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I. INTRODUCTION 

1.1. Scope 

Solids, of course, are just infinite molecules. However, understanding concerning their 

geometrical and electronic structure has lagged considerably behind the dramatic progress made 

in the molecular area over the past twenty years. With the recent availability of fast and 

cheap computation and a gradual enlightenment by physicists and chemists alike concerning each 

other's viewpoint in this field, the time is surely ripe for progress to be made. Our major 

goal in this article will be to show the striking similarities between the electronic struc- 

ture of molecules and solids and to suggest that there is profit to be gained by extending 

ideas developed for molecules to the realm of the solid state. We will rely very heavily on 

the linear combination of atomic orbitals approach of the chemist or the tight-binding 

approach of the solid-state physicist. These are two models identical in all but name. We 

will also make extensive use of symmetry arguments, in the form of group theoretical techni- 

ques and will use perturbation theory to access results of interest. For the reader who is 

unfamiliar with these methods reference to the books by Cotton' and by Heilbronner and Bock' 

is strongly suggested. The reader who feels comfortable with such concepts can jump to 

Section III. We will focus almost exclusively on very simple systems, for it is here that 

the workings of the theory is most transparent and the analogies between molecules and solids 

easiest to appreciate. We make no apologies for spending approximately a third of this arti- 

cle in developing orbital ideas for molecules. Many of the orbital tricks we will use in the 

rest of the article have their foundation here. 

1.2. The Molecular Orbital Approach 

The SchrEdinger equation can be solved exactly for the case of one-electron atoms, e.g., 

H,He',Li2+. For the case of many-electron atoms approximate (but in many cases very good) 

solutions may be obtained numerically. In many-electron molecules one way in which approxi- 

mate solutions may be obtained is via the linear combination of atomic orbital (LCAO)- 

molecular orbital method. We will describe one version of this which will enable the genera- 

tion of one-electron energy levels of molecules and (eventually) solids. We refer the reader 

elsewhere for more complete accounts concerning the generation of more sophisticated orbital 

models.3y4 

Let us take the valence orbitals {'pi} of the atoms which make up the molecule and 

write a LCAO molecular orbital wavefunction which we hope will suffice to describe the 

energy levels of the molecule. 

$ = &Vi 
i 

Now $J is an eigenstate of some one-electron Hamiltonian H, i.e., 

1~9 = EJ, . 

This leads to an expression for the energy of the state described by this wavefunction: 

(1) 

(2) 

(3) 

where the integration occurs over all space. Substitution of equation (I) into equation (3) 

leads to 

Z~CiCj(~iIHI~j} 

E = ;; 

ij 

(4) 
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This expression contains three terms of interest. (Q~]Q~) = S.. is the overlap integral 
iJ 

between atomic orbitals on different atoms. It is always <I. If our atomic basis set {'_oi} 

is normalized then ('pi/'pj) = 1 for the case i=j. ('P~IH\Q~) = Hii represents the energy 

of an electron in orbital 1~~. It is called the Coulomb integral and is often approximated 

by the ionization energy of an electron from that orbital. (9ilHi~j) = H.. is an integral 
iJ 

which represents the interaction between orbitals (0; and Q.. It is called the resonance 
J 

integral by molecular chemists and the hopping or transfer integral by physicists. It is 

often estimated using the Wolfsberg-Helmholz relationship 

H = 
ij 

$KS;~(H~~+H..) , 
JJ 

(5) 

where K is a constant, usually set equal to 1.75. The energies of the molecular orbitals 

are obtained from equation (4) in the following way. The Variation Theorem states that all 

approximate wavefunctions of a system will give energies that are never lower than the true 

ground-state energy of the system. So minimization of equation (4) with respect to all the 

coefficients c c. will lead to the best estimate of the orbital energy using the expansion 
i' J 

of equation (1). If there are n atomic orbitals in {vi} then there will be n equations 

demanded by the minimization expressions 8E/aci=0. They have the particularly simple 

form of equations (6). 

(H1l -E)cJ+(Hl2-S12E)C2 + . . . . + (Hln-SlnE)Cn = o 

41 
-S21E)c1+(H22-E)c2 + . . . . + (H2n-S2nE)~n = o 

(6) 

(Hnl 
-SnlE)cl (Hn2-Sn2E)~2 + . . . . + (H -E)c = 0 . 

nn n 

(7) 

These equations will be consistent only if the secular determinant of equation (7) is equal 

to zero. 

H 
11 

-E H 
12-S12E 

.*.... H 
ln-SlnE 

H 
-S21E 

H 
22 

-E H 
21 

. . . . . . 
2nVS2nE 

. . , = 0. 

. . . 

. . 

H 
nl -SnlE 

H 
n2-Sn2E 

. . . . . . H -E 
nn 

Given the values of the Hii, S.. and H.., 
=J iJ 

equation (7) may be solved to give n values of 

the energy - the energy levels of the molecule. Each value of E may in turn be used with 

the collection of equations (6) to give the values of the orbital coefficients, the c. of 
1 

equation (1). 

An example will illustrate the approach. Assemble an Hz molecule from two hydrogen 

atoms which carry singly occupied 1s valence orbitals. The secular determinant is 

H1l-E 
H 12-S12E 

0. (8) 

H12-S12E H11-E 

Since the two hydrogen Is orbitals are equivalent we have put H11=H22. (Also 

H12=H21 by symmetry.) Solution of this determinant gives 

(9) 

(10) 

(Hll-E) = ‘(H12-S12E) 

H 11 +H12 
E= 

1?S12 - 
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The result is shown pictorially in 1. - Notice that the higher energy orbital is destabilized 

0-a I-I,,- HP 

(relative to a free hydrogen AO) more than the lower orbital is 

binding) energy of H2 on this model is simply 

*[Hi&H12 _H11] = 2(U;2;;19*11) . 
12 12 

!. 

stabilized. The bond (or 

With these values of the energies we can now go back to equation (6) and evaluate the 

coefficients. With a little bit of algebra it is easy to find for $, that c1/c2=1 and for 

6, that cl/c2 =-1. The extra piece of information we need to fix the values of cl and c2 

is the normalization condition 

This leads simply to 

I$*$dr=I . (12) 

JI, = 
I 

X/2(1+s12) (Cp1+'p2) 
(13) 

+, = 
1 

d2(1_-s12) 
bl -‘p, 1 

In +, the orbitals are mixed in phase - the bonding orbital, and in $, they are mixed out 

of phase -the antibonding orbital. Notice that because of the sign before S12 in the denomi- 

nators the coefficients are larger in $,. 1 shows a useful pictorial representation of these 

functions where the sign of the mixing coefficient (ci of equation (1)) is indicated by the 

presence or absence of shading. Note that the absolute signs have no meaning but the rela- 

tive phases are important. 

There is another useful way to generate the molecular orbitals of H2, and indeed more 

complex systems, which we will use below, and that is by taking advantage of the synrmetry of 

the problem. H2 belongs to the Dooh point group. Using standard techniques' we can show 

that the two Is orbitals transform as U ++au+. 
g 

A useful group theoretical result enables 

us to construct symmetry adapted linear combinations of orbitals with these transformation 

properties. For a point group G with syrmnetry elements gEG, and a basis set of orbitals 

IV& a wavefunction which transforms as the kth irreducible representation is simply given 

by- 

q(k) = 1 X,(g) g'p,. (14) 

gFIG 

Here x,(g) is the character of the kth irreducible representation. (pm is any member of 

the set {Vi} . For the H2 problem it is a simple matter to use equation (14) and a charac- 

ter table for the Dmh group to give 
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qJ(o 
e 
‘) a (PI+ (0 ‘2 

beg+1 a q--v2 . 

(15) 

Normalization of these functions gives the same expressions as those in equation (13). The 

energies of $, and $b may then be obtained by substitution of these normalized functions 

back into equation (3). The reader should check to ensure that the expressions that result 

are identical to those of equation (IO). 

The hydrogen molecule of course is a very simple example but the numerical generation 

of the energy levels of complex molecules, by using ionization energies as estimates of the 

H 
ij 

and evaluating the S.. 
rJ 

by integration of wavefunctions, has proven to be an extremely 

valuable way to study molecular electronic structure. 
5 

2. ENERGY LEVELS OF MOLECULES 

2.1 Linear 71 Systems 

There is a simplification we can make to the approach in Section 1.B which will be 

extremely useful to us in the generation of orbital diagrams of molecules and solids. In the 

Hickel approximation, 2,s initially developed for the TI levels of conjugated organic mole- 

cules, all H.. values for the carbon pi AO's are put equal to ~1, all H.. put equal to 

H if the ato: are bonded together (zero otherwise) and all the Sij 
rJ 

(i+j) in equations (6) 

and (7) put equal to zero. The two orbital problem of H2 described above is then isomorphic 

with the IT orbital problem of ethylene 2. The secular determinant of equation (8) then - 

becomes 

o--E 8 

= 0, (16) 
e o--E 

which has roots 3 E=afH. Notice that in this model the bonding orbital is stabilized to - 

the same extent that the antibonding orbital is destabilized (8). The TI bond energy of ethy. 

lene is then 28. Since the overlap integrals have been dropped in the Hiickel approximation 

JPSSC 15:3-C 
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the wavefunctions for the bonding and antibonding combinations are particularly simple. 

IJ, = 2+ (Vl+cp,) 

(17) 

6, = 2-g ('PI--V*) . 

All conjugated organic systems are open to an analogous treatment. The secular deter- 

minant for ally1 4, the three orbital problem, is just 

Notice that the HI3 and Hgl entries are equal to zero since atoms 1 and 3 are not bonded 

to each other. Solution of the secular determinant gives the results shown in 6. Once - 

a+ J2p 

again symmetry arguments will enable the same result to be achieved in a neat fashion. We do 

not need in fact to make use of all the symmetry elements of the point groups to which the 

molecule belongs. (In 4 we drew the carbon skeleton as a straight line when in fact it is 

bent.) The important symmetry properties of the functions we need are those associated with 

the mirror plane of 5. All functions need either to be symmetric or antisymmetric with res- - 
pect to reflexion in this plane. The character table for a point group which contains 

(in addition to the identity operation) this reflexion operation is given in Table 1. 

Table 1 Using atomic orbitals of 4 as a basis for a representa- - 
tion it is easy to show that they transform as 2A + B. 

E o 

?= 

Use of equation (14) with 'pm=~l or (p3, two symmetry 

equivalent orbrtals, gives after normalization 
A I 1 

a species 
B I -1 

5, = 2-!! (CP,.+V,) 

b species 5, = 2-$ (cp,---cp,). 
(19) 

Use of equation (14) with '~,=~$gives the other a species function 

a species 5, = ‘p, . (20) 



We may now set up a secular determinant for this problem using not 'pl-!$ as a basis 

but the functions 5, -5, of equations (19) and (7.0) 
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H 
11 

-E H 
12 

H 
13 

H 
21 H22-E 

H 
23 = 0. (21) 

H31 H32 I’33 
-E 

The elements Hii of equation (21) are easily evaluated using the explicit form of the 

'i 

H ll = {~-~(IP~+'P~)IH~~-~('P~+~~)) = a 

H 22 = (2-B(~P1-~3)~H~2-t(~I-~3))= a (22) 

H 33 = ('P21HI$) = a 

One of the rules of group theory is that orbitals of different symmetry do not interact with 

each other, but orbitals of the same symmetry can. (Under some conditions the interaction 

energy may however be zero.) We can show this by evaluating 

HI3 =(2-'(~l+'P3)~H~2-'('P1-'P3)) = $(a-o) = 0 (23) 

and 

H I2 = (2+ (cp, +'P~)~HI'P~) =J;i8 . (24) 

The use of symmetry here has then reduced the 3~ 3 determinant of equation (21) to one (equa- 

tion (25)) which contains a 2X 2 block plus a IX 1 block along the diagonal. The 

a-E 4i3 0 

fig a-E 0 =o, (25) 

0 0 o-l? 

simplification that this has produced is the reduction of a cubic equation in equation (21) 

to a quadratic in equation (25). Solution of the 'a block' of equation (25) gives 

E=o*&B. (26) 

By analogy with the ethylene problem described above the lower energy level $I corres- 

ponds to the bonding, in phase combination of 6, and 5, _ 7 and the higher energy level JI, 

to the antibonding, out-of-phase combination 8. - The third level $, corresponds to Es. It 

L 
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is of the wrong symmetry to interact with any other orbital. Since also H.. =0 between all 
13 

nonbonded atoms, this orbital remains nonbonding. The use of symmetry considerations, while 

perhaps not obvious in this example actually results in general in a considerable economy of 

effort in many orbital problems as we will see below. 

There is a simple expression6 for the energy levels (equation (27)) and orbital 

coefficients (equation (28)) of a one-dimensional chain containing n 71 orbitals. For the 

jth level 
jx 

Ej = of 28cos - n+l 
j =1,2,3 , *..n (27) 

and for the coefficient on the rth center. 

2. 
'jr 

rjx 
= n+l srn n+l o (28) 

The number of nodes in the wavefunction increases by one as the energy increases, This is 

shown pictorially in Fig. 1 where we show the level structure of the first few members in 

the series. Note that the orbital energies are syrmnetrically located about E=a 0 This 

means that for odd membered chains there is a central, exactly nonbonding, orbital with this 

energy. 

Fig. 1. Energy levels of the first few linear polyenes 

One interesting point concerning the energy levels of allyl, is the charge distribution 

in molecules of this type as a function of the electronic configuration. Recall that the 

square of the wavefunction, $*JI, g' Ives the probability distribution of electrons in that 

orbital. So for an arbitrary wavefunction $ written in terms of an LCAO using two atomic 

orbitals X, and X, (equation (29)) the electronic charge 

VJ = c1x1 + czx2 9 (29) 

in orbital X, is NC; where N is the number of electrons in this orbital, (This simple 

expression needs to be modified ' if we go beyond the Hiickel approximation and include over- 
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lap, but it will suffice for our purposes here). Correspondingly the electronic charge in 

X2 is NC 
2 
2" 

The total number of electrons is obviously equal to N(cf+cE)=N since the wave- 

function is normalized. Applying this technique to the ally1 problem of 6_, with two 

electrons in JI, (allyl+) the charge distribution is shown in 2. Note that the central atom 

carries more negative charge than the 'ligands' or end atoms. For the allyl- ion itself 

with two more electrons (which enter $2) the charge distribution is now different, Here the 

A_ 0 ’ 1-I -; t -1 

ally1 + OIlyI- 

IO - 

largest electron density is located on the terminal atoms, These results are more conven- 

tionally shown in a slightly different way by calculating the atomic charges on each center 

10, All this entails is subtraction from the results of 9 the number of electrons assigned - - 

to each orbital before interaction, In our case this is just one electron per orbital. 

It is instructive to take the details of the ally1 orbitals and see how the situation 

is affected energetically by the replacement of an atom by one with a different electro- 

negativity. We will simulate this by allowing this new atom to have a different c1 value 

from the old. There are several ways to obtain the orbital energies of this new species. One 

could, for example, solve the secular determinant of equation (18) which has been suitably 

modified. The route we will take employs the techniques of perturbation theory. 
2,5,5 

This 

allows us to take the energy levels of a symmetrical molecule (such as allyl) for which it is 

easy to obtain the orbital energies and wavefunctions, and derive the corresponding details 

for a related molecule which differs in some way. In the present case the perturbation which 

we apply is just a change in c1 on one of the atoms. Later, in the next section we will 

assemble the orbital diagrams of 'complex'molecules from those of simpler fragments. In this 

case the perturbation then consists of making the linkages between the two fragments; i.e., 

Hn,, between two atomic orbitals increases from 0 to the value it takes in the molecule. 

