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FIGURE 1.27 The radial distribution
function tells us the probability density
for finding an electron at a given radius
regardless of the direction. The graph
shows the radial distribution function for
the 1s-, 2s-, and 3s-orbitals in hydrogen.
Note how the most probable radius
(corresponding to the greatest maximum)
increases as n increases.

What is the three-dimensional
appearance of an s-orbital?

FIGURE 1.28 The three s-orbitals of

lowest energy. The simplest way of
drawing an atomic orbital is as a

>

MediaLink Animation: Figure 1.28 s-Orbitals
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boundary surface, a surface within which
there is a high probability (typically 90%)
of finding the electron. We shall use blue
to denote s-orbitals, but that color is only
an aid to their identification. The shading
within the boundary surfaces is an
approximate indication of the electron
density at each point.

SELF-TEST 1.10A Calculate the same ratio but for the more distant point at » = 2aj,
twice as far from the nucleus.

[Answer: 0.018]

| SELE-TEST 1.10B Calculate the same ratio but for a point at 3a, from the nucleus.

The radial distribution function, P, is closely related to the wavefunction s =
RY and is given by

P(r) = r*R(r) (20a)
For s-orbitals, this expression turns out to be the same as

P(r) = 4ar*(r)? (20b)*

and this expression is the form that you will normally see used; however, it applies
only to s-orbitals, whereas Eq. 20a applies to any kind of orbital. The radial dis-
tribution function has a very special significance: it tells us the probability that the
electron will be found at a particular radius regardless of the direction. Specifi-
cally, the probability that the electron will be found anywhere in a thin shell of
radius 7 and thickness 8 is given by P(r)dr (Fig. 1.27). Be careful to distinguish
the radial distribution function from the wavefunction and its square, the proba-
bility density:

The wavefunction itself tells us, through {i(7)*3V, the probability of finding
the electron in the small volume 8V at a particular location (specified by

7, 0, and &).

The radial distribution function tells us, through P(r)3r, the probability of
finding the electron in the range of radii 87, at a particular radius,
regardless of the values of 6 and ¢.

The radial distribution function for the population of the Earth, for instance, is
zero up to about 6400 km from the center of the Earth, rises sharply, and then
falls back to almost zero (to take into account the small number of people who
are on mountains or flying in airplanes).

Note that for all orbitals, not just s-orbitals, P is zero at the nucleus, simply
because the shell in which we are looking for the electron has shrunk to zero size.
(The probability density for an s-orbital is nonzero at the nucleus, but here we are
multiplying it by a volume that becomes zero at the nucleus.) As 7 increases, the
value of 4mr* increases (the shell is getting bigger), but, for a 1s-orbital, the square
of the wavefunction, y(r)?, falls toward zero; as a result, the product of 4m7> and
i(r)* starts off at zero, goes through a maximum, and then declines to zero. The
value of P is a maximum at a,, the Bohr radius. Therefore, the Bohr radius corre-
sponds to the radius at which an electron in a 1s-orbital is most likely to be found.

Instead of drawing the s-orbital as a cloud, chemists usually draw its bound-
ary surface, a surface that encloses the densest regions of the cloud. However,
although the boundary surface is easier to draw, it does not give the best picture
of an atom; an atom has fuzzy edges and is not as smooth as the boundary surface
might suggest. An electron is likely to be found only inside the boundary surface
of the orbital. An s-orbital has a spherical boundary surface (Fig. 1.28), because
the electron cloud is spherical. s-Orbitals ‘with higher energies have spherical
boundary surfaces of greater diameter. They also have a more complicated radial
variation with nodes at locations that can be found by examining the wavefunc-
tions (Fig. 1.29).

A subshell with / = 1 consists of three p-orbitals. A p-orbital has two lobes of
opposite sign (Fig. 1.30). The two lobes are separated by a planar region called a
nodal plane, which cuts through the nucleus and on which = 0. A p-electron
will never be found on this plane, and so a p-electron is never found at the
nucleus. This difference from s-orbitals will prove to be of major importance for
understanding the structure of the periodic table and stems from the fact that an
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FIGURE 1.29 The radial wavefunctions of the first three s-orbitals of a hydrogen atom. Note that
the number of radial nodes increases (as n — 1), as does the average distance of the electr.on from the
nucleus (compare with Fig. 1.27). Because the probability density is given by ¥, all s-orbitals
correspond to a nonzero probability density at the nucleus.

electron in a p-orbital has nonzero orbital angular momentum that flings it away
from the nucleus. There are three p-orbitals in each subshell, corresponding to the
quantum numbers 72, = +1, 0, —1. However, chemists commonly refer to the
orbitals according to the axes along which the lobes lie; hence, we refer to p,, p,,
and p, orbitals (Fig. 1.31). .

