

Bi9540 Biotechnology and practical use of algae and fungi

Lecture 7 – Biofuels

Biofuels

- Alternatives to fossil fuels (crude oil, coal,...)
- Plant and animal biomass
- Primary biofuels like wood or crop waste used since ancient ages
- Most of the currently used biofuels are plant-based
- Algae are promising sources of biofuels for the future

Generations of Biofuels

First Generation

- Derived from edible plants grown on arable land.
- Ethanol and butanol produced via yeast fermentation.
- Crops include wheat, sugar cane, and oily seeds.
- Attributed as a potential reason for recent spike in food prices.
- Net energy negative.

Second Generation

- Produced from nonedible crops grown on non-arable land.
- Sources have high lignocellulosic content, which include wood and organic waste.
- Potential to be net energy positive.

Third Generation

- Produced from algae and other microorganisms.
- Resilient organisms that can be grown from sunlight, CO₂ and brackish water.
- Does not use arable land.
- Fastest growing of all biofuel sources.
- Potentially carbon neutral

Fourth Generation

- Genetic engineering of organisms for efficient production of biofuels.
- Includes altering lipid characteristics and introducing lipid excretion pathways.
- Aim to be carbon negative by creating artificial carbon sinks.

Biofuels in the world

 Vast majority of the biofuels production is based in the US, Brazil and Europe

Why are biofuels important?

- Renewable sources of energy
- Lowering of carbon emissions
- Lower energy demands than 'traditional' processes
- Biomass can be used for extraction of biologically active compounds and as biofuel
- Waste is biodegradable or can be used further

Crude oil consumption

Algae as biofuels sources

Advantages and disadvantages of biofuel production using microalgae.

Advantages	Disadvantages
High growth rate Less water demand than land crops High-efficiency CO ₂ mitigation More cost effective farming	Low biomass concentration Higher capital costs

ALGAL BIOMASS PRODUCTION SYSTEMS

Timelines for Production and Progression Into Larger Markets

Small Scale Production 2009 – to 2011 Mid-Scale Production 2010-to 2012 Larger-Scale Production 2011 to 2015 Large Scale Production for Fuels 2012 to 2020

Sources: Algae 2020 study, Emerging Markets Online Consulting Services

Fig. 1. Carbon dioxide fixation and main steps of algal biomass technologies.

Species of sample	Proteins	Carbohydrates	Lipids	Nucleic acid
Scenedesmus obliquus	50-56	10–17	12- 14	3–6
Scenedesmus quadricauda	47	-	1.9	-
Scenedesmus dimorphus	8-18	21-52	16– 40	-
Chlamydomonas rheinhardii	48	17	21	-
Chlorella vulgaris	51-58	12–17	14– 22	4–5
Chlorella pyrenoidosa	57	26	2	-
Spirogyra sp.	6-20	33-64	11-	-
			21	
Dunaliella bioculata	49	4	8	-
Dunaliella salina	57	32	6	-
Euglena gracilis	39-61	14-18	14-	-
			20	
Prymnesium parvum	28-45	25-33	22-	1-2
	-		38	
Tetraselmis maculata	52	15	3	-
Porphyridium cruentum	28-39	40-57	9-14	-
Spirulina platensis	46-63	8-14	4-9	2-5
Spirulina maxima	60-71	13-16	6-7	3-4.5
Synechoccus sp.	63	15	11	5
Anabaena cylindrica	43-56	25-30	4–7	-

Chemical compositions of algae on a dry matter basis (%).

Biodiesel

- Methylesters of unsaturated fatty acids
- Better biodegradability than fossil-based diesel
- High energy capacity
- Can corrode the engine parts
- Higher health hazard than fossil fuels

 In the EU 5 % of biodiesel has to be mixed with liquid fossil fuels

Data source: International Energy Agency, 2000-12.

US Biodiesel Production 2004-2008

US Biodiesel Production and Capacity

source Emerging Markets Online Consulting Services, Algae 2020 study

Europe Biodiesel Production and Capacity

sources Biodiesel 2020: A Global Market Survey, EBB, USDA, OilWorld, FAS

Global biodiesel production by feedstock

Global Biodiesel Production by Country

2002 2003

Source: Diester Industrie International/EBB

Increase in EU rapeseed area in 2014

*Biodiesel consumption is total industrial consumption, converted from '000Barrels a day using EIA's unit conversion of 158.99 liters per barrel.

**2012-13 biodiesel consumption based on percent change from USDA estimates.

Sources: Vegetable Oil Consumption, USDA Foreign Agricultural Service, Production, Supply and Distribution database; per capita calculated using World Bank, World Development Indicators data on population. Biodiesel Consumption is from US Energy Information Administration, International Energy Statistics.

Algae processing

20% humidity after dewatering

Biodiesel production

Lipids and free fatty acids

Fig. 3. Direct liquefaction of microalgae and oil from liquefaction products by CH_2Cl_2 extraction.

Fig. 4. Primary oil from algal cells by liquefaction of hexane extraction.

Fig. 1. World map of the current near-term lipid productivity potential from microalgae based on a validated biological growth model representative of *Nannochloropsis* cultivated in a photobioreactor. Results are based on the simulation of 4,388 geographical locations.

Table 1. Average microalgae lipid yields in cubic meters per hectare⁻¹ per meter⁻¹ (corresponding biomass yields in grams per meter⁻² per day⁻¹) of various regions around the world with respective high and low monthly lipid yields

Lipid and biomass vield

Location	Maximum monthly	Average monthly	Lowest monthly			
Kisumu, Kenya	2.47 (15.9)	2.28 (14.8)	2.07 (13.3)			
Learmonth, Australia	2.61 (18.0)	2.16 (14.0)	1.49 (9.64)			
Trivandrum, India	2.42 (15.6)	2.08 (13.4)	1.75 (11.3)			
Cali, Columbia	2.27 (14.6)	2.04 (13.2)	1.91 (12.3)			
Hawaii, United States	2.36 (15.3)	1.97 (12.8)	1.50 (9.95)			
Yuma, AZ, United States	2.68 (17.3)	1.80 (11.7)	0.68 (5.16)			
Poltavka, Russia	2.30 (14.8)	1.06 (6.84)	0.46 (3.23)			
Bagaskar, Finland	2.19 (14.1)	0.77 (5.00)	0.55 (3.86)			
Punta Arenas, Chile	1.77 (11.9)	0.77 (5.07)	0.51 (3.25)			

Lipid content and productivities of different microalgae species.