The perturbed energy may be written in the following fashion for the ith energy level 

E; = Ei(o)+Ei(1)+Ei(2) + . . . . (30) 

Where E;(l) and Eit2) are the first and second order energy corrections to Ei 
(0) 

the unper- 

turbed energy (lEi(l)I > lEi(2)1) . If the perturbation is the change in the values of some of 

the Coulomb and interaction integrals, 6H 
uv 

then these energy corrections become 

E 
i 
(') = "(~i~H~$i) 

and 

E (2) = ‘- I'('iIHI~j) I2 

i i 
E (o)_-E (0) 

j i j 
where 

(31) 

(32) 

(33) 

The sum in equation (32) is over all other energy levels, j, of the problem. 
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These expressions may readily be applied to the ally1 problem and in fact the use of 

this example nicely illustrates the workings of the mathematics of equations (31) to (33). 

The first order correction is easy to see. The perturbation we consider here is just the 

changing of c1 on one orbital to CI + 6a. So Ei (1) Cc2 i16a where cil is the coefficient in 

orbital i of the atomic orbital (say 'pl of 4) where the perturbation occurs. _ In Fig. 2 we 

show the first order energy changes that result by applying this prescription for the two 

cases of terminal and central atom substitution, by using the values of the coefficients (the 

ci) for 6. 

The second order correction is a little more tricky. Consider first the basic case of 

two arbitrary orbitals X, and Xp. Then for i = 1 

(2) k+l’lb~~2) 1’ 
El = 

E1 
(O)_E (0) 

2 

(34) 

and for i=2 

(2) 

E2 = 
I+‘, b+J’,) I2 
E2 

(O)_E (0) 

I+JJl ii:, I2 =- 
E (0) _E (0) * (34) 

1 2 

The result of such a perturbation is to push the lower energy orbital out of X, and X, to 

lower energy still, and the higher energy orbital to yet higher energy 11. In the present - 

+/- I E !! 

Elx’\_ 
perturbation 

- 

case the second energy correction for orbital i is 

2 c? 
E1 

(2) = ‘il J 
1 (6d2 

E (o)_E (0) 
i j 

Using the values for the Ei and cil from 6 the second order energy shifts are shown in - 

Fig. 2. 

Table 2 

Substitution position 
Energy Change 

two electron four electron 

(35) 

central atom -l&Xl +(&#/4& -]&cl\ +(6a)2/4fiB 

terminal atom --;lScll+5(8~()~/16fiB -;/&al +5(&~)~/16ti2 

The total energy shifts for the two electron (allyl+) and four electron (allyl-) cases 

are obtained by weighting the energy changes of Fig. 2 with the number of electrons in each 

orbital. The results are given in Table 2 above, and show that for substitution by a more 
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a) central atom substitution 

First order Second order 
energy shift energy ahif t 

b) terminal atom substitution 

Second order 
energy shift 

First order 
energy shift 

5s: 

32AE 

Fig. 2. Perturbation treatment of central versus terminal substitu- 
tion in a linear three orbital problem. (AE =dk3<0) . 

electronegative atom (i.e., 6a<O) the maximum stabilization for the two electron case is for 

central atom substitution. For the four electron case the maximum stabilization occurs for 

end atom substitution. Although the extension of this result to more complex orbital prob- 

lems is not obvious, such substitution patterns are indeed 

12 shows some examples. Here the twelve electron species - 

Go-O-Go N-N-O 

I- I-I- I-I--Br- 

actually observed in'real' systems. 

Ga20, where the two perpendicular 

TI orbitals corresponging to 9, of 6 are full but those corresponding to q3 are empty, 

shows central atom substitution. However the sixteen electron system N20, where both sets 

of TI orbitals corresponding to Q1 and $, are full, shows terminal substitution by the 

electronegative atom. In the polyhalide ions, where the 71 manifold is full but the orbitals 

corresponding to Q1 and Q3 of the u set are full, the more electronegative atom is always 

located in a terminal position. 

The correlation of these results with the charge distribution of 10 is important. - 

Notice that the more electronegative atom always occupies the site which carries the highest 
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negative charge in the unsubstituted parent. 
9,lO 

This is a result which will be useful to 

us later on. 

2.2 Cyclic Systems 

Let us see how to generate the level structures of cyclic systems. We shall do this in 

three different ways, each of which will be illustrative in its own right. First we will 

assemble the cyclobutadiene levels from those of two ethylene molecules 13. 14 shows a mirror -- 

2 3 
-- _____ 
II L4 
14 

plane present in both sides of 13 which will be useful in dividing the problem into two sym- - 

metry blocks, one containing functions symmetric with respect to this plane and one containing 

functions antisymmetric with respect to this plane. The two symmetric functions are shown in 

15 _* They are just the in-phase bonding orbitals of the ethylene molecule of 2 with energies 

of E=a+8. Now the interaction integral between E1 and c2 is 

(5,bk,) = (2-‘( ‘pl +‘p2) /H12-’ (‘p3 +94)) 

= $(911H194) + ;((~&19~) 

= 8, 

and so the secular determinant for the synrmetric block of orbitals is 

%1-E %2 

I I 

(a+B)-E B 
= = 0 

H21 H22-E B (a+8)-E 

This has roots E=a,a+28. The new wavefunctions are just 

$, = 2-'(5,-*c,) = $ (9,+9,+9,+9,) for E = a+26 

and 

$2 = 2-+52) = $ (9,+9,-9,-9,) for E = a, 

(36) 

(37) 

derived in an exactly analogous way to the ethylene problem of 3. The two antisymmetric - 

functions are shown in 16. - They are the antibonding ethylene combinations with E=a-8. 

Solution of the secular determinant for these levels leads in a similar way to E=a-28 and 

E=a. Their respective wavefunctions are $, = 2 -i 

vJ4 = 2-9(&+5J =~(91-92+93-9J. 

(5,-c,) =~(c~,-9~-9~+94) and 

The complete assembly process is shown in Fig. 3. 

One prominent feature of this diagram is the double orbital degeneracy in the middle of the 

level stack. It will figure in several discussions later on, Since these levels are degene- 

rate we have a choice as to how their wavefunctions are written, Although the form of q2 

and Q3 of Fig. 3 is perfectly fine, so is a linear combination of them, 17. - These descrip- 
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D II 

c Q 
0 

=+B 

d 
Fig. 3. Assembly of the pv orbitals of cyclobutadiene 

tions better emphasize perhaps the nonbonding nature of this pair located at E=c~, 
the 

energy of an isolated p orbital. 

!I 

0 

%-J; E-J - l-7 = L--J-J - o-o 
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In a second route 

18. - The point group of 

J.K. Burdett 

we will assemble the orbital diagram from four separate p orbitals, 

the cyclobutadiene molecule is D4h but for our purposes it is suffi- 

cient to use the group C,,, the cyclic group of order 4. Its character table is shown in 

Table 3 

c4 E C4 c2 Ck3 

A 

B 

E I 

I 1 1 1 

1 --I 1 -1 

1 i -I -i 

1 -i -I i 

Table 3, Using the four px orbitals as a basis for 

a representation it is easy to show that they trans- 

form as a+b+e, i.e., each irreducible representation 

of cq is contained just once in the reducible repre- 

sentation. This is a general result which has impli- 

cations later in application of these ideas to solids. 

For a cyclic (CH), molecule there will be n?T molecular 

orbitals, one belonging to each irreducible represen- 

tation of the group C,. Using the character table for 

C,, and the projection operator of equation (14), it 

is easy to write down a normalized wavefunction of a symmetry 

$(a) =+(cp, +Q2+'P3+'P4). 

By substitution into equation (3) its energy is simply 

(38) 

Similarly for the wavefunctions of e symmetry 

q(e) = i (‘PI + i(P2 + ‘P3 + i(P4 ) 

$‘(e) = + (cp, + icp, + ‘P3 + iv,) 
(40) 

where in the normalization procedure we have made sure to use I$*$d-r = I. (i.e., used the 

complex conjugate JI*) . These two functions may be converted into two new (real) ones using 

the license allowed us for degenerate wavefunctions 

qN(e) = 2-t($(e) + Q'(e)) = 2~'(rpl- 'p3) 

JIN'(e) = 2-' (q(e) - Q'(e)) = 2+((p2- cp,) 
(41) 

q"(e) and q"'(e) are identical to those of 17. - They are nonbonding orbitals and substitu- 

tion into equation (3) gives E=a. Use of the characters for the b representation of Table 

3 leads to 

Q(b) =;(cp, -'p, +(P3 -'p4) (42) 

and an energy of E = a- 26 as found above. 

The general result6 for a cyclic system with n atoms is a very simple one. The energy 

of the jth orbital is given by 

2jx 
Ej = a+ 28 cos --n- (43) 

where j runs from 0, +I, +2 . . . (*n/2 for n even) or ((n-l)/2 for n odd). The simple 

form of equation (43) leads to a useful mnemonic (a Frost circle) for remembering the energy 

levels of these molecules. Inscribe in a circle of radius 28 an n-vertex polygon such that 

one vertex lies at the bottom. The points at which the two figures touch define the Hiickel 
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19 

energy levels of the molecule as in 19. - The coefficient of the pth atomic orbital deter- 

mines the form of the wavefunction as 

2aij(p-I) 

~j = 2 Cjp(Pp -' f e n =n- .(pp 

p=l p=I 
(44) 

It is an expression which is very similar to that of equation (14). Indeed rewriting it as 

in equation (45) highlights the similarity. 

n 2aij(p-I) 

qj = n-' 1 e n CP--1 * 
n Ql 

(45) 

p=l 

The exponential is simply the character xj (C z-1) of h y 1 t e c c ic group of order n as the 

reader may readily check for the case of n=4 shown in Table 3. The prefactor of n -f is a 

(Hi;ckel) normalization constant. 

This complex form of the wavefunction is very useful and will be especially so in our 

discussions later on solids. A linear combination of the wavefunctions of a pair of degene- 

rate orbitals produces two new orbitals which are equivalent in every respect. Using this 

fact the functions of equation (44) for the case of degenerate species may be rewritten in a 

somewhat nicer form by making use of the trigonometric identity e ix = cosx + isinx (equation 

(46)) . 

$‘j =+($j+$_j)= in-$ i cos 
2xj (p-1) ,(r) 

n 'P 
p=l 

lLy=i($j-$_j) =tn-$ ft_ sin 2nj~p-1) _,.pp . 
(46) 

p=l 

It is interesting to see how the wavefunction of equation (44) leads to the energies of equa- 

20 - 

tion (43). Substitution of equation (44) into equation (3) gives an expression (equation 

(47)) for the energy. This represents the sum of all neighbor interactions (20) 
- 

(47) Ej = cr+B 
c 

(c. 
lp'j(p-1) + 'jp'j(p+l) ), 

-2aij(p-I) Laij(p-I) 2Sij -2rrij 

E: 
-1 n 

e -1 
-- 

n n 
an e e -l-e n 1 
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=a+8 i c .2 COS /%.I 
P 

\ * / 

27rj 
= cr+2Bcos~ . 
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(48) 

Figure 4 shows the energy levels of the first few cyclic molecules. Note how the number of 

nodes increases as the level stack is climbed. 

0 0 0 0 

= 0” 
2 

= e; 

Fig.4. Energy levels of the first few cyclic polyenes 

As a third route to cyclobutadiene we will assemble the diagram in an approximate way 

from the levels of ally1 plus an isolated atom 21 using perturbation theory. Again we will - 

lol 

%8 
-b2u 

88 
- O2" 

v 

72 -a ; 

make use of symmetry arguments by classifying the levels as either 

with respect to the mirror plane in 2, the same symmetry element 

ing the levels of ally1 itself. 22 shows the interaction diagram - 

symmetric or antisymmetric 

we used before in generat- 

where we show symmetry (S) 

or antisymmetry (A) with respect to the mirror plane of 21. - The middle level of ally1 (q3) 

finds no symmetry match with an orbital of the single atom, and so remains unchanged in energy 

and unchanged in character. As we described earlier the interaction energy between two orbi- 
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tals X1 and X2 with energies E1 and Ep respectively is simply given by second order pertur- 

bation theory as 

AE12 = 
16 (x,lHlx,) t 

% 
(0)-E (0) * 

2 

With reference to 22 Q1 is depressed in energy by - 

1+J,1Ek+)? 

(o+fi8)- Co)) 

the numerator can be evaluated as 

which means that 

AEC2) = -!- = 0 707 8 

fi8 * 

(49) 

(50) 

(51) 

and the perturbed energy of Q1 is o+2.12 8. 'P, is destabilized by the same amount, 0.707 8. 

Now $, and $, may couple in exactly the same way. It is a simple matter to show that the 

second order energy numerator is the same as before which means '3,+ is depressed in energy by 

0.707 S and Q2 raised in energy by 0.7076. The overall result is that 'p,, remains unchanged 

in energy but $1 ends up at o+2.128,23. Perturbation theory also tells us about the new - 

a -2.128 

t 

ati/- 
E 

a- 
-_ =. - 23 - 

a l 1.4lp 

-1 / 

a +2.128 

wavefunctions. With respect to a generalized pair 

in a bonding way 

of orbitals X, and X,, X2 mixes into X, 
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x; =x1 + 
6( Xl IHIX2) 

El 
(0) _E (0) x2 

2 

(52) 

and X1 mixes into X2 in an antibonding way 

x: = x2 - 

6( Xl b-h,) 

E1 

(0) -E(O) Xl * 

2 

So the new wavefunctions become 

(53) 

(54) 

The new wavefunctions describing the level at E=o have just the forms we found before by 

other routes. This is not the case for the new wavefunctions $I and $h. A part of the 

problem lies in a mixing, which we have ignored, between two orbitals on the same fragment 

(orthogonal before the perturbation) under the influence of the perturbation, If x, and x3 

are two levels on the same fragment they mix as a result of interaction with x2 of another 

fragment in the following way 

I- 
x, -x1 

+ 

80 9: looks like 

$: =& + 'cp +$P,+ 
ti2 

+1bIX2) 0,1HIX,) 
- ( El 

(0) _-E (0) 
3 >( El 

(O)_E (0) 
2 > 

(55) 

and 

= 0.625~p~+O.582(p~+O.625(~~+0.582 'p, (56) 

$; = 0.625~~~ -0.582'~~ +0.625'03 -0.582~4. (57) 

These new functions, though improved, are still not exactly what we found by exact solution 

of this problem above, and indeed they should not be. Perturbation theory did not give exact 

values for the energies of the top and bottom orbitals of cyclobutadiene, and correspondingly 

the wavefunctions will be approximate too. We could have performed the necessary numerology 

by solving two secular determinants, one for the symmetric levels and one for the antisym- 

metric ones. The results are of course those of Fig. 3, E=c.x (antisymmetric block) and E=a, 

CX+~ ,a-B (symmetric block). However the perturbation treatment is a very useful approach 

for understanding where these levels have come from. In Fig. 5 we show a similar result for 

the assembly 24 of the levels of pentalene, - from those of cyclopentadiene and allyl, two 

building blocks whose orbitals we have derived already. 

result is not perfect. 

0+)=03 

Again the agreement with the 'exact' 

24 
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-A-2.066(2.000) 

E I 
-1.616 

A,S= 
-- 1.617(1.814) 

s 
S 

-l.4400.414) 

-1.414 
S 

2.000 

'-------Yh 2.424t2.343) 

0 > co 
Fig. 5. Perturbation treatment for the assembly of the ~II levels of pentalene. 

Exact values shown in parentheses. (The energies are in units of 6 
relative to cl=O.) The labels A and S refer to the parity of the 
wavefunction with respect to the mirror symmetry of the problem 

The atomic charges in cyclopentadienyl will of course all be equal from the symmetry of 

the molecule, but pentalene has three symmetry inequivalent sites. Either by working out the 

form of the wavefunctions of the molecule by using the ideas of perturbation theory, or more 

realistically, looking up the coefficients in the compendium of Streitweiser, Brauman and 

Coulson7 we may calculate the x-charge distribution in pentalene and pentalene-. They are 

shown in 25. Notice that on formation of the negative ion the extra electron density has - 

appeared only on the atoms at the I position. Making use of our observation above concerning 

the site preferences in substituted molecules, 24 leads to the prediction of electropositive - 

atoms in the 1 position and the electronegative atoms elsewhere. This is just what is found 

in the molecule B,+N,Hg 6. 