A subshell with / = 2 consists of five d-orbitals. Each d-orbital has four lobes,
except for the orbital designated d,2, which has a more complicated shape (Fig.
1.32). A subshell with [ = 3 consists of seven f-orbitals with even more compli-
cated shapes (Fig. 1.33). -

The total number of orbitals in a shell with principal quantum number # is #~.
To confirm this rule, we need to recall that / has integer values from 0 to # — 1 and
that the number of orbitals in a subshell for a given value of / is 2/ + 1. For
ir;stance, for n = 4, there are four subshells with / = 0, 1, 2, 3, consisting of one s-
orbital, three p-orbitals, five d-orbitals, and seven f-orbitals, respectively. There are
therefore 1 + 3 + 4 + 5 + 7 = 16, or 4%, orbitals in the shell with n = 4 (Fig. 1.34).

The location of an electron in an atom is described by a wavefunction known
as an atomic orbital; atomic orbitals are designated by the quantum numbers
n, I, and m; and fall into shells and subshells as summarized in Fig. 1.25.
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There is no direct relation between
the values of m; and the x, y, z
designation of the orbitals: the
orbitals labeled with the axes are
combinations of the orbitals labeled
with the quantum number ;.

How do the
three p-orbitals
differ?

Nodal
plane

FIGURE 1.31 There are three p-
orbitals of a given energy, and they lie
along three perpendicular axes. We shall
use yellow to indicate p-orbitals: dark
yellow for the positive lobe and light
yellow for the negative lobe.
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Which d-orbitals have significant
electron density in the xy-plane?

Mediakink Animation: Figure 1.32 d-Orbitals
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FIGURE 1.32 The boundary surface of a d-orbital is more complicated than that of an s- or a p-

orbital. There are, in fact, five d-orbitals of a given energy; four of them have four lobes, one is slightly

different. In each case, an electron that occupies a d-orbital will not be found at the nucleus. We
shall use orange to indicate d-orbitals: dark orange for the positive lobes, and light orange for the
negative lobes.
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FIGURE 1.33 The seven forbitals of a shell (with n = 3) have a very complex appearance. Their
detailed form will not be used again in this text. However, their existence is important for
understanding the periodic table, the presence of the lanthanides and actinides, and the properties of

the later d-block elements. A darker color denotes a positive lobe, a lighter color a negative lobe.
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FIGURE 1.34 There are 16 orbitals in the
shell with n = 4, each of which can hold
two electrons (see Section 1.12), for a total 4s
of 32 electrons.
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1.9 Electron Spin

Schrédinger’s calculation of the energies of the hydrogen orbitals was a milestone
in the development of modern atomic theory. Yet the observed spectral lines did
not have exactly the frequencies he predicted. In 1925, two Dutch-American
physicists, Samuel Goudsmit and George Uhlenbeck, proposed an explanation for
the tiny deviations that had been observed. They suggested that an electron
behaves in some respects like a spinning sphere, something like a planet rotating
on its axis. This property is called spin.
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&‘l .1 HOW DO WE KNOW . . . THAT AN ELECTRON HAS SPIN?

Electron spin was first detected experimentally by two
German scientists, Otto Stern and Walter Gerlach, in 1920.
They made use of the fact that a moving electric charge gen-
erates a magnetic field, and so a spinning electron should
behave like a tiny bar magnet.

In their experiment (see illustration), Stern and Gerlach
removed all the air from a container and set up a highly
nonuniform magnetic field across it. They then shot a narrow

stream of silver atoms through the container toward a detec-

tor. For reasons that are explained in Section 1.12, a silver
atom has one unpaired electron, with its remaining 46 elec-
trons paired. The atom therefore behaves like a single unpaired
electron riding on a heavy platform, the rest of the atom.

Collection plate

Atom beam

Magnet

A schematic representation of the apparatus used by Stern and
Gerlach. In the experiment, a stream of atoms splits into two as it
passes between the poles of a magnet. The atoms in one stream have
an odd T electron, and those in the other an odd { electron.

If a spinning electron behaved like a spinning ball, the
axis of spin could point in any direction. The electron
would behave like a bar magnet that could have any orien-
tation relative to the applied magnetic field. In that case, a
broad band of silver atoms should appear at the detector,
because the field would push the silver atoms by different
amounts according to the orientation of the spin. Indeed,
that is exactly what Stern and Gerlach observed when they
first carried out the experiment.

However, the first results were misleading. The experi-
ment is difficult because the atoms collide with one another
in the beam. An atom moving in one direction might easily
be knocked by its neighbors into a different direction. When
Stern and Gerlach repeated their experiment, they used a
much less dense beam of atoms, thereby reducing the num-
ber of collisions between the atoms. They now saw only two
narrow bands. One band consisted of atoms flying through
the magnetic field with one orientation of their spin; the
other band consisted of the atoms with opposite spin. The
two narrow bands confirmed not only that an electron has
spin but also that it can have only two orientations.