Marine and freshwater microalgae species	Lipid content (% dry weight biomass)	Lipid productivity (mg/L/day)	Volumetric productivity of biomass (g/L/day)	Areal productivity of biomass (g/m²/day)
Ankistrodesmus sp.	24.0-31.0	-	-	11.5-17.4
Botryococcus braunii	25.0-75.0	_	0.02	3.0
Chaetoceros muelleri	33.6	21.8	0.07	-
Chaetoceros calcitrans	14.6-16.4/39.8	17.6	0.04	-
Chlorella emersonii	25.0-63.0	10.3-50.0	0.036-0.041	0.91-0.97
Chlorella protothecoides	14.6-57.8	1214	2.00-7.70	-
Chlorella sorokiniana	19.0-22.0	44.7	0.23-1.47	-
Chlorella vulgaris	5.0-58.0	11.2-40.0	0.02-0.20	0.57-0.95
Chlorella sp.	10.0-48.0	42.1	0.02-2.5	1.61-16.47/25
Chlorella pyrenoidosa	2.0	-	2.90-3.64	72.5/130
Chlorella	18.0-57.0	18.7	_	3.50-13.90
Chlorococcum sp.	19.3	53.7	0.28	_
Crypthecodinium cohnii	20.0-51.1	_	10	-
Dunaliella salina	6.0-25.0	116.0	0.22-0.34	1.6-3.5/20-38
Dunaliella primolecta	23.1	_	0.09	14
Dunaliella tertiolecta	16.7-71.0	-	0.12	-
Dunaliella sp.	17.5-67.0	33.5	_	-
Ellipsoidion sp.	27.4	47.3	0.17	_
Euglena gracilis	14.0-20.0	-	7.70	-
Haematococcus pluvialis	25.0	_	0.05-0.06	10.2-36.4
Isochrysis galbana	7.0-40.0	_	0.32-1.60	_
Isochrysis sp.	7.1–33	37.8	0.08-0.17	_
Monodus subterraneus	16.0	30.4	0.19	-
Monallanthus salina	20.0-22.0	_	0.08	12
Nannochloris sp.	20.0-56.0	60.9-76.5	0.17-0.51	_
Nannochloropsis oculata.	22.7-29.7	84.0-142.0	0.37-0.48	-
Nannochloropsis sp.	12.0-53.0	37.6-90.0	0.17-1.43	1.9-5.3
Neochloris oleoabundans	29.0-65.0	90.0-134.0	-	_
Nitzschia sp.	16.0-47.0			8.8-21.6
Oocystis pusilla	10.5	_	-	40.6-45.8
Pavlova salina	30.9	49.4	0.16	_
Pavlova lutheri	35.5	40.2	0.14	-
Phaeodactylum tricornutum	18.0-57.0	44.8	0.003-1.9	2.4-21
Porphyridium cruentum	9.0-18.8/60.7	34.8	0.36-1.50	25
Scenedesmus obliguus	11.0-55.0	_	0.004-0.74	-
Scenedesmus quadricauda	1.9-18.4	35.1	0.19	-
Scenedesmus sp.	19.6-21.1	40.8-53.9	0.03-0.26	2.43-13.52
Skeletonema sp.	13.3-31.8	27.3	0.09	_
Skeletonema costatum	13.5-51.3	17.4	0.08	-
Spirulina platensis	4.0-16.6	_	0.06-4.3	1.5-14.5/24-51
Spirulina maxima	4.0-9.0	_	0.21-0.25	25
Thalassiosira pseudonana	20.6	17.4	0.08	_
Tetraselmis suecica	8.5-23.0	27.0-36.4	0.12-0.32	19
Tetraselmis sp.	12.6-14.7	43.4	0.30	_

Plant source	Seed oil content (% oil by wt in biomass)	Oil yield (L oil/ha year)	Land use (m ² year/kg biodiesel)	Biodiesel productivity (kg biodiesel/ha year)
Corn/Maize (Zea mays L.)	44	172	66	152
Hemp (Cannabis sativa L.)	33	363	31	321
Soybean (Glycine max L.)	18	636	18	562
Jatropha (Jatropha curcas L.)	28	741	15	656
Camelina (Camelina sativa L.)	42	915	12	809
Canola/Rapeseed (Brassica napus L.)	41	974	12	862
Sunflower (Helianthus annuus L.)	40	1070	11	946
Castor (Ricinus communis)	48	1307	9	1156
Palm oil (Elaeis guineensis)	36	5366	2	4747
Microalgae (low oil content)	30	58,700	0.2	51,927
Microalgae (medium oil content)	50	97,800	0.1	86,515
Microalgae (high oil content)	70	136,900	0.1	121,104

Yields of bio-oil by pyrolysis from alga samples at different temperatures (K).

Sample	575	625	675	725	775	825	875
Cladophora fracta	10.5	23.5	33.2	43.4	48.2	46.8	44.6
Chlorella protothecoides	12.8	27.4	38.4	50.2	55.3	53.7	51.6

Algal feedstock	Pretreatment and oil extraction	Catalyst; conditions	Acyl donor; co- solvent	Yield (reported)	Refs.
Dictyochloropsis splendida	Drying followed by chloroform-methanol (2:1 v/v)	NaOH	Methanol; none	Not reported	[61]
Wild mixed cultures	Air drying for 120 min hexane extraction	KOH, 6 h.	Ethanol; none	Not reported	[123]
Stichococcus bacillaris	Freeze-drying followed by chloroform- methanol (2:1 v/v)	NaOH, 65 °C, 3 min.	Methanol; none	Not reported	[124]
Spirulina sp.	In situ process	NaOH, 24 °C, 1 h.	Methanol toluene (1:2); none	86% Overall biodiesel yield (% conversion of TAGs) after 2 cycles	[73]
Dunaliella tertiolecta	Glass beads cell disruption followed by chloroform-methanol (2:1 v/v) oil extraction	CH₃ONa, 110 °C, 5 h	Methanol: THF	23.6 ± 0.5 FAME/dry cell weight	[125]
P. canaliculata, F. spiralis and mixed macroalgae	In situ process from dry biomass	NaOH, 60 °C, 11 h	Methanol (300:1 M ratio to oil); none	17.1% FAME yield	[62]
Chlorella protothecoides	Freeze-drying followed by hexane extraction	H ₂ SO ₄ (1:1 M ratio to oil); 30 °C, 4 h.	Methanol (56:1 M ratio to oil); none	Not Reported	[81– 88]
Chlorella pyrenoidosa	In situ process	H ₂ SO ₄ ; 90 °C, 2 h	Methanol (165:1 M ratio to oil); hexane	95% Oil conversion	[76]
Chlorella pyrenoidosa	Drying followed by chloroform-methanol (2:1 v/v)	H ₂ SO ₄ ; 100 °C, 4 h	Methanol (30:1 M ratio to oil); none	Not reported	[90]
Chlorella sp.	In situ process	H ₂ SO ₄ (1:1 M ratio to oil); 60 °C, 4 h	Methanol (315:1 M ratio to oil); none	92.22% Gravimetric	[91]
Schizochytrium limacinum	In situ process from dry biomass	H ₂ SO ₄ ; 90 °C, 40 min	Methanol; chloroform	>100% Oil conversion 67% Biomass to FAME	[74]
Unknown algae	In situ process from dry biomass	H ₂ SO ₄ ; 65 °C, 2 h	Methanol (220:1 M ratio to oil); none	98% Theoretical yield	[80]
Pure and Mixed cultures	In situ process from dry biomass	H ₂ SO ₄ 1.8% (v/v); 80 °C, 20 min.	Methanol; none	36% (w FAME/w algae) for diatoms 10.7% (w FAME/w algae) for wastewater lagoon	[68]
Nannochloropsis oculata	In situ process	HCl 80 °C for 2 h	Methanol: chloroform (10:1); none	23.07 ± 2.76% w/w	[75]

Alkali and acid catalysed transesterification for the production of biodiesel from algae.