-0.20 co -0.17 

0.19 

-0.20 
8 

26 - 

There are several results which have their basis in graph theory which are worth mention- 

ing here. The reader may have noticed that the level structures of almost all of the systems 

we have studied (with the exception of cyclopentadiene and pentalene) contain a mirror symme- 

try about E=cx. i.e., all the levels occur in pairs at E = cz+ x8. If there are an odd 

number of atoms then there is at least one level at E=o. (The level structure of pentalene 

(Fig. 5) shows no such sysxaetry.) This is a general feature of orbital situations which,when 

all centers are labeled either with a star or left unstarred, no two starred or no two 

unstarred centers are adjacent. Such molecules are described as alternant hydrocarbons6 or, 

in the jargon of graph theory, as bipartite systems. 27 and 28 show some examples of alter- - - 

nant systems. For molecules of this type the levels are always symmetrically placed about 

E=o. 29 shows some nonalternant hydrocarbons where two starred atoms are adjacent. This - 
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napthalene 

azulene 

will always be the case for molecules containing odd membered rings. For these systems there 

is no such symmetry. Of particular interest to us is the variation in the energy difference 

between structures as a function of the number of PTI electrons (Npx). 30 shows the energy 

difference between napthalene and the molecules in 28 and 29. - - Plotice that the curve repre- 

senting the energy difference between the two alternant systems is, like their individual 

orbital structures, symmetrical about the half-way point, but the energy difference between 

an alternant and nonalternant molecule shows no such symmetry at all. (Of course for real 

systems the only points of 30 which have any chemical meaning is the region around IO elec- - 

fulvalene 

trons (five pairs) where each carbon atom contributes just one pa electron. At this point 

napthalene, with two six membered rings is more stable than any of the other molecules. 

Another result, coming from graph theory, 
11 

is that equation (58) holds for regular 

graphs, i.e., those systems where the coordination number (v) is the same for all atoms: 

From equation (48) therefore for all annulenes where each atom is two coordinate 

+ c 4B2 cos2 - = 28*. 
2aj 
n 

j 

(59) 

This is a well known trigonometric identity. Equation (59) applies to all systems, irrespec- 

tive of their alternant or nonalternant character. 

A further observation of Guttman and Trinajsticl* is that for neutral carbon compounds, 

where each carbon atom contributes one PIT electron, loops of length (4m+2) stabilize the 

structure but loops of length 4m destabilize the structure Cm= 1,2 . ..). That this is the 
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case is quite clear from 30 where - 

stable for five 7~ electron pairs. 

around this half-filled point. 

to Bands and Molecules to Solids 

the structure with two six rings (napthalene) is most 

The molecule 23 is unstable, compared to naphtalene - 

193 

2.3 Jahn-Teller Instabilities 

An extremely useful theorem of Jahn and Teller 
4,13 

allows us to predict some of the 

conditions under which a symmetric structure will lie at a local energy maximum with respect 

to particular distortions away from that structure. We will not discuss the operational 

details14 here but the basic philosophy is easy to follow. If there is an asymmetric occupa- 

tion of a degenerate set of levels at a particular geometry then the energy will be lowered 

by a distortion which removes the degeneracy as shown in 31 for the case where the two - 

I i 
-% 

E ic 31 - 

‘St % 
C 

distortion 

electrons have their spins paired. For the triplet situation where the electron spins are 

parallel and the Tauli principle demands that the two electrons lie in separate orbitals, then 

on distortion one electron goes up in energy while the other goes down and there is no result- 

rng stabilization. The cyclobutadiene molecule is an interesting example of this situation. 

With four prr electrons the electronic configuration is (a)2 (cz)~ and singlet and triplet 

states are possible, The former being Jahn-Teller unstable, and the latter Jahn-Teller stable 

at the square geometry. Although the Jahn-Teller approach does not tell us in detail how the 

molecule will distort, 32 shows how the energy levels will change on 'dimerization'. This - 

u-2/9 

-\- 

E I <I Q, _______--- 

la Eli 

EU-p 

E a+/3 

II II 

32 - 

dimer structure lies somewhere along the pathway to fragmentation into two double bonded units 

(also shown in 32) and is just the reverse of the assembly process we used above to derive - 

the cyclobutadiene levels in the first place. Numerically of course the x energy is equal 

JPSSC 15:3-D 
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to 4(a+28) at both the left- and right-hand sides (where two bonds are completely broken) 

of 27. In viewing the distortion however we can assume that two of the linkages shorten 

(Ig,I>IBI) while the other two lengthen ([B,\ <I@[) . Th e reader can readily verify using 

the first order perturbation 

that the new TI energies are 

expression of equation 

those given in 33. If - 

(31) along with the wavefunction of Fig. 3 

8, +f3, N 28 then the 71 stabilization on 

E 

B 

cl 
a, 

II @2 33 

distortion is just 2(B,-B,) . The experimental evidence for singlet butadiene points to a 

nonsquare planar molecule, but whether it is a rectangle or rhombus is still open to question.15 

We can ask how to stabilize a singlet cyclobutadiene molecule against such a distortion 

by mimicking in some way the opening up of the energy gap between HOMO and LUMO which 

occurs on geometrical distortion. One way this can be done16 is by substitution of the hydro- 

gen atoms by electron withdrawing and electron donating groups. These will respectively 

increase and decrease the value of (~11 of the atom to which they are attached. Two disubsti- 

tuted possibilities arise, 34 and 35. - - Let us use perturbation theory to see which one will 

, \ , \ 
X Y 

‘. , , n I’\ , \ 34 
Y X 

be best. All we need to do is to calculate the energy shifts of the four orbitals of Fig. 3 

as a result of increasing c1 (by da) on two atoms and decreasing CI (by 6cr) on the other two. 

The problem is no more complex than that of the substituted ally1 system of Fig. 2 but we can 

use symmetry considerations to help us out. We will choose the form of the e species wave- 

x ; Y 

El 35 - 

x i Y 

functions to match the point symmetry of the substituted systems; the orbitals of 17 for 34 - - 

and those of Fig. 3 for 25, respectively. 

First let us look at the alternating substitution pattern of 34. The resulting first - 

and second order changes are shown in 36. - Notice there is no first order shift for JI, or 

@, since 

E 
1 

(‘I = [(;)2+(+)2]6 a+ [(y+($)2](-6a) = 0. (60) 

Also note that the splitting between $2 and Q, is exactly 26~~. Both $, and $,+ are sym- 

metric with respect to reflection in the two mirror planes 34 one of which passes through - 

the two X atoms and the other through the two Y atoms. Q2 and Q3 are antisymmetric with 
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first second 

order order 

b 

36 - 

second 
order 

inclusion 
of a/3 

respect to one of these operations. So @, and 9, interact energetically in second order 

but $, and @, remain unchanged. The interaction energy is 

[(;+a+(-; -$(-&a)]2 (sa)2 
=-. 

(a+2B) -_(a-2!3) 48 
(61) 

Second, for the pattern of 35 all the first order energy corrections are identically - 

zero, since they are all of the form of equation (60). C-Q, of Fig. 3 may be classified 

according to their parity under the mirror plane of 35. In second order the symmetric func- - 

tions Q1 and $, will interact with each other. Similarly the antisymmetric functions Q2 

and q, will interact with each other. In both cases the interaction energy is 

[(t+ $)So +(-;-$)(-6c()]2 (&a)2 
=-. 

(o+28)-a 
(62) 

28 

The overall result is shown in 37. With a total of four TT electrons, the stabilization - 

energy of 34 is 2&a+ (6a)2/28 and that of 35 is 2(6a)2/8. Assuming that IE(l)]> ]EC2)1, - - 

then for this electronic configuration the pattern 34 is preferred. Indeed all 'push-pull' - 

cyclobutadienes that have been made are of this type 38. I7 The molecule B2N2Rq, where R is - 

a substituent, has this pattern too. 

For the hypothetical case of two n electrons or of six n electrons then the results 

of 36 and 37 suggest that the XXYY pattern of 35 should be preferred. 39 shows schematic- - - - - 

ally an energy difference plot as a function of the number of II electron pairs (P,). 

F)C2% 
o=c 

n 
0 

N(CB'$JR 

(C,H&N VP 

AE 

38 - 

XYXY A 
1 \ 

f \ 
I \ I--- ,I’ 2 ‘\* n: -4 P 

\ I / . \ ’ \ / 
\.’ ‘.I 

, 

I XXYY 
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The picture here is a simplified one. According to the Wolfsberg-Helmholz formula 

(equation (5)), changing the value of Hii 1 a so leads to a change in H ij(B). This consi- 

deration will not affect the energies for the substitution pattern 34 since all the linkages - 
involve unlike atoms and here the change in g is given by 

68=(&a-&X)=0 . (63) 

For the two linkages in 30 which involve like atoms then 6Ra 6a and 68~~ --6cl respectively, - 

Using a proportionality constant of q in these last two expressions leads to the changes 

indicated at the right-hand side of 37. - The only changes occur in contributions to the 

second order energy. The result is a change in the form of the plot of 39. If these second - 

order corrections are small then an asymmetry 40 develops. - If these effects are large then 

there is a reversal of the form 41 of the more stable isomer for three pairs of II electrons, - 

. 

AE I 
XYXY p\ 

I ‘. 

AE 

The molecule S2N2, with this electronic configuration is an example of this situation. It 

has the pattern 34. We shall see a similar series of plots in the solid state later. - 

Another way to stabilize the square geometry is to add two more electrons to cyclobuta- 

diene. The molecules S,+ 
+2 

, Seq+2 and 

they have a square geometry. 18 

3. ELECTRONIC 

Te,++' have this electronic configuration, and indeed 

STRUCTURES OF SIMPLE SOLIDS 

3.1 Energy Bands 

In this section we 

the extended solid state 

simplicity, and consider 

tackle the orbital problem for the case of that infinite molecule, 

array. First we look at the one-dimensional system with its obvious 

the situation presented by an infinite chain of carbon atoms each 

carrying one px orbital, i.e., polyacetylene, (CH),. (As we will see, very similar results 

apply to other systems with one 'frontier' orbital per atom or structural unit). In all our 

deliberations in this article we will consider only the case of crystalline materials, i.e., 

those with a regularly repeating motif. The unit cell of the infinite chain is of length a 

42. From the results described in Section 2.A we know qualitatively what the orbitals of - 
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this infinite system looks like. Equation (27) tells us immediately there is an infinite set 

of orbitals, the lowest energy of which is at E = a + 25 and is bonding between all adjacent 

pairs of atoms. The highest energy orbital is at E =a--25 and is antibonding between all 
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adjacent atom pairs. Between them lies a continuum of orbitals 43 which we call an energy - 

band with a width of 4151. Just as in the finite linear molecule case of Fig. I, the number 

of nodes increases as the energy increases. Right in the middle of the stack at E=cl there 

is a nonbonding orbital. 

One easy way to describe the energy levels of such an infinite system is to impose 

Born-von Karm>n boundary conditions on the problem, In practice this entails imperceptibly 

bending the one-dimensional chain of atoms into a loop, as shown schematically in 44. Of - 

0 
b--d 

. - - : : - 
0 I 2 3 4 5"' I p 0 5” 

2 
3 

4 5"' 

44 - 

course the number, N, of atoms (orbitals) in this loop is huge. So the bending of the chain 

is 'imperceptible' only as far as the atoms of the chain are concerned. Equation (43) then 

tells us that there will be N energy levels whose energies are given by equation (64) 

where j takes all integral values 

sion since N/2 is extremely large 

ing a new index k such that 

Here a is the unit cell length of 

E. 
J 

= a+Z@cos(Zjn/N) (64) 

from 0, ?I, ?r2 . . . ?N/Z. This is a very unwieldy expres- 

but it may be rewritten in a much neater fashion by defin- 

E(k) = a+28coska. (65) 

42 and k=Zjx/Na, called the wavevector takes values - .^ 
from 0 continuously to *r/a. Figure 6 shows the transition" from the finite to the infi- 

nite case, Recall that for an n membered ring j in equation (43) took values from 0, fl, 

+ 2 through (n-l)/2 for an odd-membered ring, So for the five-membered ring the extremal 

value of (j 1 is j,,,= 2. For the fifteen-membered ring the corresponding value of j,,, is 7 
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a. b. 

” \ tT"-" / 
E E=a+@coa ka 

\i/ 

or 
il 2*j 

= a+ 2~~0s~ 

(N ia very large) 
a+2P 

-u/a u/a k- 

or (!I$.!) j- 

Fig. 6. The transition from the finite to infinite case pn energy levels 
of (a) cyclopentadiene, (b) 15-annulene, and (c) an infinite loop 
or one-dimensional solid as a function of the j or ir index. 

What happens if values of Ijl larger than jm,, are used? The reader may readily show that 

the energy levels already derived with j<jmax are generated: i.e., use of j>jmax gives 

redundant information. Similarly in equation (65), use of values of Ikl>n/a also leads to 

no new information. In the crystalline state the levels lying between -n/a<a<n/a are 

called the (first) Brillouin zone. k=O is the zone center, k = ?a/a is the zone edge and 

the variation of the energy with k is the dispersion of the band. Figure 6c is just then a 

'smoothed out' version of Fig. 6b with a continuum of levels (in the limit N-*m) rather than 

a discrete set. 

The wavefunctions of this infinite unit are also easily written down by the substitution 

of k=2ja/Na in equation (45) as 

qj = N-4 f e 

2nij(p-1) 

n GP-1 
n 'pl 

p=l 

N (66) 

,,,(k) = N-s 1 eik(p-l)a ‘pp 

p='l 

Group theory allows us to write down a similar expression for the orbitals of this infi- 

nite, periodically repeating chain, An expression analogous to equation (14)for the molecular 

case is given in equation (67) for the translation group T. This is an infinite group made 

up of all translations tET. There are correspondingly an infinite number of k values 

vJ(&) = 1 x,(t) w, (67) 

tET 

= Ce 
ikR, 

CD&-$) 3 (68) 
tET 



From Bonds to Bands and Molecules to Solids 199 

but the characters take on a simple exponential form. Here Rt is the distance along the 

chain which the translation operation t moves 'p, and cp,(r-_R,) is an orbital translationally 

equivalent to (PI, i.e., tcp,(r)=Qt(r-$t). If we write Rt= (p--l)a then it is obvious 

that equations (66) and (68) are identical except for a normalization constant. This was to 

be expected since via the construction of 44 the infinite translation group and the cyclic - 

group of infinite order are isomorphous. In other words k, the wavevector, in equations 

(66) and (68) are the same. In three dimensional systems the vector nature of k becomes 

apparent and, as we will see later, we need to replace the exponential in this equation with 

a vector dot product exp(ik*R ) where I& = 1 (pi-l)fii, - -t 
a sum over the primitive lattice 

vectors a.. Just as the vector R 
-1 -t 

(with Dimensions of length) maps out a direct space 

(x,y,s coordinates) so k (with dimensions of (length)-') ma s out a reciprocal space. p The 

symmetry adapted functions $(k) are called Bloch functions, $($I = I: c 
p kp "p' 

As in the case 

of the cyclic system, all the levels turn up in pairs (positive and negative k values). TO 

understand the orbital structure of the (one-dimensional) solid we only need one set of 

values; we choose the positive set, the right-hand side of Fig. 6c. 

The energy levels themselves can also be derived by using an approach identical to the 

one in Section 2.2 and shown in 20. The energy of the level of the infinite chain described - 

by a given value of k is given by multiplying by N, the number of orbitals in the chain, 

the energy contribution from the interaction of a single orbital with its neighbors 

E(k) = Nx[(Nmtexp (-ikpa)(Pp/HIN-f(exp(-ik(p-l)a)~pp_l+ 

exp (ikpa)cpp+exp (ik(p+l)a)vp+,)] 

= Nx[o+B(exp(ika)+ exp(-ika))] 
(69) 

= a+28coska . 

