Bonding

Potential Energy of a Bond

Bond Length and Temperature

Internuclear Separation (r)

Experimental Mo=Mo bond distance: at room temp. 2.23 Å, at LN2 t. 2.18 Å

Harmonic oscillator in quantum mechanics Quantized vibrational energies $E^{n} = (v + \frac{1}{2})hv$

Morse - Potential energy curve for a diatomic molecule

 D_0 = bond dissociation energy

The ground-state energy is not 0

Bond	wavenumber cm ⁻¹	
C–H	3000	
C-D	2200	

The C–H bond is a stronger spring The C–D bond has lower zero-point energy Force constant does not change with isotopic substitution 3 The C–H bond is longer/shorter than the C–D bond?

Bond Length and Temperature

$$E(r) = D_e (1 - e^{a(r-r_e)})^2$$

 $E^{n} = (v + \frac{1}{2})hv$

Potential energy curve is not parabolic (harmonic) but unsymmetrical

99.9 % of C-H bonds are in the ground vibrational state (v = 0) at room temperature

At high temperature, more high vibronic states are populated

Middle points move towards longer r

Bond Length and Isotopes

A Morse potential curve The zero point vibrational energy (ZPE) is the lowest possible energy of a system, the ground state energy.

 E_D^{o} and E_H^{o} (for v = 0) the ZPE of R-H and R-D (R is much heavier than H or D) depend upon the reduced mass of the molecule.

The heavier the molecule or atom, the lower the frequency of vibration and the smaller ZPE.

Lighter molecules or atoms have a greater frequency of vibration and a higher ZPE.

Deuterium is heavier than hydrogen and therefore has the lower zero point energy.

Bond Length and Isotopes

Due to the anharmonicity of the C-H/D vibrational potential energy function and the lower ZPE of a C-D bond, the average C-D bond length is typically ~0.005 Å shorter than an equivalent C-H bond.

Secondary Isotope Effect - Steric effect of a CD_3 group smaller than CH_3 .

Kinetic Isotope Effects

The kinetic isotope effect (KIE) = isotopically substituted molecules exhibit different reaction rates, the change in rate of a reaction due to isotopic substitution. An isotopic substitution does not influence the electronic potential energy surface.

hydrogen (¹H) - deuterium (²H) - tritium (³H) carbon (¹²C, ¹³C), nitrogen (¹⁴N, ¹⁵N), oxygen (¹⁶O, ¹⁸O), chlorine (³⁵Cl, ³⁷Cl)

Different bond dissociation energies for R-D and R-H: E_D is greater than E_H This difference in energy due to isotopic replacement results in differing rates of reaction k – the rate determining step

The effect is measured in kinetic isotope effects:

The reaction rate for the conversion of R-D is slower than the reaction rate for the conversion of R-H.

Kinetic Isotope Effects

Isotope replacement does not change the electronic structure of the molecule or the potential energy surfaces of the reactions

The greater the mass the more energy is needed to break bonds. A heavier isotope forms a stronger bond - less of a tendency to dissociate. The increase in energy needed to break the bond results in a slower reaction rate and the observed isotope effect:

the ratio $k_{\rm H}/k_{\rm D}$ = 1 to 7

Heavy atom isotope effects = the substitution of carbon, oxygen, nitrogen, sulfur, and bromine, with effects that are much smaller and are usually between 1.02 and 1.10. The maximum isotopic rate ratio is proportional to the square root of the inverse ratio of isotopic masses.

Secondary kinetic isotope effects = rate changes due to isotopic substitutions at a site other than the bond breaking site in the rate determining step of the reaction, α , β , and γ effects

Kinetic Isotope Effects

Harmonic oscilator frequency Bond stretching frquency

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

Reduced mass
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

bond	μ
C-H	0.92
C-D	1.71
¹² C- ¹² C	6.00
¹² C- ¹³ C	6.24

Zero point energy

$$E^0 = \frac{1}{2}hv$$

Reaction rate

$$k = Ae^{-\frac{E^0}{kT}}$$

Isotope effect

$$\frac{k_H}{k_D} = e^{\frac{h(v_D - v_H)}{2kT}}$$

Pauling's Rules

Five principles which could be used to determine the structures of complex ionic/covalent crystals

Pauling's Rule no. 1 Coordination Polyhedra

A coordinated polyhedron of anions is formed about each cation. Cation-Anion distance is determined by sums of ionic radii. Cation coordination environment is determined by radius ratio.

