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174 J.K. Burdett

I. INTRODUCTION

1.1. Scope

Solids, of course, are just infinite molecules., However, understanding concerning their
geometrical and electronic structure has lagged considerably behind the dramatic progress made
in the molecular area over the past twenty years. With the recent availability of fast and
cheap computation and a gradual enlightenment by physicists and chemists alike concerning each
other's viewpoint in this field, the time is surely ripe for progress to be made. OQur major
goal in this article will be to show the striking similarities between the electronic struc-
ture of molecules and solids and to suggest that there is profit to be gained by extending
ideas developed for molecules to the realm of the solid state. We will rely very heavily on
the linear combination of atomic orbitals approach of the chemist or the tight-binding
approach of the solid-state physicist. These are two models identical in all but name. We
will also make extensive use of symmetry arguments, in the form of group theoretical techmi-
ques and will use perturbation theory to access results of interest. For the reader who is
unfamiliar with these methods reference to the books by Cot:tonl and by Heilbronner and Bock2
is strongly suggested. The reader who feels comfortable with such concepts can jump to
Section III. We will focus almost exclusively on very simple systems, for it is here that
the workings of the theory is most transparent and the analogies between molecules and solids
easiest to appreciate. We make no apologies for spending approximately a third of this arti-
cle in developing orbital ideas for molecules. Many of the orbital tricks we will use in the

rest of the article have their foundation here.

1.2, The Molecular Orbital Approach

The Schrodinger equation can be solved exactly for the case of one-electron atoms, e.g.,
H, He+,Li2+. For the case of many-electron atoms approximate (but in many cases very good)
solutions may be obtained numerically., In many-electron molecules one way in which approxi-
mate solutions may be obtained is via the linear combination of atomic orbital (LCAOQ)-
molecular orbital method. We will describe one version of this which will enable the genera-
tion of one-electron energy levels of molecules and (eventually) solids. We refer the reader
elsewhere for more complete accounts concerning the generation of more sophisticated orbital

models. 3"

Let us take the valence orbitals {wi} of the atoms which make up the molecule and
write a LCAO molecular orbital wavefunction which we hope will suffice to describe the

energy levels of the molecule,

v=1c 0 (n

Now Y is an eigenstate of some one-electron Hamiltonian H, 1i.e.,
HY = Ey . (2)

This leads to an expression for the energy of the state described by this wavefunction:

*Hyd H
p o Jtmear (wluly) .

fu*par {wlv)
where the integration occurs over all space. Substitution of equation (1) into equation (3)
leads to

Yejei(o; [R]oy)
ij

E (4)

= 22 Cicj<tpi |‘~DJ)
1]
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This expression contains three terms of interest. <wi|q3> = Sij is the overlap integral
between atomic orbitals on different atoms, It is always <1. If our atomic basis set {mi}
is normalized then (wile> = 1 for the case i=]j. ((pi|H|wi> = H,. represents the energy

of an electron in orbital W, It is called the Coulomb integral and is often approximated
by the ionization energy of an electron from that orbital. <wi{1{|®j> = Hij is an integral
which represents the interaction between orbitals @0 and qﬁ. It is called the resonance
integral by molecular chemists and the hopping or transfer integral by physicists. It is

often estimated using the Wolfsberg—Helmholz relationship
H,. = sKS..(H,, +H,,) (5)

where K 1is a constant, usually set equal to 1.75. The energies of the molecular orbitals
are obtained from equation (4) in the following way. The Variation Theorem states that all
approximate wavefunctions of a system will give energies that are never lower than the true
ground-state energy of the system. So minimization of equation (4) with respect to all the
coefficients TR will lead to the best estimate of the orbital energy using the expansion
of equation (1). If there are n atomic orbitals in {wi} then there will be n equations
demanded by the minimization expressions BE/BCi = 0. They have the particularly simple

form of equations (6).

— + — - =
(H11 E)c1 (le sle)c2 S U 5 (HIn smE)cn 0

— — + —_ =
(H21 521}3)c1+(H22 E)e, * ... (H2n SZnE)cn 0

. (6)
(Hm—sm}z)c1 (an—San)cz + e + (Hnn—-E)cn =0 .

These equations will be consistent only if the secular determinant of equation (7) is equal

to zero.
Hll—E HIZ_SIZE ceeane Hln—SInE
HZI—SZIE H?_Z_E vevene HZU_SZHE
) : ) =0 . @)
Hnl -—SnlE HnZ_sn2E ceenns Hnn_E
Given the values of the Hii’ Sij and Hij’ equation (7) may be solved to give n values of

the energy — the energy levels of the molecule. Each value of E may in turn be used with
the collection of equations (6) to give the values of the orbital coefficients, the c; of
equation (1),

An example will illustrate the approach. Assemble an H, molecule from two hydrogen

atoms which carry singly occupied Is valence orbitals, The secular determinant is

iy, —E Hyp=8),F
=0, (8)
Hyp =S,k Hy,—E
Since the two hydrogen 1s orbitals are equivalent we have put H11==H22. (Also
H,,=H,, by symmetry.) Solution of this determinant gives
(B, —E) = £(H,—5,,E) (9
H, , *
11 12
E=—1r5 - (0
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The result is shown pictorially in 1. Notice that the higher energy orbital is destabilized

O_® H, - Hiz

g
Ny
e
F

—— = M -
¢1 \ﬁ’ / ¢2

T Hy+ Hp

o0 I+ Sy

(relative to a free hydrogen AO) more than the lower orbital is stabilized. The bond (or

binding) energy of H, on this model is simply

[Hyy THyp T 2(Hy, =S 5Hy,) an
[TT+s), 1| T+5s),

With these values of the energies we can now go back to equation (6) and evaluate the
coefficients., With a little bit of algebra it is easy to find for \bb that c;/c,=1 and for
wa that cllc2 =—1, The extra piece of information we need to fix the values of ¢, and ¢,

is the normalization condition
Jv*vdr=1. (12)

This leads simply to
VS S— (w0, +a@,)

V2(1+5,,) (13)

v, = '—;'_.LS'— (0, —0,)
[ 12]

In Y, the orbitals are mixed in phase — the bonding orbital, and in Y, they are mixed out
of phase — the antibonding orbital. Notice that because of the sign before S;, in the denomi-
nators the coefficients are larger in ¥ _. 1 shows a useful pictorial representation of these
functions where the sign of the mixing coefficient (ci of equation (1)) is indicated by the
presence or absence of shading. Note that the absolute signs have no meaning but the rela-

tive phases are important.

There is another usgeful way to generate the molecular orbitals of H,, and indeed more
complex systems, which we will use below, and that is by taking advantage of the symmetry of
the problem H halonoe to the D noint groun TTeing etandard techniacues we can ghow
he problem. H, belongs to the D, point group. Using standard techniques we can show

that the two ls orbitals transform as o T+o *. A

properties, For a point group G with symmetry elements g€ G, and a basis set of orbitals
In 1
LW¥W.1>»

by
(k) = S X, ( 14
V) = 7 X (8)go . (14)

g€G

Here Xk(g) is the character of the kth irreducible representation. (pm is any member of

the set {(p:} . For the H, problem it is a simple matter to use equation (14) and a charac-—

ter table for the th group to give
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V(o ") =+ 0
g 1t 92
+
o —
P(og") « 0, —0, .
Normalization of these functions gives the same expressions as those in equation (13). The
energies of wa and wb may then be obtained by substitution of these normalized functions
back into equation (3), The reader should check to ensure that the expressions that result
are identical to those of equation (10).
The hydrogen molecule of course is a very simple example but the numerical generation
of the energy levels of complex molecules, by using ionization energies as estimates of the

Hij and evaluating the Sij by integration of wavefunctions, has proven to be an extremely

. 5
valuable way to study molecular electronic structure.

2. ENERGY LEVELS OF MOLECULES

There is a simplification we can make to the approach in Section I.B which will be
extremely useful to us in the generation of orbital diagrams of molecules and solids. In the
Huckel approximation,z’6 initially developed for the T levels of conjugated organic mole-
cules, all Hii values for the carbon pm AO's are put equal to o, all Hij put equal to
B if the atoms are bonded together (zero otherwise) and all the Sij (i#3j) in equations (6)

and (7) put equal to zero. The two orbital problem of H, described above is then isomorphic
/g )
1 2

with the 7 orbital problem of ethylene 2., The secular determinant of equation (8) then

becomes

I~

s (16)

i 9 S
150

98
i
s
Th

the same extent that the antibonding orbital is destabilized (B). The T bond energy of ethy-
lene is then 2f. Since the overlap integrals have been dropped in the Huckel approximation

JPSSC 15:3-C
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the wavefunctions for the bonding and antibonding combinations are particularly simple.

Y

2 (0, +©,)
Qan

v, =22 (9,-0,) .

a
All conjugated organic systems are open to an analogous treatment, The secular deter-

minant for allyl 4, the three orbital problem, is just

o—E B 0
B a—E Bt =0 . (18)
0 B o—E
Notice that the H,; and H;; entries are equal to zero since atoms ! and 3 are not bonded

to each other., Solution of the secular determinant gives the results shown in 6. Once

g
LR
1 2 3
E s e
E a/ — 1 !
- . =% % s

! !
y=—1¢+—¢+—9¢
a+J28 et R 2

again symmetry arguments will enable the same result to be achieved in a neat fashion. We do
not need in fact to make use of all the symmetry elements of the point groups to which the
molecule belongs. (In 4 we drew the carbon skeleton as a straight line when in fact it is
bent,) The important symmetry properties of the functions we need are those associated with
the mirror plane of 5. All functions need either to be symmetric or antisymmetric with res-
pect to reflexion in this plane. The character table for a point group which contains
(in addition to the identity operation) this reflexion operation is given in Table 1,

Using atomic orbitals of 4 as a basis for a representa-

Table 1
tion it is easy to show that they transform as 2A + B.
E c Use of equation (14) with ®,=®, or ®,, two symmetry
equivalent orbitals, gives after normalization
A 1 1 "
a species g, =27 ((p1+(p3)
B 1 -1 _1 (19)
b SpeCieS 53 =2° ((pl _ws) .

Use of equation (14) with C, =9, gives the other a species function

a gpecies EZ =0,. (20)
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We may now set up a secular determinant for this problem usging not ©,—1p; as a basis

but the functions 51—53 of equations (19) and (20)

H,-E H, Hi,
H,, H,,—E H,, =0. (21)
Hyy e, Hys—E

The elements Hii of equation (21) are easily evaluated using the explicit form of the

H

i
Q

11 <2-é(‘pl+‘pa)|H|2-é(‘°1+‘pa)>
By, = (270, -0 K2 A0, —0)) =

H33

|
R

(22)

(@,[H]e,) = «
One of the rules of group theory is that orbitals of different symmetry do not interact with

each other, but orbitals of the same symmetry can., (Under some conditions the interaction

energy may however be zero.) We can show this by evaluating

Hyy = (2-é (0, +@3) [H] 272 (0, —0,)) = L{a—a) = 0 (23)

and

iy, = (272 (0, +0,) |lo,) = V28 . (24)

The use of symmetry here has then reduced the 3X 3 determinant of equation (21) to one (equa-
tion (25)) which contains a 2X 2 block plus a 1X1 block along the diagonal. The
o—E V28 0
V28 0—E 0 =0, (25)
0 0 o—E

simplification that this has produced is the reduction of a cubic equation in equation (21)

to a quadratic in equation (25). Solution of the 'a block' of equation (25) gives
E=otV2B, (26)

By analogy with the ethylene problem described above the lower energy level \Pl corres—
ponds to the bonding, in phase combination of £, and E3 7 and the higher energy level v,

to the antibonding, out-of-phase combination 8. The third level \03 corresponds to £,. It

Y = é(e.osg = ,-%-(,—5—(4’,+¢,)+¢,)

Ll _
€-8) = (F@a)-9)

I~

-
"Z-Jz

[

SR,
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=0 between all

is of the wrong symmetry to interact with any other orbital. Since also Hij

nonbonded atoms, this orbital remains nonbonding. The use of symmetry considerations, while
perhaps not obvious in this example actually results in general in a considerable economy of

effort in many orbital problems as we will see below.

. . . 6
There is a simple expression

for the energy levels (equation (27)) and orbital

coefficients (equation (28)) of a one-dimensional chain containing n T orbitals, For the
jth 1evel
Ej=a+28cos j=1,2,3, cuuen (27)
and for the coefficient on the rth center.
2 ., rjm
cJ.r = o7 sin =57 . (28)
The number of nodes in the wavefunction increases by one as the energy increases., This is

shown pictorially in Fig. | where we show the level structure of the first few members in

the series,

Note that the orbital energies are symmetrically located about E=a .

This

means that for odd membered chains there is a central, exactly nonbonding, orbital with this

energy.,

N
N\~
O
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W
N\~

A\\Y
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Fig. 1.

Energy levels of the first few linear polyenes

One interesting point concerning the energy levels of allyl, is the charge distribution

in molecules of this type as a function of the electronic configuration,

P*y,

square of the wavefunction,

orbital,

orbitals X1 and X, (equation (29)) the electronic charge

in orbital X1 is ch where N 1s the number of electrons in this orbital.

expression needs to be modified"

w=c1X1+C2X2 ’

Recall that the

gives the probability distribution of electrons in that

So for an arbitrary wavefunction Y written in terms of an LCAO using two atomic

29

(This simple

if we go beyond the Hickel approximation and include over-
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lap, but it will suffice for our purposes here)., Correspondingly the electronic charge in

X, is ‘Ncio The total number of electrons is obviously equal to N(C%'i’ c%)=1\1 since the wave-
function is normalized. Applying this technique to the allyl problem of 6, with two
electrons in wl (allyl®) the charge distribution is shown in 9. Note that the central atom
carries more negative charge than the 'ligands' or end atoms. For the allyl™ ion itself

with two more electrons (which enter lpz) the charge distribution is now different. Here the

Nl
~N—
2
~
.
L
o

..| -
*—o—9 o9 g
iR ~ A _ A 1
2 Ao 2 2 v -2 |0
—o—o ——o—o 19
allyl " allyl”

largest electron density is located on the terminal atoms, These results are more conven—

It is instructive to take the details of the allyl orbitals and see how the situation
is affected energetically by the replacement of an atom by one with a different electro-
negativity. We will simulate this by allowing this new atom to have a different o value
from the old., There are several ways to obtain the orbital energies of this new species. One
could, for example, solve the secular determinant of equation (18) which has been suitably
modified. The route we will take employs the techniques of perturbation theory.z’s’8 This
allows us to take the energy levels of a symmetrical molecule (such as allyl) for which it is
easy to obtain the orbital energies and wavefunctions, and derive the corresponding details
for a related molecule which differs in some way. In the present case the perturbation which
we apply is just a change in o on one of the atoms, Later, in the next section we will
assemble the orbital diagrams of 'complex' molecules from those of simpler fragments. In this
case the perturbation then consists of making the linkages between the two fragments; 1i.e.,

HUV between two atomic orbitals increases from 0 to the value it takes in the molecule.

