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ABSTRACT

Computer methods of accurate gene finding in DNA
sequences require models of protein coding and
non-coding regions derived either from experimen-
tally validated training sets or from large amounts of
anonymous DNA sequence. Here we propose a new,
heuristic method producing fairly accurate inhomo-
geneous Markov models of protein coding regions.
The new method needs such a small amount of DNA
sequence data that the model can be built ‘on the fly’
by a web server for any DNA sequence >400 nt. Tests
on 10 complete bacterial genomes performed with
the GeneMark.hmm program demonstrated the
ability of the new models to detect 93.1% of anno-
tated genes on average, while models built by
traditional training predict an average of 93.9% of
genes. Models built by the heuristic approach could
be used to find genes in small fragments of anony-
mous prokaryotic genomes and in genomes of
organelles, viruses, phages and plasmids, as well as
in highly inhomogeneous genomes where adjust-
ment of models to local DNA composition is needed.
The heuristic method also gives an insight into the
mechanism of codon usage pattern evolution.

INTRODUCTION

Computer-aided gene finding frequently employs statistical
gene prediction methods based on Markov models (1–3).
Parameters of inhomogeneous Markov models for a protein
coding DNA sequence could be inferred from training sets of
experimentally annotated DNA sequences (1) or from a large
enough set of anonymous DNA sequences (2,4–6). In this
paper we present a rather simple training procedure that
produces fairly efficient Markov models using a minimum
amount of training data. The idea of the method is based on
two observations made upon analysis of the performance of the
prokaryotic versions of the GeneMark and GeneMark.hmm
programs (1,3). First, for theEscherichia coligenome, whose
genes have been divided into three classes that differ in codon
usage pattern (7–9), it was noticed that predicting genes of
each class by GeneMark did not require carefully tuned up
class-specific Markov models. For instance, the genes of Class
II, the highly expressed genes possessing the most biased
codon usage pattern, could be accurately predicted just by

using the models of the genes of Class I, encompassing
majority of E.coli genes (10). Secondly, the GeneMark.hm
program (3) was able to detect a vast majority of genes of
threeE.coli classes using second order Markov models train
on the Class IIIE.coli genes, presumably horizontally trans
ferred genes whoseE.coli-specific codon usage pattern was th
least pronounced. Having realized that practically use
models of protein coding regions may be learned from a rath
small amount of genomic sequence, we attempted to avoid
traditional training process. The proposed heuristic proced
for Markov model derivation used a fragment of genom
DNA just long enough to accurately estimate the nucleoti
composition. This procedure also used linear functions th
related nucleotide frequencies in the three codon positions
the global nucleotide frequencies and linear functions th
related amino acid residue frequencies to genome GC cont
These functions were obtained by linear regression analysi
DNA sequence data of several completely sequenced proka
otic genomes. Tests of the new approach were performed on
complete bacterial genomes. The heuristically derived mod
were used with the GeneMark.hmm and GeneMark program
The tests have shown that the heuristic models worked surp
ingly well. Particularly, when GeneMark.hmm was used a
average 93.1% of annotated genes were detected, while
comparison, models built by traditional training predicted a
average of 93.9% of genes. The heuristic approach to mo
building will be useful for dealing with prokaryotic specie
whose genomic sequence information is available in sm
amounts and for small genomes of organelles, viruses, pha
and plasmids, as well as for genomes with highly inhomoge
eous DNA composition, when models need adjustment to lo
DNA composition.

It should be noted that although we have not moved f
enough in this direction, the heuristic method produced
interesting by-product, a heuristic codon usage table. Comp
ison of the experimental and heuristically defined codo
frequencies revealed a strong correlation, especially
species with a highly biased nucleotide composition. Th
correlation indicates the presence of general factors relate
genome and proteome composition at the levels of nucleoti
and amino acids, respectively, that are involved in shaping
species-specific codon usage patterns. For the species w
balanced nucleotide composition, such asE.coli, the heuristic
codon usage frequencies may help to single out ‘outliers’, t
instances when codon frequencies deviate from expecta
due to some other important factors that become hidden
genomes with a biased composition.