1 Metallic radius

r(O²⁻) = 140 pm (Linus Pauling)

Periodic Trends in Atomic Radii

Coordination Polyhedra

Bond Length

Pauling $R(A-B) = r_A + r_B$

Schomaker-Stevenson Rule

polar bonds are shorter than the sum of covalent radii

Original c = 9 pm, n = 1Modified c = 8.5 pm, n = 1.4

$$R(A-B) = r_A + r_B - c \left| \chi_A - \chi_B \right|^n$$

Allred-Rochow electronegativities give the best fit

Ionic Radii

R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925-945 (1969) R.D. Shannon, Acta Cryst. A32, 751-767 (1976)

As the coordination number (CN) increases, the Ionic Radius increases

Sr ²⁺			
CN	Radius, Å		
6	1.32		
8	1.40	As the o	oxidation state increases, cations get smaller
9	1.45	(6-fold o	coordination, in Å)
10	1.50	·	
12	1.58	Mn ²⁺	0.810
		Mn ³⁺	0.785
		Mn ⁴⁺	0.670
		Ti ²⁺	1.000
		Ti ³⁺	0.810
		Ti ⁴⁺	0.745

Ionic Radii

The radius increases down a group in the periodic table.

The exception - 4d/5d series in the transition metals - the lanthanide contraction

(6-fold coordination, in Å)

Al ³⁺	0.675	
Ga ³⁺	0.760	
ln ³⁺	0.940	Dight to left earling the next adia table the redius degrades
TI ³⁺	1.025	Right to left across the periodic table the radius decreases.
Ti ⁴⁺	0.745	(6 coordinate radii, in Å)
Zr ⁴⁺ Hf ⁴⁺	0.86 0.85	La ³⁺ 1.172 Nd ³⁺ 1.123
		Gd^{3+} 1.078
		Lu ³⁺ 1.001

Cation/Anion Radius Ratio

Pauling's Rules

Pauling's Rule no. 2 Bond Strength

The strength of an electrostatic bond: S_{ij} = valence / CN

The bond valence sum of each ion equals its oxidation state.

The valence of an ion (V_i , equal to the oxidation state of the ion) is equal to a sum of the valences of its bonds (s_{ii}).

In a stable ionic structure the charge on an ion is balanced by the sum of electrostatic bond strengths (s_{ii}) to the ions in its coordination polyhedron.

TiO₂ (Rutile) Ti - oxidation state of +4, coordinated to 6 oxygens. V_{Ti} = +4 = 6 (s_{ij}) s_{ij} = +2/3

The bond valence of oxygen, coordinated by 3 Ti atoms Vo = 3 (s_{ii}) = 3 (-2/3) = -2

Each bond has a valence of s_{ii} with respect to the cation

and $-s_{ii}$ with respect to the anion.

Bond Strength

Brown, Shannon, Donnay, Allmann:

Correlation of the valence of a bond s_{ii} with the (experimental) bond distance d_{ii} .

$$s_{ij} = \exp\frac{R_{ij} - d_{ij}}{b}$$

R_{ij} = standard single bond length - determined empirically from (many) structures where bond distances and ideal valences are accurately known.

Tables of R_{ij} values for given bonding pairs (i.e. Nb-O, Cr-N, Mg-F, etc.) have been calculated, just as tables of ionic radii are available.

A constant b = 0.37

Bond Strength

Correlation of the valence of a bond s_{ii} with the (experimental) bond distance d_{ii} .

$$s_{ij} = \exp \frac{R_{ij} - d_{ij}}{b}$$
 $v_i = \sum s_{ij} = \sum \frac{z_i}{CN}$

Use of the bond valence concept

A) To check experimentally determined structures for correctness, or bonding instabilities

B) To predict new structures

C) To locate light atoms such as hydrogen or Li ion, which are hard to find experimentally

D) To determine ordering of ions which are hard to differentiate experimentally, such as AI^{3+} and Si^{4+} , or O^{2-} and F^{-}

E) To check/confirm oxidation states of atoms (Co^{2+}/Co^{3+} , Fe^{2+}/Fe^{3+})

Pauling's Rules

Pauling's Rule no. 3 Polyhedral Linking

The presence of shared edges, and particularly shared faces decreases the stability of a structure. This is particularly true for cations with large valences and small coordination numbers.