The perturbed energy may be written in the following fashion for the ith energy level

(0) (1) (2)
E. =E,” "+E,” "+E.” "+ ... (30)
i i i i
. 1) (2) : : 0)
Where E, and E, are the first and second order energy corrections to E, the unper-

turbed energy (]Ei(l)] >lEi(2)|) . If the perturbation is the change in the values of some of

the Coulomb and interaction integrals, §H,,, then these energy corrections become

1) _
E; = 6<¢i[1~1|\])i> 31
and
2
S{Y, [H|Y.
£.¢2 _ \;LLI___'_J)_I (32)
. . £, (O _g O
J 1
where
s(v; [ulv,) = z N INCINS (33)
Ry

The sum in equation (32) is over all other energy levels, j, of the problem.
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These expressions may readily be applied to the allyl problem and in fact the use of
this example nicely illustrates the workings of the mathematics of equations (31) to (33).
The first order correction is easy to see. The perturbation we consider here is just the
changing of o on one orbital to o +8a. So Ei(l) =ci16a where ¢ is the coefficient in
orbital i of the atomic orbital (say ¢, of 4) where the perturbation occurs. In Fig., 2 we
show the first order energy changes that result by applying this prescription for the two
cases of terminal and central atom substitution, by using the values of the coefficients (the
ci) for é

The second order correction is a little more tricky. Consider first the basic case of
two arbitrary orbitals X4 and X,. Then for i=1
@ 18(v Tulv,) 1

1 S @ __ O
Ey Ea

E (34)

and for i=2

2

@ 18w 1lv,) |
2 ©) )
B, By

2

ls{w, | lw,) ]

0 (34)
2

©) _
El E

The result of such a perturbation is to push the lower energy orbital out of Xl and X2 to

lower energy still, and the higher energy orbital to yet higher energy 1l. 1In the present

E x

2 £ 1
X;

E1—\_

perturbation
—

case the second energy correction for orbital i 1is

@ c%lcgl(éa)z
1 =E(0)_ ©)

E (35)

E.
1 J

Using the values for the Ei and iy from 6 the second order energy shifts are shown in

Fig. 2.
Table 2
.. Energy Change
Substitution position
two electron four electron
central atom —|6a] + (Ga)z/l&\/fﬁ ~|&al + (8a)2/428
terminal atom —%|(50Ll+5(60t)2/16\/-28 ——%]6a| +5(6a)2/16\/§B

The total energy shifts for the two electron (allyl*) and four electronm (allyl™) cases
are obtained by weighting the energy changes of Fig. 2 with the number of electrons in each

orbital. The results are given in Table 2 above, and show that for substitution by a more
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a) central atom substitution

| First ord Second order
% & _&. irst order

%O-@—OW

energy shift  energy shift

b) terminal atom substitution

\ o First order Second order
T Rz energy shift energy shift

2
58a
32AE

Fig. 2. Perturbation treatment of central versus terminal substitu-
tion in a linear three orbital problem. {AE =+/28 <0) .

electronegative atom (i.e., 80 <0) the maximum stabilization for the two electron case is for
central atom substitution., For the four electron case the maximum stabilization occurs for
end atom substitution. Although the extension of this result to more complex orbital prob-
lems is not obvious, such substitution patterns are indeed actually observed in 'real' systems.

12 shows some examples. Here the twelve electron species Ga,0, where the two perpendicular

Ga-0-Ga N—-N-O 2

l—1—I |—I|—B8r
T orbitals corresponging to lj)l of 6 are full but those corresponding to Y, are empty,
shows central atom substitution. However the sixteen electron system N,0, where both sets
of m orbitals corresponding to Y, and P, are full, shows terminal substitution by the
electronegative atom. In the polyhalide ions, where the T manifold is full but the orbitals

corresponding to Y, and Y5 of the o set are full, the more electronegative atom is always

located in a terminal position.

The correlation of these results with the charge distribution of 10 is important.

Notice that the more electronegative atom always occupies the site which carries the highest
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s . . 9,10 . s . .
negative charge in the unsubstituted parent,”’ This is a result which will be useful to

us later on.

2,2 Cyclic Systems

Let us see how to generate the level structures of cyclic systems. We shall do this in
three different ways, each of which will be illustrative in its own right. First we will

assemble the cyclobutadiene levels from those of two ethylene molecules 13. 14 shows a mirror

b-d-19 =

2 3
oo
1 (3

plane present in both sides of 13 which will be useful in dividing the problem into two sym-
metry blocks, one containing functions symmetric with respect to this plane and one containing
functions antisymmetric with respect to this plane, The two symmetric functions are shown in

15. They are just the in-phase bonding orbitals of the ethylene molecule of 3 with energies

O— iy — _y
(l)_ 6= 2 ($+#) _g 6= 2 (4+4) 15

of E=o0+B. Now the interaction integral between &, and €, is
(27 (0, +0,) 11127 (0, +0,))

Hoyll0,) + 2o, lule,)

B, (36)

(€ fulg,)

and so the secular determinant for the symmetric block of orbitals is

H,, —E H (a+B)—E B
11 12 — -0 a7
2, —E 8 (a+B)—E

This has roots E=o0,a+28. The new wavefunctions are just

- % ) =1 =
Y, =2 (gl +E,) =3 ((01+Lp2+cp3+w‘+) for E = a+28
and

b, = 2-%(51"52) = 7 (0* 9,705, for E

I
]

derived in an exactly analogous way to the ethylene problem of 3. The two antisymmetric
functions are shown in 16. They are the antibonding ethylene combinations with E=a—B.
Solution of the secular determinant for these levels leads in a similar way to E=qa—2f8 and
E=a, Their respective wavefunctions are Y, = X (ga—g“) =-;-(<p1 —(pz—tp3+kpu) and

v, = 2-5 (8518&,) = % (q)1 —cp2+(p3—(pq). The complete assembly process is shown in Fig. 3.

One prominent feature of this diagram is the double orbital degemeracy in the middle of the
level stack. It will figure in several discussions later on. Since these levels are degene-
rate we have a choice as to how their wavefunctions are written, Although the form of Y,

and Y3 of Fig. 3 is perfectly fine, so is a linear combination of them, 17, These descrip-
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O— % O iy
&__ §= 22(¢r'¢2) [& &= 2/2(4’3""’4) 16

Fig, 3. Assembly of the pTm orbitals of cyclobutadiene

tions better emphasize perhaps the nonbonding nature of this pair located at E=a, the

energy of an isolated p orbital.

o— S—S r’@
A N N e

—s O
e T 0000

P,
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In a second route we will assemble the orbital diagram from four separate p orbitals,

18. The point group of the cyclobutadiene molecule is D4h but for our purposes it is suffi-

11

cient to use the group C,, the cyclic group of order &4, Its character table is shown in
Table 3 Table 3., Using the four pT orbitals as a basis for

a representation it is easy to show that they trans-

Cy E C, c, Cua form as a+b+e, i.e., each irreducible representation

of C, is contained just once in the reducible repre-
A 1 I 1 1 sentation. This is a general result which has impli-
cations later in application of these ideas to solids.
For a cyclic (CH)n molecule there will be n7 molecular

1 i —1 —i orbitals, one belonging to each irreducible represen-

=

tation of the group Che Using the character table for

C, and the projection operator of equation (14), it

is easy to write down a normalized wavefunction of a symmetry
1
P(a) =3(0, +o, +o, +0,). (38)
By substitution into equation (3) its energy is simply

E =1 (0 +0,+0,+0,[H|0,+0,+ 0, +0,)

1 (39
= (40 +8B) =0 + 28,
Similarly for the wavefunctions of e symmetry
1 . .
v(e) =3 (v, +iv, +o, +ip,)
. (40)
Yie)= 3 (0, +ip, +9, +i0,)
where in the normalization procedure we have made sure to use J'lp*u;dT =1, {i.e., used the

. * . . .
complex conjugate Y ) . These two functions may be converted into two new (real) ones using

the license allowed us for degenerate wavefunctions
e =2 pee) + v (@) =27 (0, ~ 0y
- - (41)
v =2 (e v @) =270, 0,)

v”(e) and y'”(e) are identical to those of 17. They are nonbonding orbitals and substitu-
tion into equation (3) gives E=a. Use of the characters for the b representation of Table

3 leads to
=1 - -
b)) =3(0, —0, +o,-0,) (42)
and an energy of E = o — 28 as found above.
The general result6 for a cyclic system with n atoms is a very simple one., The energy
of the jth orbital is given by

23w

Ej = o+ 28 cos (43)

where j runs from O, *1, *2 .., (*n/2 for n even) or ((n—1)/2 for n odd). The simple
form of equation (43) leads to a useful mnemonic (a Frost circle) for remembering the energy
levels of these molecules. Inscribe in a circle of radius 28 an n-vertex polygon such that

one vertex lies at the bottom. The points at which the two figures touch define the Hiickel



From Bonds to Bands and Molecules to Solids 187

O 0O O

energy levels of the molecule as in 19. The coefficient of the pth atomic orbital deter-

mines the form of the wavefunction as
2mij{p—1)

n n
. .
WJ- = z ¢ip®Pp =0 pZ e o, (44)
p=

=}

It is an expression which is very similar to that of equation (14), 1Indeed rewriting it as

in equation (45) highlights the similarity.

2 -
o b i) ot (45)
= 2
wj =n Z e Cn @,
p=1
The exponential is simply the character Xj (Cg_l) of the cyclic group of order n as the
-3 .

reader may readily check for the case of n=4 shown in Table 3. The prefactor of n is a

(Huckel) normalization constant,

This complex form of the wavefunction is very useful and will be especially so in our
discussions later on solids. A linear combination of the wavefunctions of a pair of degene~
rate orbitals produces two new orbitals which are equivalent in every respect. Using this
fact the functions of equation (44) for the case of degenerate species may be rewritten in a
somewhat nicer form by making use of the trigonometric identity e’ = cosx + isinx (equation

(46)) .

P

n
3=%(¢ Y ) %n_é E cos _Zﬂjr(lp—l) X
p=1

(46)
// l(w _w )__n"é i M-(
j 2 B n Pp *
p=1

It is interesting to see how the wavefunction of equation (44) leads to the energies of equa-

i
c /o%% pi%p—jP
p- I\\

(CH),. 3 pC-H 20

p+%§
¢ cbip+njB

H

tion (43). Substitution of equation (44) into equation (3) gives an expression (equation

(47)) for the energy. This represents the sum of all neighbor interactions (g(_)_)

B = ot ) (e €51y + Sip Sicpeny) > “n
—2mij (p—1) 213 (p—1) amij  —2mij
EJ =a+62 n-ée » -n-% e n [e bore M }
P
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n

—a+B) Lezcos(2d) (48)
. o

.

271]
o+ 2Bcos .

n
0

Figure 4 shows the energy levels of the first few cyclic molecules, Note how the number of

& S 9

Whd ¢ @
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—. % = by -
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o oo S
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o _, —
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Fig. 4, Energy levels of the first few cyclic polyenes

As a third route to cyclobutadiene we will assemble the diagram in an approximate way

from the levels of allyl plus an isolated atom 21 using perturbation theory. Again we will

2 3
_ e .
I + I = I 21
1 % .. -
make use of symmetry arguments by classifying the levels as either symmetric or antisymmetric
J e Py = o Fha mmiacamws T aman o 21 o mama mermrmadaeer ol amamb cen o siond hafaca Jon s maem
witil l.caycl.l. LU LT il l v Pl.ﬂ i1 LiL it ) LT oGl DdYyIlUCLL CLCUICLIL WE UuUdcUu pcluilc L EEIlCLdL

= H chaorontam Ao
a1 uncnanged in cnaracier., as
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O
(S)¥, é Y

O
(A ¥, @[— - ?[70 (S) 22

(S)¥, (l) «+ 2B

tals ¥, and X, with energies E, and E, respectively is simply given by second order pertur-
1 2 1 2 y

bation theory as

2
15 (x, lulx,) | )
E , = |
12 0) (0)
E1 —E,
With reference to 22 Y, is depressed in energy by
2
EYRETER]
—_— (50)
(a+v28)—(a))
the numerator can be evaluated as
1
6(“"1'“'“’2} =<%‘01 + \7.;“’2 +%‘93|H|¢’u> =B (51

which means that
sE® = B _ 07078
V28
and the perturbed energy of ¢, is o+ 2.128. ?, is destabilized by the same amount, 0.707 B,
Now 11)2 and Y, may couple in exactly the same way. It is a simple matter to show that the
second order energy numerator is the same as before which means ©, is depressed in energy by
0.707 B and Y, raised in energy by 0.7078. The overall result is that @, remains unchanged

in energy but ¥, ends up at a+2,128,23., Perturbation theory also tells us about the new

o o o

E
q e = — .2_3_
21918
a +_2-.'IZB

wavefunctions, With respect to a generalized pair of orbitals X; and X;, X, mixes into X

in a bonding way
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8(x, [8]x,)
1 2
S R N OO R (52)
BT -E
and X; mixes into X, in an antibonding way
8(x, |ulx
Xy =X, — —(ﬁ——% X, - (53)
B0
So the new wavefunctions become
VN | 1 1 1 _
wl =30, + —/—:(02+E ¢, + —-‘.pl*—O.Sqal+0.7071t.;>2+0.5£p3+0.7071(pL+
V2 V2
r_ 1 1 1 — —_ —_—
¥, = @) — =0yt 0y :——tD‘+~0.5tp1 0.70719, +0.50,—0.7071 ¢,
yo= -1 +_] 41 + ! {l lo +1
3 D, 7 3% 5 v, 7 O3 ‘_ﬁ’.\z‘pl_zq’z 2‘03
V& Vé Ve
= Q,— 0,
/ 1 1
V3=V, =— 0, — — @, (54)

The new wavefunctions describing the level at E=a have just the forms we found before by
other routes. This is not the case for the new wavefunctions w'l and 11)’2. A part of the
problem lies in a mixing, which we have ignored, between two orbitals on the same fragment
(orthogonal before the perturbation) under the influence of the perturbation., If Xy and )(3
are two levels on the same fragment they mix as a result of interaction with ¥, of another
fragment in the following way

, 8, 1xg) (%, tlx,)

Xp =Xt o/ . (35)

(EI(U)_Es(U))(EI(U)_EZ(U))

So Y. looks like
/1 1 1 1 B8 1 1 1\
V1 =301t 0, H30 4 — @ e (30T 0, Y 30
v Vi (-2 +vig)(—v28) * v2 ’
= 0.625¢, +0.582¢,+ 0.625@; +0.582 @, (56)
and
wg = 0.625¢, —0.582¢p, +0.62594 —0.582¢9, . (57)
These new functions, though improved, are still not exactly what we found by exact solution
of this nroblem above., and indeed thev chould not he Perturbhation theorv did not gcive exact
of this problem above, and indeed the y should not be. Perturbation theory did not give exact
values for the energies of the top and bottom orbitals of cyclobutadiene, and correspondingly
the wavefunctions will be apnroximate too. We could have performed the necegsary numerclooy
the wavefunctions will be approximate toc. We could have performed the necessary nume rology

o+B,a—B (symmetric block). However the perturbation treatment is a very useful approach
far undarstandine whera thasa lavels have come from In Pie 5 we chow gimilar regult for
for understanding where these levels have come from. In Fig., 5 we show a similar result for
the assembly 24 of the levels of pentalene, from those of cyclopentadiene and allyl, two
building blocks whose orbitals we have derived alreadvw Aoain the agreement with the 'exact!
building blocks whose orbitals we have derived already. Again the agreement with the 'exact

result is not perfect.
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B -2.066(2.000)
ASl8E e lBI7(181)
E T— S e - 1. 440 (1.414)
-L414 S
A S, = A _o(0
0.618 S 0.418(0.471)
A,S=<A
o & 1.066(1.000)
§ S = 1415(1.414)

a ) (D

Fig. 5. Perturbation treatment for the assembly of the pT levels of pentalene.
Exact values shown in parentheses. (The energies are in units of B
relative to a=0,) The labels A and S refer to the parity of the
wavefunction with respect to the mirror symmetry of the problem