Electron spin is the basis of the experimental technique
called electron paramagnetic resonance (EPR), which is used
to study the structures and motions of molecules and ions that
have unpaired electrons. This technique is based on detecting
the energy needed to flip an electron between its two spin ori-
entations. Like Stern and Gerlach’s experiment, it works only
with ions or mdlecules that have an unpaired electron.

According to quantum mechanics, an electron has two spin states, represented

by the arrows T and { or the Greek letters o and B. We can think of an electron as
being able to spin counterclockwise at a certain rate (the T state) or clockwise at
exactly the same rate (the | state). These two spin states are distinguished by a
fourth quantum number, the spin magnetic quantum number, 7z, This quantum
number can have only two values: +3 indicates an T electron and —1 indicates a
| electron (Fig. 1.35). Box 1.1 describes an experiment that confirmed these prop-
erties of electron spin.

An electron has the property of spin; the spin is described by the quantum
number my, which may have one of two values.

1.10 The Electronic Structure of Hydrogen

Let’s review what we now know about the hydrogen atom by imagining what
happens to its electron as the atom acquires energy. Initially, the electron is in the
lowest energy level, the ground state of the atom, with # = 1. The only orbital
with this energy is the 1s-orbital; we say that the electron occupies a 1s-orbital or
that it is a “Is-clectron.” The electron in the ground state of a hydrogen atom is
described by the following values of the four quantum numbers:

n=1 I=0 m; =0 m, = +1or —3

The electron can have either spin state.

When the atom acquires enough energy (by absorbing a photon of radiation,
for instance) for its electron to reach the shell with 7 = 2, it can occupy any of the
four orbitals in that shell. There are one 2s- and three 2p-orbitals in this shell; in

FIGURE 1.35 The two spin states of
an electron can be represented as
clockwise or counterclockwise rotation
around an axis passing through the
electron. The two states are identified by
the quantum number m, and depicted by
the arrows shown on the right.
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Many-electron atoms are also called
polyelectron atoms.

Along with code breakers and
weather forecasters, chemists are
now among the heaviest users of
computers, which they use to
calculate the detailed electronic
structures of atoms and molecules.

hydrogen, they all have the same energy. When an electron is described by one
of these wavefunctions, we say that it “occupies” a 2s-orbital or one of the
2p-orbitals or that it is a 2s- or 2p-electron. The average distance of an electron
from the nucleus when it occupies any of the orbitals in the shell with » = 2 is
greater than when # = 1, and so we can think of the atom as swelling up as it is
excited energetically. When the atom acquires even more energy, the electron
moves into the shell with #» = 3; the atom is now even larger. In this shell, the elec-
tron can occupy any of nine orbitals (one 3s-, three 3p-, and five 3d-orbitals).
More energy moves the electron still farther from the nucleus to the #n = 4 shell,
where sixteen orbitals are available (one 4s-, three 4p-, five 4d-, and seven
4f-orbitals).

The state of an electron in a bydrogen atom is defined by the four quantum
numbers n, I, my, and m; as the value of n increases, the size of the atom
increases.

SELF-TEST 1.11A The three quantum numbers for an electron in a hydrogen atom in

a certain state are n = 4, [ = 2, and m; = —1. In what type of orbital is the electron
located?

[Answer: 4d)
SELF-TEST 1.11B The three quantum numbers for an electron in a hydrogen atom in
a certain state are n = 3,/ = 1, and m; = —1. In what type of orbital is the electron
located?

THE STRUCTURES OF MANY-ELECTRON ATOMS

All neutral atoms other than hydrogen have more than one electron. A neutral
atom of an element with atomic number Z > 1 has Z electrons. Such an atom is a
many-electron atom, an atom with more than one electron. In the next three sec-
tions, we build on what we have learned about the hydrogen atom to see how the
presence of more than one electron affects the energies of atomic orbitals. The
resulting electronic structures are the key to the periodic properties of the ele-
ments and the abilities of atoms to form chemical bonds.

1.11 Orbital Energies

The electrons in a many-electron atom occupy orbitals like those of hydrogen.
However, the energies of these orbitals are not the same as those for a hydrogen
atom. The nucleus of a many-electron atom is more highly charged than the
hydrogen nucleus, and the greater charge attracts electrons more strongly and
hence lowers their energy. However, the electrons also repel one another; this
repulsion opposes the nuclear attraction and raises the energies of the orbitals. In
a helium atom, for instance, with two electrons, the charge of the nucleus is +2e
and the total potential energy is given by three terms:

attraction attraction repulsion
— —y
2e% 26 e
V= + (21)

4‘1T807"1 471'807‘2 4"“'807’12

where 7, is the distance of electron 1 from the nucleus, 7, is the distance of elec-
tron 2 from the nucleus, and 7y, is the distance between the two electrons. The
two terms with negative signs (indicating that the energy falls as 7; or 7, decreases)
represent the attractions between the nucleus and the two electrons. The term
with a positive sign (indicating an increase in energy as ry, decreases) represents
the repulsion between the two electrons. The Schrodinger equation based on this
potential energy is impossibly difficult to solve exactly, but highly accurate numer-
ical solutions can be obtained by using computers.