*To whom correspondence should be addressed at: School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA. Tel: +1 404 894
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MATERIALS AND METHODS

Materials

To obtain the information necessary to generate the heuristic
models, we examined the 17 complete bacterial genomes avail-
able in GenBank as of November 1998. The species used were
Aquifex aeolicus(11), Archaeoglobus fulgidus(12), Bacillus
subtilis (13), Borrelia burgdorferi (14), Chlamydia trachom-
atis (15), E.coli (16), Haemophilus influenzae(17), Helico-
bacter pylori (18), Methanobacterium thermoautotrophicum
(19), Methanococcus jannaschii(4), Mycobacterium tubercu-
losis(20),Mycoplasma genitalium(21),Mycoplasma pneumo-
niae (22), Pyrococcus horikoshii(23), Rickettsia prowazekii
(24), SynechocystisPCC6803 (25) andTreponema pallidum
(26). Amino acid frequencies and positional nucleotide
frequencies were measured using genes annotated in these
genomic sequences. For testing purposes, we used 10 of the 17
complete genomes mentioned above as well as the complete
genomes for human immunodeficiency virus type I (27) and
human T cell lymphotrophic virus type I (28). We also used
650 Pseudomonas aeruginosasequences and 385
Chlamydomonas reinhardtiisequences.

The heuristic method of Markov model derivation

This method was designed to build the set of Markov models
using a minimal amount of sequence information. When using
this approach, only three independent parameters, three of the
four nucleotide frequencies specific for the particular genomic
sequence, are needed to generate the models necessary to
utilize gene-finding programs.

Upon analysis of the 17 complete bacterial genomes we have
observed relationships between the positional nucleotide
frequencies and the global nucleotide frequencies (Fig. 1A–D)
as well as relationships between the amino acid frequencies
and the global GC% of the bacterial genomes (Fig. 2A–J).
These relationships were approximated by linear functions
using standard linear regression. Interestingly, the graphs for
positional frequencies of T and G nucleotides (Fig. 1A and C)
show a ‘Z-pattern’ caused by a noticeable difference in
frequencies at the first and second codon positions. The
frequencies of C and A nucleotides at the first and second
codon positions are close to each other and the ‘Z-pattern’ is
absent from the graphs (Fig. 1B and D).

Of the 20 amino acids, the frequency of only 10 were
observed to change significantly over the range of GC percent-
ages for the 17 complete genomes examined: 28.6% GC
(B.burgdorferi) to 65.6% GC (M.tuberculosis). Of these 10,
four amino acids are coded by SSN type codons (S stands for
C or G and designates strong Watson–Crick pairing): alanine
(A), glycine (G), proline (P) and arginine (R). Arginine,
though, is encoded not only by GCN codons, but also by AGA
and AGG. We conventionally considered arginine as an SSN-
type amino acid, since four of its six codons are of the SSN
type. Frequencies of all four SSN-type amino acids, A, G, P

and R, increased as the GC content of the genome increa
(Fig. 2A–D).

Five other amino acids whose frequencies significan
changed over the GC% range are coded for by WWN-ty
codons (W stands for A or T and designates weak Watso
Crick pairing): phenylalanine (F), isoleucine (I), lysine (K)
asparagine (N) and tyrosine (Y). As could be expected,
frequency of each of these amino acids decreased as G
increased (Fig. 2E–I). Methionine, although technically
WWN-type amino acid, occurs very infrequently in bacteri
genomes (~1.8%) and changed the least of all 20 amino ac
over the GC% range examined.

Amino acids coded by combinations of strong and we
nucleotides in the first two positions of a codon were consider
as neutral. Only one neutral amino acid, valine, had a freque
that changed significantly as GC% changed and behaved lik
member of the SSN group (Fig. 2J). Valine belongs to the gro
of aliphatic amino acids, along with isoleucine and leucine. T
frequency of isoleucine, classified as a WWN-type amino ac
decreased as GC% increased (Fig. 2F). No significant chang
the frequency of leucine, with four of its six codons being o
neutral type and the other two of the WWN type, was observ
Perhaps some evolutionary pressure exists to hold near cons
the sum of the frequencies of the aliphatic amino acids at
level of the proteome. Thus, as genomic GC% increases,
increase in frequency of valine may be explained as compen
tion for a deficiency of isoleucine.