Avoid shared polyhedral edges and/or faces.

Polyhedral Linking

The Coulombic interactions - maximize the cation-anion interactions (attractive), and minimize the anion-anion and cation-cation interactions (repulsive).

- increasing the coordination number
- decreasing the cation-anion distance

The cation-cation distance decreases, (the Coulomb repulsion increases) as the

- degree of sharing increases (corner < edge < face)
- CN decreases (cubic < octahedral < tetrahedral)
- cation oxidation state increases (this leads to a stronger Coulomb repulsion)

Pauling's Rules

Pauling's Rule no. 4 Cation Evasion

In a crystal containing different cations those with large valence and small coord. number tend not to share polyhedral elements (anions).

Perovskite, CaTiO₃

Call 12-coordinate CaO₁₂ cuboctahedra share FACES

Ti^{IV} 6-coordinate TiO₆ octahedra share only VERTICES

Pauling's Rules

Pauling's Rule no. 5 Environmental Homogeneity the rule of parsimony

The number of chemically different coordination environments for a given ion tends to be small.

Once the optimal chemical environment for an ion is found, if possible all ions of that type should have the same environment.

Covalent Radius of Fluorine

1938 Brockway - electron diffraction on $F_2(g)$ R(F–F) = 145 pm d(F) = 73 pm

1960 Pauling – backbonding in A–F

1990 Reed and Schleyer – pi bonding in A–F

1992 Gillespie and Robinson - 54 pm Longer if a lone pair on EAF_n Shorter in an incomplete octet BF_3

1997 Gillespie - 60 pm, the X–F bond length decreases with a decreasing CN, the smaller the bond angle (<F-A-F) the longer the bond length

2009 Pyykkö - 64 pm in a single bond, 59 pm in a double bond and 53 pm in triple bond character

Covalent Radius of Fluorine

Period 2

Fluorine radii decrease across the 2nd period with increasing electronegativity of the central atom and therefore with decreasing ligand charge.

Period 3

The six-coordinated fluorides fall on the same smooth curve as for the Period 2 fluorides = close-packed.

The 3- and 4-coordinated fluorides of the Period 3 elements do not fall on this curve = not close packed.

Additive Covalent Radii

Additive covalent radii = approximate a bond length as the sum of two atomic radii Predominantly covalent

Calculated versus experimental distance

the A–B bond is not too ionic

Pekka Pyykkö J. Phys. Chem. A, 2015, 119 (11), 2326–2337

1 Н 32 -	Additive Covalent Radii												2 He 46 -				
3 Li	4 Be				Ζ	Radiu	is, r_n :	Symbol	S	ingle		5 B	6 C	7 N	8 O	9 F	10 Ne
133	102					r	1			-		85	75	71	63	64	67
124	90					r	2		D	oubl	e	78	67	60	57	59	96
-	85					r	3		т	rinla		73	60	54	53	53	-
11 Na	12 Mg					n	m		I	riple		13 Al	14 Si	15 P	16 S	17 Cl	18 A
155	139					P	m					126	116	111	103	99 95	96
160	132											113	107	102	94 05	95 02	107
- 19 K	127 20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	111 31 Ga	102 32 Ge	94 33 As	95 34 Se	93 35 Br	96
19 K 196	20 Ca 171	21 Sc 148	136	²³ V 134	24 Cr 122	25 Mn 119	20 ге 116	111	28 NI 110	29 Cu 112	30 Zn 118	124	32 Ge 121	121	³⁴ Se 116	35 Br 114	36 K 117
$190 \\ 193$	147	$\frac{148}{116}$	$130 \\ 117$	$\frac{134}{112}$	111	$\frac{119}{105}$	109	103	101	$112 \\ 115$	110	$\frac{124}{117}$	121	114	107	109	121
-	133	110	108	106	103	103	103	96	101	110	-	121	111	106	107	110	108
- 37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 X
210	185	163	154	147	138	128	125	125	120	128	136	142	140	140	136	133	131
202	157	130	127	125	121	120	114	110	117	139	144	136	130	133	128	129	135
-	139	124	121	116	113	110	103	106	112	137	-	146	132	127	121	125	122
55 Cs	56 Ba	La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Ri
232	196		152	146	137	131	129	122	123	124	133	144	144	151	145	147	142
209	161		128	126	120	119	116	115	112	121	142	142	135	141	135	138	145
-	149		122	119	115	110	109	107	110	123	-	150	137	135	129	138	133
87 Fr	88 Ra	Ac-Lr	104 Rf	105 Db	$106 \mathrm{Sg}$	107 Bh	$108 \ \mathrm{Hs}$	109 Mt	110 Ds	$111~{\rm Rg}$	112 Cn	113	114 Fl	115	116 Lv	117	118
223	201		157	149	143	141	134	129	128	121	122	136	143	162	175	165	157
218	173		140	136	128	128	125	125	116	116	137						
-	159		131	126	121	119	118	113	112	118	130						