The number of electrons in an atom affects the properties of the atom. The
hydrogen atom, with one electron, has no electron—electron repulsions; we have

FIGURE 1.36 The relative
energies of the shells, subshells,
and orbitals in a many-electron
atom. Each of the boxes can
hold at most two electrons.
Note the change in the order
of energies of the 3d- and
4s-orbitals after Z = 20.
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seen that all the orbitals of a given shell in the hydrogen atom are degenerate. For
instance, the 2s-orbital and all three 2p-orbitals have the same energy. In many-
electron atoms, however, the results of spectroscopic experiments and calculations
show that electron—electron repulsions cause the energy of a 2p-orbital to be
higher than that of a 2s-orbital. Similarly, in the #z = 3 shell, the three 3p-orbitals
lie higher than the 3s-orbital, and the five 3d-orbitals lie higher still (Fig. 1.36).
How can we explain these energy differences? .

As well as being attracted by the nucleus, each electron in a many-electron
atom is repelled by the other electrons present. As a result, it is less tightly bound
to the nucleus than it would be if those other electrons were absent. We say that
each electron is shielded from the full attraction of the nucleus by the other elec-
trons in the atom. The shielding effectively reduces the pull of the nucleus on an
electron. The effective nuclear charge, Z, e, experienced by the electron is always
less than the actual nuclear charge, Ze, because the electron—electron repulsions
work against the pull of the nucleus. A very approximate form of the energy of an
electron in a many-electron atom is a version of Eq. 16b in which the true atomic
number is replaced by the effective atomic number:

_Z'hR

n ) (22)

18

Note that the other electrons do not “block” the influence of the nucleus; they
simply provide additional repulsive coulombic interactions that partly counteract
the pull of the nucleus. For example, the pull of the nucleus on an electron in the
helium dtom is less than its charge of +2 would exert but greater than the net
charge of +1 that we would expect if each electron balanced one positive charge
exactly.

An s-electron of any shell can be found very close to the nucleus (remember
that \? for an s-orbital is nonzero at the nucleus), and so we say that it can pene-
trate through the inner shells. A p-electron penetrates much less because its orbital
angular momentum prevents it from approaching close to the nucleus (Fig. 1.37).
We have seen that its wavefunction has a node passing through the nucleus, and
80 there is zero probability density for finding a p-electron at the nucleus. Because
d p-electron penetrates less than an s-electron through the inner shells of the atom,
It1s more effectively shielded from the nucleus and hence experiences a smaller
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FIGURE 1.37 The radial 0.6
distribution functions for s-,
p-, and d-orbitals in the first
three shells of a hydrogen ﬂ ‘
atom. Note that the 0.5 H
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effective nuclear charge than an s-electron does. In other words, an s-electron is
bound more tightly than a p-electron and has a slightly lower (more negative)
energy. A d-electron is bound less tightly than a p-electron of the same shell
because its orbital angular momentum is higher and it is therefore even less able
to approach the nucleus closely. That is, d-electrons are higher in energy than
p-electrons of the same shell, which are in turn higher in energy than s-electrons
of that shell.

The effects of penetration and shielding can be large. A 4s-electron generally
has a much lower energy than that of a 4p- or 4d-electron; it may even have lower
energy than that of a 3d-electron of the same atom (see Fig. 1.36). The precise
ordering of orbitals depends on the number of electrons in the atom, as we shall
see in the next section.

In a many-electron atom, because of the effects of penetration and shielding,
the order of energies of orbitals in a given shell is typically s <p < d < f.

1.12 The Building-Up Principle

The electronic structure of an atom determines its chemical properties, and so we
need to be able to describe that structure. To do so, we write the electron config-
uration of the atom—a list of all its occupied orbitals, with the numbers of elec-
trons that each one contains. In the ground state of a many-electron atom, the
electrons occupy atomic orbitals in such a way that the total energy of the atom is
a minimum. At first sight, we might expect an atom to have its lowest energy
when all its electrons are in the lowest energy orbital (the 1s-orbital), but except
for hydrogen and helium, which have no more than two electrons, that can never
happen. In 1925, the Austrian scientist Wolfgang Pauli discovered a general and
very fundamental rule about electrons and orbitals that is now known as the Pauli
exclusion principle:

e No more than two electrons may occupy any given orbital. When two electrons
do occupy one orbital, their spins must be paired.