The top of the band occurs at k=rr/a where coska =-I and E=o-28. The bottom of the band 

is found at k=O where cdska =I and E = a+28. The middle of the band occurs at k=n/2a 

where coska =0 and E=a. At k=O the phase factor linking an orbital with its neighbor 

is, from equation (68), equal to +I and so the Bloch function looks like 45. This is bond- - 

ing between all adjacent atom pairs. At k=r/a the phase factor is -I and the Bloch func- 

tion looks like 46. The number of states with a given energy n(E) is usefully shown in a - 

density of states plot (Fig. 7b). n(E) turns out to be proportional to (aE/ak)-1 for the 

solid state continuum of levels, " a function which the reader will see has the shape shown. 

We will describe below how the density of states is constructed in general. For comparison 

the density of states plot for the discrete molecular benzene case is shown in 47. Filling - 

up the levels of the energy band with with electrons each will give a total of 2N electrons 

for the N atom chain (N is large!), Normally when describing band occupancy we refer to 

the number of electrons per unit cell, and so this TI band for the infinite chain may contain 

a maximum of 2 electrons, 

The collection of pn orbitals we have just studied would describe the electronic 71 

band of polyacetylene 48 in a geometry where all the C-C distances are equal. Since there - 

is one electron contributed per carbon pn orbital the 71 band is exactly half full. We 

show this by the crosshatching of the occupied states in Fig. 7b, Throughout this article 

we will use the simple representation of this situation shown in 49. Note that such a system - 
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a) b) 

I 
E a 

n/20 T r/a n(E) 
k- kF 

Fig. 7. (a) E versus k (dispersion) curve for a one-dimensions1 chain of p" orbitals; 
(b) density of states plot, n(E). The energy levels are filled up (indicated 
by shading) to the Fermi level EF, corresponding to kF. For polyacetylene the 
band would be half full. 

I 

1- I- 
E 

‘+ 47 - 

E -c 
I2 

n(E) 

48 - 

0 Fl ____ 
!I 

49 50 - - 

is metallic. In 50 we show another electronic possibility where all the levels are filled - 

with unpaired electrons. A solid with this electronic arrangement would be a magnetic insula- 

tor'. The interplay between the stabilities of these two distributions will be discussed later 

The top of the occupied stack of levels is called the Fermi level with an energy EF. The 

corresponding k point (Fig. 7a) is labelled kF. 

This LCAO type of approach applied to solids is called the tight-binding model by 

solid state physicists. It will be clear that it is really no different to the LCAO scheme 

for molecules. In Section 1.2 we showed that the levels of a molecule were accessible by 

solution of the determinantal equation 

H 
ij -SijE =" 

Here the H.. and SIJ 
1J 

were the interaction and overlap integrals between a basis set of 
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atomic orbitals {Al}. In the solid state the analogous equation is 

Hij(k)-Sij(k)E =0, 
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where now the H.. and S 
iJ 

ij integrals are those between the Bloch functions (equation (68)) 

constructed for each atomic orbital contained in the unit cell. Whereas for the molecule 

equation (70) is solved just once to generate the energy levels, equation (71) needs to be 

solved (in principle) at an infinite number of k points. Sometimes we are lucky and are - 

able to write down an analytic expression (as in equation (69)for example) for E(k) but more 

usually we need to solve equation (71) numerically for a mesh of k points which will repre- - 

sent the behaviour of the whole energy band when averaged. We will use the method later on 

to estimate the energies of structural alternatives. This 'special points' method 
21,22 

is in 

general a very useful way of replacing a complex integration over k space with a set of - 

individual calculations. For a solid state system in general the density of states may be 

obtained by using the technique in Fig. 8. Solution of equation (71) at a large number of k - 

points will generate an even larger number of energy levels which may be arranged in order of 

increasing energy. The number of such levels contained within a small energy increment can 

be evaluated and used to produce a histogram for n(E). A little cosmetic smoothing produces 

the desired result. Generation of a dispersion diagram (behavior of E with respect to k) 

proceeds in the same manner. Smooth curves are drawn between the sets of points representing 

the energies at different k values. 

E 

n(E) n(E) 

Fig.8. Schematic showing the method of generating 
the energy density of states n(E) 

In section 2 we extensively used the Hiickel approximation by putting S..= 6.. in equa- 
1-J 

tion (7). In much of this section too we will do the same by writing S ij'k': 6.. since it 
iJ 

will allow algebraic access to several results of interest. Later we will relax this restric, 

tion when we look at more complex systems. 

3.2. The Peierls Instability23 

In the previous section we chose a repeat unit for the calculation which contained a 

single orbital. If we choose a two-atom repeat unit as in 51 how do the results change? - 
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Any observable will have the same calculated value, of course, but the E(k) diagram will be 

different since there are now two pn orbitals per cell. We need to solve equation (71) 

(with S..(k)= 6.. 

equationl'(66). 
1J 

in the H%kel approximation) where the Bloch basis orbitals are given by 

With reference to 51 we may write the Bloch function as - 

ql(k) = n-3 (...(pl eSika' +'P2+'P3 e 
ika' 

. ..I (72) 

q2(k) = nmt (...(p emika’12 + v5 e 
ika'/2 

+ 'PB e 
3ika'/2 

4 1 (73) 

Now to set up the 2X 2 secular determinant we need to calculate the H.. 
=J 

and 

HI1 = ($l(k)lHl$l(k))= nef l n-$ l (no) = a (74) 

Hz2 =($2(k)IHIJ12(k)) = I-I-~ *II-' *(no) =a . (75) 

Both of these elements are independent of k since there is no interaction (in the Hiickel - 

approximation) between (for example) 'pI in one cell and (p2 or 'pg in adjacent cells. H12, 

however does contain b and is dependent on k. 

HI2 =($l(k)lH1q2(k)) =n -i *n-tn(eika"2 + ewika"')S 

= 2$coska'/2. (76) 

The secular determinant is then 

a-E 2Bcoska'/2 

=0 , (77) 
2bcoska'/2 u--E 

with roots E=af2bcoska'/2, a result shown in 52 _. Remembering that a in 39 is half the - 

a' of 51 the relationship between Fig. 7 and 52 is clear to see. The E(k) diagram of the - - 

a+2P - 

52 

two orbital cell is just that of the one orbital cell with the levels folded back along 

k =r/2a 53. Now there are two orbitals for each value of k. - 

El 
0 */a’ 

k 

53 - 

k 
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Another way to derive this result is to take as a basis the II and ?l* levels of the 

diatomic unit in the unit cell, (+1 and $, respectively) and to set up a secular determinant 

as before. From 54 it is easy to see that HI1 = (a+ g)+ 2 4.23 8(,ika'+ .-ika' 1 = ta+~) + 
- 

B coska', and from 55 that Hz*= (c~-8)+2-~(-2~')H(e 
ika' 

fe -ika') = (cl-_B)-Hcoska'. 

HI2 from 56 is 2 -?T-2-$)Eeika'+ 2-H(+ 2-9)Heika'=-iH sinka'. Hz1 from 51 is 

(2-3)(2-q)Teika' + (,-5)(-,-B) E e-ika' = ii3sink.a'. The secular determinant becomes 

(a+B)+Bcoska'-F - ib sinka' 
= 0. 

iE sinka' (a-8)-8coska' -E 

Note that this is Hermitian, i.e., HI2 =H&. Equation (78) has roots 

(781 

E = c1 + d/'(2+2coska') 

= c1 + 2Hcoska'/2 (79) 

which is the same result as before. Notice that both at the zone edge and the zone center 

HI2 =O. So the form of the wavefunctions are easily written down 58. They are just simple - 

0 
k 

*/a 
- 

58 

combinations of the II or TI* functions, in phase at k=O and out of phase at k=r/a'. We 

could then regard the one-dimensional energy band of 52 as being made up of 71 and TI* bands - 

as in 59 which touch at one point in the Brillouin zone 59. There is a qualification con- - - 

cerning such a simple viewpoint. Because of the zero off-diagonal entry at k=O, ala' in 

equation (78) there is no mixing between the IT and Al* functions at these points. However 
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a-2P 

a 

a-2fl B 
\_ / ** \_ / 7r 

a-P 

a+P 

59 - 

the two functions can and will mix together at other k points so that a description in terms 

of two separate bands (one IT, the other r*)is not a rigorous one. 

At k= a/a' there is an orbital degeneracy. 60 shows one way of writing the wavefunc- - 

tions at this point, which we have just employed in 58. However a linear combination of - 

them, as in 61 is just as good and emphasizes their nonbonding character. Recall, we had a - 

similar choice for cyclobutadiene. 

60 - 

Polyacetylene itself however does not have the regular structure shown in 48 but is a - 

semiconductorz4 and exhibits the bond alternation shown in 62 _* The energy bands for this 

arrangement are readily derived with reference to 63. Now, in addition to different values - 

x0’ (I- da’ 

63 

r 
a 

of Rt in equation (68) there are two different interaction integrals, 8, and 8, to be 

included. The secular determinant is easily derived by suitable modification of HI2 (equa- 

tion (76)) and becomes 

a--E 81e 
ikxa' +8 .-ik(l-x)a' 

2 
=O. 

8, e 
-ikxa' 

+B2e 
ik(l-x)a' 

a-e 

Solution of this determinant leads to 

(80) 

E = o*(8,2+822+281 82coska')' . (81) 

Note that explicit dependence on x has disappeared. (8, and 8, will, of course, be x 

dependent). At k= 0, E = o*(B, +8,) and at k=n/a'E = a*(B1- 8,). The E(k) diagram 
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which results now looks like 64. - For the case where 161]> ]f32] the corresponding density 

of states is also shown in 65. - Let us estimate the energy of the distorted structure of 62 - 

compared to that of 43. - We should integrate the function E(k) to get the best answer but 

k 

64 - 

65 

n(E) 

for our purposes it will be sufficient to represent the energy as being the average of that 

at the zone edge and that at the zone center. For the symmetric structure 43 - 

E= 2~;[(~.+2B)+(a)]=Z(a+S) . (32) 

For the distorted structure 62 - 

E = 2*$[(o+B1+82)+(o+B1-B2)] 

= 2(a+S1). (83) 

If we assume that 28=B,+B, then the stabilization energy on distortion is B,-B, for a 

unit cell containing two atoms (lB,]> 1(3,]) . This result is an extremely important one. 

With one electron per orbital the PII band of 58 is half full, - there is no HOMO-LUMO gap 

and there is a degeneracy at the zone edge. On distortion 48+-z, which results in a - 

lowering of the orbital energy, a HOMO-LUMO gap (a band gap, E 
g 

in the language of the 

solid state) is opened up, and the degeneracy is removed. The situation is strongly reminis- 

cent of that of singlet cyclobutadiene of Section 2.3. There the symmetrical structure 

distorted to a dimer structure. Here the atoms of the chain have dimerized in a similar way. 

This distortion is then the solid state analog of the Jahn-Teller distortion. It is called 

a Peierls distortion. As we will see throughout this article there are many similarities 

between the two. The distortion energy in both the molecular and solid state analogs is the 

same, (f31-B,)/2 per atom. (In some ways this result is artificial since we have averaged 

the zone-center and zone-edge energies, when integration of equation (81) should have been 

performed. This approximation will, however, serve our purpose.) 66 shows the analogy in - 
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a -28 

/ 

s-- 

a pictorial fashion where the energy levels, and the energetic locations of the energy bands 

are those we have derived here and in Section 2.2. Table 4 shows some examples of Peierls 

distorted systems some of which are described in more detail later in this article. Notice 

that the system does not always distort to convert the metallic half-filled band into an 

insulator. Also increasing the temperature (e.g., in the V02 example) is often a way to 

reverse the effect, Application of pressure is also effective in this regard. How can we 

stabilize a system such as that of Fig. 7 against the Peierls distortion? In the case of 

cyclobutadiene two extra electrons per four atom unit remove the Jahn-Teller instability. 

In the present case we need to fill the entire band with electrons. The result is the struc- 

ture of fibrous sulfur and of elemental selenium and tellurium, where there are chains of 

atoms with equal distances between them.l* The chain however, is now nonplanar, and a spiral 

structure is found. 

Table 4. Peierls Distortion in Linear Chains 

2) 

3) 

4) 

5) 

6) 

Polyacetylene 
(bond alternation) 

Doped Polyacetylene 
(no alternation?) 

NbI4 chain NbI4 under pressure 
pairing up of metal atoms metal atoms equidistant 

VOp chain (rutile structure) VO2 
pairing up of metal atoms 

at higher temperatures 
metal atoms equidistant 

Elemental hydrogen 

H-H dimers 

High pressure-metallic 
behavior 
Presumably... H-H-H-H... 
chains 

BaVS3 [VS3 chain] 
metallic at room 
temperature 

(TTF)B~ 

(TTF):2 dimers 

Metal-insulator transition on 
cooling, but a magnetic 
insulator 50 rather 
than diamagnetic 49 - 

(TTF)B~~_~ 

metallic conduction in chain 
(cf. polyacetylene) 

Another route, suggested by the observation of the B2N2RI, molecule and the discussion 

concerning the relative stabilities of the substitution patterns 34 and 35 of cyclobutadiene - - 

is via substitution of the chain atoms in a similar way. To generate the levels of the 

. . . XY... solid we need to take those of the two atom cell and apply a perturbation. We will 

increase the c1 value of X by 6~ and decrease that of Y by 6a. The resulting energy level 
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t 

E 

a ___- _____ _-_______ ____---___-. 

____^______ ____ _ ___--___ 

(8a)‘l 
k WQ 4p 

lo I . 

I 8a ________-___ --____ _- 67 
6Q - 

_/“O’ 
k 7rja 

shifts are shown in 67. At the zone edge the energy correction is in first order and is 

n.n-t - - 6a - &a for the X located level and n-n -a *n-$(-&o) = -61 f or the Y located level 

At the zone center the energy correction occurs in second order and is (&o)'/48. The wave- 

functions at the zone edge remain unchanged as a result of the perturbation but at the zone 

center they mix together. From equation (52) the new wavefunction for the energy level at 

E - u+28+ (aa)'/48 is given by 68 and describes a function weighted more heavily on the - 

more electronegative (Y) atom. Similarly the higher energy orbital at k=O becomes 69 and - 

is predominantly X located. Perhaps the most important result is the opening up of a band 

68 - 

gap at the zone edge. Substituted polyacetylenes or their analogs 70 however are either - 

unknown or poorly characterized but we see no reason why the molecular reasoning should not 

prevail here too. 

70 - 

Having shown how . ..XY... substitution opens up a band gap we need also to examine, as 

we did in the molecular case, the relative merits of . ..XYXY... and . ..XXYY... substi- 

tution. To probe this we need to generate the energy levels of a four orbital cell since we 

shall be interested in comparing . ..XXYY... and . ..XYXY... alternatives. By making use 

of the folding back trick of 53 this is quite simple to do and is shown in 71. Just as the - - 
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levels of the two atom cell could simply be obtained by using the n and Al* orbitals of 

ethylene as a basis, so the nodal properties of the levels of the four atom cell can be 

obtained from those of butadiene (of Fig. I). Half of the perturbation problem has been done 

for us already since the form of the functions of cyclobutadiene are identical to the levels 

of 71 at k=O, The energy shifts at this point for the . ..XXYY... and . ..XYXY... - 

substitutions are then given by 36 and 37 respectively, In fact the energy shifts at k=O - - 
for the . ..XYXY... pattern are just the sum of those shown 

cell at k=O plus that at k=a/a. 

is simply that of . ..XY... folded 

the zone edge for the four atom cell 

k, =/a 

in 67 for the simple two atom - 

This comes about because the diagram for . ..XYXY... 

back along k=nr/2a. This leaves the energy shifts at 

of 71. For the . ..XYXY... pattern we will make the - 
. . 

approximation that the mean of the shifts at k=O and k=n/a of the . ..XY... problem of 

67 will suffice. For the . ..XXYY... - pattern it is easy to see that the levels split apart 

in first order by 26a and that there is no second order correction. The energy shifts for 

the two substitution patterns are shown in 72. - Approximating the band energy as before by 

28a 

28a 

72 - 
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averaging the zone-center and zone edge values of a filled level the stabilization energies 

of the two alternatives as a function of band filling are given in Table 5 where the more 

stable structure is indicated with an arrow. Notice the symmetry associated with this Table, 

the entries for the quarter filled and quarter empty bands are identical. 