The atomic charges in cyclopentadienyl will of course all be equal from the symmetry of
the molecule, but pentalene has three symmetry inequivalent sites., Either by working out the
form of the wavefunctions of the molecule by using the ideas of perturbation theory, or more
realistically, looking up the coefficients in the compendium of Streitweiser, Brauman and
Coulson’ we may calculate the m-charge distribution in pentalene and pentalene™. They are
shown in 25. Notice that on formation of the negative ion the extra electron density has
appeared only on the atoms at the | position., Making use of our observation above concerning
the site preferences in substituted molecules, 24 leads to the prediction of electropositive
atoms in the 1 position and the electronegative atoms elsewhere, This is just what is found

in the molecule Bl’ Nu H6 _2_6_

H
-0.20 © A

-0.20 B _B
25 H-N/B\'r \NH 26
-017 Lo — \B/N\B/ 26
0.19 v

-0.06 H H

There are several results which have their basis in graph theory which are worth mention-
ing here. The reader may have noticed that the level structures of almost all of the systems
we have studied (with the exception of cyclopentadiene and pentalene) contain a mirror symme-
try about E=qa. 1i.e., all the levels occur in pairs at E =a* xf8, If there are an odd
number of atoms then there is at least one level at E=o. (The level structure of pentalene
(Fig. 5) shows no such symmetry.,) This is a general feature of orbital situations which, when
all centers are labeled either with a star or left unstarred, no two starred or no two
unstarred centers are adjacent. Such molecules are described as alternant hydrocarbons6 or,
in the jargon of graph theory, as bipartite systems. 27 and 28 show some examples of alter-
nant systems, For molecules of this type the levels are always symmetrically placed about

E=a. 29 shows some nonalternant hydrocarbons where two starred atoms are adjacent. This
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0000 =

napthalene

o
* * . * *

. (D =
* *—k

azulene

will always be the case for molecules containing odd membered rings. For these systems there
is no such symmetry. Of particular interest to us is the variation in the energy difference
between structures as a function of the number of pT electrons (Npﬂ)' 30 shows the energy
difference between napthalene and the molecules in 28 and 29. Notice that the curve repre-
senting the energy difference between the two alternant systems is, like their individual
orbital structures, symmetrical about the half-way point, but the energy difference between
an alternant and nonalternant molecule shows no such symmetry at all, (Of course for real

systems the only points of 30 which have any chemical meaning is the region around 10 elec-

fulvalene

azulene

trons (five pairs) where each carbon atom contributes just one pTm electron. At this point

napthalene, with two six membered rings is more stable than any of the other molecules.

Another result, coming from graph theory,11 is that equation (58) holds for regular

graphs, i.e., those systems where the coordination number (v) is the same for all atoms:

_12 2 _ g2
M= - XJ-—VB (58}
J
From equation (48) therefore for all annulenes where each atom is two coordinate
2mj
w=L) 4p?cos? 20 = 242, (59)
n L n
]

This is a well known trigonometric identity. Equation (59) applies to all systems, irrespec—

tive of their alternant or nonalternant character,

A further observation of Guttman and Trinajstic12 is that for neutral carbon compounds,
where each carbon atom contributes one pT electron, loops of length (4m+2) stabilize the

structure but loops of length 4m destabilize the structure (m=1,2 .,.). That this is the
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case is quite clear from 30 where the structure with two six rings (napthalene) is most
stable for five m electron pairs. The molecule 28 is unstable, compared to naphtalene

around this half~filled point.

2.3 Jahn-Teller Instabilities

1 .
13 allows us to predict some of the

An extremely useful theorem of Jahn and Teller“
conditions under which a symmetric structure will lie at a local energy waximum with respect
to particular distortions away from that structure., We will not discuss the operational
details' here but the basic philosophy is easy to follow. 1If there is an asymmetric occupa-
tion of a degenerate set of levels at a particular geometry then the energy will be lowered

by a distortion which removes the degeneracy as shown in 31 for the case where the two

—qpb

E'H' 31
++ v

—_—
distortion

electrons have their spins paired. For the triplet situation where the electron spins are
parallel and the Pauli principle demands that the two electrons lie in separate orbitals, then
on distortion one electron goes up in energy while the other goes down and there is no result-
ing stabilization. The cyclobutadiene molecule is an interesting example of this situation.
With four pm electrons the electronic configuration is (a)2 (e)? and singlet and triplet
states are possible. The former being Jahn-Teller unstable, and the latter Jahn-Teller stable
at the square geometry. Although the Jahn-Teller approach does not tell us in detail how the

molecule will distort, 32 shows how the energy levels will change on 'dimerization'. This

O |

dimer structure lies somewhere along the pathway to fragmentation into two double bonded units
(also shown in 32) and is just the reverse of the assembly process we used above to derive

the cyclobutadiene levels in the first place. Numerically of course the T energy is equal

JPSSC 15:3-D
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te 4(a+2B) at both the left- and right-hand sides (where two bonds are completely broken)
of 27. 1In viewing the distortion however we can assume that two of the linkages shorten
(‘B | >|8|) while the other two lengthen (|82]<|B[) The reader can readily verify using

the first order perturbation expression of equation (31) along with the wavefunction of Fig, 3

that the new T energies are those given in 33. 1If B, +B, = 2B then the T stabilization on

joc2B  oBrf
d
o-R+8, B,

p i M 04 L)

= L 3B
\

C+F
“Ee “‘TE"ﬂz

distortion is just 2(81—-82) . The experimental evidence for singlet butadiene points to a

nonsquare planar molecule, but whether it is a rectangle or rhombus is still open to question.15

We can ask how to stabilize a singlet cyclobutadiene molecule against such a distortion

by mimicking in some way the opening up of the energy gap between HOMO and LUMO which

16

occurs on geometrical distortion. One way this can be done ® is by substitution of the hydro-

gen atoms by electron withdrawing and electron donating groups. These will respectively
increase and decrease the value of |a| of the atom to which they are attached. Two disubsti-

tuted possibilities arise, 34 and 35, Let us use perturbation theory to see which one will

W
H
W
(4]

The problem is no more complex than that of the substituted allyl system of Fig. 2 but we can

o
functions to match the point symmetry of the substituted systems; the orbitals of 17 for 34
and those of Fig. 3 for 35, respectively.

First let us look at the alternmating substitution pattern of 34, The resulting first

and second order changes are shown in 36, Notice there is no first order shift for wl or

wu since
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ﬁfSt Second second
order order order of A

respect to one of these operations. So ¥, and ¢, interact energetically in second order

but 'q'iz and ‘q',i3 remain unchanged. The interaction energy

= . 61)

Second, for the pattern of 35 all the first order energy corrections are identically
zero, since they are all of the form of equation (60). ‘Pl—% of Fig. 3 may be classified
according to their parity under the mirror plane of 35. 1In second order the symmetric func-
tions \pl and Y, will interact with each other. Similarly the antisymmetric functioms U,

and Y, will interact with each other. In both cases the interaction energy is

[(3+3)6a +(—F—1)(-6a)]* (8a)?

(o0 +2B) —a Y

The overall result is shown in 37. With a total of four 7 electrons, the stabilization
energy of 34 is 28a+ (80)%/28 and that of 35 is 2(8a)?/B. Assuming that lE(l)!> |E(2) ls
then for this electronic configuration the pattern 34 is preferred. Indeed all 'push-pull'
cyclobutadienes that have been made are of this type ﬁ.” The molecule B,N,R,, where R is

a substituent, has this pattern too.

For the hypothetical case of two T electrons or of gix T electrons then the results

e ac LR b tleoe el O T2 T N UNY- ST f -JNE S I T TR SR | = JIL TP
or 20 ana J/J/ suggeslL Lnat tne AIYl pattern or JJ SNouid De prererreud. J7 BiOws scnemaLlc—

ally an energy difference plot as a function of the number of 7 electron pairs (Pn.).

\?csz \AY\I\I //\
0=¢ N(CoHg), AE FEAN

N\ 38 / \ 39
s \ —

U ’,O - ” 2 PTE —7.
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The picture here is a simplified one, According to the Wolfsberg-Helmholz formula
(equation (5)), changing the value of Hii(a) also leads to a change in Hij(B). This consi-
deration will not affect the energies for the substitution pattern 34 since all the linkages

involve unlike atoms and here the change in B is given by
6B =(8a —6a) =0 . (63)

For the two linkages in 30 which involve like atoms then §B« S0 and 6B« —da respectively.
Using a proportionality constant of q in these last two expressions leads to the changes
indicated at the vright-hand side of 37. The only changes occur in contributions to the
second order energy. The result is a change in the form of the plot of 39. If these second
order corrections are small then an asymmetry 40 develops. If these effects are large then

there is a reversal of the form 41 of the more stable isomer for three pairs of 7 electrons.

A
ag | XYXY N
’ \
: ' 40
3 II 2. \\\ . F"t—’lb —
< — $ ——=
\\ ! L
\‘.,I
XXYY
XYXY /N
AE PN
/, \‘. 4l
\\\ :,' 2l ' 4
~ ﬁk-——
XXYY

The molecule S5,N,, with this electronic configuration is an example of this situation. It
has the pattern 34. We shall see a similar series of plots in the solid state later,

Another way to stabilize the square geometry is to add two more electrons to cyclobuta-

+2

+2 . . . . .
" and Te, = have this electronic configuration, and indeed

2
diene. The molecules SL\‘+ , Se

they have a square geometry.18

3. ELECTRONIC STRUCTURES OF SIMPLE SOLIDS

3.1 Energy Bands

In this section we tackle the orbital problem for the case of that infinite molecule,
the extended solid state array. First we look at the one-dimensional system with its obvious
simplicity, and consider the situation presented by an infinite chain of carbon atoms each
carrying one pT orbital, i,e., polyacetylene, (CH)n. (As we will see, very similar results
apply to other systems with one 'frontier' orbital per atom or structural unit). In all our
deliberations in this article we will consider only the case of crystalline materials, i.e.,
those with a regularly repeating motif. The unit cell of the infinite chain is of length a

42. From the results described in Section 2.A we know qualitatively what the orbitals of
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Eaaaa

a

this infinite system looks like., Equation (27) tells us immediately there is an infinite set
of orbitals, the lowest energy of which is at E =o + 2B and is bonding between all adjacent
pairs of atoms. The highest energy orbital is at E =0 —28 and is antibonding between all

adjacent atom pairs. Between them lies a continuum of orbitals 43 which we call an energy

a+2f

band with a width of 4|B

. Just as in the finite linear molecule case of Fig. 1, the number
of nodes increases as the energy increases. Right in the middle of the stack at E=o0 there

is a nonbonding orbital.

One easy way to describe the energy levels of such an infinite system is to impose
Born-von Karman boundary conditions on the problem. In practice this entails imperceptibly

bending the one-dimensional chain of atoms into a loop, as shown schematically in 44. Of

a
o
012345':> 0 44
|
2
3
4

5

course the number, N, of atoms (orbitals) in this loop is huge. So the bending of the chain
is 'imperceptible' only as far as the atoms of the chain are concerned. Equation (43) then

tells us that there will be N energy levels whose energies are given by equation (64)
E. = a+2B8cos (2jT/N) (64)

where j takes all integral values from O, *1, *#2 ... tN/2, This is a very unwieldy expres-
sion since N/2 is extremely large but it may be rewritten in a much neater fashion by defin=-

ing a new index k such that

E(k) = a+2B coska. (65)

Here a is the unit cell length of 42 and k=2jT/Na, called the wavevector takes values

from 0 continuously to #m/a. Figure 6 shows the transition'® from the finite to the infi-
nite case. Recall that for an n membered ring j in equation (43) took values from 0, *1,
+2 through (n—1)/2 for an odd-membered ring., So for the five-membered ring the extremal

value of |J| is jpax= 2. For the fifteen-membered ring the corresponding value of j .. is 7
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Fig. 6, The transition from the finite to infinite case pm energy levels
of (a) cyclopentadiene, (b) 15-annulene, and (c) an infinite loop
or one~dimensional solid as a function of the j or k index.

What happens if values of |j| larger tham Jmax are used? The reader may readily show that
the emergy levels already derived with j<j_ . . are generated: i.e., use of j>j .. gives
redundant information. Similarly in equation (65), use of values of |k|>7/a also leads to
no new information. In the crystalline state the levels lying between —m/a<a<m/a are
called the (first) Brillouin zone. k=0 is the zone center, k =z*m/a is the zone edge and
the variation of the energy with k is the dispersion of the band. Figure 6c is just then a
'smoothed out' version of Fig, 6b with a continuum of levels (in the limit N-®) rather than

a discrete set,

The wavefunctions of this infinite unit are also easily written down by the substitution

of k=2jm/Na in equation (45) as
2wij (p—1)

n
_w? }: n p—1
P, =N e Ch 0,
p=

N (66)
- ik(p—1)a
w=xtYF et o '
i L P
p=!

Group theory allows us to write down a similar expression for the orbitals of this infi-
nite, periodically repeating chain, An expression analogous to equation (14) for the molecular
case is given in equation (67) for the translation group T. This is an infinite group made

up of all translations t€T., There are correspondingly an infinite number of k values

b(k) = E X (€) €0, (67)
teT
ikR
= z e fo (zR,.), (68)

tE€T
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but the characters take on a simple exponential form. Here R/ is the distance along the
chain which the translation operation t moves ®; and (pt(z—l_{t) is an orbital translationally
equivalent to ¢, i.e., ttpl(_r_)=Lpt(_1_:_—-5t). If we write R = (p—1)a then it is obvious
that equations (66) and (68) are identical except for a normalization constant. This was to
be expected since via the construction of 44 the infinite translation group and the cyclic
group of infinite order are isomorphous. In other words k, the wavevector, in equations
(66) and (68) are the same. In three dimensional systems the vector nature of k becomes
apparent and, as we will see later, we need to replace the exponential in this equation with
a vector dot product exp(ik+ Et) where R, = Z(pi—l)ia_i , a sum over the primitive lattice
vectors a.. Just as the vector B‘t (with dimensions of length) maps out a direct space
(x,y,z coordinates) so k (with dimensions of (length)—l) maps out a reciprocal space. The
symmetry adapted functions ¥(k) are called Bloch functions, (k) = 2 ckp (Dp. As in the case
of the cyclic system, all the levels turn up in pairs (positive and gegative k values), To
understand the orbital structure of the (one-dimensional) solid we only need one set of

values; we choose the positive set, the right-hand side of Fig. 6c.