Feedstock	Conditions	Biodiesel	Reference
ALGAE			
Spirulina platensis	Reaction temperature 55°C, 60% catalyst concentration, 1:4 algae biomass to methanol ratio, 450 rpm stirring intensity	60 g/kg lipid	Nautiyal et al. (2014)
Nannochloropsis sp.	Oil extraction with n-hexane, acidic transesterification	99 g/kg lipid	Susilaningsih et al. (2009)
Scenedesmus sp.	Alkaline (NaOH), temperature of 70°C	321.06 g/kg lipid	Kim et al. (2014)
	Acidic (H ₂ SO ₄) catalyst, temperature of 70°C	282.23 g/kg lipid	
Nannochloropsis salina	Freeze drying of biomass, extraction with chloroform-methanol (1:1 ratio), alkali transesterification	180.78 g/kg lipid	Muthukumar et al. (2012)
Chlorella marina		100 g/kg lipid	
TERRESTRIAL PLANTS	;		
Madhuca indica	0.30–0.35 (v/v) methanol-to-oil ratio, 1% (v/v) $\rm H_2SO_4$ as acid catalyst, 0.25 (v/v) methanol, 0.7% (w/v) KOH as alkaline catalyst	186.2 g/kg lipid	Ghadge and Raheman (2005)
Pongamia pinnata	Transesterification with methanol, NaOH as catalyst, temp. 60°C	253 g/kg lipid	Mamilla et al. (2011)
	Acid-catalyzed esterification by using 0.5% H ₂ SO ₄ , alkali-catalyzed transesterification	193.2 g/kg lipid	Naik et al. (2008)
Azadirachta indica	Reaction time of 60 min, 0.7% H ₂ SO ₄ as acid catalyst, reaction temperature of 50°C, and methanol: oil ratio of 3:1	170 g/kg lipid	Awolu and Layokun (2013)
Soybean	Hydrotalcite as basic catalyst, methanol/oil molar ratio of 20:1, reaction time of 10 h	189.6 g/kg lipid	Martin et al. (2013)

Table 1 | Comparative study between algal biomass and terrestrial plants for biodiesel production.

Botryococcus braunii

- Green oil producing alga
- Oils are not suitable for transesterification
- Triterpenes can be used for refinement
 - Octane
 - Kerosene
 - Diesel

Hydrocarbon Oil Constituents

of	Bot	tryo	coc	cus	brau	inii	F
----	-----	------	-----	-----	------	------	---

Compound	% mass
Isobotryococcene	4%
Botryococcene	9%
C ₃₄ H ₅₈	11%
C ₃₆ H ₆₂	34%
C ₃₆ H ₆₂	4%
C ₃₇ H ₆₄	20%
Other hydrocarbons	18%

Bioethanol

- Production depends on content of fermentable sugars
- Production higher than 4 % (40 g/L) is necessary to make the proces economically feasible

Table 1. Comparison of the productivities of lignocellulosic biomass and seaweeds

Biomass	Productivity [dry g/(m²•year)]	Reference
Lignocellulosic biomass		
Switchgrass	560-2,240	65
Corn stover	180–790	65
Eucalyptus	1,000–2,000	65
Poplar	300-612.5ª	66
Willow	46-2,700	67
Seaweeds		
Green seaweeds	7,100 ^b	19, 20
Brown seaweeds	3,300-11,300	21
Red seaweeds	3,300-11,300	21

^aMean value calculated from the amount of biomass produced for 8 y; ^bcalculated value.

Bioethanol production

- Cells are pretreated using acid or enzymatic hydrolysis
- Hydrothermal pretreatment may be applied

- Ethanol fermentation by bacteria or yeast
 - Saccharomyces cerevisiae
 - or technical cultures
- Mannitol cannot be converted by S. cerevisiae

Organism	nism Natural sugar utilization pathways ^{a)} Major products			roducts ^{b)}	Tolerance ^{c)}			O ₂ needed	ⁱ⁾ pH			
	Glu	Man	Gal	Xyl	Ara	EtOH	Other	Alcohols	Acids	Hydrolysate	2	
Anaerobic bacteria	+	+	+	+	+	+	+	_	_	_	_	Neutral
Escherichia coli	+	+	+	+	+	_	+	_	_	_	_	Neutral
Zymomonas mobilis	+	_	_	_	_	+	_	+	_	_	_	Neutral
Saccharomyces cerevisiae	+	+	+	_	_	+	_	++	++	++	_	Acidic
Pichia stipitis	+	+	+	+	+	+	_	_	_	_	+	Acidic
Filamentous fungi	+	+	+	+	+	+	_	++	++	++	_	Acidic

 Table 3. Advantages and disadvantages of various natural microorganisms regarding industrial ethanol production. Adapted from [98] with permission.

a) +: Fermentation possible; -: Fermentation not possible

b) +: Major product(s); -: Minor product(s)
c) ++: High tolerance; +: Moderate tolerance; -: Poor tolerance

d) +: O2 needed; -: O2 not needed

Table 2. Glucan contents in various kinds of biomass used for bioethanol production and the yields and concentrations of ethanol produced from glucans in the biomass^a

Biomass	Glucan content in untreated biomass [%] ^b	Glucan content in pretreated biomass [%] ^b	Yield of ethanol from pretreated biomass [g-ethanol/g-pretreated biomass]	Concentration of ethanol [g/L]	Reference
Lignocellulosic biomass					
Wood (Japanese cedar)	43.5°	89.1 ^{c,d}	0.367 ^d	73.3	2
Wood (aspen)	45.6	66.2	0.285 ^d	60	3
Wood (aspen)	47.7	50.3	0.247 ^d	47	1
Wheat straw	31.5°	67.2 ^c	0.308 ^d	51.5	5
Corn stover	39.5°	69.7 ^c	0.308	52.3	26
Seaweeds					
Green seaweed (Ulva pertusa)	22	-	0.062 ^{d,e}	18.5	15
Brown seaweed (Alaria crassifolia)	24.5	-	0.085 ^{d,e}	25.5	15
Red seaweed (Gelidium elegans)	21.8	-	0.061 ^{d,e}	18.4	15

^aEnzymatic hydrolysis was used for the hydrolysis of glucans; ^bdry-weight basis; ^cdescribed as cellulose; ^dcalculated values. ^eyield of ethanol from untreated biomass.

Table 3. Yields and concentrations of sugars produced by hydrolysis of brown seaweeds

Seaweed	Hydrolysis	Conditions	Sugars produced	Yield of sugar [g-sugar/g-sea- weed]	Concentration of sugar [g/L]	Reference
Undaria pinnatifida	Acidª	120°C for 24 h	Glucose	0.065	3.3 ^m	43
			Xylose	0.002	0.1 ^m	
			Fructose	0.004	0.2 ^m	
Undaria pinnatifida	Enzymatic ^b	45°C for 60 min	Glucose	0.014	0.7 ^m	43
Laminaria japonica	Enzymatic ^c after acid pretreatment ^{d,e}	Enzymatic hydrolysis at 50°C for 48 h after acid pretreatment at 121°C for 1 h	Glucose	0.2775 ¹	5.55 ^m	10
Laminaria japonica	Acid ^f and enzymatic ^g	Acid hydrolysis at 121°C for 15 min and enzymatic hydrolysis at 50°C for 24 h	Glucose	0.0698	6.98 ^m	44
	0.0698		Mannitol	0.3054	30.54 ^m	
Sargassum fulvellum	Acid ^f and enzymatic ^g	Acid hydrolysis at 121°C for 15 min and enzymatic hydrolysis at 50°C for 24 h	Glucose	0.0596	5.96 ^m	44
			Mannitol	0.0215	2.15 ^m	
Undaria pinnatifida	Enzymatic ^h after removal of alginate ⁱ	Enzymatic hydrolysis at 40°C for 15 h after removal of alginate at 80°C ^j	Glucose	0.13	0.130 ^m	14
Alaria crassifolia	Enzymatic ^k	50°C for 120 h	Glucose	0.224 ^m	67.2	15