	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	180	163	176	174	173	172	168	169	168	167	166	165	164	170	162
	139	137	138	137	135	134	134	135	135	133	133	133	131	129	131
	139	131	128					132							131
ĺ	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	186	175	169	170	171	172	166	166	168	168	165	167	173	176	161
	153	143	138	134	136	135	135	136	139	140	140		139		141
	140	136	129	118	116										

Pekka Pyykkö J. Phys. Chem. A, 2015, 119 (11), 2326–2337

The Same or Not the Same

Ionic Character vs. Electronegativity

i = 1 - exp $[-0.21(\chi_A - \chi_B)^2]$

van Arkel-Ketelaar Triangle

van Arkel-Ketelaar Triangle

Normal vs. Dative Bond

	13	14	15	16	
	5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	
2	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	[35.
D n 10	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	t

Normal vs. Dative Bond

Heterolytic Bond Cleavage

Neutral + Radicals

Neutral + Diamagnetic

Charged + Radical

Homolytic Bond Cleavage

Badger's Rule

Badger's rule relates vibrational frequencies to bond distances for various atomic pairs.

$$r_e = \left(\frac{C_{ij}}{k}\right)^{\frac{1}{3}} + d_{ij}$$

 r_e = equilibrium bond distance k = force constant (can be substituted with v, the stretching frequency) C_{ij} and d_{ij} = empirically fitted values for a particular atomic pair i-j

Plots of bond distances vs $v^{-2/3}$ or $k^{-1/3}$ for a set of compounds comprising a particular atomic pair are fit to equation to determine C_{ij} and d_{ij} , which then allows a newly measured force constant or vibrational frequency to be used to calculate an unknown bond distance (or vice versa).

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \Rightarrow k = \mu (2\pi\nu)^2$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$
34

Badger's Rule

Badger's Rule

Normalized Badger's Rule

Normalized frequency

Normalized Badger's Rule

38

Bond Order

Not an observable quantity

G. N. Lewis 1916

Electron sharing between two atoms Bond order = a measure of the number of electrons shared between two atoms. Resonance structures

G. Herzberg

Bond order is equal to half the difference between the number of bonding electrons and the number of 'loosening electrons' in the molecule.

R. S. Mulliken

A non-integral bonding power of either sign is attributable to every outer electron - the Mulliken population analysis.

The effective bond order (EBO)

Each bonding orbital *i* has a natural orbital (NO) occupation number b_i . The corresponding antibonding orbital has the occupation number ab_i . a = 0 - full bond, a = 1 - no bond $EBO = \sum \frac{(b_i - ab_i)}{2}$

Multiple Bonds

Dominant form of oxygen is O=O, a colourless paramagnetic gas. Ozone (O_3) is the only other allotrope. Why does not it form O_8 ?

Lone-pair repulsion across the short O-O distance.

O is small, and its orbitals highly contracted, and so electrons feel a lot of e-e repulsion.

S=S is thermodynamically unstable wrt -S-S- (catenation) but stable above 700 °C (Why?)

π -Bonds

Diffuseness of orbitals

2s and 2p orbitals are only shielded from the nucleus by the 1s electrons. Therefore they are highly contracted, and π -overlap is efficient for the second period elements.