The energy levels themselves can also be derived by using an approach identical to the
one in Section 2.2 and shown in 20, The energy of the level of the infinite chain described
by a given value of k is given by multiplying by N, the number of orbitals in the chain,

the energy contribution from the interaction of a single orbital with its neighbors

E(k) = Nx[(N-% exp (—ikpa) ®, |H|N-é(exp (—ik(p—1)a) ®p-1t
exp (ikpa)(pp+ exp (ik(p+1)a) ®p+l>]
= Nx[oa+B8(exp (ika) + exp(—ika))] (69)
= o+2B coska .
The top of the band occurs at k=T7/a where coska =—1 and E=0—2B8, The bottom of the band
is found at k=0 where coska =1 and E = 0+2B, The middle of the band occurs at k=17/2a

where coska=0 and E=o. At k=0 the phase factor linking an orbital with its neighbor
is, from equation (68), equal to +1 and so the Bloch function looks like 45. This is bond-
ing between all adjacent atom pairs, At k=T7/a the phase factor is —1 and the Bloch func-
tion looks like 46, The number of states with a given energy n(E) is usefully shown in a

density of states plot (Fig. 7b). n(E) turns out to be proportional to (3E/3k)”! for the

3888 = 38873 «

solid state continuum of 1evels,20

a function which the reader will see has the shape shown,
We will describe below how the density of states is constructed in general. For comparison
the density of states plot for the discrete molecular benzene case is shown in 47. Filling
up the levels of the energy band with with electrons each will give a total of 2N electrons
for the N atom chain (N is large!). Normally when describing band occupancy we refer to

the number of electrons per unit cell, and so this 7 band for the infinite chain may contain

a maximum of 2 electrons,

The collection of p7 orbitals we have just studied would describe the electronic T
band of polyacetylene 48 in a geometry where all the C—C distances are equal. Since there
is one electron contributed per carbon pm orbital the 7 band is exactly half full. We
show this by the crosshatching of the occupied states in Fig. 7b. Throughout this article

we will use the simple representation of this situation shown in 49. Note that such a system
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S

0 7/20 $ r/a n(E)

Fig. 7. (a) E versus k (dispersion) curve for a one~dimensionsl chain of p7T orbitals;
(b) density of states plot, n(E). The energy levels are filled up (indicated
by shading) to the Fermi level Ep, corresponding to kF' For polyacetylene the
band would be half full.

E
= —
a7
| 2
n(E)
48
----| a9 50

1 B

is metallic. In 50 we show another electronic possibility where all the levels are filled

with unpaired electrons. A solid with this electronic arrangement would be a magnetic insula-
tor. The interplay between the stabilities of these two distributions will be discussed later
The top of the occupied stack of levels is called the Fermi level with an energy Ep. The

corresponding k point (Fig. 7a) is labelled kg.

This LCAO type of approach applied to solids is called the tight-binding model by
solid state physicists, It will be clear that it is really no different to the LCAO scheme
for molecules. In Section 1.2 we showed that the levels of a molecule were accessible by

solution of the determinantal equation

H..—S..E)zO. (70)
1] 1]

Here the Hij and S were the interaction and overlap integrals between a basis set of

1J
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atomic orbitals {Lol}. In the solid state the analogous equation is

H,.(k)—-S..(k)E| =0, (71)
ij = ij =
where now the Hij and Sij integrals are those between the Bloch functions {equation (68))
constructed for each atomic orbital contained in the unit cell., Whereas for the molecule
..... 3 (TNY 348 cnlewnd Jiiok mman -~ gomavaras tha Aamarsgsr 1assala crmiatrion (71Y ~anda +#a ko
CHUGLLU 1 \rvy 49 DJULILIVOU JudsL viLve LU EC iCTiLalLc LT © ICLEy LTVT LS, cyuvavivir 7 1) 1T TuUS LY vo
solved (in principle) at an infinite number of k points. Sometimes we are lucky and are

W]
to estimate the energies of structural alternatives., This 'special points' method™ ?’ is in
general a very useful way of replacing a complex integration over k space with a set of
individual calculations. TFor a solid state system in general the density of states may be
obtained by using the technique in Fig. 8. Solution of equation (71) at a large number of k
points will generate an even larger number of energy levels which may be arranged in order of
increasing energy. The number of such leveis contained within a small energy increment can
be evaluated and used to produce a histogram for n(E). A little cosmetic smoothing produces
the desired result, Generation of a dispersion diagram (behavior of E with respect to k)
proceeds in the same manner. Smooth curves are drawn between the sets of points representing

the energies at different k values,.

E E E

smooth g
—
/>

solve secular
determinant

)

O 1 O

n(E) n(E)

Fig. 8. Schematic showing the method of generating
the energy density of states n(E)

In section 2 we extensively used the Hickel approximation by putting Sij = Gi. in equa-
tion (7). In much of this section too we will do the same by writing Sij (1_<_)= éij since it
will allow algebraic access to several results of interest. Later we will relax this restric:
tion when we look at more complex systems,

3.2. The Peierls Inst:abilil:y23

In the previous section we chose a repeat unit for the calculation which contained a

single orbital. If we choose a two-atom repeat unit as in 5] how do the results change?

1 4 2 5 3 6

~4—0—0—4—0——0 4~ 0—-0——

|@

a '
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Any observable will have the same calculated value, of course, but the E(k) diagram will be
different since there are now two pT orbitals per cell. We need to solve equation (71)
(with Sij (k) =6i. in the Hickel approximation) where the Bloch basis orbitals are given by

equation (66). With reference to 51 we may write the Bloch function as

3 / * /

wl(k)=n%(...m1e ika +cp2+cp3e1ka o) (72)

- 2 ¥ . Vi N 7
¥, = n 3 (“.wqe ika’/2 +o, elka /2 + o, eBlka /2) (73)

Now to set up the 2X 2 secular determinant we need to calculate the Hij
Hy; = (d}l(k)]lel(k)> S E (na) =a (74)

and

Hy, = (0,00 8]y, ) =22 n e (na) =a . 5)

Both of these elements are independent of k since there is no interaction (in the Hiickel
approximation) between (for example) ¢, in one cell and @, or ¢ in adjacent cells. H,,
however does contain B and is dependent on k.

P e )
elka /2+e ika’/1

(@ [Ely, ) =7t 0 )8

2B coska’/2. (76)

Hip

The secular determinant is then

a—E 2B coska’/2
=0, an
2B coska’ /2 a~E
with roots E=at 2Bcoska’/2, a result shown in 52. Remembering that a in 39 is half the

a’ of 51 the relationship between Fig. 7 and 52 is clear to see. The E(k) diagram of the

a-251
E
o 52
a+2f 9
0 T/
LI

two orbital cell is just that of the one orbital cell with the levels folded back along

k =7/2a 2_3_ Now there are two orbitals for each value of k.

a-28

N 2RI o
a+28 . //

] n/26 w/0 [} w/a
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. . . . *
Another way to derive this result is to take as a basis the m and 7 levels of the

X
o
9
o
@
on
£

]
Z)
IS

o—o|o-e|o-8| 3¢

‘@—@ o—®!®—®! 57

. . 4 I ikal —i{ka’ . .
as before. From 54 it is easy to see that Hy;=(oa+B)+ 2% -2° B(e*l“" +e tka' ) o (a+R) +
- 1 -1 . / 2 /
B coska’, and from 55 that H,,= (a—8)+2 2 (=2 2)g(e™® +e71k2) _ (a - g8) —Bcoska’.
[ S § ika’ - -1 ika’ ;
Hy, from 56 is 2 ®+(=2 *)Be ™ " + 2 *(+ 2 2)Be ~ =—iBsinka’. H,; from 57 is

- - ika’ - -1 —ika’
(2 %)(2 é)E etkal (2 %)(—2 2YRe lka' _ iBsinka’. The secular determinant becomes

(0+B)+Bcoska’ —F —1iB sinka’
A =0. (78
| iB sinka’ (o —B)—B coska’ —E|
Note that this is Hermitian, i.e., H12=H’;1, Equation (78) has roots
E=a*+vB2(2+2coska’)
= o *+ 2R coska’ /2 (79

which is the same result as before, Notice that both at the zone edge and the zone center

Hy, =0. So the form of the wavefunctions are easily written down 58. They are just simple

@I\ @L\
a-28 1
‘E

Qa

0 @®O .

—_
\ N
/ 0O ®
r/

0

I©COIOOI

a+2p 1
0 T /a
k
———
combinations of the 7T or T functions, in phase at k=0 and out of phase at k=Tm/a’. We

could then regard the one-dimensional energy band of 52 as being made up of 7 and ™ bands
as in 59 which touch at one point in the Brillouin zone 59. There is a qualification con-
cerning such a simple viewpoint., Because of the zero off-diagonal entry at k=0, n/a’ in

equation (78) there is no mixing between the T and m* functions at these points. However
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a-28
\_a_

¥
a 59
m— Q#B
m

a-28

the two functions can and will mix together at other k points so that a description in terms
of two separate bands (one T, the other Tr*) is not a rigorous one,
At k= 7/a’ there is an orbital degeneracy. 60 shows one way of writing the wavefunc-

tions at this point, which we have just employed in 58. However a linear combination of

them, as in 61 is just as good and emphasizes their nonbonding character. Recall, we had a

similar choice for cyclobutadiene,

O OIS 8|0 Ol

60
|O &1 0|0 §I
O | «]O |

6l

|« & Of 8§
Polyacetylene itself however does not have the regular structure shown in 48 but is a

semiconductor?* and exhibits the bond alternation shown in 62. The energy bands for this

arrangement are readily derived with reference to 63. Now, in addition to different values

O S §é

1 (- )
xa' (- x)a

10—0" 20-05 30-06 63
——

0'

of Ry ia equation (68) there are two different interaction integrals, 8, and B, to be
included. The secular determinant is easily derived by suitable modification of Hyp (equa-

tion (76)) and becomes

. 7 ) _ 7
G—F Blelkxa +62e ik(l-x)a
s / . _ ’ =0. (80)
Ble ikxa +Bzelk(1 X)a o—e
Solution of this determinant leads to
2 2 3
E=oaz(B "+8,"+28 B,coska’ ). (81)

Note that explicit dependence on x has disappeared. (B1 and B, will, of course, be x

dependent), At k=0, E=q+t (B1 +87) and at k=7/a’E = oz (Bl_ B,}. The E(k) diagram
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which results now looks like 64. TFor the case where ]Bl| > |82| the corresponding density
of states is also shown in 65. Let us estimate the energy of the distorted structure of 62

compared to that of 48. We should integrate the function E(k) to get the best answer but

o

=
3

&

n(E)

for our purposes it will be sufficient to represent the energy as being the average of that

at the zone edge and that at the zone center. For the symmetric structure 48
1
E=2;[(a+28)+(a)] =2(a+8). (82)
For the distorted structure 62

E

i

22 [(a+B8,+8,) +(a+B, —8,)]

2(a+8,) . (83)

If we assume that 28=Bl+32 then the stabilization energy on distortion is B,—B, for a
unit cell containing two atoms ([BI!> ]Bz|) . This result is an extremely important one.
With one electron per orbital the p7 band of 58 is half full, there is no HOMO—LUMO gap
and there is a degeneracy at the zone edge. On distortion 48— 62, which results in a
lowering of the orbital energy, a HOMO—LUMO gap (a band gap, Eg in the language of the
solid state) is opened up, and the degeneracy is removed., The situation is strongly reminis-
cent of that of singlet cyclobutadiene of Section 2.3. There the symmetrical structure
distorted to a dimer structure. Here the atoms of the chain have dimerized in a similar way.
This distortion is then the solid state analog of the Jahn~Teller distortion., It is called
a Peierls distortion. As we will see throughout this article there are many similarities
between the two. The distortion energy in both the molecular and solid state analogs is the
same, (81—82)/2 per atom. (In some ways this result is artificial since we have averaged
the zone-center and zone-edge energies, when integration of equation (81) should have been

performed. This approximation will, however, serve our purpose.) 66 shows the analogy in
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a pictorial fashion where the energy levels, and the energetic locations of the energy bands

are those we have derived here and in Section 2.2,

distorted systems some of which are described in more detail later in this article,

Table 4 shows some examples of Peierls

Notice

that the system does not always distort to convert the metallic half-filled band into an

insulator.

reverse the effect,

stabilize a system such as that of Fig., 7 against the Peierls distortion?

Application of pressure is also effective in this regard.

Also increasing the temperature (e.g., in the VO, example) is often a way to

How can we

In the case of

cyclobutadiene two extra electrons per four atom unit remove the Jahn-Teller instability.

In the present case we need to fill the entire band with electrons.

The result is the struc-

ture of fibrous sulfur and of elemental selenium and tellurium, where there are chains of

atoms with equal distances between them, 18

structure is found.

Table 4.

The chain however, is now nonplanar, and a spiral

Peierls Distortion in Linear Chains

1) Polyacetylene
(bond alternation)

2) NbIy chain
pairing up of metal atoms

3) VO, chain (rutile sgtructure)
pairing up of metal atoms

4) Elemental hydrogen

H~H dimers

%
~

Bavsy [VS3 chain]
metallic at room
temperature

6) (TTF) Br

(TTF);2 dimers

Doped Polyacetylene
(no alternation?)

NbI, under pressure
metal atoms equidistant
VO, at higher temperatures

metal atoms equidistant

High pressure-metallic
behavior

Presumably... H—H—H—H.,..
chains

Metal-insulator transition on
cooling, but a magnetic
insulator 50 rather
than diamagnetic 49

(TTF) Br,

metallic conduction in chain
(ef. polyacetylene)

Another route, suggested by the observation of the B,N,R, molecule and the discussion

concerning the relative stabilities of the substitution patterns 34 and 35 of cyclobutadiene

is via substitution of the chain atoms in a similar way.
.+¢ XY ... solid we need to take those of the two atom cell and apply a perturbation.

increase the o value of X by Sa and decrease that of Y by Sa.

To generate the levels of the
We will

The resulting energy level
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""""""""""" o 1

k ;}a 48 K r/a
e B e
-{c-clc-cl- -[X-Y|%-Y[-

shifts are shown in 67. At the zone edge the energy correction is in first order and is

n'nné Sa = 8o for the X located level and n-n_é -n—% (—8a) = —82 for the Y located level

At the zone center the energy correction occurs in second order and is (6a)2;/48. The wave-

functions at the zone edge remain unchanged as a result of the perturbation but at the zone

center they mix together, From equation (52) the new wavefunction for the energy level at

E~a+28+ (80)?/4B is given by 68 and describes a function weighted more heavily on the

more electronegative (Y) atom. Similarly the higher energy orbital at k=0 becomes 69 and

is predominantly X located. Perhaps the most important result is the opening up of a band

V= +O_O+ * %;—‘_@_O_\- 68
= o—Ot

To-Ot - §o-or

jo-od

Substituted polyacetylenes or their analogs 70 however are either

<
H

gap at the zone edge,

unknown or poorly characterized but we see no reason why the molecular reasoning should not
prevail here too.

0
~

By
r
I_
T

Having shown how ... XY... substitution opens up a band gap we need also to examine, as

we did in the molecular case, the relative merits of ...XYXY... and ...XXYY... substi-

To probe this we need to generate the energy levels of a four orbital cell since we
shall be interested in comparing ...XXYY...

tution,

and ...XYXY... alternatives. By making use

of the folding back trick of 53 this is quite simple to do and is shown in 71. Just as the
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levels of the two atom cell could simply be obtained by using the % and 7* orbitals of
ethylene as a basis, so the nodal properties of the levels of the four atom cell can be
obtained from those of butadieme (of Fig. 1). Half of the perturbation problem has been done
for us already since the form of the functions of cyclobutadiene are identical to the levels
of 71 at k=0, The energy shifts at this point for the ...XXYY... and ...XYXY...
substitutions are then given by 36 and 37 respectively. In fact the energy shifts at k=0

for the ...XYXY... pattern are just the sum of those shown in _6_7_ for the simple two atom

[ososlo® 0

d los osle 080
OSSOSO O

or
[O® « +|®0 «

oloeso
lo s eol I n .08l - 80|

[eXeX T\J[oNeX R\

or 7 |
o+ ®@clo o -l -
|« O+ ®le0 « o 0o o8l 800
[eXe XXl X XK
or

OO+ *l®® ¢+ ¢
I. .@@l' OOOI

|0 © 00j]0 0 O O

k /0

cell at k=0 plus that at k=m7/a. This comes about because the diagram for ...XYXY...
is simply that of ...XY... folded back along k=m/2a. This leaves the energy shifts at
the zone edge for the four atom cell of 71. For the ...XYXY... pattern we will make the
approximation that the mean of the shifts at k=0 and k=m/a of the .,..XY... problem of
67 will suffice. For the ...XXYY... pattern it is easy to see that the levels split apart
in first order by 28a and that there is no second order correction. The energy shifts for

the two substitution patterns are shown in 72. Approximating the band energy as before by

(3d)
(8a)° 5
; 4B (jfﬁ_ -
a-28 a-28
te - e T s
1 + - 72
28a a §g_(_8_a)2 :I:a ¥ —
L 283(&# -—
R — | 23
I P —1
a+2f a+2[34
2 -
(3a) (8
.@. 0] . k n/a 2_a 0 K n/a

~XY XY-: SXXYY-
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averaging the zone-center and zone edge values of a filled level the stabilization energies
of the two alternatives as a function of band filling are given in Table 5 where the more
stable structure is indicated with an arrow, Notice the symmetry associated with this Table,

the entries for the quarter filled and quarter empty bands are identical.

