39.2 ± 3.5 <sup>b</sup> (1.12)                                 | 51.1                               | 50.5                               | 35                                               |
| Methionine*                            | $77.5 \pm 2.8^{a}$ (3.1)                                          | 5.9 ± 1.4 <sup>b</sup> (0.23)                                  | 41.1                               | 25.3                               | 25 <sup>§</sup>                                  |
| lsoleucine*                            | $30.3 \pm 3.4^{\rm a}$ (1.08)                                     | 21.7 ± 2.6 <sup>b</sup> (0.77)                                 | 39.8                               | 45.3                               | 28                                               |
| Leucine*                               | $76.6 \pm 6.1^{a}$ (1.16)                                         | 45.1 ± 4.8 <sup>b</sup> (0.68)                                 | 86.5                               | 78.9                               | 66                                               |
| Phenylalanine*                         | $32.7 \pm 5.7^{a}$ (1.72)                                         | 28.4 ± 3.6 <sup>b</sup> (0.82)                                 | 83.0 <sup>‡</sup>                  | 84.9 <sup>‡</sup>                  | 63                                               |
| Lysine*                                | $77.1 \pm 5.8^{a}$ (1.32)                                         | $25.4 \pm 0.5^{	ext{b}}$ (0.43)                                | 30.5                               | 67.1                               | 58                                               |
| Tryptophan                             | ND                                                                | ND                                                             | _                                  | _                                  | -                                                |
| Essential amino acids                  | $520.18\pm22.47^{\text{a}}$                                       | $258.1 \pm 11.6^{b}$                                           | -                                  | -                                  | 328                                              |
| Non-essential amino acids <sup>A</sup> | $369.62\pm33.0^{\rm a}$                                           | $285.2 \pm 17.27^{b}$                                          | _                                  | -                                  | 661                                              |
| Total amino acids                      | $889.78\pm22.64^{\text{a}}$                                       | $543.3\pm15.14^{\text{b}}$                                     | -                                  | -                                  | -                                                |


| Table 4.   | Relative fatty acid content of Gracilaria salicornia and Ulva |
|------------|---------------------------------------------------------------|
| lactuca (% | 6 of total fatty acid content)                                |

| Fatty acids               | G. salicornia                         | U. lactuca                  |
|---------------------------|---------------------------------------|-----------------------------|
| C 12:0                    | $6.98\pm0.50^{\text{a}}$              | $6.03\pm0.85^{\text{a}}$    |
| C 14:0                    | $5.5\pm0.86^{a}$                      | $5.53 \pm 0.13^{a}$         |
| C16:0                     | $33.39 \pm \mathbf{8.86^a}$           | $34.33 \pm \mathbf{2.65^a}$ |
| C 16:1                    | $2.46\pm0.12^{a}$                     | $2.48\pm0.08^{\rm a}$       |
| C 18:0                    | $3.04\pm0.66^{\rm a}$                 | $2.44\pm0.29^{\rm a}$       |
| C 18:1                    | $11.72\pm2.01^{a}$                    | $2.63 \pm 0.41^{b}$         |
| C 18:2 ω6                 | $1.45\pm0.38^{b}$                     | $4.89\pm0.78^{\rm a}$       |
| C 18:3 ω3                 | $1.65\pm0.04^{b}$                     | $2.77\pm0.06^{\rm a}$       |
| C 20:4 ω6                 | $8.05\pm1.98^{a}$                     | $8.53\pm0.27^{a}$           |
| C 20:5 ω3                 | $1.53\pm0.27^{b}$                     | $3.65\pm0.31^{\mathrm{a}}$  |
| C 22:5 ω3                 | $4.7\pm0.19^{a}$                      | $4.98\pm0.89^{\rm a}$       |
| Saturated fatty acids     | $48.92\pm6.83^{\rm a}$                | $48.34\pm3.67^{\rm a}$      |
| Monounsaturated           | $16.36\pm1.54^{\mathrm{a}}$           | $5.11 \pm 0.5^{b}$          |
| PUFAs                     | $17.30\pm1.18^{b}$                    | $24.84 \pm 1.03^{\rm a}$    |
| PUFAs $\omega$ 6          | $10.14\pm0.7^{b}$                     | $13.43\pm0.5^{a}$           |
| PUFAs $\omega$ 3          | $\textbf{7.89} \pm \textbf{0.43}^{b}$ | $11.41\pm0.52^{\rm a}$      |
| Ratio $\omega 6/\omega 3$ | 1.2                                   | 1.17                        |