Table 5. Stabilization Energies of Structural Alternatives 

Band filling . . . XYXY... . . . XXYY... 

0 0 0 

114 (60)/2+@a)2/Sg 6c(+(6c02/2B +- 

112 2 t (W2 /B 

314 (W/2+ (W*/gg 6cl+(6a)2/2B c 

I 0 0 

The relative stabilities of the two possibilities then vary with band filling as in 73 - 

where we show the results obtained by numerical solution of the problem but understandable 

using our discussion. At the l/4 and 314 filled band the . ..XXYY... structure is more 

stable but at the l/2 filled band the . ..XYXY... structure is more stable in exact analogy 

with the case of the substituted cyclobutadienes 39 of Section 2.3. - Again our treatment 

here has been virtually the simplest possible. The problem can be reworked by including the 

variations induced in the interaction integrals (B) by the changes in ~1, in an appropriately 

similar way to the cyclobutadiene problem of 37. The result is very similar.25 The anti- - 

bonding part of the band receives an extra destabilization for the . ..XXYY... substitution 

in an analogous way to that shown at the right-hand side of 

AE 

37 for the molecular case. - 

73 - 

74 - 

JPSSC 15:3-E 
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Taking this into account leads to the two possibilities related to the molecular pictures of 

Go, 41 shown in 74 and 75 depending upon the size of the effect. We shall see an example - - - 

of 74 later but the case of 75 is found for (SN), polymer. This material has three n - - 

electrons per IT band and is found as the -S-N-S-N- isomer and not as -S-S-N-N-. A 

band structure calculation25 using the observed geometry of the polymer confirms the state of 

affairs in 75. has the alternating arrangement too. Most - Recall that the molecule S2N2 

organic donor-acceptor complexes, based on the stacking up of planar molecules crystallize in 

the . ..XYXY... arrangement.26 Although we do not discuss these systems in any detail here, 

the basic electronic arrangement is one which at its simplest involves the interaction of a 

doubly occupied donor level with an empty acceptor level on the adjacent molecule. This 

corresponds to a one electron pair per two orbitals problem, and the alternating arrangement 

of donor and acceptor is understandable from our discussion above. However, the system 

NBP*TCNQFb and Ni(tfd)2.PTZ crystallize in the . ..XXYY... structure. Both of these 

species correspond electronically to one electron pair per four orbitals.25 The observation 

of this isomer for these two cases is in nice agreement with the theory. A sample of some of 

the structures found for various band fillings is given in Table 6. 

Table 6. . ..XXYY... versus . ..XYXY... 

Electronic 
Situation 114 

Band Filling 

If? 314 

1; 1 1 ;;(,I;;;;;;Tz 1 iifi;;!g 1 ::.“::N)x 
aThese examples are discussed in Section 4.2. 

3.3 Building up more Complex Systems 

The results achieved for the linear chain may be readily extended to produce the energy 

bands of more complex systems. Many of the systems we shall discuss are as yet unknown in 

the laboratory. The structure of the ladder, 76 is easily generated by linking two chains - 

together. The secular determinant is a trivial one. If the Bloch orbitals on the two chains 

are IJJ~ and q2 then 

a+28coska-E B 

0 (84) 

8 a+28coska-E 

with roots E= af8+28coska. The result is shown in 77. Another way to generate this - 

result is to use as a basis the II and 71 * levels of the ladder unit cell 78 in which case - 

the secular determinant is 
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(a+ 8) +28coska 0 

I 0 (a=8)+28coska 

78 - 

=o (85) 

with the same roots as before. Note that in this new formulation there is no mixing between 

@I and jl, _ of 78 since they have different parity with respect to reflection in the mirror 

plane which bisects the chain. The two bands of 77 may then be regarded as TI and E* bands - 

of the ladder. 

n(E) 

79 - 

We can use the form of the density of states of Fig. 7b to construct the density of 

states for the ladder orbitals as in 79. A third way of generating these energy levels is - 

to 'polymerize' cyclobutadiene 80. Here the symmetry of the basis orbitals with respect to - 

Q 
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reflection in the mirror plane bisecting the ladder is very useful in simplifying the problem. 

81 shows the wavefunctions of Fig. - 3 which are symmetric with respect to reflection, and 82 - 

I I I I _- 

q 
_- 

2 
-- 

2 2 2 

t, % 

0 

82 

F 
r I ._- I 
2 2 2 

a a-2/3 

shows the functions which are antisymmetric. For the symmetric block we need to solve the 

secular determinant 

Now 

HI1 (k) -E 

Hgl (W 

H1 3 W 

=o (86) 
H33(W -E 

HII =(a+28)+28(i*f)eika+ 28($*i)e-ika= (a+28)+8coska (87) 

and in general 

HII = (a+ n8) + 2ycoska (88) 

where y is the interaction integral between one basis orbital and its neighbor in the next 

cell evaluated in terms of 8 and the products of orbital coefficients, and n gives the 

energy of the orbital of the isolated unit. Equation (86) then becomes 

(cr+28)+ coska-E i8sinka 
= 0 

-iBsinka (cr)-8coska-E 

(89) 

with roots E=(a-8)* 28cos2(ka/2). The antisymmetric block can be similarly constructed 

and the roots are found to be E=(ct+8)+28cos2(ka/2). The energy bands then look like 83. - 

a-3p 

t 
E 

a 
83 - 

a +3p 
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These are just like those of 77 but folded at k=T/2a. The cos2(ka/2) dependence on k - 

has arisen in exactly the same fashion as that for the single stranded chain when the repeat 

unit was doubled in 52. - 

A similar variety of approaches allows construction of the level pattern of polyacene 

where only half of the linkages are made between the two chains 84. We will generate the - 

band structure of this system first by 'polymerizing' butadiene as shown in 85. - The energy 

lcLI<l- Qgc 
a a 

85 

levels of the four orbital chain are shown in Fig. 1. To simplify our problem we shall divide 

them into functions symmetric 86 and antisymmetric 87 with respect to the mirror plane - - 

a+ 1.62/3 a- 0.628 

a-1.62/3 a+ 0.628 

lying perpendicular to the plane of the polymer. For the symmetric block the secular deter- 

minant entries are 

HI1 = (a+l.62B) + (2X 2X 0.372X 0.601) Bcoska 

H33 = (a-0.62B) - (2X 2X 0.373X 0.601) Bcoska 

H13 = [-2X (0.372)']eika+[2X (0.601)2]e-ika 

(90) 

which leads to the messy expression for the energies of 

E= 
(Za+B)* 6~(2.24+1.76coska)2+4(0.6-0.4 cos 2ka) 

2 
(91) 

At k=O, E=c1+2.556, a-I.556 and at k=ti/a, E=o,a+B. For the antisymmetric block the 

arithmetic is similar and we find at k=O, E=a-2.558, a+1.55$ and at k=xr/a, E=a, a-6* 

Qualitatively the band structure looks like 88 with a degeneracy at the zone edge at E=a. - 

Using these bands we may construct a density of states for the x levels shown in 89. Figure - 
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a-26. 

a-P- 

a- 

a+2P- 

9 shows a band structure for polyacene using the extended Hiickel approach. The broad features 

E 

88 - 

/ 

89 

n(E) n(E) 

of the TI bands we have generated here are retained but the degeneracy at the zone edge has 

been converted into a crossing at smaller k. This occurs as a result of the inclusion of 

overlap across the rings, ignored in our treatment. How this occurs is difficult to see 

using our approach here. It becomes quite transparent however if the band structure is 

assembled via the process in 90. This we will do in a qualitative fashion. The left-hand - 

side of 90 has a band structure which is simply two superimposed diagrams 58. This is shown - - 

Fig. 9. (a) 

(b) 

(a) (b) 

Band structure for polyacene using the Extended Hiickel approach. 
Band structure for a distorted polyacene using the Extended 
Hiickel method. (Adapted from Ref. 28.) 
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-o+o-o+o- -o+o-Ot_Q- 
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-o~o-o_co- - -0j-d,_cd- 9o 
by the dashed lines of 91. As a first approximation at k=O we will just construct bonding - 

and antibonding pairs from the levels at the bottom and top of the band. (These will not be 

the final energies of the bands since the orbitals we have generated are not orthogonal and 

there will be a second order energy correction.) At k=m/a, making similar combinations of 

. . 
.- - 

S 

the orbitals of 58 leads to one bonding, one antibonding and two nonbonding orbitals. The - 

two nonbonding orbitals are degenerate in 91 only because overlap across the six-membered - 

ring is neglected. If this is included then they will split apart in energy as in Fig. 9. 

The bonding partner (symmetric (S) with respect to the mirror plane lying parallel to, and 

bisecting the chain) obviously then drops to lower energy. Since this must correlate with a 

symmetric function at the left-hand side of 91 it therefore goes up in energy with decreasing - 

k and so crosses the other orbital with E>a at a little less than k=n/a. Figure 9b shows 

the result of a calculation for polyacene where each of the carbon chains has undergone a 

pairing distortion. As in the polyacetylene example itself, a band gap opens up at the zone 

edge. We will discuss later the problem of Peierls type distortions in polyacene and related 

systems containing more polyacetylene chains. 

The energy bands of these chains have been easy to derive since we have gained a consi- 

derable simplification by making use of the mirror symmetry of the problem. A much more 

difficult problem arises in the generation of the bands of the unknown species polyazulene 92 - 

where there is no such symmetry. The level structure can be generated as in 93 by using - 

perturbation theory in a way analogous to the derivation of the pentalene levels of Fig. 5. 
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Although instructive, this is extremely tedious. 94 shows the TI bands generated by numerical - 
solution of the 8X 8 secular determinant. Note that in contrast to the polyacene problem, 

the levels do not lie symmetrically about E=cr, a direct result of the presence of odd mem- 

bered rings. The polyazulene net is not bipartite and so its level structure at all k lacks - 
such symmetry. 

94 

lool 96 - 

The level structure of poly-[8]-annulene, 95, (for lack of a better label) may be derived 

in a way analogous to that of the ladder above, by starting off with the orbitals of the eight- 

atom ring, 96, as a basis. This exercise is left to the reader. The energy bands are shown 

in 97. - 

97 - 
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Of particular interest is the energy difference between these three structures as a 

function of band filling. This is shown in 98. 
NPT 

is the number of pi electrons per atom. - 

Notice that the energy difference curve for poly-[8]-annulene is symmetric with respect to 

reflection about this point (Npn= I) as demanded by the bipartite nature of both networks. 

+ 

AE 

90 - 

The curve for polyazulene on the other hand lacks such symmetry. It has its maximum stability 

just after the half-filled point at the band filling of about 0.7. As known for years by 

physical organic chemists and implied by the result" 
. 

of Gutmann and Trinajstic for molecules 

discussed earlier, the most stable structure at the half-filled point is the one with six 

rings. Notice too that the poly-[a]-annulene structure (with a-rings and 4-rings) is the 

least stable alternative at the half-filled point, a result analogous to that found in 3D for - 

the 8-4 molecular case. Also the stability of polyazulene (5-rings and 7-rings) relative to 

polyacene reaches a maximum in approximately the same place in 98 as does the 5-7 relative to - 

6-6 molecular structures in 98 _. 

Not all of the systems we shall describe are one-dimensional ones. Most 'real' systems 

are three dimensional in extent. For the latter case we may write the translation group as a 

simple product group involving translations along the three lattice vectors, 

2.1. In this case the exponential in the Bloch sum of equation (68) becomes 

e 
i(k b .e,~,)ei(k2b_2.112_a2)ei(k3b_3.R3~3) =ei(k*z) 1-l 

where b:a. = 2n6.. 
-1 -, iJ 

and the reciprocal lattice vectors b-i are defined by 

ai of Section 

(92) 

(93) 

Just as the direct lattice vectors define this lattice, so these reciprocal lattice vectors 

define a reciprocal lattice. A simple example will illustrate its construction. In 99 we - 

show a primitive orthorhombic lattice. The direct lattice vectors _ai are given by 

,. 
= bi; 

h 
-al = ax; 22 %I 

=cz , (94) 

,. h A 
where x, 41 and z represent unit vectors along x, y and z directions. The hi are then 

simply 

b-1 = (2Irr/a)z; b-z = (2a/a) 2 ; b3 = (2nla) 4, (95) 
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a 

and the reciprocal lattice as in 100. Now the first Brillouin zone is defined as the volume - 

enclosed by the set of planes which bisect perpendicularly all the lines drawn from one 

lattice point to all others in the reciprocal lattice. In practice only a small number of 

close points are needed. 101 shows the construction for the reciprocal lattice of 100. - - 

2* 
T 

b, b, 
k 

4 
100 

101 - 
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Various points which lie on the faces, edges or vertices of the Brillouin zone are usually 

given symmetry labels. 102 shows the conventional choice for our example. In units of 2x/a 

the values of kI, k, and k3 are 

r;o,o,o K;O,3, Z;O,O,l 

y;-$,O,O T;--g,O,$ lJ;O,?!,$ (96) 

g;-$,t,O KG-_?,+,: 

Notice that the one-dimensional example which we have exclusively described until now is the 

special case of 101, with b2=b3=0. We have chosen for our example, a particularly simple 

zone. Other lattices give rise to zones which correspond to more complex polyhedra.20,2g 

For the primitive hexagonal lattice, which we will use shortly, the situation is a little 

more complex. If the primitive direct lattice vectors are as in 103 then the reciprocal 

lattice vectors, by the construction of equations (93) become those of 104. The first 

Brillouin zone, also has hexagonal symmetry and is shown in 105. Notice that the point M 

is just ($,0,0)2i~/a but K is (f,i,ll)2n/a by simple geometry. 

First we tackle the problem of the square net, 106 which has a set of primitive lattice 

vectors as, bf and ci where we may visualize c as being very large and a=b (01' 100). ..-- 

The two-dimensional zone we need to consider is therefore the one given in 107. 

106 - 

107 - 
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The energy band of the square net is easy to derive since it is a one-orbital problem. 

By analogy with the one-dimensional chain of Section 3.1 the E(k) dependence is written as 

E(k) = a + ZBcos(k*a )+ LBcos(k*a ) - -1 - -2 (97) 

which therefore has a maximum energy of a-48 and a minimum energy of 1x+48. There is a 

pictorial problem is showing the dispersion of the energy in two dimensions but what we can 

do is trace the energetic behavior along lines joining syrmaetry points of the Brillouin zone. 

a-46 

a 

\ 

__ ___ 

/ 

_____ ______. 

a+4p L 
M r X M 

a-4P 

E 

a 

a-4P 

n(E) 

108 - 

109 

Using this technique the energetic dispersion is shown in 108. Its density of states is - 

shown in 109 and indicates a maximum at the half-filled band. The band structure of this - 

net may also be generated by linking together one-dimensional chains. The first step in 

this process is shown in 76, 77, where we constructed the energy bands of the ladder. Clearly 

the energy bands of a connected set of n chains will have an energy 

Ej(k)= cx + 28cos(jv/n+l) + 2Bcoska , 

by using equation (27) (j = 0,1,2,3 . . . n). Equations (97) and (98) 

infinite collection of chains. Notice that the density of states of 

some of the features of that of the square net. 

dependence of 

(98) 

become identical for an 

the ladder already has 
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It is not much more difficult given these results to generate the TI bands of the 4a2 

net of 110, especially if it is redrawn to emphasize its construction as a square net with 

cyclobutadiene at each node. There are now four energy bands, each with a & dependence 

given by an equation (99) of exactly the same form as that of equation (97) but 

E(k) = (a+ng)+ 2y1cos(~*_al)+ 2y2cos&*a2) (99) 

where yi (i= 1,2) now represents the interaction integral along the ai directions between 

unit cells associated with the cyclobutadiene orbitals 111-114. It is easy to see that -- 

3 
a+28 

n=2 

A 
a 

n= 0 

a 

n=O 

-3 
a-2/3 

n= -2 

yi = B/4 for _lJ and 114. y,=B/2 and yp=O for 113 while yI=O, and y,=g/2 for _l&. - 

The resulting band structure looks like 115. Notice that at (4,4)2lr/a, the level pattern - 

a-3P 

M td r X M 

is identical with that of the isolated cyclobutadiene system since from equation (99) at this 

point cos(k.a.)= 0. 
- -1 

It is difficult to understand the density of states plots for two- and 

three-dimensional systems in the same way we used for one-dimensional ones. The plot for 110 

however, is shown in 116 and, if we restrict ourselves to looking at that section of the zone - 

between r and M, we might expect something resembling 117 which is not too different. - 
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n(E) 

a-3/3 

E 

a 

Q -30 

117 - 

n(E) 

If we were to estimate the energy of this system by choosing the & point in the middle 

of a quadrant of the Brillouin zone 107 at ($,4)2n/a then the level structure is identical - 

to that of cyclobutadiene. It is therefore very interesting to find that the only known 

examples of isolated nets of this sort with a half filled IT band are for M 
II 

B2C2 where the 

squares contain alternating boron and carbon atoms 3o just as in the molecular case, and for 

exactly the same reasons we have described exhaustively before. 