3s and 3p orbitals in the 3rd row and higher elements are more diffuse, and so this side-on p-p overlap is less effective.

Repulsion between core electrons

Second-row elements have only two core electrons. Third-row and heavier elements have a significantly larger number of core electrons that cause repulsion between two heavy elements bonded to each other. This prevents the atoms to approach each other closer and form stronger π bonds.

Atomic size

the large jump (50%) in the covalent radii between the 2nd and 3rd rows of the periodic table (for example, C (0.77 Å), Si (1.17 Å). Higher coordination numbers observed for the 3rd row.

Thermochemistry

 π -bond energies in heavy double bonds too small to prevent polymerization.

B. Cordero et al. Dalton Trans., 2008, 2832–2838

140 -	Atom n	C 2	Si 3	Ge 4	Sn 5	Pb 6
p orbital	Orbital energy					
	ns	-19.39	-14.84	-15.52	-13.88	-15.41
120 -	np	-11.07	-7.57	-7.29	-6.71	-6.48
Q	Ionization energy					
	ns	16.60	13.64	14.43	13.49	16.04
	np	11.26	8.15	7.90	7.39	7.53
100 - s orbital	Electron affinity	1.26	1.39	1.23	1.11	0.30
	Polarizability	1.76	5.38	6.07	7.7	6.8
	Electronegativity					
	Mulliken	1.92	1.46	1.40	1.30	1.2
80 - //	Pauling	2.55	1.90	2.01	1.96	2.3
	Allen	2.28	1.76	1.81	1.68	1.9
+ // I	Atomic radius					
6	ns	1.58	2.20	2.19	2.48	2.3
	np	1.74	2.79	2.88	3.22	3.22

Carbon - 2s and 2p electrons approximately **the same spatial extension** (the core electrons occupy only the 1s orbital).

Heavier Group 14 elements, the *n*p valence electrons (n > 2) are spatially separated from *n*s due to Pauli repulsion with the (n-1)p electrons in the inner shell.

Difficult to hybridize *ns* **and** *np* **orbitals** for heavier atoms, tend to preserve the valence *ns* electrons as core-like electrons while carbon shows a preference for an effective hybridization of the s and p - the strong overlap binding ability.

π -Bonds

In Group 14 all E=E species are unstable!

C=C double bonds are thermodynamically less stable than two corresponding single bonds and are kinetically stabilized. The preparation of polymers involves a catalyst to overcome the kinetic barrier and induce an exothermic reaction.

The Si=Si bond are much weaker, the driving force for polymerization is large, hard to prevent polymerization.

Stabilisation of Si=Si

The barrier in the disilene is high

West, R.; Fink, M.J.; Michl, J. *Science* **1981**, *214*, 1343 Masamune, S. et al. *J. Am. Chem. Soc.* **1982**, *104*, 1150

π -Bonds

Differences in reactivity?

Triplet - Singlet

 R_2C carbene triplet R_2Sn singlet

Stabilisation of Sn=Sn

 $Sn[N(SiMe_3)_2]_2 + 2 Li[CH(SiMe_3)_2] \rightarrow Sn[CH(SiMe_3)_2]_2 + 2Li[N(SiMe_3)_2]_2$

Distannene = the first isolable species with multiple bonding between two heavier main group elements.

```
Sn-Sn distance = 2.768(1) Å
Sn elemental = 2.80 Å
Ph_{3}Sn-SnPh_{3} = 2.770(4) Å
```