^aSulfuric acid was used at 5% (v/v); ^bCelluclast 1.5 L and Novozyme 188 were used as enzymes; ^ccommercial cellulase and cellobiase were used as enzymes; ^dsulfuric acid was used for the acid pretreatment at a concentration of 0.1% (w/v); ^eacid-insoluble residue was washed and used for the enzymatic hydrolysis; ^fhydrochloric acid was used at a concentration of 0.1 N; ^gViscozyme L and Celluclast 1.5 L were used as enzymes; ^bcommercial cellulase was used as the enzyme; ⁱsodium carbonate was used for the removal of alginate at a concentration of 1% (w/v); ^jtreatment time for the removal of alginate is not described;¹⁴ ^kMeicelase was used as the enzyme; ⁱyield of ethanol from pretreated seaweed; ^mcalculated values.

Hydrolysis type	Hydrolysis source	Fermentation Mode ^{a)}	Algae species	Algae type	Yield (g ethanol/g algae)	Reference
Acid	HCl/ MgCl ₂	SHF	Chlorella sp.	Micro	0.47	[36]
Alkaline	NaOH	SHF	Chlorococcum infusionum	Micro	0.261	[10]
Chemical	H ₂ SO ₄	SHF	Chlorococcum humicola	Micro	0.48	[9]
Chemical ^{b)}	H ₂ SO ₄	SHF	Chlorella vulgaris	Micro	0.233	[61]
Chemo- enzymatic ^{c)}	HCl/ H ₂ SO ₄ + amyloglucosidase + endocellulase + β-glucosidase	SHF	Dunaliella tertiolecta	Micro	0.14	[46]
Enzymatic	lpha-amylase + amyloglucosidase	SHF	Chlamydomonas reinhardtii	Micro	0.235	[18]
Enzymatic	endoglucanase + β-glucanase + amyloglucosidase	SSF	Laminaria japonica	Macro	0.196	[38]
Enzymatic ^{b)}	cellulase + amylase	SHF	C. vulgaris	Micro	0.178	[61]
Enzymatic ^{d)}	cellulase + β -glucosidase	SHF	Gracilaria verrucosa	Macro	0.43	[14]
Enzymatic ^{e)}	cellulase + β -glucosidase	SSF	Saccharina japonica	Macro	0.111	[31]
Enzymatic ^{b)}	cellulase + Amylase	SSF	C. vulgaris	Micro	0.214	[61]
Physical ^{c)}	supercritical CO ₂	SHF	Chlorococum sp.	Micro	0.383	[45]

Table 2. Various hydrolysis treatments methods and their bioethanol yields

a) SHF: separate hydrolysis and fermentation; SSF: simultaneous saccharification and fermentation

b) Sonicated algal biomass was utilized

c) Lipid-extracted algal biomass was utilized

d) Agar pulp was extracted after alkali treatment and hydrolyzed

e) Algal biomass received extremely low acid pretreatment.

Table 5. The highest concentrations of ethanol produced from green, brown and red seaweeds

Seaweed	Carbohydrates converted to ethanol	Ethanol concentration [g/L]	Ethanol yield [g-ethanol/g-seaweed]	Reference
Ulva pertusa	Glucans	27.5	0.092 ^b	15
(Green seaweed)				
Laminaria japonicaª	Glucose	37.8	0.291 ^b	51
(Brown seaweed)	Mannitol			
	Alginate			
Gelidium elegans	Glucans	55	0.183 ^b	15
(Red seaweed)	Agar (galactose)			

^aDescribed in that study as *Saccharina japonica*; ^bcalculated values.

Table 6. Polysaccharides, sugars in them and organisms to convert these sugars into ethanol

Biomass	Polysaccharides	Sugar		Reference
Green seaweed	Glucan	Glucose	S. cerevisiae	15, 27
	Ulvan	Xylose	Xylose-fermenting yeast	39
			Xylose-utilizing S. cerevisiae,	37
			Ethanologenic <i>E. coli</i>	38
		Glucuronic acid	P. tannophilus	35
			Ethanologenic <i>E. coli.</i>	36
Brown seaweed	Glucan	Glucose	S. cerevisiae	10, 15
			P. angophorae	45
			Ethanologenic <i>E. coli</i> KO11	44
			Ethanologenic E. coli BAL1611	51
	_a	Mannitol	P. angophorae	45
			Ethanologenic <i>E. coli</i> KO11	44
			Ethanologenic <i>E. coli</i> BAL1611	51
	Alginate	Uronic acid	Ethanologenic Sphingomonas sp. A1	50
			Ethanologenic <i>E. coli</i> BAL BAL1611	51
Red seaweed	Glucan	Glucose	S. cerevisiae	15, 56, 58, 60, 61
	Agar, Carrageenan	Galactose	S. cerevisiae	15, 56, 58, 60, 61
		3,6-anhydrogalactose	NR ^b	

^aMannitol is not a polysaccharides, but a major sugars in brown seaweeds; ^bethanol production from 3,6-anhydrogalactose has not been reported.