A slightly more adventurous derivation is of the r band of graphite. The unit cell we 

will use is shown in 118 with the primitive lattice vectors needed in equations (92),(93) - 

a2 

/- a, 
118 

shown. Here we 

functions using 

not orthogonal. 

minant becomes 

will need to take into account the vector nature of k and evaluate Bloch - 

the phase factor exp(ik*R ) a little more carefully, since ~1 and a2 are - -t 

Using as a basis the two pr orbitals of the cell in 118 the secular deter- - 
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o-E 
ik * (fgl-$5,) ik*(4al+La 

+e +e 3 2) 

=o (100) 
a-E 

with roots E = cl&A 1 H where 

A = [3+2cos(~l+_a2)*k+2cos i2*k +2cos a _I *&)I * (101) 

Clearly again we cannot show the E(k) dependence in two dimensions in an analogous way to 

the one-dimensional case but we will depict the energy changes along line in the Brillouin 

zone 102. - At the three symmetry points T,M and K the energy is given by 

r E=o+3H; M E=a+B; K E =a+OE . (102) 

c/ 

K 

Fig. 10. Band structure for graphite using the Extended 
Hiickel approach. (Adapted from Ref. 28.) 

119 shows the graphite IT band structure using these results. - Figure 10 shows a band struc- 

ture for graphite using an extended Hiickel method which includes the u bands too. Notice 

M K I- M 

that the levels at E>u are destabilized more than the levels for which E are stabilized. 

This has an explanation identical to that discussed in Section 1.2. Inclusion of overlap 

destroys the symmetry associated with the orbitals or bands about the E=a level. Notice 
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however that the degeneracy at E=o at the point K is maintained even when overlap is 

included. With one electron per PIT orbital in graphite, this band is half filled and IcF 

lies at the point K. Graphite is thus a zero-gap semiconductor, one where valence and 

conduction bands just touch. 

= o” L7 u* 0 
e 0 120 - 

Exactly the same results are found if, instead of using the individual pa orbitals as a 

basis, we use the TI and x* functions of the two orbital cell 12.0. The secular determinant - 

is then 

(o,+B)+Ecosk*a +Bcosk*al-E 
-2 -_ iE(sink*al+sink'a2) -- 

=o 

-ig(sink*al + sink*a2) (a-_)-Bcosk*a -gcosk.a--E - -2 - -1 

with roots E = cr?A'g as before (equation (101)). 

(103) 

N’B’N’B’,: Q ,A 
‘“: 

gl 

B\N/B,N/B 

The secular determinant of equation (100) may easily be rewritten for the case of BN 

121 by using two different values, oN and ctB. - The energy levels may be evaluated by expan- 

sion of the secular determinant in the usual way, as 

E = ;(c~B+~)f$&~-cr$~ + 4A2 . (104) 

The most striking result of this substitution is the removal of the degeneracy at the point 

K. Here the energies become E=clN and E=oB. 122 shows schematically the result predicted. - 

122 - 

M K r M 

With two IT electrons per pair only the lower band is filled. BN is thus an insulator and, 

in contrast to the metallic sheen of graphite, BN is a plain white solid. An extended Hiickel 

band structure is shown in Fig. 11. Graphite and BN have half filled pi bands and it is 

interesting to see that the observed structure of BN is one where the boron and nitrogen 

atoms alternate in two dimensions. Recall that for one-dimensional chains, with a half-filled 
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band the structure . ..XYXY... was favored over the alternative . ..XXYY... . Analogous 

arguments for the BN system favor 121 over, for example, 123. 

-: 

3 
2 -IC 

W 

-1: 

I 

\ 

/ 

E,- 

f 

Fig. 11. Band structure for boron nitride (in the graphite structure) 
using the Extended Hiickel approach. (Adapted from Ref. 28.) 

The energy levels in graphite are filled up to the nonbonding level at E'o. Occupation 

of deeper lying levels contributes to carbon-carbon bonding. Occupation of higher lying 

levels has a destabilizing effect and should give rise to an increase in the carbon-carbon dis. 

tances. Figure 12 shows how this distance increases with the concentration of intercalated 

1 .42c11 
xmCK, 

Fig. 12. Experimental values of the CC intraplanar distance as a function 
of the extent of intercalation of potassium. (Adapted from ref. 52.) 

JPSSC 15:3-F 
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donor atom, in nice agreement with this prediction. (But see Ref. 31 for a further analysis 

of this problem.) 

A tough problem to iackle using the quantitative method we have adopted above, is the 

generation of the band structure of the net shown in 124 which contains 5 and 7 rings. It is 

not bipartite and lacks a lot of the symmetry we have found useful before. Its bands need to 

be generated numerically. The net is actually found for the nonmetal sheets of ScI$_C2 where 

124 - 

the metal ions lie between such nets. If the scandium atoms are considered to contribute 

their three valence electrons to the sheets then the unit (B2C2)3- has an average of 5/4 

electrons per atom, i.e., the IT band is 518 full. 125 shows another related net, that of - 

the boron atoms in Y2LnB6. 126 shows the energy difference between the graphite, 482 and - 

ScB2C2 nets as a function of band filling. (NpT is the number of PIT electrons per atom). 

126 - 

As in the case of the one-dimensional examples of 98 (and indeed in the molecular species of - 

30) the six-ring net is the most stable at the half-filled point, (i.e., as observed for - 

graphite) the net containing 5 and 7 rings is most stable just after this point (i.e., as 

observed for ScB2C2) 32 and the482 net is stable at the very beginning and very end of the 

filling curve. Notice that the nonbipartite nature of the net 124 shows up in the asymmetry - 

of its energy difference curve with the bipartite graphite net. Beyond the scope of this 

article is discussion concerning the underlying physics of the plots of 98 and 126. In - - 

brief however we can show 
33 

that the energy differences between two structures of the type 
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energetically depicted in 126 (where each atom has the same coordinate number) is simply 

given by equation (105) 

E(X) =I [Nr(l)-f$-(2)] f(r,x) 3 (105) 

r 

where N,(l) and N,(2) are the numbers of r-rings in each of the two structures and x(0+1) 

is the extent of band filling. The functions f(r,x) are universal expressions which describe 

the energetic contributions from an r-ring. Equation (105) also holds approximately for the 

one-dimensional cases of 98 (here not all the centers are three coordinate) and also more - 

approximately in the molecular case of 30. The result of Gutman and - 

lier is simply the special molecular case of x=0.5, and emphasizes 

and instability of 4- and 8-rings at the half-filled point. 

In the ScBzC2 net of 124 there is clearly a preference for the - 

to occupy specific sites in the net. A calculation on an all carbon 

Trinajstlc'* noted ear- 

the stability of 6-rings 

carbon and boron atoms 

net with the geometry of 

124 shows indeed that the carbon atoms in ScB2C2 occupy sites of higher negative charge in 

the unsubstituted parent. Band structure calculations*' which include both u and 71 bonding 

manifolds of orbitals show a stabilization of about 20 kcal/mole for the observed structure 

compared to the one where the boron and carbon atoms have been exchanged. 

In Section 2.2 we discussed at some length the Peierls distortion on one-dimensional 

polyacetylene and showed how the distortion energy was :(B,-S,)/2 per atom. It is of some 

considerable interest to calculate the distortion energy in polyacene 84 and graphite 118 - - 

since both of these systems have a degenerate pair of orbitals at the Fermi level. For 

polyacene we consider the distortion in 127 which retains the mirror symmetry bisecting the 

&&jJ+yJJ-u !27 

I I 

polymer. So the labels S and A used in 91 to describe the parity of the bands with res- - 

pect to this plane are still good labels to use during and after the distortion. Immediately 

a striking difference between the distortion in polyacene and polyacetylene is apparent. In 

polyacene on distortion, the energy changes associated with the levels will occur via a 

mixing of the two antisymmetric bands, and via a mixing of the two symmetric bands, i.e., 

the energy change will occur in second order. In polyacetylene the splitting apart of the 

levels at the zone edge occurred in first order. We may readily calculate the energy shifts 

for the S and A pairs of 91 by solving the relevant secular determinant. The off-diagonal - 

element linking either the two S bands or the two A bands at the zone edge is just 

(gl-8,)/2 and so for the antisymmetric block 

(o-8)-E 2(8,-a,) 

=o (106) 

$03,~8,) a-E 

which has roots E = (a-8/2)~(82f(81-82)2)5/2. Expanding this in terms of (8,-8,)/B 

leads to the two new antisymmetric levels at the zone edge 

E=C1+ (8,-S,)* 

48 
; E = a__ B - @l-$* . (107) 

Similar expressions apply to the synrmetric block and lead 128 to a band gap of (Bl-B,)*/28 - 

for the polyacene distortion 127. Compare this with a value for polyacetylene of (B,-8,)/2. 
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128 - 

Let us build up the levels of a three stranded polymer to see how it will distort. We will 

just derive the level structure at the zone edge via the process 129 for the undistorted - 

species. This is easy to do and is shown schematically in 130. We will leave it to the - 

reader to show that during the distortion 131 q5 pushes $, down in energy by exactly the 

same amount as +, pushes Q4 up in energy. -JII, th erefore remains unchanged in energy on 

distortion up to second order. Analogously q3 remains unchanged in energy too in second 

order. It can be shown that the splitting apart at the zone edge of VI, and $,+ occurs in 
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1: 0 0 0 .’ .. ” ?!??I m . . 0 0 0 I_-- ,. .;’ E 
third order in the energy and that the band gap is (13,-B,)‘/4Bz. In general34 for polymers 

of this type the energy gap goes as (Sl-S,)6n-1 where n is the number of strands and 

6 = (8,-B,)/W 1. So as n increases the stabilization energy drops off sharply. 132 shows 

the results of some numerical extended Hiickel calculations 25 on systems of this type. The 

, 

AE 0 acetylene 

i polyocene 

.\T 

\ 

%. 

132 

I 2 3 4 5 tcphite 

number of strands 

ordinate represents the relative energy differences between the undistorted parent and a 

slightly distorted version. (The numerical scale of the ordinate will depend on the size of 

the distortion.) The rapid decrease in stabilization energy on distortion as n increases is 

apparent. Opposing such a stabilization associated with the n levels is a small destabili- 

zation on distortion for the o levels (the so-called elastic forces of the solid state 

physicist) which eventually outweighs the 71 distortion energy. For graphite the distortion 

is energetically unfavorable. 

4. MORE ORBITALS AND MORE DIMENSIONS 

4.1 Variations on the One-Dimensional Problem 

Our discussion so far has centered on the band structures of systems built up from 

single atomic px levels. The results are transferable in many cases to several other 

systems. Algebraically the one-dimensional results apply to a chain of atoms bearing s or 

da2 orbitals as in 133 and 134. Both of these problems are characterized by an interaction 

integral g of the same type as that 

linear chain of hydrogen atoms 135. - 

in 42. The simplest problem corresponding to 133 is a - - 

This should undergo a Peierls distortion since it has 

but one electron per orbital, in an exactly analogous fashion to polyacetylene. The result: 

ing dimers 136 would be in accord with traditional ideas which we have concerning bonding - 

in this molecule. On application of high pressure (w2Mbar) the process can be reversed and 

136 -+ 135. The physical properties of 135 (or rather its three-dimensional analog) are 

interesting. 49 shows that such a structure should be metallic and indeed at these high - 
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-H-H-H-H-H-H- E 

-H H-H H-H H- 136 

pressures metallic conduction has been observed.35 This particular result is of interest to 

geoahysicists, since the 'atmosuheres' of several ulanets have been sueaested to be made from 

such material. 

An example of 134 is found in the salts of the ion Pt(CN),2-. This species is square 

planar and, in the solid state, the planes stack, 36 one above the next as in 137 -* The 

valence orbitals of such a molecular unit are shown in 138 along with the orbital occupancy - 

- 

E 
1 

138 - 

expected for a low spin d* (Pt(II)) configuration. The z2 orbitals of each unit interact 

with the next in the fashion shown in 134 and a band, filled with two electrons, results 139. - 

/I /I----I 

_/ Z2 \I/II 139 - _/ ZZ \lll I 140 - 

K2[Pt(CN),+l is 

of 3.48A. The 

of the chain to 

\I \u 

a white solid and an insulator (5X 10-7Q-1cm-1) with equal Pt-Pt 

salt can be cocrystallized with elemental bromine which results in 

give nonstoichiometric material K2(Pt(CN)4)Br6. 3H2Q. The chain 
x--9 1 

formulated as Pt(CN),+" - and, as a result electron density is removed from the zL 

distances 

oxidation 

ion is now 

band 140. - 
This material is metallic and, since the electron density has been removed from the very top 

of the band where (43)maximum antibonding interactions are found, it has a significantly shor- - 

ter Pt-Pt distance (2.88A for 6=0.3). 
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There are many other materials which are built up using exactly the same principles. For 

example, the d* complexes of the glyoximate and dioximate ligands 141 and Ni, Pd and Pt - 

also lead to stacks of planar units.37 On cocrystallization with halogen, conducting 

y+i-- -$I 7 ‘;’ 
H, O-.. “... ? 

i 
AC= r; \ ,N=C/ 

% H 
C’ 

I I 

RHc\N / \ d,“R 

+bNyM ‘N=C,C*C’H 

&_+___~ 
rlr 

&..“...t, 

Ii 

141 - 

Mtgly), R=H 

M(dpg), R=Ph 

MPC 

materials are produced. Similar features are found in phthalocyaninnes MPc 142 and porphy- 

rins. Often the crystal structure of the doped, conducting material shows regularly stacked 

143 and that of the pure material, slipped stacks of planar units 144. 

-M- 
144 - 

-M- -M- 

-M- -M- 

Conceptually very similar to these Pt(CN),, (often abbreviated as TCP) systems are a 

whole series of 'organic 

typified by the stacking 

metals' which contain no metal atoms at all. Such species again are 

up of planar molecules such as those in 145.3s In the absence of - 

tetrathiatetracene 

perylene TTT 

Se-Se 

c@@Q 
Se-Se 

S Q=aJ S 

145 

tetraselenotetracene 

TSeT 
tetrathiofulvalene 

TTF 
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dopants the crystals are not conductors of electricity. However just as in the TCP case, 

cocrystallization with halogen leads to conducting materials. Some examples are 

(perylene)0'4 (I: .212)o 4 5-SO(Rcm)-l 

(TTF)Br0.7 300-500 

(TTT& I; 2700 

(TSeT)C10 5 2100 . 