**Table 5.** Elemental composition in *Gracilaria salicornia* and *Ulva lactuca* (mg 100 g<sup>-1</sup> dry weight)

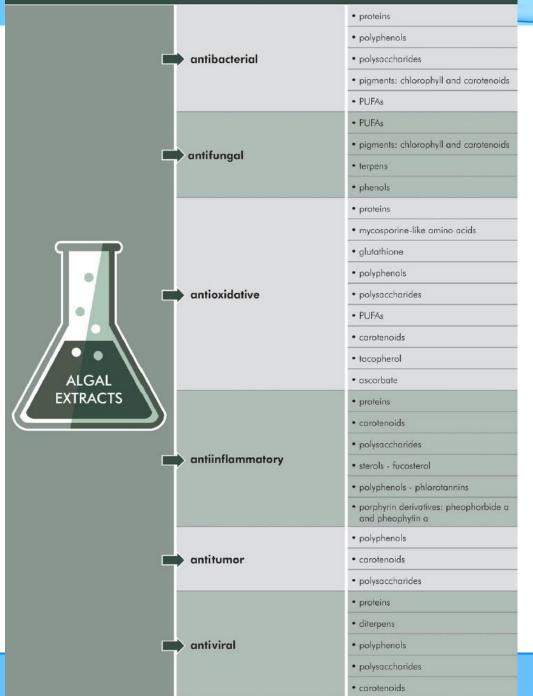
|               |                                |                              | Foodstuff (USDA <sup>29</sup> ) |         |         |          |         |
|---------------|--------------------------------|------------------------------|---------------------------------|---------|---------|----------|---------|
| Mineral       | G. salicornia                  | U. lactuca                   | Lettuce                         | Cabbage | Carrots | Broccoli | Spinach |
| Potassium     | 11 380.06 ± 73.45 <sup>a</sup> | 2414.02 ± 26.89 <sup>b</sup> | 956.42                          | 1931.1  | 3747.2  | 3381.2   | 4798.8  |
| Calcium       | $948.45\pm7.7^{\mathrm{b}}$    | $2782.13 \pm 11.12^{a}$      | 177.48                          | 368.95  | 386.43  | 502.9    | 851.4   |
| Sodium        | $1035.92 \pm 61.48^{b}$        | $1805.44\pm58.6^{\rm a}$     | 138.04                          | 141.3   | 807.99  | 353.1    | 679.4   |
| Iron          | $67.35 \pm 7.77^{b}$           | $199.45\pm5.86^{\mathrm{a}}$ | 4.23                            | 4.63    | 3.51    | 7.81     | 23.3    |
| Manganese     | $4.16 \pm 0.05^{a}$            | $2.11\pm0.22^{b}$            | 1.23                            | 1.24    | 1.64    | 2.184    | 7.71    |
| Nickel        | $0.92\pm0.03^{a}$              | $0.76\pm0.01^{a}$            | _                               | -       | -       | _        | -       |
| Copper        | $0.57\pm0.07^{b}$              | $1.45\pm0.21^{a}$            | 0.14                            | 0.18    | 052     | 0.52     | 1.11    |
| Cobalt        | $0.24\pm0.05^{a}$              | $0.15\pm0.03^{b}$            | _                               | -       | -       | _        | -       |
| Total cations | $13438\pm143^{\rm a}$          | $7205.51 \pm 102^{b}$        | -                               | -       | -       | -        | -       |



## Dietary supplements, pharmaceuticals

| Species/group                           | Product                         | Application areas                             | Basins/reactors                    |
|-----------------------------------------|---------------------------------|-----------------------------------------------|------------------------------------|
| Spirulina platensis/Cyanobacteria       | Phycocyanin, biomass            | Health food, cosmetics                        | Open ponds, natural lakes          |
| Chlorella vulgaris/Chlorophyta          | Biomass                         | Health food, food supplement, feed surrogates | Open ponds, basins, glass-tube PBR |
| Dunaliella salina/Chlorophyta           | Carotenoids, <i>β</i> -carotene | Health food, food supplement, feed            | Open ponds, lagoons                |
| Haematococcus pluvialis/Chlorophyta     | Carotenoids, astaxanthin        | Health food, pharmaceuticals, feed additives  | Open ponds, PBR                    |
| Odontella aurita/Bacillariophyta        | Fatty acids                     | Pharmaceuticals, cosmetics, baby food         | Open ponds                         |
| Porphyridium cruentum/Rhodophyta        | Polysaccharides                 | Pharmaceuticals, cosmetics, nutrition         | Tubular PBR                        |
| Isochrysis galbana/Chlorophyta          | Fatty acids                     | Animal nutrition                              | Open ponds                         |
| Phaedactylum tricornutum/Bacillariohyta | Lipids, fatty acids             | Nutrition, fuel production                    | Open ponds, basins                 |
| Lyngbya majuscule/Cyanobacteria         | Immune modulators               | Pharmaceuticals, nutrition                    |                                    |

Table 2 Microalgal species with high relevance for biotechnological applications


- Supplements rich in natural active compounds
- Healthy nutrition, immunomodulation, etc.
- Studies have proven positive effects on human health

# Biologically active compounds

- Mostly microalgae, but also macroalgae are used as source of biologically active compounds with variety of activities:
  - Antibacterial
  - Antiviral
  - Antifungal
  - Antioxidative
  - Antiinflamatory
  - Antitumor
  - • •