Given these observations, amino acid frequency depende
on global GC% was taken into account only for the four amin
acids of SSN type, A, G, P and R, for the five amino acids
WWN type, F, I, K, N and Y, and for the one neutral amin
acid, V. For all other amino acid frequencies, the valu
observed in theE.coli proteome were used as constants. F
mycoplasma genomes, an additional constant was added to
E.coli tryptophan frequency since the codon TGA, usually
stop codon, codes for tryptophan in these species.

The parameters of the set of Markov models, the three-pe
odic models for coding sequence of orders zero, one and
and a single zero order model for non-coding sequence, w
derived as follows. Learning the global nucleotide frequenc
from a given genomic sequence allowed us to determine nuc
otide frequencies in each of the three codon positions using
linear relationships shown in Figure 1A–D. Then, the initi
values of frequency of occurrence of each of the 61 codo
fI(XYZ), were obtained as products of the three position
nucleotide frequencies of corresponding nucleotides. T
frequency of a particular amino acid was determined for
given GC content and was then used to modify the initial val
of codon frequency. For example, the refined frequency of t
alanine codon GCT is defined by the formula

fR(GCT) = falanine(GC%global) × [fI(GCT)/(fI(GCC) +fI(GCA) + fI(GCG) +fI(GCT))] 1

In the case of alanine, encoded by four codons, we could h
reached the same result by taking into account only the nuc
otide frequencies in the third codon position. Equation1,

Figure 1. (Opposite) (A) Frequency of nucleotide T in three codon positions observed in 17 bacterial genomes shown as a function of global nucle
frequency in a given genome. The equations of the lines approximating the observed data were obtained by linear regression analysis. (B–D) As in (A) for
positional frequencies of nucleotides C, A and G, respectively.
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Figure 1. (A) Frequency of nucleotide T in three codon positions observed in 17 bacterial genomes shown as a function of global nucleotide T frequency
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however, functioned properly independently of the number of
synonymous codons, so all amino acids were handled in the
same manner. Obviously, this method guarantees that the sum
of the refined frequencies of codons is equal to the sum of the
frequencies of the amino acids. By completing this computa-
tion for all 61 codons, we produced the heuristically built
codon usage table for the input genomic sequence.

To construct the three-periodic zero order Markov model of
a protein coding region the codon usage table is all that is
needed. For example, to determine the probability of A in the
first position of a codon, the probabilities of all codons that
start with A were added together. In the zero order model of
non-coding sequence the global frequencies of the respective
nucleotides were used.

For the first order three-periodic Markov model, the codon
usage table provides enough data to calculate only two

matrices of transition probabilities out of three. To define th
values of transition probabilities related to nucleotide
occupying the third position of one codon and the first positio
of the next codon it was assumed that occurrences of adjac
codons are independent events. Indeed, a rather weak cor
tion exists between nucleotides of adjacent codons. Thus
probability of nucleotide Y in the first position of a codon
following a nucleotide X in the third position of the previou
codon,P(X→Y) for the (..X||Y..) configuration, is equal to the
probability of nucleotide Y in the first position of a codon
defined previously for the zero order Markov model.

For the second order Markov model, only the transitio
probabilities for the nucleotide in the third codon positio
could be produced from the codon usage table.

To find the transition probabilities related to the first an
second codon positions, we used the same assumption

Figure 2. (A) Frequency of amino acid alanine shown as a function of GC content of the bacterial genome for 17 genomes. The equation of the line appro
the observed data was obtained by linear regression analysis. (B–J) As (A) for glycine, proline, arginine, phenylalanine, isoleucine, lysine, asparagine, tyrosine
valine, respectively.
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independence of adjacent codons. The second order transition
probability P(XY→Z) for the (.XY||Z..) configuration was
assumed to be equal to the probability of nucleotide Z in the
first codon position as defined in the zero order Markov model.
The transition probabilityP(XY→Z) for the (..X||YZ.) config-
uration was equal to the value of probability of Z in the second
position following Y in the first position. This value was
already defined for the first order Markov model.