FIGURE 1.38 (a) Two electrons are said to be paired if they have opposite spins (one clockwise,
the other counterclockwise). (b) Two electrons are classified as having parallel spins if their spins are
in the same direction; in this case, both 1.

The spins of two electrons are said to be paired if one is T and the other | (Fig.
1.38). Paired spins are denoted T, and electrons with paired spins have spin mag-
netic quantum numbers of opposite sign. Because an atomic orbital is designated
by three quantum numbers (7, I, and 7)) and the two spin states are specified by a
fourth quantum number, 7z, another way of expressing the Pauli exclusion prin-
ciple for atoms is

e No two electrons in an atom can have the same set of four quantum numbers.

The exclusion principle implies that each atomic orbital can hold no more than
two electrons.

The hydrogen atom in its ground state has one electron in the 1s-orbital. To
show this structure, we place a single arrow in the 1s-orbital in a “box diagram,”
which shows each orbital as a box that can be occupied by at most two electrons
(see diagram 1, which is a fragment of Fig. 1.36). We then report its configuration
as 1s' (“one s one”). In the ground state of a helium (He) atom (Z = 2), both elec-
trons are in a 1s-orbital, which is reported as 1s* (“one s two”). As we see in (2),
the two electrons are paired. At this point, the 1s-orbital and the shell with » = 1
are fully occupied. We say that the helium atom has a closed shell, a shell con-
taining the maximum number of electrons allowed by the exclusion principle.

Lithium (Z = 3) has three electrons. Two electrons occupy the 1s-orbital and
complete the # = 1 shell. The third electron must occupy the next available
orbital up the ladder of energy levels, the 2s-orbital (see Fig. 1.36). The ground
state of a lithium (Li) atom is therefore 1s*2s' (3). We can think of this atom as
consisting of a core made up of the inner heliumlike closed shell, the 1s* core,
which we denote [He], surrounded by an outer shell containing a higher-energy
electron. Therefore, the electron configuration of lithium is [He]2s'. Electrons in
ghe outermost shell are called valence electrons. In general, only valence electrons
can be lost in chemical reactions, because core electrons (those in lower-energy
orbitals) are too tightly bound. Thus, lithium loses only one electron when it
forms compounds; it forms Li* ions, rather than Li*™ or Li** ions.

The element with Z = 4 is beryllium (Be), with four electrons. The first three
electrons form the configuration 1s?2s', like lithium. The fourth electron pairs
with the 2s-electron, giving the configuration 1s22s%, or more simply [He]2s* (4).
A beryllium atom therefore has a heliumlike core surrounded by a valence shell of
two paired electrons. Like lithium—and for the same reason—a Be atom can lose
only its valence electrons in chemical reactions. Thus, it loses both 2s-electrons to
form a Be?* jon. '

Boron (Z = 5) has five electrons. Two enter the 1s-orbital and complete the #
= 1 shell. Two enter the 2s-orbital. The fifth electron occupies an orbital of the
next available subshell, which Fig. 1.36 shows is a 2p-orbital. This arrangement
of electrons is reported as the configuration 1s22s%2p" or [He]2s%2p" (5).

j We need to make another decision at carbon (Z = 6): does the sixth electron
Join the one already in the 2p-orbital or does it enter a different 2p-orbital?
(Remember, there are three p-orbitals in the subshell, all of the same energy.) To
answer this question, we note that electrons are farther from each other and repel
each other less when they occupy different p-orbitals than when they occupy the
same orbital. So the sixth electron goes into an empty 2p-orbital, and the ground
State of carbon is 152252217)(12[)},1 (6). We write out the individual orbitals like this
only when we need to emphasize that electrons occupy different orbitals within a
subshell. In most cases, we can write the shorter form, such as [He]2s*2p?. Note
that in the orbital diagram we have drawn the two 2p-electrons with parallel spins
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The outermost electrons are used in
the formation of chemical bonds
(Chapter 2), and the theory of bond
formation is called valence theory;
hence the name of these electrons.
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FIGURE 1.39 The order in which
atomic orbitals are occupied according
to the building-up principle. When we
add an electron, we move one place to
the right until all the electrons (Z
electrons for an element of atomic
number Z) have been accommodated. At
the end of a row, 'move to the beginning
of the next row down. The names of the
blocks of the periodic table indicate the
last subshell being occupied according to
the building-up principle. The numbers
of electrons that each type of orbital can
accommodate are shown by the numbers
across the bottom of the table. The colors
of the blocks match the colors that we
are using for the corresponding orbitals.
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(™), indicating that they have the same spin magnetic quantum numbers. For rea-
sons based in quantum mechanics, which result in two electrons with parallel
spins tending to avoid each other, this arrangement has slightly lower energy than
that of a paired arrangement. However, it is allowed only when the electrons
occupy different orbitals.