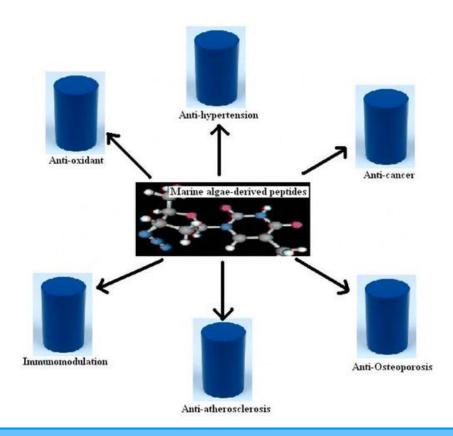


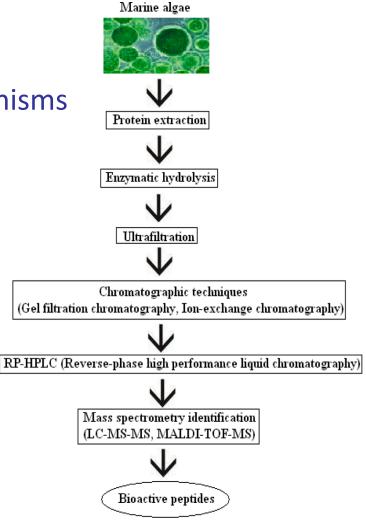
#### **PROPERTIES OF COMPOUNDS IN ALGAL EXTRACTS**



|                                                                                                          |                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                | -4 |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Extracted compound                                                                                       | Algal species                                                                                                  | Extraction method                                                                                                                                                                                                       | Target                                                                                                                                                                                                         |    |
| (a) Antibacterial activity<br>PUFAs                                                                      | Gracilaria corticata<br>Ulva fasciata<br>Enteromorpha compressa                                                | Solvent extraction with hexane, chloroform,<br>ethyl acetate, chloroform:alcohol (1:1),<br>methanol by soaking the material in the<br>solvents thrice overnight at room<br>temperature (1:3v/v)                         | Bacteria pathogenic to fish:<br>Edwardsiella tarda, Vibrio<br>alginolyticus, Pseudomonas<br>fluorescens, P. aeruginosa,<br>Aeromonas hydrophila                                                                |    |
| Fats (palmitic acid)<br>Proteins (amino acids)<br>Bioflavonoids (rutin,<br>quercetin, and<br>kaempherol) | Ulva reticulata<br>Caulerpa occidentalis<br>Cladophora socialis<br>Dictyota ciliolate<br>Gracilaria dendroides | Extraction of powdered algal samples with<br>ethanol, chloroform, petroleum ether, water.<br>Samples were soaked in the solvents for 24 h<br>and homogenized in a blender with the<br>solvents at room temperature      | Escherichia coli,<br>P. aeruginosa,<br>Stapylococcus aureus,<br>Enterococcus faecalis                                                                                                                          |    |
| Sulfated polysaccharide                                                                                  | Sargassum swartzii                                                                                             | Dried seaweed powder was extracted with<br>water at 90–95°C for 16 h. The syrup was<br>filtered through filter paper, cooled, and<br>precipitated with ethanol                                                          | S. aureus, Proteus vulgaris,<br>E. coli, Bacillus subtilis,<br>Pseudomonas aeroginosa,<br>Salmonella typhi, Shigella<br>flexineri, Klebsiella<br>pneumoniae, E. faecalis,<br>Aeromonas hydrophilla             |    |
| Carotenoids, alkaloids,<br>favanoids, fatty acids,<br>saponins, amino acids,<br>carbohydrates            | Chlorococcum humicola                                                                                          | The algae were centrifuged to remove the water<br>content. Fresh biomass was extracted for<br>15 min with organic solvents: acetone,<br>benzene, chloroform, diethyl ether, ethyl<br>acetate, ethanol, hexane, methanol | Effect of pigments: β-carotene<br>and chlorophyll on:<br><i>E. coli, P. aeruginosa, B.</i><br><i>subtilis, Salmonella</i><br><i>typhimurium, K.</i><br><i>pneumoniae, Vibreo cholerae,</i><br><i>S. aureus</i> |    |
| Fatty acids, phytol,<br>fucosterol,<br>neophytadiene, palmitic,<br>palmitoleic, and oleic<br>acids       | Himanthalia elongate,<br>Synechocystis sp.                                                                     | PLE in accelerated solvent extractor equipped<br>with a solvent controller. Three different<br>solvents hexane, ethanol, water were used                                                                                | S. aureus, E. coli                                                                                                                                                                                             |    |
| PUFAs, indolic derivative,<br>β-ionone, neophytadiene                                                    | Dunaliella salina                                                                                              | Sub- and supercritical CO <sub>2</sub> extraction                                                                                                                                                                       | E. coli, S. aureus                                                                                                                                                                                             |    |
| Short-chain fatty acids                                                                                  | Haematococcus pluvialis                                                                                        | PLEs were performed with hexane and ethanol<br>at different temperatures: 50, 100, 150,<br>200°C for 20 min                                                                                                             | E. coli, S. aureus                                                                                                                                                                                             |    |