Gene finding accuracy estimation

To characterize the gene prediction accuracy of the models,
predictions made by the GeneMark and GeneMark.hmm
programs were compared with the GenBank annotation.
Although it may not always be true, the annotation was
assumed to be precisely correct in terms of gene (ORF) loca-
tion and position of the start codon. We use the term ‘close
prediction’ or mere ‘prediction’ for the case when the
predicted stop codon of the ORF matched the annotated stop,
regardless of whether the predicted start codon location
matched the annotated start. The term ‘exact prediction’
describes the case when both the positions of the predicted stop
and start codons matched the annotation. Since almost none of
the annotated sequence was directly used in building the
heuristic models, there was no need to use a cross-validation
procedure, which is regularly used to assess the accuracy of the
models with a large number of parameters learned from a
training set.

RESULTS AND DISCUSSION

Testing on 10 complete bacterial genomes

In order to gauge how well the matrices generated through the
heuristic approach performed when used in gene prediction,
they were tested on 10 complete bacterial genomes. One test
was done with the GeneMark.hmm program only. Another test
was performed using a combination of both GeneMark.hmm
and GeneMark. Note that the heuristic models could be
employed in any gene-finding program using Markov models.
Prediction of the 5′-end of a gene was aided by the RBS model
built from theE.coli sequence data (3).

The complete genomes of the following species were
analyzed in the tests:A.fulgidus, B.subtilis, E.coli, H.influ-
enzae, H.pylori, M.genitalium, M.jannaschii, M.pneumoniae,
M.thermoautotrophicumand SynechocystisPCC6803. By
using GeneMark.hmm with heuristic models, an average of
93.1% of the genes present in the GenBank annotations of the

above 10 genomes were closely predicted. At the same ti
72.1% of annotated genes were predicted exactly. Th
results compare favorably with the results obtained usi
‘native’ models derived from the genomic sequences by tra
tional training (1). When native models were used in Gen
Mark.hmm, 93.9% of the annotated genes were clos
predicted and 77.4% of the genes were exactly predic
(Table 1). This information is broken down into the 10 speci
tested in Table 2, which shows the results using heuris
models for every species.

A limitation of GeneMark.hmm is that a gene that overlap
at its 3′-end with an adjacent gene in the opposite orientati
can be missed. To recover missing genes, the GeneM
program was also run on the sequence. The predictions m
by the two programs were then parsed and a single list
predicted genes was produced. In the case where both G
Mark.hmm and GeneMark predicted a gene with the same s
position, the GeneMark.hmm prediction was selected as
representative one. Since we were specifically interested
recovering rather long genes missed by GeneMark.hmm,
only used the GeneMark predictions longer than 500 nt.

Using the combined approach, the heuristic models clos
predicted 94.6% of the genes annotated in the 10 bacte
genomes. Native models worked better, predicting on avera
97.3% of the genes (Table 1).

When run with the native models, GeneMark.hmm predict
an average of 11.4% genes which were not present in the an
tation for the 10 bacterial genomes. These predictions w
denoted as potential new genes. The heuristic models predi
an average of 12.4% potential new genes over the same co
tions.

Overall, the heuristic models performed similarly to nativ
models in terms of percentage of genes missed, exa
predicted genes and percentage of potential new ge
predicted. Only minimal gains were made in terms of ge
prediction accuracy by moving from heuristic models to nativ
models. This suggests that heuristic models can be used
accurately predict genes in cases where the amount
sequence data necessary for traditional training of higher or
native models is not yet available or cannot be obtained at
Possible applications include sequencing projects very n
their beginning and prediction of genes in small genomes, su
as organelles, viruses, phages and plasmids. Heuristic mo
may also help in analyzing genomes with highly inhomoge
eous nucleotide composition.