The procedure that we have been using is called the building-up principle. It
can be summarized by two rules. To predict the ground-state configuration of an
element with atomic number Z:

1 Add Z electrons, one after the other, to the orbitals in the order shown in
Fig. 1.39 but with no more than two electrons in any one orbital.

2 If more than one orbital in a subshell is available, add electrons with parallel
spins to different orbitals of that subshell rather than pairing two electrons
in one of the orbitals.

The first rule takes into account the Pauli exclusion principle. The second rule is
called Hund’s rule, for the German spectroscopist Friedrich Hund, who first pro-
posed it. This procedure gives the configuration of the atom that corresponds to
the lowest total energy, allowing for the attraction of the electrons to the nucleus
and their repulsion by one another. An atom with electrons in energy states higher
than predicted by the building-up principle is said to be in an excited state. For
example, the electron configuration [He]2s'2p’ represents an excited state of a
carbon atom. An excited state is unstable and emits a photon as the electron
returns to an orbital that restores the atom to a lower energy.

In general, we can think of an atom of any element as having a noble-gas core
surrounded by a number of electrons in the valence shell, the outermost occupied
shell. The valence shell is the occupied shell with the largest value of 7.

The underlying organization of the periodic table described in Section B now
begins to unfold. All the atoms of the main-group elements in a given period have
a valence shell with the same principal quantum number, which is equal to the
period number. For example, the valence shell of elements in Period 2 (from
lithium to neon) is the shell with 7z = 2. Thus all the atoms in a given period have
the same type of core. For example, the atoms of Period 2 elements all have a heli-
umlike 1s? core, and those of Period 3 elements have a neonlike 1s2252p° core,
denoted [Ne]. All the atoms of a given group (in the main groups, particularly)
have analogous valence electron configurations that differ only in the value of 7.
For instance, all the members of Group 1 have the valence configuration #s'; and
all the members of Group 14/IV have the valence configuration ns*np?.

With these points in mind, let’s continue building up the electron configura-
tions across Period 2. Nitrogen has Z = 7 and one more electron than carbon,
giving [He]2s*2p3. Each p-electron occupies a different orbital, and the three have
parallel spins (7). Oxygen has Z = 8 and one more electron than nitrogen; there-

fore, its configuration is [He]2522p4 (8) and two of its 2p-electrons are paired.
gimilarly, fluorine, with Z = 9 and one more electron than oxygen, has the con-
figuration [He]2s*2p° (9), with only one unpaired electron. Neon, with Z = 10,
has one more electron than fluorine. This electron completes the 2p-subshell, giv-
ing [I—Ie]2522p6 (10). According to Figs. 1.36 and 1.39, the next electron enters the
3s-orbital, the lowest-energy orbital of the next shell. The configuration of sodium
is therefore [He]2s*2p%3s', or more briefly, [Ne]3s!, where [Ne] denotes the neon-
like core.

Serr-TEST 1.12A Predict the ground-state configuration of a magnesium atom.
[Answer: 15*25*2p%3s%, or [Ne]3s?]

SpLE-TEST 1.12B Predict the ground-state configuration of an aluminum atom.

The s- and p-orbitals of the shell with #» = 3 are full by the time we get to
argon, [Ne]3s23p®, which is a colorless, odorless, unreactive gas resembling neon.
Argon completes the third period. From Fig. 1.36, we see that the energy of the
4s-orbital is slightly lower than that of the 3d-orbitals. As a result, instead of elec-
trons entering the 3d-orbitals, the fourth period now begins by filling the 4s-
orbitals (see Fig. 1.39). Hence, the next two electron configurations are [Ar]4s!
for potassium and [Ar]4s® for calcium, where [Ar] denotes the argonlike core,
1522572p°3s*3p°. At this point, however, the 3d-orbitals begin to be occupied, and
there is a change in the rhythm of the periodic table.

According to the pattern of increasing energy of the orbitals (see Fig. 1.36),
the next 10 electrons (for scandium, with Z = 21, through zinc, with Z = 30)
enter the 3d-orbitals. The ground-state electron configuration of scandium, for
example, is [Ar]3d"'4s?, and that of its neighbor titanium is [Ar]3d24s%. Note that,
beginning at scandium, we write the 4s-electrons after the 3d-electrons: once they
contain electrons, the 3d-orbitals lie lower in energy than the 4s-orbital (recall Fig.
1.36; the same relation holds true for nd- and (n + 1)s-orbitals in subsequent peri-
ods). Successive electrons are added to the d-orbitals as Z increases. However,
there are two exceptions: the half-complete subshell configuration d° and the
complete subshell configuration d'° turn out to have a lower energy than simple
theory suggests. As a result, a lower total energy may be achieved if an electron
enters a 3d-orbital instead of the expected 4s-orbital, if that arrangement com-
pletes a half-subshell or a full subshell. For example, the experimental electron
configuration of chromium is [Ar]3d°4s’ instead of [Ar]3d*4s%, and that of copper
is [Ar]3d'%4s! instead of [Ar]3d”4s?. Other exceptions to the building-up principle
can be found in the complete listing of electron configurations in Appendix 2C
and in the periodic table inside the front cover.