|                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (b) Antiviral activity<br>Polysaccharide                                                                     | Constantinea simplex<br>Farlowia mollis                                                                | Frozen samples were combined with<br>citrate-phosphate buffer at pH 7.0,<br>homogenized in a blender, and incubated at<br>4°C overnight                                                                                                                                                                                                                                        | Mice: Herpes simplex virus<br>type 1 (HSV-1) and type 2<br>(HSV-2), vaccinia virus,<br>vesicular stomatitis virus,<br>encephalomyocarditis virus,<br>Semliki Forest virus, murine<br>cytomegalovirus |  |
| Sulfated polysaccharide                                                                                      | Sargassum patens                                                                                       | Seaweed was washed and extracted with<br>boiling water for 2 h. After centrifugation,<br>the supernatant was concentrated and<br>precipitated with ethanol                                                                                                                                                                                                                     | Vero cells (African green<br>monkey kidney cell line):<br>HSV-2                                                                                                                                      |  |
| Sulfated galactofucan,<br>fucan, galactan;<br>depolymerized<br>galactofucan sulfate,<br>galactofucan sulfate | Undaria pinnatifida<br>Splachnidium rugosum<br>Gigartina<br>atropurpurea<br>Plocamium<br>cartilagineum | <ul> <li>For U. pinnatifida and S. rugosum: dry, ground samples were extracted for 6 h with 1%</li> <li>(w/v) H<sub>2</sub>SO<sub>4</sub> at 20°C, 0.2 M HCl at 20°C, or 2% CaCl<sub>2</sub> at 75°C. For G. atropurpurea and P. cartilagineum: dry, ground algae were placed in NaHCO<sub>3</sub> solution (0.05 M), left to swell (20min) then heated (90°C, 2 h)</li> </ul> | Human foreskin fibroblast:<br>HSV-1 and 2                                                                                                                                                            |  |
| Sulfated polysaccharide                                                                                      | Padina pavonia                                                                                         | Algal biomass was extracted with water at 80°C for 2 h (twice)                                                                                                                                                                                                                                                                                                                 | Vero cell culture: HSV,<br>Hepatitis A (HAV, Hep A)                                                                                                                                                  |  |
| Bromophenols                                                                                                 | Polysiphonia morrowii                                                                                  | Freeze-dried alga was extracted with 80% (v/v)<br>methanol (in water, 80% MeOH) at 80°C<br>eight times, each of which took 1 h for a<br>total of 10 h                                                                                                                                                                                                                          | Fish pathogenic viruses:<br>infectious hematopoietic<br>necrosis virus and infectious<br>pancreatic necrosis virus                                                                                   |  |
| Sulfated polysaccharide                                                                                      | Sphaerococcus<br>coronopifolius<br>Boergeseniella thuyoides                                            | Polysaccharides from seaweed powder were<br>extracted in hot distilled water at 80°C for 4<br>h with magnetic stirring                                                                                                                                                                                                                                                         | Vero cells culture: human<br>immunodeficiency virus<br>(HIV) and HSV-1                                                                                                                               |  |
| Polysaccharide                                                                                               | Acrosiphonia orientalis                                                                                | Polysaccharides were extracted from the dried<br>fronds using 0.1 N HCl at 95°C for 12 h and<br>the extract was precipitated by adding<br>ethanol                                                                                                                                                                                                                              | Shrimp pathogen—white spot<br>syndrome virus                                                                                                                                                         |  |
| Diterpenes                                                                                                   | Dictyota pfaffii<br>D. menstrualis                                                                     | Air-dried specimens were extracted with<br>CH <sub>2</sub> Cl <sub>2</sub> /MeOH (7:3) and MeOH                                                                                                                                                                                                                                                                                | HSV-1                                                                                                                                                                                                |  |
| Diterpenes                                                                                                   | D. menstrualis                                                                                         | Extraction with CH <sub>2</sub> Cl <sub>2</sub> /MeOH                                                                                                                                                                                                                                                                                                                          | HIV type 1 (HIV-1)                                                                                                                                                                                   |  |


| (c) Antifungal activity<br>Carotenoids, alkaloids,<br>flavonoids, fatty acids,<br>saponins, amino acids,<br>carbohydrates | C. humicola                                                                                                                                                                                                                           | The algal samples were centrifuged to remove<br>the water content. Fresh algae were extracted<br>for 15 min with organic solvents: acetone,<br>benzene, chloroform, diethyl ether, ethyl<br>acetate, ethanol, hexane, methanol | Effect of pigments: β-carotene<br>and chlorophyllon: <i>Candida</i><br><i>albicans, Aspergillus niger,</i><br><i>A. flavus</i> |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Terpenes and phenols<br>(terpenes were present in<br>all algal extracts, phenols<br>for *)                                | Stypopodium zonale<br>Laurencia dendroidea,<br>Ascophyllum nodosum<br>(*)<br>Sargassum muticum (*)<br>S. filipendula, S.<br>stenophyllum, Pelvetia<br>canaliculata (*)<br>Fucus spiralis<br>Laminaria hyperborea<br>Gracilaria edulis | The algae were washed, air-dried, powdered,<br>and extracted with ethanol (95%)                                                                                                                                                | Colletotrichum lagenarium,<br>A. flavus                                                                                        |
| Phenols                                                                                                                   | Padina pavonica<br>Sargassum vulgare                                                                                                                                                                                                  | First method—marine alga was macerated for<br>3 days in methanol at room temperature in<br>an orbital shaker; the second extraction was<br>in methanol using a Soxhlet extractor for 6 h                                       | Candida                                                                                                                        |
| Fatty acids, phytol,<br>fucosterol,<br>neophytadiene, palmitic,<br>palmitoleic and oleic<br>acids                         | H. elongate, Synechocystis<br>sp.                                                                                                                                                                                                     | PLE in accelerated solvent extractor equipped<br>with a solvent controller. Three solvents<br>hexane, ethanol, water were used                                                                                                 | C. albicans, A. niger                                                                                                          |
| PUFAs, indolic derivative,<br>β-ionone, neophytadiene                                                                     | D. salina                                                                                                                                                                                                                             | Sub- and supercritical CO <sub>2</sub> extraction                                                                                                                                                                              | C. albicans, A. niger                                                                                                          |
| Short-chain fatty acids                                                                                                   | H. pluvialis                                                                                                                                                                                                                          | PLEs were performed with hexane and ethanol<br>at different temperatures: 50, 100, 150,<br>200°C for 20 min                                                                                                                    | C. albicans, A. niger                                                                                                          |