Table 1.Average gene prediction performance of the heuristic and native models as defined in tests on 10 bacterial genomes

The figures for annotated genes predicted give the percentage of annotated genes closely predicted (with possible misplacement of the start codon).The combina-
tion of GeneMark.hmm with GeneMark described in Lukashin and Borodovsky (3) allows for a 3.4% improvement in the accuracy of native models a
improvement in heuristic models.

Gene prediction program Model type Annotated genes predicted (%) Annotated genes exactly predicted (%) Potential new ge

GeneMark.hmm Native 93.9 77.4 11.4

GeneMark.hmm Heuristic 93.1 72.1 12.4

GeneMark.hmm and GeneMark Native 97.3 77.4 11.4

GeneMark.hmm and GeneMark Heuristic 94.6 73.4 13.4

http://nar.oxfordjournals.org/
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Prediction of short genes

Approximately 25% of the 4289 genes found in theE.coli
genome are shorter than 500 nt in length. Typically, using
computational methods these genes have been much more
difficult to accurately predict than longer genes. We have done
an additional analysis to find out how efficient the models
generated through the heuristic approach are in predicting
genes of short length in comparison with native models. The
percentages of genes that were closely predicted in theE.coli
genomic sequence using both types of models are shown in
Figure 3A. In all length categories other than the shortest one
(shorter than 100 nt), which includes 11 annotated genes out of
4289, the heuristic models and native models produced similar
results. Figure 3B shows a comparison of the percentage of
potential new genes predicted in theE.coli genome by both
native and heuristic models. The heuristic models and native
models predict similar numbers of potential new genes in all
length categories.

Testing on bacterial genomes with inhomogeneous
composition

Genomic sequences ofP.aeruginosawere used for this test
since they range fairly widely in GC content from 41.6 to
70.3%. Native Markov models based onP.aeruginosa
sequence were generated using 650 records available in
GenBank. The whole GC content range was divided into three
bins and the native models were derived for each GC bin. A set
of 262 of these sequences was used as a test set for gene predic-
tion accuracy. The GeneMark.hmm program using native
models closely predicted 95% of the genes annotated in
P.aeruginosasequences and exactly predicted 71% of the
annotated genes. The GeneMark.hmm program using the
heuristic models, tested on the same 262 genes, also made
close predictions for 95% of the annotated genes and exactly
predicted 75% of the annotated genes. The program using
native models predicted 23% genes not present in the annota-
tion while using heuristic models produced a slightly smaller

number of new predictions, 21%. Overall, better results we
achieved with heuristically derived models than with nativ
models. Note that the need to use a cross-validation proced
to estimate the accuracy of the heuristic model was virtua
abolished since the number of the model parameters lear
from the genomic sequences is so small. Using cro
validation for testing the native models could lead to a decrea
in the accuracy figure given above by several percentage poi

Table 2.Gene prediction accuracy of the GeneMark.hmm program using heuristic models for each of 10 bacterial genomes

The figures in the third column give the percentage of annotated genes closely predicted by the GeneMark.hmm program (with possible misplacementhe start
codon). Percentage of potential new genes (false positives) is defined with regard to the number of annotated genes.

Genes annotated Genes predicted Genes predicted (%) Genes exactly predicted (%) Potential new gen

A.fulgidus 2407 2516 88.1 70.7 13.2

B.subtilis 4099 4384 96.5 66.4 10.8

E.coli 4289 4426 93.4 75.3 10.7

H.influenzae 1717 1840 95.9 84.9 10.7

H.pylori 1566 1612 93.7 76.8 9.6

M.genitalium 467 509 88.9 66.8 19.3

M.jannaschii 1680 1841 94.5 68.2 13.2

M.pneumoniae 678 734 91.9 65.6 17.0

M.thermoautotrophicum1869 1944 93.9 65.8 6.9

Synechocystis 3169 3360 94.6 80.5 12.6

Average 93.1 72.1 12.4

Figure 3. (A) Percent of genes predicted by the GeneMark.hmm program
of those annotated in theE.coli genome as a function of gene length. (B) As
(A) for the percent of potential new genes.

http://nar.oxfordjournals.org/
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Testing on the smallest genomes

Due to the small genome size of phages and viruses, there is
not enough sequence data to properly train the Markov models
in the traditional way. Since the heuristic approach eliminates
the need for large amounts of DNA sequence for model
building, genomes of phages and viruses were an ideal test
case for this method. The heuristic approach was tested on the
complete genomes of human immunodeficiency virus type I
and human T cell lymphotropic virus type I.