Table 5. Stabilization Energies of Structural Alternatives

Band filling .o . XYXY... .. XXYY.. .
0 0 0
1/4 ©o)/2+ (Sa)?/88  Sa+ ()28 <
1/2 2 - (60)2 /8
3/4 (Say/2 + (5a)2/88 Sa+(8a)%/2p <«
1 0 0

The relative stabilities of the two possibilities then vary with band filling as in 73
where we show the results obtained by numerical solution of the problem but understandable
using our discussion. At the 1/4 and 3/4 filled band the ...XXYY... structure is more
stable but at the 1/2 filled band the ...XYXY... structure is more stable in exact analogy
with the case of the substituted cyclobutadienes 39 of Section 2.3. Again our treatment
here has been virtually the simplest possible. The problem can be reworked by including the
variations induced in the interaction integrals (B) by the changes in &, in an appropriately
similar way to the cyclobutadiene problem of 37. The result is very similar.2% The anti-

bonding part of the band receives an extra destabilization for the ...XXYY... substitution

in an analogous way to that shown at the right-hand side of 37 for the molecular case.

= XYXY-- _
AE
[ 1\ N=p 1
—
N\ e
=X XYY
~xvxv~
AE
/ \ 7
2
N/
- X XY Yo
-'-XYXY--- SN
AE b

/\\-'lE
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Taking this into account leads to the two possibilities related to the molecular pictures of
40, 41 shown in 74 and 75 depending upon the size of the effect. We shall see an example
of 74 later but the case of 75 1is found for (SN)y polymer. This material has three T
electrons per m band and is found as the —S—N—S—N— isomer and not as —S—S—N-—N—. A
band structure calculation?®® using the observed geometry of the polymer confirms the state of
affairs in 75. Recall that the molecule S,N, has the alternating arrangement too. Most
organic donor-acceptor complexes, based on the stacking up of planar molecules crystallize in
the ...XYXY... arraﬂgement.z6 Although we do not discuss these systems in any detail here,
the basic electronic arrangement is one which at its simplest involves the interaction of a
doubly occupied donor level with an empty acceptor level on the adjacent molecule. This
corresponds to a one electron pair per two orbitals problem, and the alternating arrangement
of donor and acceptor is understandable from our discussion above. However, the system
NBP*TCNQF, and Ni(tfd)z- PTZ crystallize in the ...XXYY... structure. Both of these

25 The observation

species correspond electronically to one electron pair per four orbitals.
of this isomer for these two cases is in nice agreement with the theory. A sample of some of

the structures found for various band fillings is given in Table 6.

Table 6. ...XXYY... versus ...XYXY...
Electronic Band Filling
Situation 1/4 1/2 3/4
73, 40 NBP *TCNQF, csCla CuTi?
examples in 3D, examples
BN in 2D, most in 3D
and organic donor
acceptor com-—
75, 41 Ni(tfd)z-PTZ plexes in 1D S,N,, (SN)x

2 These examples are discussed in Section 4.2.

3.3 Building up more Complex Systems

The results achieved for the linear chain may be readily extended to produce the energy
bands of more complex systems. Many of the systems we shall discuss are as yet unknown in

the laboratory. The structure of the ladder, 76 is easily generated by linking two chains

LT — I

together. The secular determinant is a trivial one. If the Bloch orbitals on the two chains

are ¢, and Y, then

o+ 2R coska—E B
= 0 (84)
B o+2B coska—E

with roots E= a+ B+2Bcoska. The result is shown in 77. Another way to generate this
result is to use as a basis the 7 and 7* levels of the ladder unit cell 78 in which case

the secular determinant is
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a -331
E
‘ 77
a -
o -38 ) n/a

(a+ B) +2Bcoska

o

=0 (85)
0 (a.=R) +2Rcoska

with the same roots as before. Note that in this new formulation there is no mixing between
Y, and y, of 78 since they have different parity with respect to reflection in the mirror
plane which bisects the chain. The two bands of 77 may then be regarded as T and ™ bands
of the ladder.

a-3B
a A - 79
—e
a-3p8

n{E)

We can use the form of the density of states of Fig. 7b to construct the density of
states for the ladder orbitals as in 79. A third way of generating these energy levels is

to 'polymerize' cyclobutadiene 80. Here the symmetry of the basis orbitals with respect to

—ICT -
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reflection in the mirror plane bisecting the ladder is very useful in simplifying the problem.

efunctions of Fig. 3 which are symmetric with respect to reflection, and 82

|-

L
2

(SIS
N |-

8l
Y v, 8!
L L -1 L
2 2 2 2
o +28 o
-1 1 Ik 1
2 2 2 2
Y % 8
! L L 1
2 2 2
] a-28

shows the functions which are antisymmetric. For the symmetric block we need to solve the

secular determinant

lﬁll(k)—E Hy5(k) I
=0 (86)
Hyp (k) Hy, (k) —E
Now .
Hy (k) = (0+28) +28(3-1)e ™2 + 28(1-1) e ™22 (0 +28) +B coska (87)
and in general
H (k) = (o+nB) + 2y coska (88)

where Yy is the interaction integral between one basis orbital and its neighbor in the next
cell evaluated in terms of B and the products of orbital coefficients, and n gives the

energy of the orbital of the isolated unit. Equation (86) then becomes

(e +2B)+ coska—E iB sinka

I
(=]

(89)

‘ —iBsinka (a)—Scoska—E(

with roots E=(a~B) 2B cosz(ka/ 2). The antisymmetric block can be similarly constructed
and the roots are found to be E=(a+B)#*2Bcos?(ka/2). The energy bands then look like 83.

a-38f—_

—_—
m

&

™~
L
/ =

—_—

a+38

o
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These are just like those of 77 but folded at k=7/2a. The cosz(ka/Z) dependence on k
has arisen in exactly the same fashion as that for the single stranded chain when the repeat
unit was doubled in 52.

A similar variety of approaches allows construction of the level pattern of polyacene
where only half of the linkages are made between the two chains 84. We will generate the

band structure of this system first by 'polymerizing' butadiene as shown in 85. The energy
y polym g 22

. . —0—0—--—0—OT0—0-——0-
(I ) | | | | ea
o L& A
A4 | v

NN i
-0 (o]

Ie
N

%
:

Id &5
NN (AL

At -

a Q
a a
ieveis of the four orbital chain are shown in Fig. 1. To simplify our problem we shall divide

them into functions symmetric 86 and antisymmetric 87 with respect to the mirror plane

0.601

lying perpendicular to the plane of the polymer. For the symmetric block the secular deter-

minant entries are

=]
i

(a+1.62B) + {2X2X0.372X 0.601) Bcoska

Hyy = (@—0.628) — (2X2X0.373X0.601) Bcoska (90)
24 ika ika
H, = F2x(0.372)]e

+[2x (0.601)27 e

which leads to the messy expression for the energies of
(200+ B) + B/ (2.24+ 1.76 coska)? + 4(0.6 — 0.4 cos 2ka)
E =
2

sa1n
. \71)

At k=0, E=¢0+2.558, a—1.558 and at k=7/a, E=a,a+B. For the antisymmetric block the
arithmetic is similar and we find at k=0, E=a—2.558, o+ 1.558 and at k=7/a, E=a, a—R,
Qualitatively the band structure looks like 88 with a degeneracy at the zone edge at E=a.

Using these bands we may construct a density of states for the 7 levels shown in 89. Figure
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E 0‘23'\
a_ -
a4 88
a+f 4
a+23—/
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E E
: 89
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n(E) n(E)

9 shows a band structure for polyacene using the extended Huckel approach. The broad features
of the T bands we have generated here are retained but the degeneracy at the zone edge has
been converted into a crossing at smaller k. This occurs as a result of the inclusion of
overlap across the rings, ignored in our treatment. How this occurs is difficult to see
using our approach here. It becomes quite transparent however if the band structure is
assembled via the process in 90. This we will do in a qualitative fashion. The left-hand

side of 90 has a band structure which is simply two superimposed diagrams 58. This is shown

{a) {(b)
JOIOK
-5 —
—_ m
3
w ok L
Er — Ee 7
m
g
-15 ¢

Fig. 9. (a) Band structure for polyacene using the Extended Huckel approach,
(b) Band structure for a distorted polyacene using the Extended
Huckel method. (Adapted from Ref. 28.)
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by the dashed lines of 91. As a first approximation at k=0 we will just construct bonding

and antibonding pairs from the levels at the bottom and top of the band. (These will not be
the final energies of the bands since the orbitals we have generated are not orthogonal and

there will be a second order energy correction.) At k=T7/a, making similar combinations of
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the orbitals of 58 leads to one bonding, one antibonding and two nonbonding orbitals. The

two nonbonding orbitals are degenerate in 91 only because overlap across the six-membered
ring is neglected. If this is included then they will split apart in energy as in Fig. 9.

The bonding partner {symmetric (S) with respect to the mirror plane lying parallel to, and
bisecting the chain) obviously then drops to lower emergy. Since this must correlate with a
symmetric function at the left-hand side of 91 it therefore goes up in energy with decreasing
k and so crosses the other orbital with E>»a at a little less than k=m/a. TFigure 9b shows
the result of a calculation for polyacene where each of the carbon chains has undergone a
pairing distortion. As in the polyacetylene example itself, a band gap opens up at the zone
edge. We will discuss later the problem of Peierls type distortions in polyacene and related

systems containing more polyacetylene chains.

;

The energy bands of these chains have been easy to derive since we have gained a consi-
derable simplification by making use of the mirror symmetry of the problem. A much more

perturbation theory in a way analogous to the derivation of the pentalene levels of Fig. 5.
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Although instructive, this is extremely tedious. 94 shows the 7 bands generated by numerical
solution of the 8X 8 secular determinant. Note that in contrast to the polyacene problem,

the levels do not lie symmetrically about E=qa, a direct result of the presence of odd mem~
bered rings. The polyazulene net is not bipartite and so its level structure at all k lacks

such symmetry.

M

atom ring, 96, as a basis. This exercise is left to the reader. The energy bands are shown

a-3B'1
—_\
be.
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Of particular interest is the energy difference between these three structures as a
function of band filling. This is shown in 98. Np1T is the number of pm electrons per atom.
Notice that the energy difference curve for poly-[8]-annulene is symmetric with respect to

reflection about this point (an= 1) as demanded by the bipartite nature of both networks.

Q@@m

A /%

- )
1-2

The curve for polyazulene on the other hand lacks such symmetry. It has its maximum stability
just after the half-filled point at the band filling of about 0.7. As known for years by
physical organic chemists and implied by the result!? of Gutmann and Trinajst{c for molecules
discussed earlier, the most stable structure at the half-filled point is the one with six
rings. Notice too that the poly-[8)-annulene structure (with 8-rings and 4-rings) is the
least stable alternative at the half-filled point, a result analogous to that found in 30 for
the 8-4 molecular case. Also the stability of polyazulene (5-rings and 7-rings) relative to
polyacene reaches a maximum in approximately the same place in 98 as does the 5-7 relative to

6-6 molecular structures in 98.

Not all of the systems we shall describe are one-dimensional ones. Most 'real' systems
are three dimensional in extent. For the latter case we may write the translation group as a

simple product group involving translations along the three lattice vectors, a_ of Section
—i

2.1. In this case the exponential in the Bloch sum of equation (68) becomes
i(k,b,* %, a i(k,b,*2,a,) i(kyb,*2,a ilker
o 121 1_1)e(2_2 23;) ilkgbycl3a,) _ i(k-r) (92)
where Eioéj = Zﬂﬁij and the reciprocal lattice vectors Ei are defined by
a, na
a, *(a,ra,
a.A a
-3 =1
b, = 27w 93
=2 a) * {2y Aay) 93
2" g

B o a; * (a,A2,)

Just as the direct lattice vectors define this lattice, so these reciprocal lattice vectors
define a reciprocal lattice. A simple example will illustrate its construction. In 99 we

show a primitive orthorhombic lattice. The direct lattice vectors a, are given by

%>

g, =a

; 3, =by; ag =cz, (94)
where %, 2 and 2 represent unit vectors along x, y and z directions. The bi are then
simply

b, = (2m/a)%; b, = (2n/a)§; by = (27/a)Z, (95)
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Zy‘Téai
! Y‘%G 99

qQ,

a

and the reciprocal lattice as in 100. Now the first Brillouin zone is defined as the volume

enclosed by the set of planes which bisect perpendicularly all the lines drawn from one

lattice point to all others in the reciprocal lattice. 1In practice only a small number of

close points are needed. 101 shows the construction for the reciprocal lattice of 100.

bS bz ‘m
2w bl

T
N
3

101

102
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Various points which lie on the faces, edges or vertices of the Brillouin zone are usually

given symmetry labels. 102 shows the conventional choice for our example. In units of 2m/a

the values of kl, k, and k3 are

r;0,0,0 X;0,3%, 2;0,0,}%
Y;—é,0,0 T;“%,O,% U;O,%,% (96)
S;—%,%,0 R;—3,%,3

Notice that the one-dimensional example which we have exclusively described until now is the
special case of 101, with b, =b;=0. We have chosen for our example, a particularly simple

zone. Other lattices give rise to zones which correspond to more complex polyhedra.zo’29

Qs ba

/—or 103 b. 104
a b,

For the primitive hexagonal lattice, which we will use shortly, the situation is a little
more complex. If the primitive direct lattice vectors are as in 103 then the reciprocal
lattice vectors, by the construction of equations (93) become those of 104. The first
Brillouin zone, also has hexagonal symmetry and is shown in 105. Notice that the point M

is just (3,0,0)27m/a but K is (%,%,0)2“/3 by simple geometry.

First we tackle the problem of the square net, 106 which has a set of primitive lattice
vectors a):<, by and cg where we may visualize ¢ as being very large and a=b t(of 100).

The two—dimensional zone we need to consider is therefore the one given in 107.