Algal feedstock	Type	Pretreatment and saccharification	Fermenting organism,	Yield (reported)	Yield (normalised	Refs.
¹	of algae		time and mode		to g EtOH/g dry weight)	
Chlorococum sp.	Micro	Supercritical $\rm CO_2$ lipid extraction at 60 $^{\circ}\rm C$ and 400 mL/min $\rm CO_2$	Saccharomyces bayanus SHF, 60 h	3.83 g Ethanol from 10 g of lipid-extracted microalgae debris	38,30%	[49]
Chlorococcum infusionum	Micro	0.75% (w/v) NaOH at 120 $^\circ\!C$ for 30 min	Saccharomyces cerevisiae SHF, 72 h	0.26 g Ethanol/g algae	26.00%	[52]
Chlamydomonas reinhardtii UTEX 90	Micro	3% H_2SO_4 at 110 $^\circ C$ for 30 min	<i>Saccharomyces</i> <i>cerevisiae</i> S288C, SHF, 24 h	0.291 g Ethanol/g algae	29.10%	[39]
Chlamydomonas reinhardtii UTEX 90	Micro	$\alpha\text{-amylase}$ (90 °C, 30 min) and glucoamylase (55 °C, 30 min)	<i>Saccharomyces</i> <i>cerevisiae</i> S288C, SSF, 40 h	0.235 g Ethanol/g algae	23.50%	[16]
Chlorella vulgaris	Micro	3% H ₂ SO ₄ at 110 °C for 105 min	<i>Escherichia coli</i> SJL2526, SHF, 24 h	0.4 g Ethanol/g algae	40.00%	[40]
Schizochytrium sp.	Micro	Hydrothermal fractionation and α-amylase at 13,000 AAU/g-glucan and glucoamylase 660 GAU/g-glucan	<i>Escherichia</i> coli KO11, SSF, 72 h	11.8 g/L of Ethanol from 25.7 g/L of glucose	5.51%	[44]
Kappaphycus alvarezii	Macro	0.9 N H₂SO₄ at 120 ℃ for 60 min	Saccharomyces cerevisiae NCIM 3455, SHF, 96 h	92.3% Theoretical conversion	15.4%	[34]
Kappaphycus alvarezii	Macro	0.2% H_2SO_4 at 130 °C for 15 min	Saccharomyces cerevisiae SHF, 24h	1.7 g/L	1.31%	[35]
Gracilaria salicornia	Macro	2% H_2SO_4 at 120 $^\circ\text{C}$ f or 30 min and cellulase at 40 $^\circ\text{C}$	<i>Escherichia coli</i> KO11, SHF, 48 h	79.1 g Ethanol/1 kg	7.90%	[42]
Gelidium elegans	Macro	Meicelase treatment 50 °C for 120 h pH 5.5	<i>Saccharomyces</i> <i>cerevisiae</i> IAM 4178, SHF, 48h	5.5% Ethanol in fermentation broth	36.7% * (dry weight approximated)	[41]
Sargassum sagamianum	Macro	Thermal liquification at 200 °C and 15 MPa for 15 min.	Pichia stipitis CBS 7126, SHF, 48 h	84.3% of Theoretical value	10.0%	[43]
Laminaria japonica	Macro	0.1 N HCl, 121 °C for 15 min and Celluclast 1.5 L, Viscozyme L, 50 °C on 150 rpm for saccharification	<i>Escherichia coli</i> KO11, SSF, 72 h	0.4 g Ethanol/g of sugars	16.1%	[36]
Laminaria hyperborea	Macro	Cutting and washing in water pH 2 at 65 $^{\circ}\mathrm{C}$	<i>Pichia angophorae</i> , SHF, 48h	0.43 g Ethanol/g sugar	0.86%* (dry weight approximated)	[37]
Saccharina latissima (Laminaria hyperborea)	Macro	Shredding and laminarinase treatment for saccharfication	Saccharomyces cerevisiae Ethanol Red, SSF, 48 h	0.45% (v/v)	0.47%	[38]
Laminaria digitata	Macro	Shredding and laminarinase treatment for saccharfication	Pichia angophorae, SSF, 96 h	167 mL Ethanol/kg algae	13.2%	[51]
Laminaria japonica	Macro	Floating residues from alginate industry treated with 0.1 M H ₂ SO ₄ at 121 °C, 1 h and cellulase, cellobiase	Saccharomyces cerevisiae, SHF, 36 h	0.143 L Ethanol from 1 kg floating residues	11.3%	[48]
Laminaria japonica	Macro	Grinding of dry biomass and autoclaving at 120 °C for 15 min	Pichia stipitis KCTC7228	2.9 g/L Ethanol using 100 g/L algae	2.9%	[53]

Micro, microalgae; Macro, macroalgae; SHF, separate hydrolysis and fermentation; SSF, simultaneous saccharification and fermentation. Several studies were optimisation experiments containing various combinations of feedstocks/fermentors/pretreatments in these cases the most successful experiment is reported in the table.

Fermentation Type	Algal feedstock	Hydrolysis		Ferm	nentation	Bioethanol Yield	Reference	
		Source	Treatment conditions	Source	Process conditions	_		
tion (Chlamydomonas fasciata	Glutase	40°C for 30 min	Saccharomyces cerevisiae	100 rpm and 40°C for 30 h	0.194 g ethanol/g algae	[99]	
Simultaneous Saccharifica and Fermentation (SSF	Chlorella vulgaris	Cellulase + Amylase	200 rpm and 45°C	Zymomonas mobilis	30°C in desktop fermentation	0.214 g ethanol/g algae	[61]	
	Schizocytrium sp.	Amylase	37°C at 150 rpm for 24 h	Escherichia coli	150 rpm and 37°C	0.055 g ethanol/g algae	[44]	
	Laminaria japonica	Sulfuric acid	121°C for 15 min	E. coli	150 rpm and 37°C	0.4 g ethanol/g carbohydrate	[39]	
	Saccharina japonica	Bacillus licheniformis	200 rpm and 30°C for 7.5 days	Pichia angophorae	200 rpm and 30°C for 13 h	7.7 g ethanol/ L algae hydrolysate	[55]	
	C. vulgaris	Cellulase + Amylase	200 rpm and 45°C	Z. mobilis	30°C in desktop fermentation	0.178 g ethanol/g algae	[61]	
entation	C. vulgaris	Sulfuric acid	121°C for 20 min.	Z. mobilis	30°C in desktop fermentation	0.233 g ethanol/g algae	[61]	
sis and Ferme SHF)	Dunaliella tertiolecta	HCl/H ₂ SO ₄ + cellulase + amylo- glucosidase	121°C for 15 min	S. cerevisiae	200 rpm and 30°C for 12 h	0.14 g ethanol/g algae	[46]	
Hydroly	Gelidium amansii	Sulfuric acid	150°C and 3.0– 3.5 bar pressure	Brettanomyces custersii	150 rpm and 30°C	27.6 g ethanol/ L algae hydrolysate	[53]	
eparate	Scenedesmus abundans	Cellulase	37°C for 30 min	S. cerevisiae	200 rpm and 30°C for 48 h	0.103 g ethanol/ g algae	[60]	
S	L. japonica	Cellulase + Cellubiose	150 rpm and 50°C for 48 h	S. cerevisiae	30°C for 36 h	0.143 L ethanol/ kg algae	[47]	

 Table 4. Bioethanol production from SSF and SHF tested on various algal strains

Feedstock	Conditions	Bioethanol	Reference	
ALGAE				
Chlorococcum infusionum	Alkaline pre-treatment, temp. 120°C, S. cerevisiae	260 g ethanol/kg algae	Harun et al. (2011)	
Spirogyra	Alkaline pre-treatment, synthetic media growth, saccharification of biomass by <i>Aspergillus niger</i> , fermentation by <i>S. cerevisiae</i>	80 g ethanol/kg algae	Eshaq et al. (2010)	
Chlorococcum humicola	Acid pre-treatment, temp. 160°C, S. cerevisiae	520 g ethanol/kg microalgae	Harun and Danquah (2011a)	
TERRESTRIAL PLANTS				
Madhuca latifolia	Strain <i>Zymomonas mobilis</i> MTCC 92, immobilized in <i>Luffa</i> <i>cylindrical</i> sponge disks, temp. 30°C	251.1 \pm 0.012 g ethanol/kg flowers	Behera et al. (2011)	
Manihot esculenta	Enzyme termamyl and amyloglucosidase, 1 N HCl, Saccharomyces cerevisiae, ca-alginate immobilization	189±3.1 g ethanol/kg flour cassava	Behera et al. (2014)	
Sugarcane bagasse	Acid (H ₂ SO ₄) hydrolysis, <i>Kluyveromyces</i> sp. IIPE453, Fermentation at 50°C	165 g ethanol/kg bagasse	Kumar et al., 2014	
Rice straw	Cellulase, β-glucosidase, solid state fermentation, strain <i>Trichoderma reesei</i> RUT C30, and <i>Aspergillus niger</i> MTCC 7956	93 g ethanol/kg pretreated rice straw	Sukumaran et al. (2008)	

Table 3 | Comparative study between algal biomass and terrestrial plants for bioethanol production.