|   | (d) Antioxidative activity                                                                           |                                                                                             |                                                                                                                                                                                                                                                                               |                                                                                                                                                 |  |
|---|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Sulfated polysaccharide                                                                              | S. swartzii                                                                                 | Dried seaweed powder was extracted with<br>water at 90–95°C for 16 h. The syrup was<br>then filtered through filter paper, cooled,<br>and precipitated with ethanol                                                                                                           | Total antioxidant activity of the<br>extract<br>Reducing power of the extract<br>1,1-Diphenyl-2-picryl-hydrazyl<br>(DPPH) radical scavenging    |  |
|   |                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                               | assay<br>Hydrogen peroxide scavenging<br>assay<br>2,2'-Azinobis-(3-ethylbenzo-<br>thiazoline-6-sulfonic acid)<br>inhibition assay               |  |
| : | Sulfated polysaccharides:<br>(1) iota, kappa, and<br>lambda carrageenans,<br>fucoidan,<br>(2) fucans | <ol> <li>(1) Fucus vesiculosus</li> <li>(2) Padina gymnospora</li> </ol>                    | Powdered algae were suspended with NaCl. pH<br>was adjusted to 8.0. For proteolytic digestion<br>protease from <i>Esporobacillus</i> was added.<br>Incubation at 60°C under shaking lasted for<br>24 h                                                                        | Superoxide anion scavenging<br>activity<br>Hydroxyl radical scavenging<br>activity<br>Liver microsomal (from Wistar<br>rats) lipid peroxidation |  |
| ] | Phenols                                                                                              | Bifurcaria bifurcata<br>Cystoseira tamariscifolia<br>Fucus ceranoides<br>Halidrys siliquosa | Accelerated solvent extraction system. The<br>biomass was extracted with a mixture of<br>dichloromethane methanol (1:1, v:v) at<br>75°C and 1500 psi                                                                                                                          | DPPH<br>Reducing activity<br>$\beta$ -carotene–linoleic acid system                                                                             |  |
| 1 | Usujilene—kind of<br>mycosporine-glycine like<br>amino acid                                          | Porphyra yezoensis                                                                          | Ground freeze-dried material was extracted<br>with <i>n</i> -hexane, ethyl acetate, acetone,<br>chloroform/methanol (2:1), methanol, and<br>hot water (90°C) under stirring                                                                                                   | Ferric thiocyanate method<br>Thiobarbituric acid method                                                                                         |  |
| I | Phenols                                                                                              | P. pavonica<br>S. vulgare                                                                   | First method—marine alga was macerated for<br>3 days in methanol at room temperature in<br>an orbital shaker; the second extraction was<br>in methanol using a Soxhlet extractor for 6 h                                                                                      | DPPH                                                                                                                                            |  |
| ] | Phenols                                                                                              | Caulerpa racemosa                                                                           | Seaweed powder was placed into an extraction<br>vessel and was extracted with solvent under<br>different MAE conditions                                                                                                                                                       | Hydroxyl radical scavenging<br>assay<br>DPPH determination of<br>reducing power                                                                 |  |
| I | Phenols                                                                                              | A. nodosum<br>P. canaliculata<br>F. spiralis<br>Ulva intestinalis                           | SLE and PLE was employed to extract algae<br>with 100% water, ethanol/water (80:20, v:v),<br>and acetone/water (80:20, v:v)                                                                                                                                                   | DPPH                                                                                                                                            |  |
| 1 | Fatty acids, phytol,<br>fucosterol,<br>neophytadiene, palmitic,<br>palmitoleic, and oleic<br>acids   | H. elongate<br>Synechocystis sp.                                                            | PLE in accelerated solvent extractor equipped<br>with a solvent controller. Three solvents<br>hexane, ethanol, water were used                                                                                                                                                | Trolox equivalent antioxidant<br>capacity assay                                                                                                 |  |
|   | Carotenoid                                                                                           | D. salina                                                                                   | PLEs were performed using an accelerated<br>solvent equipped with a solvent controller.<br>Three solvents hexane, ethanol, water were<br>used                                                                                                                                 | Trolox equivalent antioxidant capacity assay                                                                                                    |  |
|   | Antioxidants—carotenoids                                                                             | Spirulina platensis                                                                         | Extractions were performed in accelerated<br>solvent extractor equipped with a solvent<br>controller. Three solvents hexane, petroleum<br>ether, ethanol were used. Extractions were<br>performed at temperatures (60, 115, 170°C)<br>and extraction times (3, 9, and 15 min) |                                                                                                                                                 |  |
|   | Polyphenol, flavonoid                                                                                | Chlorella vulgaris C-C                                                                      | Supercritical fluid equipment and ultrasonic extraction                                                                                                                                                                                                                       | DPPH<br>Ferric reducing antioxidant<br>power<br>Metel chelating activity                                                                        |  |
|   |                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                               | Metal chelating activity<br>Superoxide anion radical<br>scavenging capacity                                                                     |  |