The HIV type I genome is only 9719 nt long and contains
eight annotated genes, two of which contain a single intron.
The intron for both genes is in exactly the same position, 6046–
9378, although the two genes have different start and stop loca-
tions. The prokaryotic version of GeneMark.hmm used here
was unable to accurately predict genes with introns. Therefore,
we ignored the two genes that contain introns. GeneMark.hmm
predicted five of the six annotated genes and no genes that
were not annotated. The gene that was not predicted was 237 nt
in length and overlapped the preceding gene. The GeneMark
program recovered this annotated gene. However, GeneMark
also predicted the existence of five other short genes in this
sequence that were not present in the annotation. Four of these
five predictions were located in the long terminal repeat (LTR)
region of the genome as indicated by the annotation. A BLAST
search on these four predictions revealed that all four
sequences coded for the HIV type Inefprotein. Thenefprotein
has been shown to play a role in virus replication and it has
recently been suggested that it may be related to pathogenicity
as well (30). The other prediction, interestingly, was located
inside the annotated intron. A BLAST search on this sequence
revealed that it coded for the Vpu protein. Therefore, all the
intronless predictions made by heuristically derived models
were supported by either nucleotide sequence annotation in
GenBank or by already existing entries in protein sequence
databases.

The GenBank record for the human T cell lymphotropic
virus type I, 9068 nt, contains only three annotated genes.
Using GeneMark.hmm with heuristic models, all three anno-
tated genes were closely predicted. In addition, four genes
were predicted that were not present in the annotation. Using
GeneMark, another potential new gene was predicted. Of the
five potential new genes, two were exactly identical and were
found in the LTR regions. Although there were no BLAST hits
for this duplicated putative gene, a similarity search against the
SCOP database produced a number of matches to known
protein structural domains (31). BLAST searches on the other
three predicted proteins revealed that two of them were already
annotated proteins for this virus. The similarity search for one
remaining protein produced no significant homology.

Interpretation of the results in terms of Kullback–Liebler
distance

A gene-finding method exploiting the maximum likelihood
concept, such as GeneMark.hmm (3), attempts to fit each one
of the set of initially defined Markov models, such as models
of coding or non-coding regions, to a given DNA sequence
eventually parsed into segments where one or another model
fits best. Essentially, the algorithm implements ‘competition’
among the models for the best fit for each given DNA segment.
In the simplest case of two competing models, this competition

is quantified by a likelihood ratio value that determines whic
one of two models fits the particular DNA segment better.
making this decision there are two types of possible erro
false positive and false negative. The lower these errors are,
higher is the discrimination power of the method. Th
Kullback–Liebler (KL) distance or relative entropy,D(P||Q), is
a measure of affinity of two statistical (Markov) modelsP and
Q. Rigorous theory shows (29) that false positive (false neg
tive) error rates decrease exponentially with growth of th
sequence fragment length,n, with the exponent value propor-
tional to –nD(P||Q) [–nD(Q||P)]. This means that the discrimi-
nation power should increase as the sequence fragm
increases. As shown earlier, this trend was indeed observe
the tests of gene finding as the longer genes were detected
higher accuracy.

The KL distance, as a single parameter, has proven to b
useful characteristic for comparative analysis of performan
of gene-finding methods using high order Markov mode
described by a large number of parameters. Some rat
surprising results could be explained in terms of the K
distance (5). Particularly, it was observed that Markov mode
trained on the set ofE.coli Class I genes provided highe
discrimination power for detecting theE.coli Class II genes
than for genes from Class I itself (4). This observation agre
with the fact that the effective KL distance,De(P||Q), between
one model (theE.coli Class II gene,P) and another (theE.coli
non-coding sequence,Q), defined by the formulaDe(P||Q) =
D(P||Q) – D(P||P*), whereP* is the model of theE.coli Class I
gene, is larger than the regular KL distance,D(P*||Q), between
the E.coli Class I gene model and the non-coding sequen
model (M.Borodovsky, unpublished data).