Hydrogen production from natural gas

• $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ (at 700 – 1100 °C) – steam reforming

Hydrogen from coal

	CASE 1	CASE 2	CASE 3 5
Technology Readiness Goal	Current	2015	2015
Carbon Sequestration	YES (87%)	Yes (100%)	Yes (100%)
Hydrogen (MMscfd)	119	158	153
Coal (Tons/day) (AR)	3000	3000	6000
Efficiency (%HHV)	59	75.5	59
Excess Power (MW)	26.9	25	417
Power Value (mils/kWh)	53.6	53.6	53.6
Capital (Smillion)	417	425	950
RSP of Hydrogen (\$/MMBtu)	8.18	5.89	3.98

Biohydrogen production

Biohydrogen production

Nitrogenase in cyanobacteria

Fig. 2. Nitrogenase(Nase)-mediated hydrogen evolution in a heterocyst of nitrogen-fixing heterocystous cyanobacteria [10, 30, 32]. The oxygen and hydrogen evolution are carried out separately and the energy-rich carbohydrate (CH₂O) is used as the electron source in the oxygen-free heterocyst.

$$N_2 + 8H^+ + 8e + 16ATP \rightarrow 2NH_3 + H_2 + 16ADP + 16Pi$$
 ...2

 $8H^+ + 8e + 16ATP \rightarrow 4H_2 + 16ADP + 16Pi$

...3

Table 1.	Hydrogen	evolution	via	direct	biophotolysis	by	cyanobacteria	in	laboratory
photobioreactors	-								

Organism	Maximum evolution rate (mmol/g	Maximum productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth; Light intensity (w/m ²) ^c	Gas for H evolution; Light intensity (w/m ²) ^c	Ref
Anahaena	1 33	0.93	99.7% air	97% Ar	[38]
cylindrica	1.55	(0.22)	0.3% CO ₂ :	3% CO:	[20]
eynnañ lea		(0)	20	60	
Anabaena	0.7	0.085	25% N ₂	5% N ₂	[39]
variabilis		(0.02)	2% CO ₂	2% CO ₂	
			73% Ar;	93% Ar;	
			20	20	
Anabaena	3.06	0.35	25% N ₂	5% N ₂	[39]
variabilis		(0.08)	2% CO ₂	2% CO ₂	
PK84			73% Ar;	93% Ar;	
			20	20	
Anabaena	0.21	0.26	98% air	98% air	[40]
variabilis		(0.06)	2% CO ₂ ;	2% CO ₂ ;	
PK84			72 (L/D) ^d	72 (L/D) ^d	
Anabaena	$(12)^{a}$	0.084	98% air	98% air	[28]
AMC414		(0.02)	2% CO ₂ ;	2% CO ₂ ;	
			48	99	
Gloebacter	$(1.38)^{a}$	-	Air;	Ar/CO/C ₂ H ₂ ;	[29]
PCC7421			4	4-6	
Synechococcus	$(0.66)^{a}$	-	Air;	Ar/CO/C ₂ H ₂ ;	[29]
PCC602			4	4-6 or dark	
Aphanocapsa	$(0.4)^{a}$	-	Air;	Ar;	[29]
montana			4	4-6	

Note:

a. The specific hydrogen evolution rate based on per gram of dry cell mass or chlorophyll a (in blanket).

b. Hydrogen productivity per liquid volume of photobioreactor during hydrogen evolution stage, not including the time and space required for cell growth and enzyme induction. The value in blankets is the energy productivity (kJ/L/hr) based on the heat of combusion of hydrogen (0.24 kJ/mmol) at 25 °C.

- c. $1 \text{ W/m}^2 = 4.6 \mu \text{molE/m}^2/\text{s}$ (APR). APR: photosynthetically active radiation that includes light energy of 400-700 nm in wavelength.
- d. 12 hour light and 12 hour dark.

Table 2. Direct biophotolysis hydrogen production by green microalgae in laboratory photobioreactors.

Organism	Maximum hydrogen evolution (mmol/g Chl/hr) ^a	Maximum hydrogen productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth; Carbon source; Light intensity (w/m ²) ^c	H ₂ evolution medium; Light intensity (w/m ²) ^c	Ref
Chlamydomona	5.94	0.094	97% air	Argon;	[54]
s reinhardtii		(0.022)	3% CO ₂ ;	S-free acetate	
cc124			Acetate (17mM);	(17mM);	
			43	65	
Platymonas	$(0.001)^{a}$	0.002	Air;	$N_2;$	[46]
subcordiformis		(0.0005)	Seawater	S-free seawater;	
			nutrients;	35	
			$22(L/D)^d$		
Chlamydomona	5.91	0.48	Air;	Argon;	[55]
s reinhardtii		(0.12)	Acetate (17mM);	S-free acetate	
cc1036			22	(17mM);	
				26	

Note:

a. The specific hydrogen evolution based on per gram of chlorophyll or 10⁹ cells (in blanket).

- b. See Table 1.
- c. See Table 1.
- d. 14-hour light and 10-hour dark.

Organism	Maximum hydrogen evolution (mmol/g dry wt /hr) ^a	Maximum hydrogen productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth/ Carbon/ nutrient; Light intensity (w/m ²) ^c	H evolution gas; Induction time; Carbohydrate storage (g/L)	Ref
Chlamydomonas reinhardtii	(0.96) ^a	0.13 (0.032)	Air/Acetate; 0.6	N₂; ∼5hr dark; Starch 0.77	[60]
Chlamydomonas MGA 161	0.1	0.2 (0.048)	95% air/ 5% CO ₂ ; 25	<i>N</i> ₂ ; 12 hr dark; Starch 0.22	[64]
Spirulina platensis	0.11	0.18 (0.043)	Air/ N-limited; 8	<i>N</i> ₂ ; 12-24 hr dark; Glycogen 0.81	[66]
Gloeocapsa alpicola	1.02	1.6 (0.38)	98% air/ 2% CO ₂ / N-limited; 36	Argon; 24 hr dark Glycogen 1.4	[67]
Gloeocapsa alpicola	(~4.5) ^a	0.0072 (0.002)	96% air/ 4% CO ₂ / S-deprived; 5	Argon; 12 hr dark Glycogen 0.024	[58]
Synechocystis PCC6803	(~3) ^a	0.0048 (0.001)	96% Air/ 4% CO ₂ / S-deprived; 5	Argon; 12 hr dark Glycogen 0.02	[58]

Table 3. Fermentative hydrogen evolution by cyanobacteria and microalgae in dark and anaerobic fermenters.

Table 2. A list of the processes integrated with the production of H₂ from dark fermentation (DF, dark fermentation; PF, photofermentation; MEC, microbial electrolysis cell; BEH, bio-electrohydrolysis).