A particularly interesting series is shown in 146. - The parent material is an insulator but 

insulator -4OO(Rcm)-’ ClO-6 KLcmP’ insulator 

the nonstoichiometrically doped material ((TTF)Br0_7) is a metal. With a half filled band as 

in (TTF)22Br- a Peierls distortion leads to dimerization and the observation of (TTF)i+ 

pairs in the crystal. Finally, if the band is emptied completely, individual ions (TTF) 2+ 

are found. Not all of the structures of these species end up as neatly stacked planar mole- 

cules. In (TTT)21; for example the stacks are slipped somewhat as in 144. - 

There is an obvious difference between the energy bands derived from 42, 133 and 134 - _ 
and that associated with a single pa orbital at each center 147. Here since the positive 

lobe of one orbital overlaps with the negative lobe of the ps orbital carried by an adjacent 

atom in the chain, the interaction integral between them is positive rather than being nega- 

tive. The only difference this makes to our discussion above is that maximum bonding between 

the atoms of the chain is now found at the zone edge, and maximum antibonding at the zone 

center, 148. - 

148 - 

k 

We are now in a position to qualitatively outline the o band structure of a linear 

atomic chain containing s and p orbitals on each atom. We need to solve the relevant secu- 

lar determinant which will include three different values of S, one for PO-po, one for 

s-s and one for PO-S interactions. This is 

os+2Sss coska-E 

--2igsp sinka 

ZiBsp sinka 
=o. 

ap-28 
PP 

coska-E 
(108) 
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We will not write down the (messy) expression for the energy levels but just note that at 

k=O and k=r/a the off-diagonal element is identically zero, i.e., there is no s-p mixing 

at either of these points. Hsp is at a maximum in fact for k=r/2a. 149 shows a qualita- - 

tive diagram for such a system constructed by making use of this result and the fact that 

IasI>Iopl. The dashed lines show the dispersion in the absence of sp mixing. Here we have 

k n/a 
- 

0 k wa 

149 - 

assumed that the s-p separation is large compared to the values of H for the s and p bands 

150 shows a more realistic case where the unmixed s and p bands (dashed lines) cross in - 

energy. As Ssp increases then the mixing in the middle of the zone gives rise to the energy 

dependence shown by the solid lines. Note that because of the different k-dependence of the 

p and s orbital energies the 's' band, while purely s-s bonding at the zone center, is 

purely p-p bonding at the zone edge. In addition to the presence of po orbitals on the 

chain atoms there will be two pr orbitals (p, and p,). These will be degenerate at all k 

(i.e., the IT label is still a good one for the chain) and their behavior will be just like 

that found for polyacetylene. There is no overlap between these orbitals and any of the 

orbitals of o type. A composite picture for a one-dimensional chain of atoms is shown in 

151 _. 
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Let us now ask the following question. We known that the molecule ferrocene (CSHS)2Fe 

and bicyclobutadiene nickel (C,H,),Ni are stable molecules with geometries shown in 152. With 

these electron configurations, the eighteen electron rule is satisfied and there is a signi- 

ficant energy gap between HOMO and LUMO. For what metal will a similar energy gap be pro- 

duced in the infinite species of 153 and 154 ? Starting with the case of 154 we need to -- _ 

consider the five metal d orbitals 155 and the four cyclobutadiene orbitals of Fig. 3. We 

have used 156 the alternative form of the degenerate pair of orbitals Q2 and $, shown in 

17 -. Symmetry arguments are useful here in simplifying this problem. Just as in the chain 

of sp atoms noted above, we could separately treat the orbitals of u and TI type, so here 

we can classify both the metal d and cyclobutadiene orbitals in terms of their u, TI and 6 

symmetry. Let us start off with the orbitals of o symmetry. The secular determinant is 

ad-E 2i$sinka/2 

= 0. (109) 
-2iSsinkaf2 ol-E 

Here ~1~ is the energy of the cyclobutadiene orbital +I (=a+26 in the notation of Sections 

II and III), and cxd is the d orbital Coulomb energy. Note that neither diagonal entry con- 

tains any k dependence since we have ignored M-M and cyclobutadiene-cyclobutadiene inter- 
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actions. B in equation (108) is the interaction integral between I), and z2. It is probably 
quite small since the geometry is such that the cyclobutadiene orbitals lie close to the 

conical node in 2 z 157 which occurs at 8=54.73". The u band structure then has a small - 

dispersion and probably looks like 158. The secular determinant for the 6 block will be 

158 - 
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very similar to equation (108) and 6 will again be small since the overlap between $, and 

one of the 6 components is not very favorable. Only in the case of the 71 type interaction 

is the interaction integral significant 159. - The secular determinant is given by 

ad-E 

1 2bcoska/2 

In section 3.2 we looked at a problem of 

bands. The bottom of the upper one lies 

(See 67 and the associated discussion.) - 

these results and is shown in 160. - 

2$coska/2 

= 0. (110) 

op- E 

this type using perturbation theory. There are two 

at c4 d and the top of the lower one lies at op. 

The band structure is then simply derived from 

160 - 

metal 

atom 

bands of 

153 
q 

To fill all the bonding and nonbonding levels we need a total of twelve electrons per 

unit, a metal atom from the iron group is required. Such a system however, would have a 

zero band gap because of the touching of the (xz , yz) band and the z2 and (x2-y',xy) 

bands. In fact a numerical calculation, which models the cyclobutadienyl ring properly (the 

carbon atoms do carry s orbitals) results in a pushing up of the (xy,yz) band at the zone 

edge and an opening up of a band gap of about 1.5eV. The polymetalcyclopentadienyl system 

153 presents a similar case. - Analogous arguments lead to the prediction of a manganese group 

metal for this polymer. 

Another problem which may be tackled along similar lines is the generation of the band 

structure of the hypothetical MB,, system shown in 161. - The chain is composed of edge- 

!-I H H 

z -l-l. ‘I’+. 1 _.H. ’ H 
X l Hjh;\H/X\H. 

@ MC 162 

H 
AH - 
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sharing MHs octahedra. First we have to decide on the basis set to use for the problem. As 

we have seen in Section 3 the same result may be reached in a variety of different ways. Per- 

haps the easiest route for this example is to first of all set up the valence orbitals of the 

butterfly MH,, unit, 162. With HMH angles of 90" and 18C" this is very easy and is shown in 

163. z2 - is destabilized (by 2.5eo using the angular overlap mode14) more than xy (by l.Se,) 

l-l 
I/H E 
b-l 

t 

H 

163 - 

and the three other d orbitals remain nonbonding. We know enough about energy bands by now 

to be able to write down an approximate band structure. This is shown in 164. - 

t 

22 

E 

XY 

X2 

YZ 
MH4 xp-Yi 

fragment 
energies 

) 

C X2 __ 

(Y 

II -__ _ ._ 

x2- y2 

164 

The energetic behavior of the levels with respect to k is easily understood. Recall that 

whether maximum bonding or antibonding is found at the zone center just depends on whether 

the overlap integral of one basis orbital is positive or negative respectively with its part- 
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ner in the next unit cell. (The pi orbitals of the polyacetylene chain is an example of the 

former, the pu orbitals of 147 and 148 an example of the latter). The dispersion of the 

z* and xy bands is set by the sign and magnitude of the M-H interactions between cells. 

From 163 the overlap is negative for z* - but positive (and larger in magnitude) for xy. 

Notice the correspondingly larger dispersion of the xy band with the opposite dispersion 

behavior to that of z*. If the energetics were dominated by metal-metal interaction, since 

the z2 overlap is positive but the x 2-y2 overlap negative, the dispersion of the two bands 

would be reversed. The xz,yz and x*-y* orbitals have no hydrogen orbital character and 

their dispersion is set by the positive overlap for x*-y* and yz and the negative overlap 

for xz.. We show a tiny dispersion for yz since it is unfavorably situated for good M-M 

interaction compared to the o and TI interactions of x*-y2 and xz respectively. The band 

structure ends up as a two above three pattern typical of octahedral coordination. In 164 - 

we show the Fermi level for a d' metal and inquire how the system might distort to lower its 

energy. The situation is not quite as simple as the one-dimensional Peierls instability of 

polyacetylene or elemental hydrogen, since there are three accessible energy bands to worry 

I I I I ‘..M_‘~‘..M_‘.‘..M__. “.M__* 

0,v \/ \I \ 165 

I I I 
- 

about. However a pairing distortion 165 to 166 does stabilize the system considerably as -- 

shown in 167 and a semiconductor is generated. This orbital problem is very similarj' to 

cl X*-y2 

I= 
167 - 

Ix2 

cl tl --Ef 
x2-y2 

166 165 

that of NbX,, (X = halogen) which forms chains of the type in 166. NbI,, under pressure - 

becomes metallic. Just as in the case of elemental hydrogen (135, 136) the Peierls distortion - 

here may be reversed by the application of pressure. 

Note that in the distortion shown in 166, and indeed in all of the distortions of the 

Peierls type we have studied, the bandwidths of each of the components on distortion together 

are less than the undistorted width. This arises as a simple consequence of the fact that the 

overlap integrals decrease as the interatomic distance increases. The corresponding inter- 

action matrix elements then become smaller on distortion. 

In fact although the band structure of NbC14 looks very similar to that depicted in 164 

the picture which emerges from a quantitative calculation3g is a little more complex. Our 
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depiction of the dispersion behavior of the lower set of levels in 164 is perfectly fine for - 

an MHq chain, but with TI bearing ligands the situation is more involved. The basis set of 

orbitals now needs to include the effects of TI interactions. With donor ligands the 'd' 

orbitals are metal ligand antibonding and may be written as in 168-170. The overlap integral -- 

xz 169 -49 x2-y’&Q* 170 

of 168 with its neighbor in the next cell contains a negligible metal-metal component (ignored - 

before) and a negative d--pr overlap. Maximum bonding is then assured at k=n/a. 169 is a 

little problematical. Metal-Metal overlap is negative but d--pn overlap is positive. Calcu- 

lations on this system show the two to virtually cancel and a flat band results. Similarly, 

the overlap integral of 170 with its neighbor is the sum of good - 

laps. It then receives its maximum bonding at k=O. 171 shows - 

to that of 164 but with a subtle difference in orbital labeling. 

I E 
x2- 

X2 

YZ 

positive metal-ligand over- 

the new result - very similar 

0 
k-- 

n/a 

A system where there are three bridging atoms occurs 172 in the chains of MX3 

stoichiometry that occur in BaMS3 (M = 'Jr ,V, Ta) for example and also in a series of ternary 

chlorides AMC13 (A = Cs ,Rb ,N(CH3)4; M = V ,Cr ,Mn ,Fe ,Co ,N~,CU).~' The orbitals we 

will use for the MSg unit, assuming SMS angles of 90", are shown in 173 _* We have shown the 

situation for an MH3 unit for simplicity. There are two M-H o antibonding orbitals (desta- 

173 - 

C&I - a, (z2) 

bilized by 1.5eo using the angular overlap model) which form a degenerate pair and three 

nonbonding d orbitals at much lower energy. (Only one component of each e pair is shown.) 

The aI, .z2 orbital is nicely set up for good metal-metal interaction across the shared face 

of the coordination octahedron of 172. Figure 13 shows the calculated band structure for 

this system. It has similar features to that of the NbCl, species we have just described. 
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Fig.13. The d-block bands of a face-sharing octahedral MX3n- chain. 

0 ?r/a 
k 

The energy variation with wavevector left and a block 
diagram right. (Adapted from Ref. 40.) 

174 shows how the bands split apart as a result of a pairing distortion 175 of the type des- - - 

cribed extensively in this article. 2, in fact is the result of a numerical calculation for 
z- 

a VS3 chain. The shaded area indicates the bands which are doubly occupied. If the distor- 

t 
E 

E,-- 

w 

distortion 

‘a, 

le 
174 - 

tion proceeds far enough then a Peierls insulator results. However BaVS3 is a metal. Just 

as in the molecular case where dynamic Jahn-Teller processes allow an undistorted structure 

to be observed, so too with its solid state equivalent. Although the theory of the distortion 

indicates when it will occur, it is difficult to predict the size of the effect in general, 

especially if, as in the present case, several bands overlap to complicate the picture. (See 

also Table 4). 

A slightly more complex problem lies in understanding the electronic structure of the 

mixed valence Pt II(L)4. ptIV (L)4 x;+ (X = halide) chains3' 177 which, with L=NH3 or - 

NEtH*, are present in Wolfram's red salt and Reihlen's green salt. These are obvious distor- 

tions of the synnuetric 'PtIII' structure 176. Let us start with the unit cell of 176 shown - 
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I,’ I,# I I’ I ,I 
-PPt-x-pt-x- - Pt X-Pt-X 

/I 11 fr /I 

176 177 - 

in 178. - We saw the energy levels of the square planar ML,, unit in 138. The only orbital - 

that we need to consider is r2 since this is the only one with appreciable overlap with the 

X orbitals. On X we need to include valence s and pu orbitals. The secular determinant 

4b 178 - 

a 

for this three orbital problem is simply constructed as in equation (111). Obviously we will 

not try to solve this in closed form as it stands. First we will study the result obtained 

by setting 

-2 8 
pd 

isinka/:! = 0 

2Bsd 
coska/2 

28pd 
isinkaJ2 

"P = as* 
and equate both interaction integrals (8sd=8pd=@). The solutions are easily 

written down 

E=a 
P (=a,) 

(112) 

E= 

(ap+ad) f J(ap-adlz+ 168’ 
2 

and show dramatically that none of the energy bands have any dispersion at all, i.e., there 

is no k dependence. Second we put as=ap but allow Bsd#Spd. The roots now become 

E = ap (=a,) 

(Orp+Crd)? J(C%p-ad)2+16[8~d-cos2(ka/2)(8pd-8sd)21 
(113) 

E= --. 9 
L 

Now, arbitrarily assuming that lBpdl > 18sd[, we may draw out the 

expansion of equation (113) as a power series the roots are 

and 

4(82d 
E=a - ' 

-.os2(ka/2)(8;d-S:d)) 

P 
'p- od 

E=apt 
4(8;d -cOS2(ka/z)(B~d-B~d)) 

op - "d 

band structure as in 179. By - 

(114) 

(115) 

The result is actually reminiscent of the behavior we have just noted for NbCl,. Interaction 

of .2 with the s orbital on X leads to a dispersion with a cos2(ka/2) dependence with 

maximum bonding at k=O, but interaction of r2 with the p orbital on X leads to a 

sin2(ka/2) dependence with maximum bonding at k=Tifa. The result, if the two interactions 

JPSSC 15:3-G 



242 J.K. Burdett 

I 
ad -B - 

E 

B=&&a,-ad) 179 

are equal, is a dispersion-free band as we found above. The form of the wavefunctions at 

the top and bottom of the '2" band are shown in 180 

state of the platinum in 176 is Pt'II and thus this 

and 181 respectively. The oxidation - 

I+@1 !!?! 

'z" band is half full of electrons. 

Figure 14 shows the result of an extended Hiickel calculation as the symmetric system 176 is - 

distorted to 177. - The initially metallic state has become insulating and an energetic 

stabilization has occurred. As in the case of NbI,, the conductivity of these salts 

increases markedly on the application of pressure. 

Let us look in a little more detail at the form of the orbitals since it will give clues 

as to how these systems distort. 182 shows the z2 - band for a doubled PtL,+X cell. At the 

zone edge the obvious choice of wavefunctions, intermediate in character between those at the 

top and bottom of the band, has been made. As in all of the degenerate orbital problems we 

have looked at SO far,a linear combination of these two orbitals as in 183 and 184 leads to 
-- 

another perfectly good pair. NOW if the system is distorted slightly (176 + 177) then a band -__ 

gap opens up at the zone edge. 183 goes up in energy since the Pt-X distances decrease - 

around this metal atom and the antibonding interactions become stronger. 184 goes down in - 
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183 - 

energy since the Pt-X distances around this metal atom increases with a concurrent weakening 

of the Pt-X antibonding interactions. This is shown in 185 in an exaggerated way. As the 

176 

185 - 

distortion proceeds the interaction of 

halogen orbitals of the bridge becomes 

parts of this band become very narrow, 

the z2 orbital on the now planar Pt atom with the 

small and the bandwidths of both the upper and lower 

as in Fig. 14. The lower band (now full) then corres- 

ponds largely to a zz orbital on the square planar Pt atom 186 which is now Pt 
II . The - 

upper band (now empty) corresponds to a strongly antibonding orbital on the octahedral Pt 
IV 

center 187. The result is a classical mixed valence compound, Pt I1Lq *Pt 
IV 

- L4X2. 