| (e) Anti-inflammatory activi                                                                                                      | ity                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fucosterol, phlorotannins<br>(phloroglucinol, eckol,<br>dieckol, 7-phloroeckol,<br>phlorofucofuroeckol A,<br>dioxinodehydroeckol) | , Eisenia bicyclis                                                 | The powdered leafy thallus of alga was refluxed<br>with methanol for 3 h                                                                                                                                                                                                | Inhibition against production<br>of lipopolysaccharide (LPS)<br>induced nitric oxide (NO)<br>and tert-butylhydroperoxide<br>induced reactive oxygen<br>species, suppression against<br>expression of inducible NO<br>synthase, and<br>cyclooxygenase-2 in<br>LPS-stimulated RAW 264.7<br>macrophages |  |
| Porphyrin derivatives:<br>pheophorbide a,<br>pheophytin a                                                                         | Saccharina japonica                                                | The powder of the whole plant of alga was<br>refluxed with methanol for 3 h                                                                                                                                                                                             | Inhibitory activities against<br>LPS-induced NO<br>production, inducible NO<br>synthase, and<br>cyclooxygenase-2 expression<br>in RAW 264.7 murine<br>macrophage cells                                                                                                                               |  |
| Lactones, phenols,<br>triterpenes, steroids,<br>reduced carbohydrates                                                             | Dichotomaria obtusata                                              | Distilled water was added to algal powder and<br>vortexed in a shaker for 24 h at room<br>temperature                                                                                                                                                                   | Tests in mice: ear edema<br>induced by<br>12-O-tetradecanoylphorbol<br>acetate and writhing induced<br>by acetic acid                                                                                                                                                                                |  |
| (f) Antitumor activity<br>Fucoidan                                                                                                | Fucus evanescens                                                   | Hot extraction                                                                                                                                                                                                                                                          | Mice with transplanted Lewis<br>lung adenocarcinoma                                                                                                                                                                                                                                                  |  |
| Polyphenol:<br>phlorotannin—<br>dioxinodehydroeckol                                                                               | Ecklonia cava                                                      | The lyophilized powder of alga was percolated<br>in hot EtOH. The crude extract was<br>partitioned with organic solvents to yield<br><i>n</i> -hexane, CH <sub>2</sub> Cl <sub>2</sub> , EtOAc, and <i>n</i> -BuOH<br>fractions, as well as an H <sub>2</sub> O residue | Inhibition of the proliferation<br>of human breast cancer cells                                                                                                                                                                                                                                      |  |
| Phenols                                                                                                                           | B. bifurcata<br>C. tamariscifolia<br>F. ceranoides<br>H. siliquosa | Accelerated solvent extraction system. The<br>biomass was extracted with a mixture of<br>dichloromethane methanol (1:1, v:v) at<br>75°C and 1500 psi                                                                                                                    | Cytotoxic assay with three<br>different tumoral cells lines<br>(Daudi, Jurkat, and K562)                                                                                                                                                                                                             |  |
| Crude polysaccharide                                                                                                              | Sargassum coreanum                                                 | Biomass was pulverized into powder with a<br>grinder. Buffer solution was added to the<br>dried sample and then Neutrase. The<br>reaction was performed for 12 h                                                                                                        | HL-60 (human promyelocytic<br>leukemia cell line); > 30-kDa<br>fraction of crude<br>polysaccharides exhibited a<br>marked anticancer activity in<br>HL-60 cells                                                                                                                                      |  |
| Polyphenol, flavonoid                                                                                                             | C. vulgaris C-C                                                    | Supercritical fluid equipment and ultrasonic extraction                                                                                                                                                                                                                 | Extract of <i>C. vulgaris C-C</i><br>inhibits human lung cancer<br>H1299, A549, and H1437<br>cells in a dose-dependent<br>manner                                                                                                                                                                     |  |