Sabatasta	F	irst Stage	Seco	Deference		
Substrate	Process Type	Yield	Process Type	Yield	Kelerence	
Cornstalks	Hydrogen (DF)	58.0 mL/g	Methane (DF)	200.9 mL/g	[93]	
Rice straw	Hydrogen (DF)	20 mL/g	Methane (DF)	260 mL/g	[94]	
Water hyacinth	Hydrogen (DF)	38.2 mmol H ₂ /L/day	Methane (DF)	29 mmol CH ₄ /L/d	[95]	
Water hyacinth	Hydrogen (DF)	$51.7 \text{ mL of H}_2/\text{g of TVS}$	Methane (DF)	43.4 mL of CH4/g of TVS	[96]	
Laminaria japonica	Hydrogen (DF)	115.2 mL of H ₂ /g	Methane (DF)	329.8 mL of CH4/g	[97]	
Cassava wastewater	Hydrogen (DF)	54.22 mL of H ₂ /g	Methane (DF)	164.87 mL of CH4/g	[98]	
Microalgal biomass	Hydrogen (DF)	$135 \pm 3.11 \text{ mL of } H_2/g/VS$	Methane (DF)	414 ± 2.45 mL of CH ₄ /g/VS	[99]	
Glucose	Hydrogen (DF)	1.20 mmol	Hydrogen (PF)	5.22 mmol	[100]	
Cheese whey wastewater	Hydrogen (DF)	2.04 mol	Hydrogen (PF)	2.69 mol	[101]	
Vegetable waste	Hydrogen (DF)	12.61 mmol H ₂ /day	Electricity (DF)	111.76 mW/m ²	[87]	
Fruit juice industry wastewater	Hydrogen (DF)	1.4 mol H ₂ /mol hexose	Electricity (DF)	0.55 W/m ²	[102]	
Corn stover lignocellulose	Hydrogen (DF)	1.67 mol H ₂ /mol glucose	Hydrogen (MEC)	1.00 L/L-d	[103]	
Cellobiose	Hydrogen (DF)	1.64 mol H ₂ /mol glucose	Hydrogen (MEC)	0.96 L/L-d	[104]	
Distillery spent wash	Hydrogen (DF)	39.8 L	Bioplastic	40% dry cell weight	[105]	
Food waste	Hydrogen (DF)	3.18 L	Bioplastic	36% dry cell weight	[106]	
Pea shells	Hydrogen (DF)	5.2 L of H ₂ from 4 L	Bioplastic	1685 mg of PHB/L	[107]	
Food waste	Hydrogen (DF)	69.94 mmol	Lipid	26.4% dry cell weight	[108]	
Olive oil mill wastewater	Hydrogen (DF)	196.2 mL/g	Biopolymer	8.9% dry cell weight	[109]	
Molasses wastewater	Hydrogen (DF)	130.57 mmol	Ethanol	379.3 mg/L	[110]	
Food waste	Bioelectricity	85.2 mW/m^2	Hydrogen (DF)	0.91 L	[39]	
Starch hydrolysate	Hydrogen (DF)	5.40 mmol H ₂ /g of COD	Hydrogen (PF)	10.72 mmol H ₂ /g of COD	[111]	
Sucrose	Hydrogen (DF)	$0.98 \pm 0.32 \text{ mol } H_2/\text{mol}$	Hydrogen (PF)	$4.48 \pm 0.23 \text{ mol } H_2/mol$	[112]	
Glucose:xylose (9:1);	Hydrogen (DE)	250 mL/L/h;	Mixotropic microalgae	205 mL/L/h;	[112]	
Microalgae biomass	Hydrogen (DF)	2.78 mol H ₂ /mol	cultivation	1.12 g of biomass/g of COD	[115]	

Feedstock	Conditions	Biohydrogen	Reference
ALGAE			
Gelidium amansii	Hydrolysis at 150°C	53.5 mL of H_2 /g of dry algae	Park et al. (2011)
Laminaria japonica	Mesophilic condition (35 \pm 1°C), pH of 7.5, anaerobic sequencing batch reactor, hydraulic retention time (HRT) of 6 days	71.4 mL H_2 /g of dry algae	Shi et al. (2011)
TERRESTRIAL PLANTS			
Bagasse	Strain Klebsiella oxytoca HP1, temp. 37.5°C, pH-7	107.8 \pm 7.5 mL H_2/g bagasse	Wu et al. (2010)
Corn stalk	Temp. 55°C, pH-7.4	61.4 mL/g of cornstalk	Cheng and Liu (2011)
Pretreated wheat straw	Strain Caldicellulosiruptor saccharolyticus, Temp. 70°C, pH-7.2	44.7 mL/g of dry wheat straw	Ivanova et al. (2009)
Wheat straw	Acid pre-treatment, simultaneous saccharification and fermentation (SSF)	141 mL/g VS	Nasirian et al. (2011)

Table 5 | Comparative study between algal biomass and terrestrial plants for biohydrogen production.

Biogas

Microalgae	Cell Wall	Cell V	References		
	(% w/w)	Carbohydrates	Protein	n.d.*	
<i>Chlorella vulgaris</i> (F)	20.0	30.00	2.46	67.54	(Abo-Shady <i>et al.</i> 1993)
<i>Chlorella vulgaris</i> (S)	26.0	35.00	1.73	63.27	(Abo-Shady <i>et al.</i> 1993)
Kirchneriella Iunaris	23.0	75.00	3.96	21.04	(Abo-Shady <i>et al.</i> 1993)
Klebsormidium flaccidum	36.7	38.00	22.60	39.40	(Domozych <i>et al.</i> 1980)
Ulothrix belkae	25.0	39.00	24.00	37.00	(Domozych <i>et al.</i> 1980)
Pleurastrum terrestre	41.0	31.50	37.30	31.20	(Domozych <i>et al.</i> 1980)
Pseudendoclonium basiliense	12.8	30.00	20.00	50.00	(Domozych <i>et al.</i> 1980)
Chlorella Saccharophila	-	54.00	1.70	44,30	(Blumreisinger <i>et</i> <i>al.</i> 1983)
Chlorella fusca	-	68.00	11.00	20.00	(Blumreisinger <i>et</i> <i>al.</i> 1983)
Chlorella fusca	-	80.00	7.00	13.00	(Loos & Meindl 1982)
Monoraphidium braunii	-	47.00	16.00	37.00	(Blumreisinger <i>et</i> <i>al.</i> 1983)
Ankistrodesmus densus	-	32.00	14.00	54.00	(Blumreisinger <i>et</i> <i>al.</i> 1983)
Scenedesmus obliquos	-	39.00	15.00	46.00	(Blumreisinger <i>et</i> <i>al.</i> 1983)

■ Proteins
■ Carbohydrates
⊠ Lipids

Methane	production a	and	pretreatment	improvement	for	microalgal	biomass.
---------	--------------	-----	--------------	-------------	-----	------------	----------