(b) 

176 177 

Fig.14. (a) d-block bands of [Pt(NH3)4 l Pt(NH3),,C12] chains (176 left and 

177 right). (b) The widths of the split z2 band as a function 
of the distortion 176 + 177. (Adapted from Ref. 40.) 
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4.2 Three Dimensions 

In three dimensions things get quite complicated but there are places where we may make 

some simplifications to help us out. Firstly we will consider the simple cubic structure of 

188. - In many ways we may regard this as a simple sum of three one-dimensional chain problems, 

Ol 03 

k 
02 

= Y 
k 

X 

188 

one lying along each Cartesian direction. For a solid composed of s orbitals (cubium) the 

energy dependence on k is, from equation (65) for a one atom cell, - 

E(K) = 2B(cosk,a+coskya+cosk,a) 16) 

This leads to the dispersion curve in 189 where F, M, K and X represent the points 

(k,,ky,k,) = (O,O,O) Za/a, (llh,i)2~ia, ($,&,0)2Tl/a and (0,0,&)2a/a, respectively 

a-6p 

a 

a-6P 

189 - 

X r M K 

For three p orbitals located on a single atom another simple result applies. If we 

neglect pn-pT interaction 190 between orbitals on adjacent - atoms and only consider u over- 

lap, 191 then the energy dependence on k for the three p orbitals is, from 148 simply - - 

PX E(k) =a-2gcosba 

pY E(k) =a--2Bcoskya 

FZ. E(&)=o--2Bcosksa . 

A picture similar to that for the s orbital problem of 189 --I 

(117) 

is shown in 192. Just as the - 
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a-2p 

a 

a-2k 

- 

__ __ 

[ 

X I- M K 

half-filled one-dimensional chain of Section 3 underwent a 

that the simple cubic lattice with three p electrons would similarly be unstable. The struc- 

tures of elemental arsenic and black phosphorus may be viewed in this way. Let us assume for 

simplicity that two electrons per atom reside in a deep lying valence s orbital. For these 

to Solids 

192 

245 

Peierls distortion, so we expect 

Group V elements, this leaves three electrons to half occupy the three p orbitals. 193 

shows how the energy bands change on a distortion which involves pairing up all the atoms 

along the x, y and r. directions. There are several ways in which the pairing up may be 

simple 

cubic 
arsenic 

193 - 

done. It may be shown41 that there are a total of 36 different possibilities for a simple 

cubic cell containing eight atoms. Two of these correspond to the black phosphorus 194 and - 

arsenic 195 structures, which we show schematically. On application of pressure to black 

phosphorus the metallic simple cubic structure is regenerated.42 So, as in several examples 

we have seen earlier, the Peierls distortion is reversed by the application of pressure. 

For the Group IV elements these ideas lead43 to the prediction of a structure where the 

bonds have broken along two Cartesian directions only. The band description is shown in 196 - 

We have artificially half-filled two p orbitals at the simple cubic structure and left the 

third 

shown 

in an 

vacant. One way of executing the distortion leads to the (metallic)white tin structure 

in 197, structurally related to diamond 198. 

Can we stabilize the simple cubic structure against a Peierls distortion by substitution, 

exactly analogous way described above for molecules and simpler solids? The answer is 
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As 

196 - 
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-- --I-- - 
,---__ 77 -2 

__:;--,--=_ __ _ _---, 
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yes but in practice there is a twist. 199 shows what happens to the energy bands of the - 

simple cubic structure when we make . ..XYXY... substitutions in all three perpendicular 

chains. Geometrically the result is production of the rocksalt structure. Eventually if the 

simple 

cubic 
rocksalt 

199 - 

electronegativity difference is large enough then both the s and p orbitals of X, the least 

electronegative atoms rise above the orbitals of Y. Using these ideas we can see that solids 

with four electrons per atom (or eight electrons per XY atom pair, the so-called octets), 

unstable at the left-hand side of 199 are stabilized with respect to distortion by increasing - 

the XY electronegativity difference. It is interesting tonote that all octets with the 

NaCl structure have44 the atomic orbital arrangement shown at the right-hand side of the dia- 

gram (i.e., one where both s, p on X lie higher than s, p on Y). Octets with other orbital 

patterns, and therefore with the s ,p orbitals on X close to those on Y, invariably have 

either the sphalerite or wurtzite structure. Becall that the diamond structure (degenerate 

sphalerite) is geometrically close to that of white tin as we described above (187 and 198). - - 

Clearly we are not in a position to discuss the energetic stability of one geometry out of 

white tin, diamond (hexagonal or cubic), Si(III), or graphite over another for these systems 

but it is interesting to be able to cast some light on their electronic structure. 
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From the simple cubic structure we move to the body-centered cubic (bee) and face- 

centered cubic structures. For these we will derive"' the energy band for a single s orbital 

located at each center. The bee structure 200 has a coordination environment around each - 

center which consists of a cube of eight neighbors plus an octahedron of six neighbors some 

14% further away. Since this is a one orbital problem we may immediately write down the 

energy dependence on k. For the cubal neighbors - 

E(k) = cl+2~[cos(~~~~)+cos(~~~p)+cos(~~~g)+cos(~~~24)1 (118) 

where 

5 = [al+a2+a31; r2 = [aI-a2+a31; 
(119) 

'3 = [-al+a2+a31 ; rq = [-aI-a2+a31. 

A little trigonometry reduces this to 

E(k) = a+ 8B[cos(kxa)xcos(kya)xcos(k,a)] (121) 

For the octahedral neighbors the problem is identical to that of the simple cubic lattice and 

we may write 

E(k) = o. + 2S'[cos(kxa)+cos(kya)+cos(k,a)] . (121) 

For the fee structure the local coordination is a cuboctahedron with therefore 12 neighbors 

Q3 J- 201 
QI a2 - 

fee 

201 -. Kow we may write down the energy dependence on k for an s band as - 

E(k) = o+ 28[cos(k.rl)+cos(k.f2)+cos(k.r3)+cos(~~)+cos(k'rg)+cos(k'fls) (122) - -- 

where 

(123) 

Again a little trigonometry reduces this to 

E(k) = o+ 48[cos(kxa)cos(kya)+cos(~a)cos(k,a)+cos(kya)cos(k,a)] (124) 

For illustrative purposes we will use the special points method, discussed in Section 

3.1, to generate a set of representative energy levels from these bands. If we want to do 

the job properly we would use a larger number of points but here we will use the i points 

namely ($,i, f), (i,:,:), (i,:,:) and ($,f By symmetry we need to weight the last 
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two points three times as heavily as the first two. (In fact the choice of special points 

actually depends upon the nature of the lattice. This occurs because the shape of the 

Brillouin zones for the simple cubic, body-centered cubic and face-centered cubic lattices 

are different. They are shown in Ref. 29. As it turns out, because of our choice of a single 

band based on an s orbital, we can use the same set of values for all three structures.) The 

levels which result are shown in 202. Notice that the levels for the simple cubic structure 

simple 
cubic 

- 3/28, 

fee bee 

-2/2P&3J2/3I, 

% 2J 2&,*3JLP; 

and the bee structure (if either B, or Eb = 0) lie symmetrically disposed about E=a, but 

that those for the fee structure show no such symmetry. Similar situations were found in 

molecules in Section 3 and the explanation behind these observations is the same as for them. 

The simple cubic lattice is bipartite as is the network produced by connecting the central 

atom in the bee structure to its first nearest neighbors. The fee lattice (and the hcp 

analog too) is not bipartite and so the level structure lacks this mirror symmetry. However 

for each of the three structures equation (5S) holds nicely after we divide out the left-hand 

side by S. (There are eight sets of levels included by the special points.) For the simple 

cubic structure M = 6f3,2 and for the fee structures M= 128:. For the cubal neighbors of the 

bee structure M = 8Bb2 and for the octahedral neighbors M= 682. 

In estimating the relative stabilities of the three structures as a function of band 

filling we first need an estimate of the four parameters B,, B,, B, and 8;. These will 

vary from system to system. Assuming that all three structures have the same density, then 

the interatomic distance is much smaller in the simple cubic structure and so we know that 

8,>8,, Eb- Similar distance arguments lead to B,>bb. 203 shows an energy difference 

curve between the three structures using the parameters shown (arbitrary units). A very 

interesting result is the domination of this picture by the stability of the fee structure 

at the quarter filled band and the emergence of the simple cubic structure for the almost 

full band. Unfortunately, as is often the case with such ultra-simple examples, there is no 

series of structures we can tie in with these results. But the indications both here, and 

above, are quite clear. The most stable structure at one band filling may not always be the 

lowest energy structure at another filling. Of course molecular chemists are very familiar 

with structural changes occurring as a result of a change in electron count. For example, 

the geometries of the AF2 molecules are linear for A= Be, Xe (two and five valence electron 

pairs, respectively) but nonlinear for A= Si, 0 (three and four valence electron pairs, 

respectively). 
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&= 1.41 

more stable than 

p, = 2p, = I. 12 simple cubic 

less stable than 

simple cubic 

Table 5. The Structures of the Transition Metals 

Period N 3 4 5 6 7 8 9 10 II 

3d, 4s SC Ti V Cr (Mn) (Fe) (Co) Ni Cu 

4d, 5s Y Zr Nb MO Tc RU Rh Pd Ag 

5d, 6s (La) Hf Ta W Re OS Ir Pt Au 

Structure hcp hcp bee bee hcp hcp fee fee fee 

As a final series of examples which show how an extension of the ideas presented in this 

article lead to some very dramatic results, we very briefly describe the problem of the 

crystal structures of the transition elements. Table 5 shows how the most stable structure 

varies across the Periodic Table. Note that, with the exception of the magnetic elements,Mn, 

Fe and Co, the structure is determined by the column of the Periodic Table. The sequence 

that is found is hcp+ bee+ hcp+ fee as the number of electrons increases, or in the lan- 

guange used here, as the d band is filled with electrons. The detailed discussion of this 

problem, although fascinating, is beyond the scope of this review. However, in Fig. 15 we 

show the results46 of simple Hiickel calculations for the bee, fee and hcp structures. 

Fig. 15. Calculated variation in lowest energy crystal structure of the 
transition metals with band filling using a Hiickel model. 
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The computation is more difficult than in the examples we have used before. Here there are 

five d orbitals per metal atom instead of the single s or pm orbital. In addition the 

overlap integrals between the d orbitals on one atom and those on its neighbors are depen- 

dent upon the d orbitals concerned, and the geometrical location of the central atom with 

respect to its neighbors. For example the overlap integral between the two orbitals in 204 

is different to that between those 

interaction integrals, 8a overlap 

in 205 _. But, taking this into account, and writing the 

204 8 _ 205 

integral leads to the plot of Fig. 15 for the energy 

differences between the three structures. Now, the current view46 of the electronic configu- 

ration of the solid metals is one where -I electron resides in an s orbital and the other 

valence electrons occupy d orbitals. So the electronic configuration of elemental chromium 

is represented as s'd5. Ignoring the effect of the lone s electron on the structure we 

can see from Fig. 15 that the bee structure is indeed predicted for chromium with this con- 

figuration. This is the structure actually found (Table 5). In general the agreement 

between the observed and calculated structures is quite good. There are some problems with 

such a d-orbital-only-model at the right-hand side of the series where the bee rather than 

the fee structure is calculated to be more stable. 

Iron is found under ambient conditions as a magnetic metal with the bee structure. As 

shown in 206 the top group of occupied levels contain unpaired electrons. Under pressure the 

hcp structure, predicted in Fig. 15, is found. 

207 

It is nonmagnetic 207. By knowing how many 

unpaired electrons to include in 206 for iron we can recalculate the set of curves of Fig. 15. 

at d7 the bee structure is found,46'47 in nice agreement with experiment. The behavior in 

206 and 207 is similar to the stereochemical observations associated with high and low spin 

molecular complexes. In 208 and 209 we show the relevant orbital patterns and occupancy of 

four coordinate d8 systems. One is high spin and distorted tetrahedral and the other low 

high spin 208 
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+ 

low spin 209 

spin and square planar. Notice the similarity between the electron occupancy patterns in 206 

and 208 and also in 207 and 209 _* Associated with the spin change in both cases is a 

geometrical change. 

Finally we show in Fig. 16 the 

derived from the bee structure as a 

regarded as arising via the stacking 

energy difference curve calculated 4* for two AB alloys 

function of band filling. The CsCl structure may be 

of square nets in an XYXY sequence and the CuTi struc- 

ture as a result of an analogous XXYY stacking. Notice that the shape of the energy differ- 

ence curve is very similar to that of 74 and arises for similar reasons. - Figure 16 also 

shows the regions where CsCl and CuTi examples are actually found. The agreement is excellent. 

CuTi 

Fig. 16. Energy difference curve 48 AK between CsCl and CuTi for transition 
metal-transition metal alloys as a function of the average number of 
d+s electrons per atom (i). In the top part of the diagram the 
CsCl structure is more stable and at the bottom the CuTi structure 
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5. CONCLUSION 

In this article the emphasis has lain very much with very simple theoretical ideas, 

based largely on the Hiickel simplification of the orbital problem. We have used this approach 

because it has provided a vehicle with which to stress the strong underlying symmetry and 

connectivity aspects of the level structures we have studied. So we have not just reported 

numbers and left the concepts buried in a machine. The cost of such a treatment has of course 

been virtually a complete lack of numerology of any type. The most obvious absence from our 

discussion of the planar hydrocarbons has been detailed discussion of the role of the o mani- 

fold of orbitals, both in polyacetylene and in the ladders and sheets derived from it. How 

do they come into the picture energetically? Do they influence the relative energies of 

these structures? In general, the mixing together of s and p or even s, p and d orbitals 

requires numerical solution of the electronic problem. The natural extension of the ideas 

described in this article is use of the extended Hiickel method, where the determinant of equa- 

tion (71) is solved for a basis set containing all the valence orbitals of the unit cell. All 

of the band structures we have shown as Figures have been obtained using this method. In 

recent years this method, and variation on it, has been a popular one for thecrists of vary- 

ing persuasions. Symmetry considerations, however, transcend the calculational method. The 

band touching at the point K in the Brillouin zone found in 119 is reproduced in Fig. IO. - 

Degeneracies appear in the u manifold too at the point r which also have an underlying 

symmetry explanation. 

We need to go beyond the one-electron model to look at systems with different spin 

configurations. The simple ideas presented here will not allow the reader to decide which 

out of 206 or 207 will be the more stable arrangement for elemental iron under ambient -- 

conditions. Another problem to be answered is the prediction of the pressure for the onset 

of metallic behavior in any of the one-dimensional Peierls distorted solids we have 

discussed. All of these questions require the use of high quality numerical calculations 

where the one- and two-electron terms in the energy are properly taken into account. Such 

methods are not generally available at present for systems of any complexity. However 

pseudopotential-based calculations appear quite promising and recently have been very success- 

fully applied to the coordination number problem in the octets.4gp50 However the size of the 

problem that may be tackled is still quite small as a direct result of computational demands. 

There is another problem with such calculations however, a philosophical one. While the 

agreement with experiment is spectacular in numerical terms the understanding of why the 

results come out the way they do is lacking. They have been described5' as complex ideas 

for simple systems and this is one big problem which besets numerical calculations in general 

How does one dig out of the numerology concepts and pictures which the nonspecialist can 

appreciate? The ideas of symmetry and connectivity which we have stressed in this article, 

may be a useful starting point.51 
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