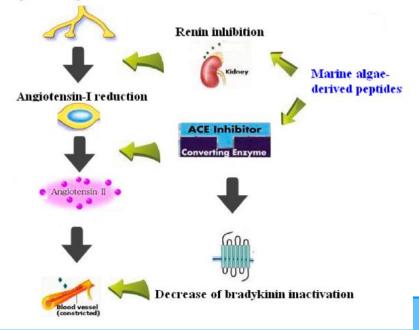
## Bioactive peptides from algae

- Small peptides (2-20 AA)
- Variety of activities on cells and organisms

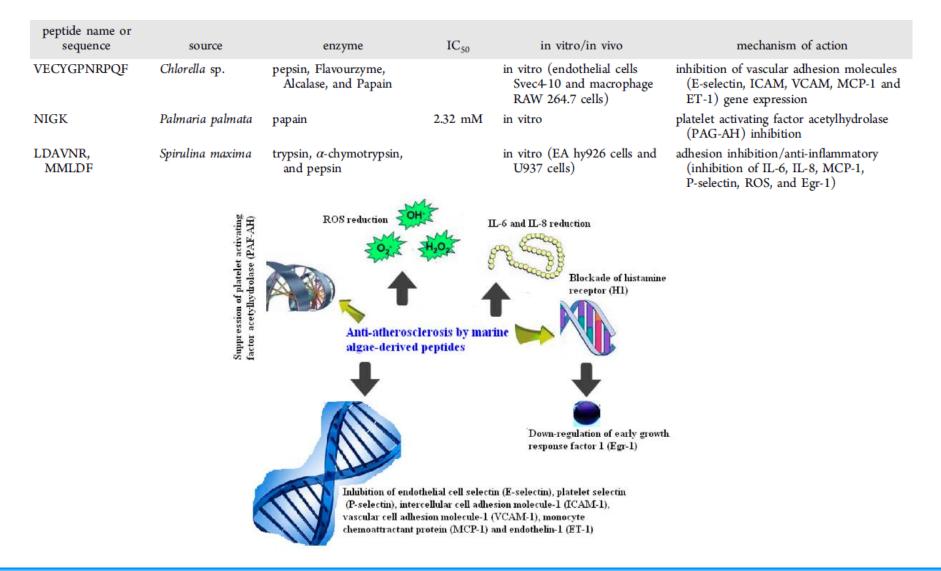




## Anticancer peptides

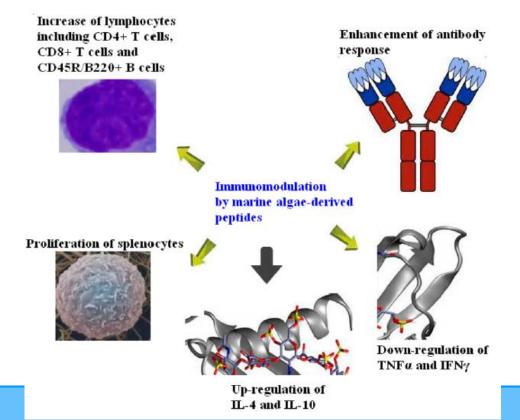

| peptide name or sequence                          | source                | enzyme                                   | IC <sub>50</sub> | in vitro/in vivo                     | mechanism of action                             |  |  |  |
|---------------------------------------------------|-----------------------|------------------------------------------|------------------|--------------------------------------|-------------------------------------------------|--|--|--|
| VECYGPNRPQF                                       | Chlorella vulgaris    | pepsin                                   | 70 $\mu$ g/mL    | in vitro (gastric cancer AGS cells)  | antiproliferation and post-G1 cell cycle arrest |  |  |  |
| polypeptide CPAP                                  | Chlorella pyrenoidosa | papain, trypsin, and alcalase            | 426 µg/mL        | in vitro (HepG2 cells)               | apoptosis                                       |  |  |  |
| polypeptide Y2                                    | Spirulina platensis   | trypsin, alcalase, pepsin,<br>and papain | 61 µg/mL         | in vitro (MCF-7 and<br>HepG-2 cells) |                                                 |  |  |  |
| Condensation/fragmentation<br>of nuclearchromatin |                       |                                          |                  |                                      |                                                 |  |  |  |
| Membrane shrinkage/<br>membrane disruption        |                       |                                          |                  | Con Star                             |                                                 |  |  |  |




## Antihypertensive biopeptides

| peptide name or<br>sequence | source                  | enzyme                                                                                                         | IC <sub>50</sub> | in vitro/in<br>vivo               | mechanism of<br>action |
|-----------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|------------------------|
| YH, KY, FY, IY              | Undaria pinnatifida     | no enzyme used                                                                                                 | 2.7-43.7 μmol/L  | in vitro and<br>in vivo<br>(rats) | ACE inhibition         |
| enzymatic digests           | Ecklonia cava           | Kojizyme, Flavourzyme, Neutrase, Alcalase, and<br>Protamex                                                     | 2.33–3.56 µg/mL  | in vitro                          | ACE inhibition         |
| VECYGPNRPQF                 | Chlorella vulgaris      | pepsin                                                                                                         | 29.6 µM          | in vitro                          | ACE inhibition         |
| VEGY                        | Chlorella ellipsoidea   | Protamex, Kojizyme, Neutrase, Flavourzyme,<br>Alcalase, trypsin, $\alpha$ -chymotrypsin, pepsin, and<br>papain | 128.4 µM         | in vitro and<br>in vivo<br>(rats) | ACE inhibition         |
| GMNNLTP, LEQ                | Nannochloropsis oculata | pepsin, trypsin, $lpha$ -chymotrypsin, and papain                                                              | 123–173 μM       | in vitro                          | ACE inhibition         |
| IRLIIVLMPILMA               | Palmaria palmata        | papain                                                                                                         | 3.3 mM           | in vitro                          | renin inhibition       |

Angiotensinogen reduction




#### Antiatherosclerotic peptides



## Immunomodulatory biopeptides

| peptide name<br>or sequence | source             | enzyme               | IC <sub>50</sub> | in vitro/<br>in vivo | mechanism of action                                                                                                                                                    |
|-----------------------------|--------------------|----------------------|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| protein<br>hydrolysates     | Chlorella vulgaris | pancreatin           |                  | in vivo<br>(mice)    | stimulation of both humoral and cell-mediated immune functions (T-<br>dependent antibody response and the reconstitution of delayed-type<br>hypersensitivity response) |
| protein<br>hydrolysates     | Ecklonia cava      | Kojizyme             |                  | in vivo<br>(mice)    | increases in lymphocytes, monocytes, and granulocytes; down-regulation of TNF- $\alpha$ and IFN- $\gamma$ , up-regulation of IL-4 and IL-10                            |
| protein<br>hydrolysates     | Porphyra columbina | trypsin,<br>alcalase | 2.1-5.6 g/L      | in vivo<br>(rats)    | cytokine modulations (inhibition of TNF- $\alpha$ and IFN- $\gamma$ , increase of IL-10)                                                                               |



# Other areas of algae biotechnological applications

Summary of Commercially Exploited Algae and the Corresponding Products or Applications

Class

Lyngbya lagerheimii *Nostoc* spp. Arthrospira spp. Palmaria mollis Phymatolithon calcareum Lithothamnion coralloides Nannochloropsis spp. Monodus subterraneus Skeletonema spp. Chaetoceros spp. Nitzschia alba Nitzschia laevis Petalonia binghamiae Scytosiphon lomentaria Ascophyllum nodosum Sargassum spp. Laminaria digitata Macrocystis pyrifera Isochrysis spp. Tetraselmis spp. Pavlova spp. Crypthecodinium cohni Euglena gracilis Haematococcus pluvialis Dunaliella salina Chlorella spp.