Feedstock	AD Process	Co-digestion	Т (°С)	Pretreatment	Methane	Improvement	Ref.
Pilayella, Ectocarpus, traces Enteromarpha	Continuous	-	35	Hydrothermal depolymerization + enzymatic hydrolysis	0.054 dm ³ /g substrate	+64% biogas	[114]
Chlorella vulgaris	Batch	Sewage sludge	35	Ultrasonic	N.A.	+90% biogas	[115]
Scenedesmus	Batch	-	35	Ultrasonic	153.5 mL g ⁻¹ COD	+100%	[116]
	Batch	-	35	Thermal at 80 °C	128.7 mL g ⁻¹ COD	+60%	[116]
Scenedesmus	Batch	-	38	High pressure thermal hydrolysis+lipid extraction	380 mL g ⁻¹ VS	+110%	[118]
	Batch	-	38	High pressure thermal hydrolysis	320 mL g ⁻¹ VS	+81%	[118]
	Batch	-	38	Lipid extraction	$240 \text{ mLg}^{-1} \text{ VS}$	+33%	[118]
Nannochloropis salina	Batch	-	38	Thermal	549 mL g ⁻¹ VS	+ 58%	[119]
	Batch	-	38	Microwave	$487 \text{ mL g}^{-1} \text{ VS}$	+40%	[119]
	Batch	-	38	French press	$460 \text{ mLg}^{-1} \text{ VS}$	+33%	[119]
	Batch	-	38	Frozen	233 mL g ⁻¹ VS	-33%	[119]
	Batch	-	38	Ultrasonic	247 mL g ⁻¹ VS	-29%	[119]
Chlamydomonas, Scenedesmus, Nannocloropsis	Batch	-	35	Thermal	398 mL g ⁻¹ VS	+46%	[97]
				Ultrasound	310 mL g ⁻¹ VS	+14%	[97]
				Biological		Negligible	[97]
Acutodesmus obliquus, Oocystis sp., Phormidium and Nitzschia sp.	Batch	-	35	Thermal	307 mL g ⁻¹ VS	+55%	[97]
				Ultrasound	223 mL g ⁻¹ VS	+13%	[97]
				Biological	N.A.	Negligible	[97]
Microspora	Batch	-	35	Thermal 110 °C	413 mL g ⁻¹ VS	+62%	[97]
				Ultrasound	$314 \text{ mL g}^{-1} \text{ VS}$	+24%	[97]
				Biological	N.A.	Negligible	[97]
Scenedesmus	Batch	-	35	Thermal 90 °C	170 mL g ⁻¹ COD	+124%	[120]
Rhizoclonium	Batch	-	53	Blending + Enzymatic	145 mL $CH_4 g^{-1} TS$	+20%	[121]
Chlamydomonas reinhardtii	Batch	-	38	Drying	N.A.	-20%	[101]
Chlorella Kessleri	Batch	-	38	Drying	N.A.	-23%	[101]
Microspora Scenedesmus Rhizoclonium Chlamydomonas reinhardtii Chlorella Kessleri	Batch Batch Batch Batch Batch	- - -	35 35 53 38 38	Ultrasound Biological Thermal 110 °C Ultrasound Biological Thermal 90 °C Blending + Enzymatic Drying Drying	223 mL g^{-1} VS N.A. 413 mL g^{-1} VS 314 mL g^{-1} VS N.A. 170 mL g^{-1} COD 145 mL CH ₄ g^{-1} TS N.A. N.A.	+ 13% Negligible + 62% + 24% Negligible + 124% + 20% - 20% - 23%	[97] [97] [97] [97] [120] [121] [101] [101]

Methane p	roduction and	pretreatment i	mprovement f	for macroalga	al biomass.
-----------	---------------	----------------	--------------	---------------	-------------

Feedstock	AD Process	Co-digestion	T (°C)	Pretreatment	Methane	Improvement	Ref
Saccharina latissima	Batch	_	37	Steam explosion at 130 °C, 10 min	$268 \text{ mL g}^{-1} \text{ VS}$	+20%	[27]
Laminaria digitata+L. hyperborea+ L. Saccharina	Batch	-	50	Beating	425 mL g ⁻¹ TS	+ 53%	[105]
Ulva lactuca	Batch	-	55	Unwashed, macerated	271 mL g ⁻¹ VS	+ 56%	[4]
	Batch	-	55	Washed, macerated	200 mL g ⁻¹ VS	+ 17%	[4]
	Batch	-	55	Washed, 130 °C/20 min	187 mL g ⁻¹ VS	+7%	[4]
	Batch	-	55	Washed, 110 °C/20 min	$157 \text{ mL g}^{-1} \text{ VS}$	- 10%	[4]
	Batch	-	37	Unwashed, roughly chopped	$162 \text{ mLg}^{-1} \text{ VS}$	- 7%	[4]
	Batch	-	55	Dried, ground	176 mL g ⁻¹ VS	+1%	[4]
Gracilaria vermiculophylla	Batch	-	53	Washed, Macerated	$147 \text{ mL g}^{-1} \text{ VS}$	+ 11%	[16]
Ulva lactuca	Batch	-	53	Washed, Macerated	255 mL g ⁻¹ VS	+68%	[16]
Chaetomorpha linum	Batch	-	53	Washed, Macerated	195 mL g ⁻¹ VS	+ 17%	[16]
Saccharina latissima	Batch	-	53	Washed, Macerated	333 mL g ⁻¹ VS	-2%	[16]
Ulva lactuca	Lab-scale CSTR	Cattle manure	53	Dried, ground	15–16 ml g feed ⁻¹	N.A.	[16]
Ulva sp.	Batch	Sewage sludge	35	Washed	126 mL g ⁻¹ VS	0%	[29]
	Batch	Sewage sludge	35	Ground	$126 \text{ mL g}^{-1} \text{ VS}$	0%	[29]
	Batch	Sewage sludge	35	Washed, ground	180 mL g ⁻¹ VS	+ 30%	[29]
Ulva sp.	Batch	-	35	Unwashed	110 mL g ⁻¹ VS	N.A.	[15]
	Batch	-	35	Washed	94 mL g ⁻¹ VS	- 14%	[15]
	Batch	-	35	Dried	$145 \mathrm{mLg^{-1}VS}$	+ 32%	[15]
	Batch	-	35	Dried, ground	177 mL g ⁻¹ VS	+60%	[15]
	CSTR	Bovine manure	35	Ground	203 mL g ⁻¹ VS	N.A.	[15]
Palmaria palmata	Batch	Sludge	35	NaOH, thermal pretreatment at 20 °C/ 30 min	365 mL g ⁻¹ VS	+ 19%	[109]

Table 4 | Comparative study between algal biomass and terrestrial plants for biogas production.

Feedstock	Conditions	Biogas	Reference
ALGAE			
Blue algae	pH-6.8, microcystin (MC) biodegradation	189.89 mL/g of VS	Yuan et al. (2011)
Chlamydomonas reinhardtii Scenedesmus obliquus	Drying as the pre-treatment, batch fermentation, temp. 38°C	587 mL/g of VS 287 mL/g of VS	Mussgnug et al. (2010)
Ulva sp. Laminaria digitata Saccorhiza polyschides Saccharina latissima	Batch reactor, Co-digestion with bovine slurry, temp. 35°C	191 mL/g of VS 246 mL/g of VS 255 mL/g of VS 235 mL/g of VS	Vanegas and Bartlett (2013)
TERRESTRIAL PLANTS			
Banana stem	Pre-treatment: 6% NaOH in 55°C for 54 h. 37 \pm 1°C for 40 days, batch	357.9 mL/g of VS	Zhang (2013)
Saline creeping wild ryegrass	35°C for 33 days, batch	251 mL/g of VS	Zheng (2009)
Rice straw	Pre-treatment: ammonia conc. 4% and moisture content 70%, temp. $35\pm2^{\circ}\text{C},65\text{days},120\text{rpm},\text{batch}$	341.35 mL/g of VS	Yuan (2014)
Date palm tree wastes	Pre-treatment: alkaline, particle size 2–5 mm, temp. 40°C	342.2 mL/g of VS	Al-Juhaimi (2014)