In our computations we used the standard formula for the K
distance (29) modified to deal with the periodic Marko
modelsP andQ:

D(P||Q) = 1/3∑3
c∑4

i∑4
j∑4

kp
c
ip

c
ijp

c
ijk log2(pc

ijk/qc
ijk) 2

Here indexc represents the three codon positions and indicei,
j andk represent the four types of nucleotides. We comput
the KL distance values between several second order mod
the three three-periodic Markov models for theE.coli genes of
Classes I, II and III; the heuristic model ofE.coli genes; the
ordinary Markov model of theE.coli non-coding region (Table
3). It is seen that in terms of KL distance theE.coli heuristic
model lies close to theE.coli Class III model. Both of these

Table 3.Values of the Kullback–Liebler distance

The KL distance values defined by equation2 are given for bothD(P||Q) and
D(Q||P), the values related to false positive and false negative error rates
text).

http://nar.oxfordjournals.org/
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models are closer to the model of the non-coding region than
the model ofE.coli Class I and, especially, the model ofE.coli
Class II genes. Let us assume that theE.coli Class III model or
the E.coli heuristic model is used in the gene-finding algo-
rithm. The effective KL distance between theE.coli Class I or
Class II gene and non-coding models is then large enough (see
5) and the genes of these classes should be predicted with suffi-
cient accuracy. This expectation was confirmed to be a reason-
able one for both the heuristic model (current paper) and for
the Class III model (M.Borodovsky and A.V.Lukashin, unpub-
lished data). TheE.coliheuristic model was also able to predict
E.coli Class III genes, as would be expected from the closeness
of these two models in terms of KL distance. However, in
comparison with the Class III model the heuristic model has an
advantage in that it could be built in a regular way from a small
portion of DNA sequence data without dealing with clusteriza-
tion of the whole gene pool of a given species (5,6,10). Thus,
we conclude that theE.coli heuristic model is able to predict
genes of allE.coli classes, while also being easy to build. A
similar analysis could be conducted for genomes of other
bacterial species with the gene pools divided, if necessary, into
sets of typical and atypical genes (5).

Why the method works? Implications for evolution of
codon usage

The comparison of actual codon usage frequencies with the
codon frequencies defined by the heuristic codon usage table

might help understand why the heuristic model is efficient f
gene finding. In Figure 4A–B both sets of codon frequenci
are shown for the wholeE.coli genome (Fig. 4A) and theE.coli
Class III genes (Fig. 4B). These sets are also shown for
genomes ofB.burgdorferiandM.tuberculosis(Fig. 4C and D)
having, respectively, the lowest and the highest GC% cont
in the sample of 17 complete genomes. The correlation coe
cient,R, between the experimental codon frequencies and
heuristic codon frequencies were calculated. TheR values for
the E.coli whole genome and theE.coli Class III genes were
equal to 0.58 and 0.48, respectively. ForB.burgdorferi and
M.tuberculosisthe R values were equal to 0.94 and 0.87
respectively. TheR values indicate that the pattern of codo
usage frequency was captured by the heuristic procedure
some extent for the case of theE.coli genome, with medium
GC content. This correlation, as indicated earlier, turned ou
be sufficient to generate models providing reasonably accur
gene-finding ability. For the genomes with highly biased G
content the high level of correlation indicates that the cod
usage pattern is modeled by the heuristic procedure in gr
detail. This observation raises the question of to what ext
does the simple principle of the heuristic method explain t
diversity of codon usage patterns in bacterial and perhaps
higher species. The basic parameters of the method, the gl
nucleotide frequencies, appear to be the fundamental varia
defined by the complex structure of the species-spec
biochemical pathways producing the building blocks of th