As we can anticipate from the structure of the periodic table (see Fig. 1.39),
electrons occupy 4p-orbitals once the 3d-orbitals are full. The configuration of
germanium, [Ar]3d'%4s*4p?, for example, is obtained by adding two electrons to
the 4p-orbitals outside the completed 3d-subshell. The fourth period of the table
contains 18 elements, because the 4s- and 4p-orbitals together can accommodate
a total of 8 electrons and the 3d-orbitals can accommodate 10. Period 4 is the first
long period of the periodic table.

Next in line for occupation at the beginning of Period 5 is the Ss-orbital, fol-
lowed by the 4d-orbitals. As in Period 4, the energy of the 4d-orbitals falls below
that. of the Ss-orbital after 2 electrons have been accommodated in the Ss-orbital.
A similar effect is seen in Period 6, but now another set of inner orbitals, the
4f-orbitals, begins to be occupied. Cerium, for example, has the configuration
[Xe]4£15d'6s2. Electrons then continue to occupy the seven 4f-orbitals, which are
complete after 14 electrons have been added, at ytterbium, [Xe]4f1*6s%. Next, the
gj—orb%tals are ogcupied. The 6p-orbitals are occupied only after the 6s-, 4f-, and

-orbitals are filled at mercury; thallium, for example, has the configuration
[Xe]4f145d106526p1. Toolbox 1.1 outlines a procedure for writing the electron
configuration of a heavy element.
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ATOMS: THE QUANTUM WORLD

TOOLBOX 1.1

| HOW TO PREDICT THE GROUND-STATE ELECTRON CONFIGURATION OF AN ATOM

Conceptual Basis

Electrons occupy orbitals in such a way as to minimize
the total energy of an atom by maximizing attractions
and minimizing repulsions in accord with the Pauli
exclusion principle and Hund’s rule.

Procedure

We use the following rules of the building-up principle
to assign a ground-state configuration to an element
with atomic number Z:

1 Add Z electrons, one after the other, to the orbitals
in the order shown in Figs. 1.36 and 1.39 but with no
more than two electrons in any one orbital (the Pauli
exclusion principle).

2 If more than one orbital in a subshell is available,
add electrons to different orbitals of the subshell
before doubly occupying any of them (Hund’s rule).

3 Write the letters identifying the orbitals in order of
increasing energy, with a superscript that gives the
number of electrons in that orbital. The configuration

4 When drawing a box diagram, show the electrons
in different orbitals of the same subshell with parallel
spins; electrons sharing an orbital have paired spins.

This procedure gives the ground-state electron
configuration of an atom. Any other arrangement
corresponds to an excited state of the atom. Note that
we can use the structure of the periodic table to predict
the electron configurations of most elements once we
realize which orbitals are being filled in each block of
the periodic table (see Fig. 1.39).

A useful shortcut for atoms of elements with large
numbers of electrons is to write the electron
configuration from the group number, which gives the
number of valence electrons in the ground state of the
atom, and the period number, which gives the value of
the principal quantum number of the valence shell. The
core consists of the preceding noble-gas configuration
together with any completed d- and f-subshells.

Example 1.9 shows how these rules (specifically the
shortcut) are applied.

of a filled shell is represented by the symbol of the
noble gas having that configuration, as in [He] for 1s%.

| EXAMPLE 1.9 Sample exercise: Predicting the ground-state electron

i . .

i configuration of a heavy atom

' Predict the ground-state electron configuration of (a) a vanadium atom and (b) a lead
atom.

| SOLUTION (a) Vanadium is in Period 4, and so it has an argon core. The 4s-orbitals
| fill next, and then the last three electrons fill two separate 3d-orbitals. The electron
| configuration is [Ar]3d%4s%. (b) Lead belongs to Group 14/IV and Period 6. It there-
' fore has four electrons in its valence shell, two in a 6s-orbital and two in different
| 6p-orbitals. The atom has complete Sd- and 4f-subshells, and the preceding noble gas

| is xenon. The electron configuration of lead is therefore [Xe]4f 45d%6s%6p>.