Scientific Name

Cyanophyceae Cyanophyceae Cyanophyceae Floridophyceae Floridophyceae Floridophyceae Eustigmatophyceae Eustigmatophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Phaeophyceae Haptophyceae Haptophyceae Haptophyceae Dinophyceae Euglenophyceae Chlorophyceae Chlorophyceae Chlorophyceae

#### Products/Applications

Sulpholipids/spirulan Cryptophycin 1 Health food Abalone feed Fertilizers Fertilizers EPA/fish fry feed EPA Fish fry feed Fish fry feed EPA EPA fucoxanthin fucoxanthin Fertilizers Fertilizers Animal feed Abalone feed DHA/fish fry feed Fish fry feed Fish fry feed DHA β-1,3-glucan astaxanthin β-carotene Health food/fish fry feed

#### Livestock feed

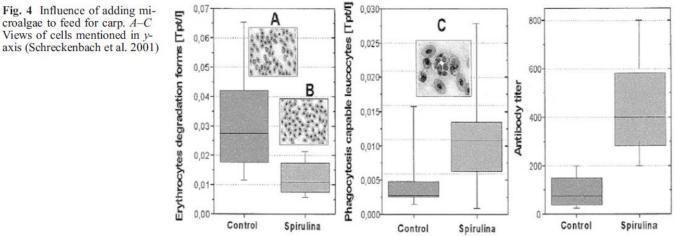
- Feeding of algae (mainly Chlorella) to cattle or pigs leads to better growth and improved meat quality
- Even small addition has positive effect



| Table 5 Results of Chlorellafeeding trials with sows andpiglets during farrowing at the | Parameter                   | Trial 1 Tria |      | Trial 2           |                   | Trial 3 |      | Total             |                   |
|-----------------------------------------------------------------------------------------|-----------------------------|--------------|------|-------------------|-------------------|---------|------|-------------------|-------------------|
|                                                                                         |                             | Control      | Alga | Control           | Alga              | Control | Alga | Control           | Alga              |
| Regional Research Center<br>(LVA; Iden, Germany; Weber                                  | Sow daily weight gain       |              |      |                   |                   |         |      |                   |                   |
| and Grimmer 2001)                                                                       | Lactating time (g/day)      | 290          | 305  | 319               | 318               | 303     | 300  | 304               | 308               |
|                                                                                         | Weight after lactating (kg) | 7.5          | 7.9  | 8.5               | 8.5               | 7.2     | 7.18 | 7.8               | 7.8               |
|                                                                                         | End weight (kg)             |              | 24.9 | 26.9 <sup>a</sup> | 29.8 <sup>b</sup> | 24.5    | 25.7 | 25.1 <sup>a</sup> | 26.8 <sup>b</sup> |
|                                                                                         | Husbandry (days)            | 42           | 42   | 46.2              | 45.8              | 47      | 46.1 | 45                | 44.6              |
|                                                                                         | Piglet daily weight gain    |              |      |                   |                   |         |      |                   |                   |
|                                                                                         | Growth (g/day)              | 388          | 404  | 396 <sup>a</sup>  | 466 <sup>b</sup>  | 369     | 403  | 386 <sup>a</sup>  | 424 <sup>b</sup>  |
|                                                                                         | Feed conversion (kg/kg)     | 1.67         | 1.66 | 1.74              | 1.66              | 1.73    | 1.57 | 1.71              | 1.63              |
| <sup>a,b</sup> Level of significance P>0.05                                             | Dead animals                | 0            | 0    | 1                 | 0                 | 3       | 0    | 4                 | 0                 |

#### Aquacultures

#### Enhancement and improvement of fish production


Table 6 Important genera of microalgae used in aquaculture

Genera

Taxon

| 01111                                                                |
|----------------------------------------------------------------------|
| Skeletonema, Chaetoceros, Phaeodactylum,<br>Nitzschia, Thalassiosira |
| Isochrysis, Pavlova                                                  |
| Tetraselmis                                                          |
| Chlorella, Scenedesmus, Dunaliella                                   |
| Spirulina                                                            |
|                                                                      |





|                | Products currently on market    | Producers of current products                   | Micro-algae / product from<br>micro-algae                                                                                                      | $\Rightarrow$ |
|----------------|---------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                |                                 | Solazyme (US) + Unilever<br>Fuji Chemicals [77] | (NA)                                                                                                                                           |               |
|                |                                 | Soliance (France) [78]                          | Spirulina                                                                                                                                      |               |
|                |                                 | LVMH (France) [87]                              | Chlorella                                                                                                                                      |               |
|                | Personal care skin products     | Daniel Jouvance (France) [87]                   | (NA)                                                                                                                                           |               |
| Cosmetics      |                                 | Algenist /Solazyme (USA, California)<br>[79]    | 'Alguronic acid' (trade name<br>for a undetermined mix of<br>polysaccharides produced by<br>micro-algae clogging filters in algae<br>cultures) |               |
| Cosn           |                                 | Soliance (FR) [78]                              | Skeletonema costatum                                                                                                                           |               |
|                | Anti aging skin product (lipid) | Exsymol S.A.M. (Monaco) [87]                    | Arthropira ( <i>Spirulina</i> )                                                                                                                |               |
|                |                                 | Pentapharm (Switzerland) [87]                   | Nannochloropsis<br>Dunaliella Salina                                                                                                           |               |
|                |                                 | Soliance [78]                                   | Porphyridium cruentum                                                                                                                          |               |
|                | Hydrating skin product          | Codif (France) [87                              | Chlorella                                                                                                                                      |               |
|                | Anti – inflammation (peptide)   | Soliance [78]                                   | Phaeodactylum tricornutum                                                                                                                      |               |
|                | Slimming products               | Soliance [78]                                   | Dysmorphococcus globosus                                                                                                                       |               |
| s              | Fluorescent protein markers     | Martek/DSM                                      | (NA)                                                                                                                                           |               |
| Other products | Stable isotope biochemicals     | Spectra Gases/Martek/DSM [87]                   | (NA)                                                                                                                                           |               |
| Ó              |                                 |                                                 |                                                                                                                                                |               |