A B
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DNA double helix. The amino acid composition of a species
proteome represents other fundamental variables that are even
more conserved among species and vary slightly as the GC%
of the whole genome changes. Therefore, the observations,
though limited, suggest that a significant component of the
codon usage pattern in evolution may be the result of a
compromise between restrictions on the nucleotide and amino
acid compositions, achieved mainly using elasticity of the
silent codon positions. This mechanism of developing the
codon usage pattern seems to be more pronounced in the
species with highly biased nucleotide composition, such as
B.burgdorferiandM.tuberculosis. In species such asE.coli the
pressure of compositional restrictions is weaker and other
factors come more freely into play to form the codon usage
pattern (8,9,32).

Testing on eukaryotic genomes

Although the heuristic approach to model building was
designed with bacterial gene prediction in mind, we had

reasons to try this approach for eukaryotic DNA sequences
well. The advantage of the heuristic model is the ability
being produced ‘on the fly’ and of being adjusted to loc
sequence composition. Thus, the heuristic models un
certain circumstances may replace a native protein cod
model, which is part of a whole set of models needed f
eukaryotic gene prediction. This whole set, as used in t
eukaryotic version of GeneMark.hmm (M.Borodovsky an
A.V.Lukashin, unpublished data), includes contextual mode
for start codons, stop codons and splice sites as well as mo
for length distributions for coding and non-coding region
(exons, introns and intergenic regions). We have estimated
parameters for these additional models from a set of 3
C.reinhardtii sequences available in GenBank. Parameters
the ‘local’ heuristic models for protein coding regions wer
derived using nucleotide frequencies counted in DNA fra
ments of ~1000 nt. Although we used the linear functio
derived for bacterial genomes, a separate analysis has prov
evidence that similar linear functions are valid for th

Figure 4. (Opposite and above) (A) Frequencies of 61 codons as observed inE.coli protein coding regions are shown along with the codon frequencies defined
the heuristic codon usage table. The order of codons follows the order accepted in the table of genetic code with the exception of serine and arginindons.
Although a correlation between natural and model frequencies is seen in general, some significant differences exist in frequencies of particular codons: CTG, CCG,
CGT and CGC, as well as CTA, ATA, AAG, GAG, AGA and AGG. (B) As in (A) with observed codon frequencies taken from 158 genes ofE.coli Class III. Again,
a general correlation is observed with the noticeable exception of CTC, CTA, AAG, GAC, GAG and AGG, as well as AAT and AAA. (C) As in (A) for B.burg-
dorferi. A clear periodic pattern is seen in codon frequencies. This pattern relates to the type of nucleotide occupying the third codon position. TheB.burgdorferi
genome is AT-rich. The codon frequencies for codons ending with A/T are greater in most cases than the frequencies of those ending with C/G. The nand
heuristic frequencies are in good correlation. (D) As in (A) for M.tuberculosis. Here the periodic pattern similar to that observed in (C) is reversed since
M.tuberculosisgenome is GC-rich. The natural and heuristic frequencies correlate reasonably well.

C D
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eukaryotic case (data not shown). When GeneMark.hmm using
native models (of order five) was run on a randomly selected
test set of 58C.reinhardtii sequences, 88.5% of the annotated
exons and 65% of the annotated genes were exactly predicted.
Using heuristic models of up to only order two, 82% of the
exons and 52% of the genes were predicted exactly. These
results suggest that a heuristic approach aimed at eukaryotic
genomes has some potential and requires further study. It could
be especially useful for genomes with a highly inhomogeneous
composition.

Gene finding with heuristic models via a web server

The software program that builds the heuristic model for input
sequences is accessible via the Internet at http://
dixie.biology.gatech.edu/GeneMark/heuristic.cgi . This program
produces heuristic models for a sequence longer than 400 nt.
The models are then applied to the analysis of the input
sequence by the GeneMark and GeneMark.hmm programs.
Output of the web server includes a list of predicted genes in
text format and, optionally, a list of predicted protein
sequences and a graph of protein coding potentials.
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