SELF-TEST 1.13A Write the ground-state configuration of a bismuth atom.
' [Answer: [Xel4f45d"%6s%6p’]

| SELE-TEST 1.13B Write the ground-state configuration of an arsenic atom.

We account for the ground-state electron configuration of an atom by using the
building-up principle in conjunction with Fig. 1.36, the Pauli exclusion
principle, and Hund’s rule. .

1.13 Electronic Structure and the Periodic Table

The periodic table (Section B) was formulated long before the structures of atoms
were known, by noting trends in experimental data (Box 1.2). However, to under-
stand the organization of the periodic table, we need to consider the electron config-
urations of the elements. The table is divided into s, p, d, and f blocks, named for the
last subshell that is occupied according to the building-up principle (as shown in Fig.
1.36). Two elements are exceptions. Strictly, helium belongs in the s block, but it is
shown in the p block. It is a gas with properties matching those of the noble gases in
Group 18/VIIL, rather than the reactive metals in Group 2. Its place in Group 18/VIII
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IE(.X 1.2 THE DEVELOPMENT OF THE PERICDIC ;I'ABI.E

The periodic table is one of the most notable achievements
in chemistry because it helps to organize what would other-
wise be a bewildering array of properties of the elements.
However, the fact that its-structure corresponds to the elec-
tronic structure of atoms was unknown to its discoverers.
The periodic table was developed solely from a considera-
tion of physical and chemical properties of the elements.

Dmitri Ivanovich Mendeleev
(1834-1907).

In 1860, the Congress of Karlsruhe brought together
many prominent chemists in an attempt to resolve issues
such as the existence of atoms and the correct atomic
masses. One of the new ideas presented was Avogadro’s
principle—that the numbers of molecules in samples of dif-
ferent gases of equal volume, pressure, and temperature are
the same (see section 4.6). This principle allowed the rela-
tive atomic masses of the gases to be determined. Two sci-
entists attending the congress were the German Lothar
Meyer and the Russian Dmitri Mendeleev, both of whom
left with copies of Avogadro’s paper. In 1869, Meyer and
Mendeleev discovered independently that the elements fell

Mendeleev’s Predictions for Eka-Silicon (Germanium)

into families with similar properties when they were
arranged in order of increasing atomic mass. Mendeleev
called this observation the periodic law.

Mendeleev’s chemical insight led him to leave gaps for
elements that would be needed to complete the pattern but
were unknown at the time. When they were discovered
later, he turned out (in most cases) to be strikingly correct.
For example, his pattern required an element that he named
“eka-silicon” below silicon and between gallium and
arsenic. He predicted that the element would have a relative
atomic mass of 72 (taking the mass of hydrogen as 1) and
properties similar to those of silicon. This prediction
spurred the German chemist Clemens Winkler in 1886 to
search for eka-silicon, which he eventually discovered and
named germanium. It has a relative atomic mass of 72.59
and properties similar to those of silicon, as shown in the
accompanying table.

One problem with Mendeleev’s table was that some ele-
ments seemed to be out of place. For example, when argon
was isolated, it did not seem to have the correct mass for its
location. Its relative atomic mass of 40 is the same as that of
calcium, but argon is an inert gas and calcium a reactive
metal. Such anomalies led scientists to question the use of
relative atomic mass as the basis for organizing the ele-
ments. When Henry Moseley examined x-ray spectra of the
elements in the early twentieth century, he realized that he
could infer the atomic number itself. It was soon discovered
that elements fall into the uniformly repeating pattern of the
periodic table if they are organized according to atomic
number, rather than atomic mass.

Related Exercise: 1.100

Property Eka-silicon, E Germanium, Ge
molar mass 72 g-mol ! 72.59 g-mol !
density 5.5 grem™3 5.32 g:em™?
melting point high 937°C
appearance dark gray gray-white
Ohxllde' EO,; wh.ite solid; amphoteric; density 4.7 g-1cm‘3 * GeO,; white solid; amphoteric; density 4.23 g-cm™3
=Lrorlde ECly; boils below 100°C; density 1.9 g-cm ™3 GeCly; boils at 84°C; density 1.84 g-cm ™3

B

18 justified because it has a filled valence shell, like all the other Group 18/VIII ele-
ments. Hydrogen occupies a unique position in the periodic table. It has one s-elec-
tron,. and so it belongs in Group 1; but it is also one electron short of a noble-gas
configuration, and so it can act like a member of Group 17/VIL. Because hydrogen
has such a unique character, we do not ascribe it to any group; however, you will
often see it placed in Group 1 or Group 17/VII, and sometimes in both.

The s and p blocks form the main groups of the periodic table. The similar
electr.on configurations for the elements in the same main group are the reason for
the similar properties of these elements. The group number tells us how many
Valence-shell electrons are present. In the s block, the group number (1 or 2) is the