P SR S —

rﬂ | | ]
-O——0—t—=0——0-~

o TEET] e
~QO=—0——0——0-
| ] | ]
-p——O——=-
T, Qz 107
X*b,M
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The energy band of the square net is easy to derive since it is a one-orbital problem.
By analogy with the one-dimensional chain of Section 3.1 the E(k) dependence is written as
Etk) = o+ ZBcos(g'gl) + 2Bcos(k*a,) 97

which therefore has a maximum energy of 0—~4Pf and a minimum energy of a+48. There is a
pictorial problem is showing the dispersion of the energy in two dimensions but what we can

do is trace the energetic behavior along lines joining symmetry points of the Brillouin zone.

a-483

) U VO R 108
+4
@48 r X M
a-4BT

E

o 109
a-48 -

n(E)

Using this technique the energetic dispersion is shown in 108. Its density of states is
shown in 109 and indicates a maximum at the half-filled band. The band structure of this
net may also be generated by linking together one—dimensional chains. The first step in

this process is shown in 76, 77, where we constructed the energy bands of the ladder. Clearly

the energy bands of a connected set of n chains will have an energy dependence of
Ej(k)=a+ 2Bcos(jm/n+1) + 2Bcoska , (98)

by using equation (27) (j =0,1,2,3 ...n). Equations (97) and (98) become identical for an
infinite collection of chains. Notice that the density of states of the ladder already has

some of the features of that of the square net.
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It is not much more difficult given these results to generate the 7 bands of the 482
net of 110, especially if it is redrawn to emphasize its construction as a square net with
cyclobutadiene at each node. There are now four energy bands, each with a k dependence

given by an equation (99) of exactly the same form as that of equation (97) but

E(k) = (a+nB) + 27, cos(1§°§l) + 2Y,cos (k-a,) (99)
where Y {(i=1,2) now represents the interaction integral along the a; directions between
unit cells asscciated with the cyclcobutadiene orbitals 111—114. It is easy to see that

i
2
{
2 z liz
N Y
|
z Z
a+2f «
n=2 n=0
-1
/\ -
-Jd 1
z z I3 ' L 114
z z
N/
_d
@ z
a-28
n=0 n=-2
~v = R4 for 111 and 114 v.=R/2 and Vv 0 far 113 while v =0, and _=R/2 for 112
Y5 8/4 for 111 and 114. v, =8/2 and v,=0 for 113 while v, Y, =B/

The resulting band structure looks like 115. Notice that at (3},%)2m/a, the level pattern

a-33

v

-

[+ 200 DY/ SRV S WU U WS

(
LT

X M

is identical with that of the isolated cyclobutadiene system since from equation (99) at this
point cos(l_c-gi)= 0. It is difficult to understand the density of states plots for two- and
three-dimensional systems in the same way we used for one-dimensional ones. The plot for 110
however, is shown in 116 and, if we restrict ourselves to looking at that section of the zone

between ' and M, we might expect something resembling 117 which is not too different.
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a-35

16
a 0
a—3B+
n(E)
a-38 1
E -
| uz
@ 1
a-38 1
n(E)

If we were to estimate the energy of this system by choosing the k point in the middle
of a quadrant of the Brillouin zone 107 at (},})27/a then the level structure is identical
to that of cyclobutadieme. It is therefore very interesting to find that the only known
examples of isolated nets of this sort with a half filled 7 band are for MII BZC2 where the

30

squares contain alternating boron and carbon atoms™" just as in the molecular case, and for

exactly the same reasons we have described exhaustively before.

A slightly more adventurous derivation is of the 7 band of graphite. The unit cell we

will use is shown in 118 with the primitive lattice vectors needed in equations (92),(93)

o &
b (S n
[

shown. Here we will need to take into account the vector nature of k and evaluate Bloch
functions using the phase factor exp{ik<*R.) a little more carefully, since a; and a, are
not orthogonal. Using as a basis the two pT orbitals of the cell in 118 the secular deter-—

minant becomes
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; 1 . . 1 1
11_(' 5§1+ 522) 15.(%21_§§.2) 11_(. (’531“'382)\
a—E B(\e +e + e J

|
* l =0 (100)

3

with roots E = 00+ A® B where

A= [3+2cos(a

s 1

r Deos
+ £CO08

e}

e}

7]
Y
N
17
U
17

1
Clearly again we cannot show the E(k) dependence in two dimensions in an analogous way to
the one-dimensional case but we will depict the energy changes along line in the Brillouin

zone 102. At the three symmetry points [',M and K the energy is given by

11 101y
1. Lill)

r E=a3B; M E=0a*x8; K E=0*08 . (102)

\

-5

E(eV)

M K r M
Fig. 10, Band structure for graphite using the Extended
Huckel approach. (Adapted from Ref. 28.)

119 shows the graphite T band structure using these resgults Fi

a-38 \

|
ol

2

a+B—/

M K r M

that the levels at E>0 are destabilized more than the levels for which E are stabilized.
This has an explanation identical to that discussed in Section i.2. Inclusion of overlap

destroys the symmetry associated with the orbitals or bands about the E=a level. Notice
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however that the degeneracy at E=o at the point K is maintained even when overlap is
included. With one electron per pw orbital in graphite, this band is half filled and l_cF
lies at the point K. Graphite is thus a zero~gap semiconductor, one where valence and

conduction bands just touch.

w 1r* 120

Exactly the same results are found if, instead of using the individual pm orbitals as a
basis, we use the T and 7™ functions of the two orbital cell 120. The secular determinant

is then
(a+B)+Bcosk*a +Bcosk*a —E iB (sink-a +sink+a, )
z ! ! =0 (103)
—iB (sink*a, + sink-a,) (a—B)—Bcosk*a,—Bcosk*a; —E

3

with roots E = 02 A° B as before (equation (101)).

N B nBay
{ ]
B. .B
B\N/ \N \N |__2_|
| | |
The secular determinant of equation (100) may easily be rewritten for the case of BN

121 by using two different values, oy and OLB. The energy levels may be evaluated by expan-

sion of the secular determinant in the usual way, as
=1 + 1 — ] 2 + 2
E Z(OLB+0LN)_Z\/(OLB ay) LA . (104)

The most striking result of this substitution is the removal of the degeneracy at the point

K. Here the energies become E=ay and E=0LB. 122 shows schematically the result predicted.

el

%
122

M K r M

With two 7 electrons per pair only the lower band is filled. BN is thus an insulator and,
in contrast to the metallic sheen of graphite, BN is a plain white solid. An extended Hickel
band structure is shown in Fig. 1l. Graphite and BN have half filled pm bands and it is
interesting to see that the observed structure of BN is one where the boron and nitrogen

atoms alternate in two dimensions. Recall that for one~dimensional chains, with a half-filled
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728
N\rl\l/N \,IQ/N \';‘ @
B‘B’B‘B’B
band the structure ...XYXY... was favored over the alternative ...XXYY... . Analogous

arguments for the BN system favor 12! over, for example, 123.
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Fig. 11. Band structure for boron nitride (in the graphite structure)
using the Extended Hiuckel approach. (Adapted from Ref. 28.)

The energy levels in graphite are filled up to the nonbonding level at E=o0. Occupation
of deeper lying levels contributes to carbon-carbon bonding. Occupation of higher 1lying
levels has a destabilizing effect and should give rise to an increase in the carbon-carbon dis-

tances. Figure 12 shows how this distance increases with the concentration of intercalated
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Fig. 12. Experimental values of the C—C intraplanar distance as a function
of the extent of intercalation of potassium. (Adapted from ref. 52.)

JPSSC 15:3-F
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donor atom, in nice agreement with this prediction. (But see Ref. 31 for a further analysis

of this problem.)

A tough problem to tackle using the quantitative method we have adopted above, is the
generation of the band structure of the net shown in i24 which contains 5 and 7 rings. It is
not bipartite and lacks a lot of the symmetry we have found useful before. Its bands need to

be generated numerically. The net is actually found for the nonmetal sheets of ScBZC2 where

126 shows the energy difference between the graphite, 482 and

AE
- 1-2

" 1-3

] LI

As in the case of the one-dimensional examples of 98 (and indeed in the molecular species of
30) the six-ring net is the most stable at the half-filled point, (i.e., as observed for
graphite) the net containing 5 and 7 rings is most stable just after this point (i.e., as
observed for ScB2C2)32 and the 482 net is stable at the very beginning and very end of the
filling curve, Notice that the nonbipartite nature of the net 124 shows up in the asymmetry
of its energy difference curve with the bipartite graphite net. Beyond the scope of this
article is discussion concerning the underlying physics of the plots of 98 and 126. In

brief however we can show33 that the energy differences between two structures of the type
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energetically depicted in 126 (where each atom has the same coordinate number) is simply

given by equation (105)

EGO =) [N(D -8 ], 30, (105)
r
where N (1) and Np(2) are the numbers of r-rings in each of the two structures and x(0-1)

is the extent of band filling. The functions f£(r,x) are universal expressions which describe
the energetic contributions from an r-ring. Equation (105) also holds approximately for the
one-~dimensional cases of 2§ (here not all the centers are three coordinate) and also more

2 noted ear-

approximately in the molecular case of 30. The result of Gutman and Trinajst{c
lier is simply the special molecular case of x=0.5, and emphasizes the stability of 6-rings

and instability of 4- and 8-rings at the half-filled point.

In the ScB,C, net of 124 there is clearly a preference for the carbon and boron atoms
to occupy specific sites in the net. A calculation on an all carbon net with the geometry of
124 shows indeed that the carbon atoms in ScB,C, occupy sites of higher negative charge in
the unsubstituted parent. Band structure calculations®® which include both ¢ and T bonding
manifolds of orbitals show a stabilization of about 20 kcal/mole for the observed structure

compared to the one where the boron and carbon atoms have been exchanged.

In Section 2.2 we discussed at some length the Peierls distortion on one-dimensional
polyacetylene and showed how the distortion energy was 3(B,—B8,)/2 per atom. It is of some
considerable interest to calculate the distortion energy in polyacene 84 and graphite 118
since both of these systems have a degenerate pair of orbitals at the Fermi level. For

polyacene we consider the distortion in 127 which retains the mirror symmetry bisecting the

|
LYY e
@ NP P <

polymer. So the labels S and A used in 91 to describe the parity of the bands with res-

pect to this plane are still good labels to use during and after the distortion. Immediately
a striking difference between the distortion in polyacene and polyacetylene is apparent. In
polyacene on distortion, the energy changes associated with the levels will occur via a
mixing of the two antisymmetric bands, and via a mixing of the two symmetric bands, i.e.,

the energy change will occur in second order. In polyacetylene the splitting apart of the
levels at the zone edge occurred in first order. We may readily calculate the energy shifts
for the S and A pairs of 9! by solving the relevant secular determinant. The off-diagonal
element linking either the two S bands or the two A bands at the zone edge is just

{B;—8,)/2 and so for the antisymmetric block
(a—B)—E %(81_82)
=0 (106)
%(61—82) o—E
which has roots E = (a—B/2)* (824-(81——62)2)%/2. kxpanding this in terms of (Bl—-BZ)/B
leads to the two new antisymmetric levels at the zone edge
2 2
(31 —'82) (Bl'—ﬁz)
E=a+—— 3 E=0—8———. 107
4B ’ o8 4B (on
Similar expressions apply to the symmetric block and lead 128 to a band gap of (Bl——BZ)Z/ZB
for the polyacene distortion 127. Compare this with a value for polyacetylene of (Bl-Bz)/Z.
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Let us build up the levels of a three stranded polymer to see how it will distort. We will

just derive the level structure at the zone edge via the process 129 for the undistorted

species. This is easy to do and is shown schematically in 130. We will leave it to the
0.9 -
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reader to show that during the distortion 131

same amount as ¥, pushes Y, wup in energy.

distortion up to second order.

order.

ws pushes \Uu down in energy by exactly the

¥, therefore remains unchanged in energy on

Analogously Y, remains unchanged in energy too in second

It can be shown that the splitting apart at the zone edge of vy and % occurs in
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131

third order in the energy and that the band gap is (81——82)3/482. In generalsu for polymers
of this type the energy gap goes as (Bl—-Bz)Gn_l where n is the number of strands and
§ = (Bl—-Bz)/B <€1. So as n increases the stabilization energy drops off sharply. 132 shows

the results of some numerical extended Hiickel calculations®® on systems of this type. The

AE O‘/pﬁcetylene

polyacene
-—

r - v : —W pA
2 3 4 S ° graphite

number of strands

ordinate represents the relative energy differences between the undistorted parent and a

slightly distorted version. (The numerical scale of the ordinate will depend on the size of
the distortion.) The rapid decrease in stabilization energy on distortion as n increases is
apparent. Opposing such a stabilization associated with the T levels is a small destabili-
zation on distortion for the o levels (the so-called elastic forces of the solid state
physicist) which eventually outweighs the 7 distortion energy. For graphite the distortion

is energetically unfavorable.

4. MORE ORBITALS AND MORE DIMENSIONS

4.1 Variations on the One-Dimensional Problem

Our discussion so far has centered on the band structures of systems built up from
single atomic pT levels. The results are transferable in many cases to several other
systems. Algebraically the one-dimensional results apply to a chain of atoms bearing s or

d,2 orbitals as in 133 and 134. Both of these problems are characterized by an interaction

10|0|0] 123 -|cdo|dolciol- 24

integral B of the same type as that in 42. The simplest problem corresponding to 133 is a
linear chain of hydrogen atoms 135. This should undergo a Peierls distortion since it has
but one electron per orbital, in an exactly analogous fashion to polyacetylene. The result=
ing dimers 136 would be in accord with traditional ideas which we have concerning bonding
in this molecule. On application of high pressure (~2Mbar) the process can be reversed and
136 - 135. The physical properties of l}é_(or rather its three-dimensional analog) are

interesting. 49 shows that such a structure should be metallic and indeed at these high
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-H—H—H—H—H—H~- 135

—-H H—H H—i - 136
' H—n i _
pressures metallic conduction has been observed.®® This particular result is of interest to

valence orbitals of such a molecular unit are shown in 138 along with the orbital occupancy

137

138

+

H

expected for a low spin d

t
with the next in the fashion shown in 134 and a d

KZ[Pt(CN)q] is a white solid and an insulator (5X 1077 Q~!cm™!) with equal Pt—Pt distances
of 3.48 A. The salt can be cocrystallized with elemental bromine which results in oxidation
of the chain to give nonstoichiometric material KZ(Pt(CN)u)BrG. 3H,0. The chain ion is now
formulated as Pt(CN)f-2 and, as a result electron density is removed from the z2 band 140 .
This material is metallic and, since the electron density has been removed from the very top
of the band where (43) maximum antibonding interactions are found, it has a significantly shor-

ter Pt—Pt distance (2.88A for 6=0.3).
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There are many other materials which are built up using exactly the same principles. For
example, the a8 complexes of the glyoximate and dioximate ligands 141 and Ni, Pd and Pt

also lead to stacks of planar units.37 On cocrystallization with halogen, conducting

H
A N S S
R, 4 R *¢? Ne=N N=¢”
ANV ™ LT Sl |
I M <|: H-Cs C=N7" SN=C_ _Cy
R/ \N//‘R R I S g 141
N \ H H
0---H---0
M(gly), R=H
M(dpg), R=Ph
N
M an N
pc N w7 142
N7 N
N

materials are produced. Similar features are found in phthalocyaninnes MPc 142 and porphy-
rins. Often the crystal structure of the doped, conducting material shows regularly stacked

143 and that of the pure material, slipped stacks of planar units 144.

M a3 144

Conceptually very similar to these Pt(CN)k (often abbreviated as TCP) systems are a
whole series of 'organic metals' which contain no metal atoms at all. Such species again are

typified by the stacking up of planar molecules such as those in 145,38  In the absence of

0@ '3
©©© QOO

S—-S§
tetrathiotetracene
perylene TTT 145
Se—Se
Q000 L~
S S
Se—Se
tetraselenotetracene tetrathiofulvalene

TSeT TTF
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dopants the crystals are not conductors of electricity. However just as in the TCP case,

cocrystallization with halogen leads to conducting materials. Some examples are

(perylene)?+" (15 -212)0.1‘ 5—50 (Q cm) "
(TTF)Bry . 300—500
(TTT)2 17 2700
(TSeT)Cl, . 2100 .

A particularly interesting series is shown in 146. The parent material is an insulator but

insulator ~400(cm)?! <10-% (Qem)! insulator

D[] Gka [ -
TTF

N H \ITI

(TTF) Bry, (T esr (TTFR* 28¢

the nonstoichiometrically doped material ((TTF)Br0_7) is a metal. With a half filled band as
in (TTF),2Br~ a Peierls distortion leads to dimerization and the observation of (TTF)§+
pairs in the crystal. Finally, if the band is emptied completely, individual ions (TTF)2+
are found. Not all of the structures of these species end up as neatly stacked planar mole-

cules. In (TTT)2 I3_ for example the stacks are slipped somewhat as in 144.

There is an obvious difference between the energy bands derived from 42, 133 and 134

and that associated with a single po orbital at each center 147. Here since the positive

—|cw/owce—- @

lobe of one orbital overlaps with the negative lobe of the p, orbital carried by an adjacent
atom in the chain, the interaction integral between them is positive rather than being nega-

tive. The only difference this makes to our discussion above is that maximum bonding between

the atoms of the chain is now found at the zone edge, and maximum antibonding at the zone

center, 148.

a-28 =

(@ \ @\
15
a 1 148

a+2B 1 SO0 . T

We are now in a position to qualitatively outline the O band structure of a linear
atomic chain containing s and p orbitals on each atom. We need to solve the relevant secu-
lar determinant which will include three different values of B, one for po—pso, one for
s—s and one for po-s interactions. This is

0LS+ZBSs coska—E ZiBSp sinka
. . =0, (108)
—2iBgp sinka ap—28pp coska—E
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We will not write down the (messy) expression for the energy levels but just note that at
k=0 and k=m/a the off-diagonal element is identically zero, i.e., there is no s—p mixing
at either of these points. Hg, is at a maximum in fact for k=m/2a. 149 shows a qualita-
tive diagram for such a system constructed by making use of this result and the fact that

[as[ > |0Lp| . The dashed lines show the dispersion in the absence of sp mixing. Here we have

[ex\[eX\]

~ 150
/ -~

|00

0 Kk n/q

assumed that the s—p separation is large compared to the values of B for the s and p bands
150 shows a more realistic case where the unmixed s and p bands (dashed lines) cross in

energy. As Bsp increases then the mixing in the middle of the zone gives rise to the energy
dependence shown by the solid lines. Note that because of the different k-dependence of the

p and s orbital energies the 's'

band, while purely s—s bonding at the zone center, is
purely p—p bonding at the zone edge. In addition to the presence of pC orbitals on the
chain atoms there will be two p7 orbitals (p, and py). These will be degenerate at all k
(i.e., the m label is still a good one for the chain) and their behavior will be just like
that found for polyacetylene. There is no overlap between these orbitals and any of the

orbitals of O type. A composite picture for a one-dimensional chain of atoms is shown in
151.
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Let us now ask the following question. We known that the molecule ferrocene (C5H5)2Fe

and bicyclobutadiene nickel (CL;Hu)zNi are stable molecules with geometries shown in 152. With

<>
Ni =2

<>

these electron configurations, the eighteen electron rule is satisfied and there is a signi-
ficant energy gap between HOMO and LUMO. For what metal will a similar energy gap be pro-

duced in the infinite species of 153 and 154 ? Starting with the case of 154 we need to

r'7
av

YAV

[}
.

<.

154

2.

<} gCgCZCZ

consider the five metal d orbitals 155 and the four cyclobutadiene orbitals of Fig. 3. We
have used 156 the alternative form of the degenerate pair of orbitals ¥, and Y, shown in
17. Symmetry arguments are useful here in simplifying this problem. Just as in the chain

of sp atoms noted above, we could separately treat the orbitals of O and T type, so here
we can classify both the metal d and cyclobutadiene orbitals in terms of their o, T and §

symmetry. Let us start off with the orbitals of o symmetry. The secular determinant is

Q

d—E 2iBsinka/2

= 0. (109)
—2iBsinka/2 o, —E

Here a, is the energy of the cyclobutadiene orbital ¥y (=a+2B in the notation of Sections
II and III), and oy is the d orbital Coulomb enmergy. Note that neither diagonal entry con-

tains any k dependence since we have ignored M—M and cyclobutadiene-cyclobutadiene inter-
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actions. B in equation (108) is the interaction integral between ¥, and 22, It is probably

quite small since the geometry is such that the cyclobutadiene orbitals lie close to the
SO
6/ 157

conical node in z° 157 which occurs at ©=54.73°. The 0 band structure then has a small

dispersion and probably looks like 158. The secular determinant for the 6 block will be

ay O

158

% T
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Ry =

very similar to equation (108) and B will again be small since the overlap between ¥, and
one of the § components is not very favorable. Only in the case of the T type interaction

is the interaction integral significant 159. The secular determinant is given by

ocd—E 2B8coska/2
= 0. (110)

2Bcoska/2 a, — E

In section 3.2 we looked at a problem of this type using perturbation theory. There are two
bands. The bottom of the upper one lies at Og and the top of the lower one lies at Uy
(See 67 and the associated discussion.) The band structure is then simply derived from

these results and is shown in 160.
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metal bands of D
atom 153

To fill all the bonding and nonbonding levels we need a total of twelve electrons per

unit, a metal atom from the iron group is required. Such a system however, would have a

2 and (x%—y2, xy)

zero band gap because of the touching of the (xz,yz) band and the =z
bands. In fact a numerical calculation, which models the cyclobutadienyl ring properly (the
carbon atoms do carry s orbitals) results in a pushing up of the (xy,yz) band at the zone
edge and an opening up of a band gap of about 1.5eV. The polymetalcyclopentadienyl system
153 presents a similar case. Analogous arguments lead to the prediction of a manganese group

metal for this polymer.

Another problem which may be tackled along similar lines is the generation of the band

structure of the hypothetical MH, system shown in 161. The chain is composed of edge-

H H
AP N A L_H. L H
Mo m- M;
X W S S BNy 82
H H H
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sharing MH, octahedra. First we have to decide on the basis set to use for the problem. As
we have seen in Section 3 the same result may be reached in a variety of different ways. Per
haps the easiest route for this example is to first of all set up the valence orbitals of the
butterfly MH, unit, 162. With HMH angles of 90° and 18C° this is very easy and is shown in
163. 22 is destabilized (by 2.5e; using the angular overlap model“) more than xy (by 1.5e.)

X
2 e e

and the three other d orbitals remain nonbonding. We know enough about energy bands by now

to be able to write down an approximate band structure. This is shown in 164.

ZZ
E
Xy
Xy
164
) -
< xz—yz
x2Z yz
yz =]
MH, &y xz— ol Sl e R
fragment
energies
n
Y K e fo

The energetic behavior of the levels with respect to k is easily understood. Recall that
whether maximum bonding or antibonding is found at the zone center just depends on whether

the overlap integral of one basis orbital is positive or negative respectively with its parc—
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ner in the next unit cell. (The pm orbitals of the polyacetylene chain is an example of the

former, the po orbitals of 147 and 148 an. example of the latter). Th P n he
2 . . . . .

z” and Xy bands is set by the sign and magnitude of the M—H interactions between cells,

¥ ar in maenitude) for xv

F er in magnitude) for xy.

/"
Fﬁ
(o))

about. However a pairing distortion 165 to 166 does stabilize the system considerably as

39

shown in 167 and a semiconductor is generated. This orbital problem is very similar®” to

1.2 2
L
x2-y2
y2 xz [ 1| yz Ldxz
(= ) -
mi
L e
]
x2-y2
166 165

that of NbX, (X = halogen) which forms chains of the type in 166. NbI, under pressure
becomes metallic. Just as in the case of elemental hydrogen (135, 136) the Peierls distortion

here may be reversed by the application of pressure.

Note that in the distortion shown in 166, and indeed in all of the distortions of the
Peierls type we have studied, the bandwidths of each of the components on distortion together
are less than the undistorted width. This arises as a simple consequence of the fact that the
overlap integrals decrease as the interatomic distance increases. The corresponding inter-

action matrix elements then become smaller on distortion.

In fact although the band structure of NbCl, looks very similar to that depicted in 164
the picture which emerges from a quantitative calculation3? is a little more complex. Our
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depiction of the dispersion behavior of the lower set of levels in 164 is perfectly fine for
an MH, chain, but with 7 bearing ligands the situation is more involved. The basis set of
orbitals now needs to include the effects of 7 interactions. With donor ligands the 'd'

orbitals are metal ligand antibonding and may be written as in 168—170. The overlap integral

yz gﬁg 168 Xz %&8 169 X2 -y® C&Qg 170

of 168 with its neighbor in the next cell contains a negligible metal-metal component (ignored
before) and a negative d—pT overlap. Maximum bonding is then assured at k=7/a, 169 is a
little problematical. Metal-Metal overlap is negative but d—pT overlap is positive. Calcu~
lations on this system show the two to virtually cancel and a flat band results. Similarly,
the overlap integral of 170 with its neighbor is the sum of good positive metal-ligand over-
laps. It then receives its maximum bonding at k=0. 171 shows the new result — very similar

to that of 164 but with a subtle difference in orbital labeling.

e

XZ

yz

0 n/a

Kk —=

A system where there are three bridging atoms occurs 172 in the chains of MX 4

stoichiometry that occur in BaMS , (M =1Ti,V, Ta) for example and also in a series of ternmary

AWM L
’/'M\/M\‘/

chlorides AMCl, (A =Cs,Rb,N(CH,),; M=V,Cr,Mn,Fe,Co,Ni,Cu)."" The orbitals we

M= Ze 172
\

will use for the MS3 unit, assuming SMS angles of 90°, are shown in 173. We have shown the

situation for an MH , unit for simplicity. There are two M—H o antibonding orbitals (desta-

S
%—,- = e

3
w

a, (z2?)

‘9 = ¢

bilized by l.Se(j using the angular overlap model) which form a degenerate pair and three
nonbonding d orbitals at much lower energy. (Only one component of each e pair is shown.)
The a, 2% orbital is nicely set up for good metal-metal interaction across the shared face
of the coordination octahedron of 172. Figure 13 shows the calculated band structure for

this system. It has similar features to that of the NbClL+ species we have just described.
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Fig. 13. The d-block bands of a face-sharing octahedral ijn— chain.
The energy variation with wavevector left and a block
diagram right. (Adapted from Ref. 40.)
174 shows how the bands split apart as a result of a pairing distortion 175 of the type des-
cribed extensively in this article. 174, in fact is the result of a numerical calculation for

a VSsz' chain. The shaded area indicates the bands which are doubly occupied. If the distor-

— 174

——

distortion

3 M 175
tion proceeds far enough then a Peierls insulator results. However BaVS; is a metal. Just

as in the molecular case where dynamic Jahn-Teller processes allow an umdistorted structure
to be observed, so too with its solid state equivalent. Although the theory of the distortion
indicates when it will occur, it is difficult to predict the size of the effect in general,
especially if, as in the present case, several bands overlap to complicate the picture. (See

also Table 4).

A slightly more complex problem lies in understanding the electronic structure of the

mixed valence PtII (L), . PtIV (L)L’ X;+ (X = halide) chains3? 177 which, with L=NH3 or

4
NEtH,, are present in Wolfram's red salt and Reihlen's green salt. These are obvious distor-

tions of the symmetric 'PtIH' structure 176. Let us start with the unit cell of 176 shown
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in 178. We saw the energy levels of the square planar ML, unit in 138. The only orbital
that we need to consider is z? since this is the only one with appreciable overlap with the

X orbitals. On X we need to include valence s and po orbitals, The secular determinant

Il rl_lx’/ \/{ 178

Iﬁaf\ o | v
V@‘Joél /| A

for this three orbital problem is simply constructed as in equation (111). Obviously we will

not try to solve this in closed form as it stands. First we will study the result obtained

by setting
| o
OLS—E 0 ZBSd coska/2
0 o —E —2B_,isinka/2| = 0 (111)
P pd
2Bsd coska/2 Zdel sinka/2 a4—E
o = Og, and equate both interaction integrals (Bsd=6pd=ﬁ), The solutions are easily
written down
E = oy (=ag)
(112)

(ocp+ocd) + ,/(ap—otd)‘+ 16 8¢

2
and show dramatically that none of the energy bands have any dispersion at all, i.e., there

E =

is no k dependence. Second we put ag =0 but allow Bsd#h de. The roots now become

E

]

op (=0g)
(113)

~ (o,p+ad) + \/(ap—ad)z+ 16[B§d—cosz(ka/2)(8pd—Bsd)z]

2

Now, arbitrarily assuming that [del > IBsd" we may draw out the band structure as in 179. By

expansion of equation (113) as a power series the roots are

_ 4(82  —cos?(ka/2) (83~ E34))

E= o (114)
o= ag
and 2 2 . 2 2
. A(de—cos (ka/l)(BPd_BSd)) PR
L = U.p T — {11>)
op ~ og
The result is actually reminiscent of the behavior we have just noted for NbCl, . Interaction
of z2 with the s orbital on X leads to a dispersion with a cos?(ka/2) dependence with

maximum bonding at k=0, but interaction of z? with the p orbital on X leads to a

sin?(ka/2) dependence with maximum bonding at k=T7/a. The result, if the two interactions

JPSSC 15:3-G
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are equal, is a dispersion-free band as we found above. The form of the wavefunctions at

the top and bottom of the 'z2' band are shown in 180 and 181 respectively. The oxidation
|cgo eol 180 |co e ]

It and thus this 'z2' band is half full of electronms.

state of the platinum in 176 is Pt
Figure 14 shows the result of an extended Hiickel calculation as the symmetric system 176 is
distorted to 177. The initially metallic state has become insulating and an energetic
stabilization has occurred. As in the case of NbI, the conductivity of these salts

increases markedly on the application of pressure.

Let us look in a little more detail at the form of the orbitals since it will give clues

ctoo cioojcp |—

zone edge the obvious choice of wavefunctions, intermediate in character between those at the
top and bottom of the band, has been made. As in all of the degenerate orbital problems we
have looked at so far, a linear combination of these two orbitals as in 183 and 184 leads to
another perfectly good pair. Now if the system is distorted slightly (176 -~ 177) then a band
gap opens up at the zone edge. 183 goes up in energy since the Pt—X distances decrease

around this metal atom and the antibonding interactions become stronger. 184 goes down in
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energy since the Pt-X distances around this metal atom increases with a concurrent weakening

of the Pt-X antibonding interactions. This is shown in 185 in an exaggerated way. As the

LNl -
o echoe

176 177

185

distortion proceeds the interaction of the z? orbital on the now plamar Pt atom with the
halogen orbitals of the bridge becomes small and the bandwidths of both the upper and lower
parts of this band become very narrow, as in Fig. 14, The lower band (now full) then corres-

ponds largely to a 22 orbital on the square planar Pt atom 186 which is now PtII. The

upper band (now empty) corresponds to a strongly antibonding orbital on the octahedral PtIV
center 187. The result is a classical mixed valence compound, PtII Lu-PtIV L, X,.
(a) -7sS _
x—y?
—ashk (b)
P 2? 20 ’w
_1ok
3
- Vv
w - Ee €
-2 Zzn
— 176 177
2k =
2 2=
—
XZ,y2
176 177

Fig. 14. (a) d-block bands of [Pt(NH;), + Pt(NH,),C1,] chains (176 left and
177 right). (b) The widths of the split 22 band as a function
of the distortion 176 > 177. (Adapted from Ref. 40.)
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OPKO 186 @O PO®mO 187
4 7|
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4.2 Three Dimensions

In three dimensions things get quite complicated but there are places where we may make

some simplifications to help us out. Firstly we will consider the simple cubic structure of

188. In many ways we may regard this as a simple sum of three one-dimensional chain problems,

E(k) = 2B(coska+ coskya + cosk,a) (116)

This leads to the dispersion curve in 189 where I', M, K and X represent the points
(kx,ky,kz) = (0,0,0)2n/a, (4,3,%3)271/7a, (%,%,0)27/a and (0,0,3%)2n/a, respectively.

e-68 ~

\
/4

@

©

a-68
X r M K

For three p orbitals located on a single atom another simple result applies. If we

neglect pT—pT interaction 190 between orbitals on adjacent atoms and only consider O over-
v ?? 0 e OC@ @ 1l
A

lap, 191 then the energy dependence on k for the three p orbitals is, from 148 simply

Px E(E) =a ~2Bcoskya
Py E(k) =Ot—-28coskya (117)
P, E(k) =a~2Bcoskza .

A picture similar to that for the s orbital problem of 189 is shown in 192. Just as the
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half-filled one-dimensional chain of Section 3 underwent a Peierls distortion, so we expect
that the simple cubic lattice with three p electrons would similarly be unstable. The struc-
tures of elemental arsenic and black phosphorus may be viewed in this way. Let us assume for
simplicity that two electrons per atom reside in a deep lying valence s orbital. For these
Group V elements, this leaves three electrons to half occupy the three p orbitals. 193
shows how the energy bands change on a distortion which involves pairing up all the atoms

along the x, y and z directions. There are several ways in which the pairing up may be

———pem ey

SNNEK IE

193

[P
SHIpte arsenic
cubic

done. It may be shown™!

that there are a total of 36 different possibilities for a simple
cubic cell containing eight atoms. Two of these correspond to the black phosphorus 194 and
arsenic 195 structures, which we show schematically. On application of pressure to black
phosphorus the metallic simple cubic structure is regenerated.L+2 So, as in several examples

we have seen earlier, the Peierls distortion is reversed by the application of pressure.

For the Group IV elements these ideas lead”® to the prediction of a structure where the
bonds have broken along two Cartesian directions only. The band description is shown in 196
We have artificially half-filled two p orbitals at the simple cubic structure and left the
third vacant. One way of executing the distortion leads to the (metallic) white tin structure

shown in 197, structurally related to diamond 198.

Can we stabilize the d u uctu g
e

in an exactly analogous way described above for molecules and simpler solids ? The answer is
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198
yes but in practice there is a twist. 199 shows what happens to the energy bands of the
simple cubic structure when we make ...XYXY... substitutions in all three perpendicular

chains. Geometrically the result is production of the rocksalt structure. Eventually if the

R

simple
cubic

rocksalt

electronegativity difference is large enough then both the s and p orbitals of X, the least
electronegative atoms rise above the orbitals of Y. Using these ideas we can see that solids
with four electrons per atom (or eight electrons per XY atom pair, the so-called octets),
unstable at the left-hand side of 199 are stabilized with respect to distortion by increasing
the XY electronegativity difference. It is interesting tonote that all octets with the
NaCl structure have“" the atomic orbital arrangement shown at the right-hand side of the dia-
gram (i.e., one where both s, p on X lie higher than s, p on Y). Octets with other orbital
patterns, and therefore with the s ,p orbitals on X close to those on Y, invariably have
either the sphalerite or wurtzite structure. Recall that the diamond structure (degenerate
sphalerite) is geometrically close to that of white tin as we described above (187 and 198).
Clearly we are not in a position to discuss the energetic stability of one geometry out of
white tin, diamond (hexagpnal or cubic), Si(III), or graphite over another for these systems

but it is interesting to be able to cast some light on their electronic structure.
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From the simple cubic structure we move to the body-centered cubic (becc) and face-

E(k) = 0L+26[cos(}<_-_r_1)+cos(5-£2)+cos(5-£3)+cos(§-£q)] (118)
where
r, = [a1+a2+a3]; r, = [al—a2+a3];
(119)
ry = [—al+a2+a3] ; r, = [—-al—a2+ a3] .

A little trigonometry reduces this to

E(k) = a+ SB[Cos(IS(a)xcos(kya))(cos(kza)] (121)

For the octahedral neighbors the problem is identical to that of the simple cubic lattice and
we may write

E(k}) = o+ 28’ [cos(kxa) +cos(k,a) +cos(kza)] . (121)

fce

201. Now we may write down the energy dependence on k for an s band as

E(k) =a+ ZB[COS(E'EI) +cos(5-£2)+cos(5-£3)+cos(E-Eu)+cos(5-£5)+cos(5-£6) (122)
where
;= (a +8,)/25 xr,=(a —a,)/25 r,;=1(a,+a,)/2; (123)
1, = (8,—28,)/2; o= (a —a;)/2; re = {2, —2g;)/2.

Again a little trigonometry reduces this to
E(k) = a+ AB[cos(kxa)cos(kya) +cos(kya)cos(k,a) +cos(kya)cos(kza)] (124)
For illustrative purposes we will use t

s
3.1, to generate a set of representative energy levels from these bands. If we want to do

1 2 . R T 1. cm a Vawmegie wielaan o€ L o f il Lo mamm mwm 222 TT i Ll l PR .

rne JOD properly we wou use d J.d.LgEL unper oL 5 pUL 1ILS DUL 1IELE wWE wWilill ude tLuce E poiurs
111 3 3 3 1 3 3 3 011 .

namely (5,5,%5)s {3-3-3)> (3-5-5) and (3,5,35). By symetry we need to weight the last
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two points three times as heavily as the first two. (In fact the choice of special points
actually depends upon the nature of the lattice. This occurs because the shape of the
Brillouin zones for the simple cubic, body-centered cubic and face-centered cubic lattices
are different. They are shown in Ref. 29. As it turns out, because of our choice of a single
band based on an s orbital, we can use the same set of values for all three structures.) The

levels which result are shown in 202. Notice that the levels for the simple cubic structure

simple fcc bee
cubic -212 By-3/28},
326,
b g, -28, -2/2B,+128,
= L}
E = ]
e — 202
g?. 212;35/2 By
3/28,
68, 2J2R.+3 /28R
-— VoD ERS)
and the becc structure (if either Bb or Bg = 0) lie symmetrically disposed about E=o0a, but

that those for the fcc structure show no such symmetry. Similar situations were found in
molecules in Section 3 and the explanation behind these observations is the same as for them.
The simple cubic lattice is bipartite as is the network produced by connecting the central
atom in the bcec structure to its first nearest neighbors. The fcc lattice (and the hcp
analog too) is not bipartite and so the level structure lacks this mirror symmetry. However
for each of the three structures equation (58) holds nicely after we divide out the left-hand
side by 8. (There are eight sets of levels included by the special points.) For the simple
cubic structure M = 683 and for the fcc structures PI=IZB§. For the cubal neighbors of the

bce structure M = 86b2 and for the octahedral neighbors M= 6B£2.

In estimating the relative stabilities of the three structures as a function of band
filling we first need an estimate of the four parameters SS, Bf, Bb and Bé. These will
vary from system to system. Assuming that all three structures have the same density, then
the interatomic distance is much smaller in the simple cubic structure and so we know that
BS>>Bf, By- Similar distance arguments lead to Bb>>8é. 203 shows an energy difference
curve between the three structures using the parameters shown (arbitrary units). A very
interesting result is the domination of this picture by the stability of the fcc structure
at the quarter filled band and the emergence of the simple cubic structure for the almost
full band. Unfortunately, as is often the case with such ultra-simple examples, there is no
series of structures we can tie in with these results. But the indications both here, and
above, are quite clear. The most stable structure at one band filling may not always be the
lowest energy structure at another filling. Of course molecular chemists are very familiar
with structural changes occurring as a result of a change in electron count. For example,
the geometries of the AF, molecules are linear for A=Be, Xe (two and five valence electron
pairs, respectively) but nonlinear for A=8Si, 0 (three and four valence electron pairs,

respectively).
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By = 1.4
By = 1.IO more stable than
= = simple cubic
+ Bb ZBb, .12 p
203
AE t —m= band filling
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bcc-sc ble th
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et —————
fce bcc sC
Table 5. The Structures of the Transition Metals
Period N 3 4 5 6 7 8 9 10 11
3d, 4s Sc Ti v Cr (Mn) (Fe) (Co) Ni Cu
4d , 5s Y Zr Nb Mo Tc Ru Rh Pd Ag
5d, 6s (La) Hf Ta W Re Os Ir Pt Au
Structure hep hcp bcc bce hecp hep fece fce fce

As a final series of examples which show how an extension of the ideas presented in this
article lead to some very dramatic results, ‘we very briefly describe the problem of the
crystal structures of the transition elements. Table 5 shows how the most stable structure
varies across the Periodic Table. Note that, with the exception of the magnetic elements, Mn,
Fe and Co, the structure is determined by the column of the Periodic Table. The sequence
that is found is hecp > bcc+ hep + fcc  as the number of electrons increases, or in the lan-
guange used here, as the d band is filled with electrons. The detailed discussion of this
problem, although fascinating, is beyond the scope of this review. However, in Fig. 15 we

show the results“® of simple Hickel calculations for the bcc, fcc and hcp structures.

Q -
é 0 \de
N \ 7/
é [
x hep-fee
w
<
bee-fee

Fig. 15. Calculated variation in lowest energy crystal structure of the
transition metals with band filling using a Hickel model.
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The computation is more difficult than in the examples we have used before. Here there are
five d orbitals per metal atom instead of the single s or pm orbital. In addition the
overlap integrals between the d orbitals on one atom and those on its neighbors are depen-
dent upon the d orbitals concerned, and the geometrical location of the central atom with
respect to its neighbors. For example the overlap integral between the two orbitals in 204

is different to that between those in 205. But, taking this into account, and writing the

M\

QS QS S

Lo Ya Y, | ~
ﬁ . (4% d § % A4 \

interaction integrals, B« overlap integral leads to the plot of Fig. 15 for the energy

[
(3]

differences between the three structures. Now, the current view"® of the electronic configu-
ration of the solid metals is one where ~1 electron resides in an s orbital and the other
valence electrons occupy d orbitals. So the electronic configuration of elemental chromium
is represented as sldd, Ignoring the effect of the lone s electron on the structure we
can see from Fig. 15 that the bcc structure is indeed predicted for chromium with this con-
figuration., This is the structure actually found (Table 5). In general the agreement
between the observed and calculated structures is quite good. There are some problems with
such a d-orbital-only-model at the right-hand side of the series where the bce rather than

the fcc structure is calculated to be more stable.

shown in 206 the top group of occupied levels contain unpaired electrons. Under pressure the

magnetic | ¢ ----| non-magnetic
. . I'577] 206 . 207
high-spin | 4} | = tl |1ow-spin =
hcp structure, predicted in Fig. 15, is found. It is nonmagnetic 207. By knowing how many

unpaired electrons to include in 206 for iron we can recalculate the set of curves of Fig. 15.

at d’ the bec structure is fout1d,L*6’L'7

in nice agreement with experiment. The behavior in
206 and 207 is similar to the stereochemical observations associated with high and low spin
molecular complexes. In 208 and 209 we show the relevant orbital patterns and occupancy of

four coordinate d° systems. One is high spin and distorted tetrahedral and the other low

¥k

high spin 208

H



252 J.K. Burdett

L

low spin 209
TR

e
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spin and square planar. Notice the similarity between the electron occupancy patterns in 206
and 208 and also in 207 and 209, Associated with the spin change in both cases is a

geometrical change.

Tinnlley woa shaw in Tig 16 +ha anavoy diffavranca ocnvriun nalosnl nfn}lqa Far tern AR al1Awra

Finally we show in Fig. 16 the energy difference curve calculated - for two AB alloys
derived from the bcc structure as a function of band filling. The CsCl structure may be
racardad na ariaine via the atackine of qouare netrae in an YVYV anacuence and +he OCuTi gtwiin-
regarded as arising via ta€ stallking oI sguare mneécs 1n a4l alal S&guence ana tneé vl suiud

ture as a result of an analogous XXYY stacking. Notice that the shape of the energy differ-

I

Z

N
w
s
e ————
un

| O
| 3
L~
| o
w
—_
+ O
—_

p

S T/

CuTi

nc
“U.0

Fig. 16. Energy difference curve*® AE between CsCl and CuTi for transition
metal-transition metal alloys as a function of the average number of
d+s electrons per atom (N). In the top part of the diagram the
CsCl structure is more stable and at the bottom the CuTi structure
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5. CONCLUSION

In this article the emphasis has lain very much with very simple theoretical ideas,
based largely on the Huckel simplification of the orbital problem. We have used this approach
because it has provided a vehicle with which to stress the strong underlying symmetry and
connectivity aspects of the level structures we have studied. So we have not just reported
numbers and left the concepts buried in a machine. The cost of such a treatment has of course
been virtually a complete lack of numerology of any type. The most obvious absence from our
discussion of the planar hydrocarbons has been detailed discussion of the role of the O mani-
fold of orbitals, both in polyacetylene and in the ladders and sheets derived from it. How
do they come into the picture energetically ? Do they influence the relative energies of
these structures ? In general, the mixing together of s and p or even s, p and d orbitals
requires numerical solution of the electronic problem. The natural extension of the ideas
described in this article is use of the extended Hiuckel method, where the determinant of equa-
tion (71) is solved for a basis set containing all the valence orbitals of the unit cell. All
of the band structures we have shown as Figures have been obtained using this method. 1In
recent years this method, and variation on it, has been a popular one for thecrists of vary-
ing persuasions. Symmetry considerations, however, transcend the calculational method. The
band touching at the point K in the Brillouin zone found in 119 is reproduced in Fig. 10.
Degeneracies appear in the O manifold too at the point [ which also have an underlying

symmetry explanation.

We need to go beyond the one-electron model to look at systems with different spin
configurations. The simple ideas presented here will not allow the reader to decide which
out of 206 or 207 will be the more stable arrangement for elemental iron under ambient
conditions. Another problem to be answered is the prediction of the pressure for the onset
of metallic behavior in any of the one-dimensional Pelerls distorted solids we have
discussed. All of these questions require the use of high quality numerical calculations
where the one~ and two-electron terms in the energy are properly taken into account. Such
methods are not generally available at present for systems of any complexity. However
pseudopotential-based calculations appear quite promising and recently have been very success-

49,50 powever the size of the

fully applied to the coordination number problem in the octets.
problem that may be tackled is still quite small as a direct result of computational demands.
There is another problem with such calculations however, a philosophical one. While the
agreement with experiment is spectacular in numerical terms the understanding of why the
results come out the way they do is lacking. They have been described®? as complex ideas
for simple systems and this is one big problem which besets numerical calculations in general
How does one dig out of the numerology concepts and pictures which the nonspecialist can

appreciate ? The ideas of symmetry and connectivity which we have stressed in this article,

may be a useful starting point.>!
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