Lappert. M.F. et al. J. Chem. Soc., Chem. Commun. 1976, 261

Distannene Sn=Sn

Double Bond in Heavy Elements

Compound	M-M/Å	δ*/°	γ*/°
$[Ge(C_6H_3Et_2-2,6)_2]_2$	2.213(2)	12	10
$[Ge(C_6HMe_3-2,3,4-Bu^t-6)_2]_2$	2.2521(8)	0	20.4
$[Ge(SiMePr_2^i)_2]_2$	2.267(1)	0	6.5
$[Ge(SiPr_{3}^{i})_{2}]_{2}$	2.298(1)	0	16.4
$[Ge(Mes)(C_6H_3Pr_2^i-2,6)]_2$	2.301(1)	36	7
$[Ge{CH(SiMe_3)_2}_2]_2$	2.347(2)	32	0
$[GeCl(C_6H_3Mes_2-2,6)]_2$	2.443(2)	39	0
$\{\operatorname{GeN}(\operatorname{Bu}^{t})(\operatorname{CH}_{2})_{3}\operatorname{N}(\operatorname{Bu}^{t})\operatorname{SiN}(\operatorname{Bu}^{t})(\operatorname{CH}_{2})_{2}\operatorname{N}(\operatorname{Bu}^{t})\}_{2}$	2.451(2)	41.3	42.3
$[{Ge(SiBu_{3}^{t})_{2}}_{2}Ge(SiBu_{3}^{t})_{2}]$	2.239(4)		
$[{Ge(SiBu_3^t)}_3][BPh_4]$	2.226(4)		
$[Ge(C_6H_3Mes_2-2,6)]_3$	2.35(7)		
$K[{Ge(C_6H_3Mes_2-2,6)}_3]$	2.422(2)		
$[Sn{CH(SiMe_3)_2}_2]_2$	2.768(1)	41	0
$[Sn{Si(SiMe_3)_3}_2]_2$	2.8247(6)	28.6	63.2
$[Sn{C_6H_2(CF_3)_3-2,4,6}{Si(SiMe_3)_3}]_2$	2.833(1)	41.5	0
$[Sn(C_6HMe_3-2,3,4-Bu^t-6)_2]_2$	2.910(1)	21.4, 64.4	
$[Sn{C_6H_2(CF_3)_3-2,4,6}_2]_2$	3.639(1)	46	0
$[K(THF)_6][{SnC_6H_3Trip_2-2,6}_2]$	2.8123(9)	95.20	0
$[Pb\{C_{6}H_{2}(CF_{3})_{3}-2,4,6\}\{Si(SiMe_{3})_{3}\}]_{2}$	3.537(1)	40.8	0

Double Bond in Heavy Elements

Triple Bond - Disilyne

the substituents at the Si≡Si group are trans-bent, a bond angle of 137.44(4)°

Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1775

Heavier Gr14 Alkyne Analogues

M≡M (Å)	M≡M–C bending angle (degrees)	Shortening* (%)
2.0622(9) (ref. 21)	137.44(4)	11.87
2.285(6) (ref. 22)†	128.67(8)	6.35
2.6675(4) (ref. 23) †	125.1(2)	5.07
3.1811 (ref. 24)‡	94.26(4)	-9.69
	(Å) 2.0622(9) (ref. 21) 2.285(6) (ref. 22)† 2.6675(4) (ref. 23) †	(Å) angle (degrees) 2.0622(9) (ref. 21) 137.44(4) 2.285(6) (ref. 22)† 128.67(8) 2.6675(4) (ref. 23) † 125.1(2)

* Shortening with respect to a single bond. † $Ar' = C_6H_3 - 2,6(C_6H_3 - 2,6-i-Pr_2)_2$. ‡ $Ar^* = C_6H_3 - 2,6(C_6H_2 - 2,4,6-i-Pr_3)_2$.

Heavier Gr14 Alkyne Analogues

The 6s² valence electrons are stabilized by relativistic effects - they participate less in bonding.

The Pb-Pb single bond formed by head-to-head overlap of 6p orbitals, which have a larger radius than f 6s and hence form longer bonds

Vinylidene / Acetylene Isomers

Triple M≡M Bond

Non-bridged (eclipsed)

Non-bridged (staggered)

Triple M≡M Bond

	Configuration	rM-M / pm	Magnetism
$Cr_2Cl_9^{3-}$	$\sigma^2(\delta/\pi)^4$	310	Paramagnetic
$Mo_2Cl_9^{3-}$	$\sigma^2(\delta/\pi)^4$	253-288	Variable
$W_2Cl_9^{3-}$	$\sigma^2(\delta/\pi)^4$	242-250	Diamagnetic

Cr₂Cl₉³⁻ two CrCl₃ fragments held together by 3 bridging Cl, no d-orbital overlap, no direct Cr-Cr bond, paramagnetic with 6 unpaired electrons.

 $Mo_2Cl_9^{3-}$ the Mo-Mo distance depends on the cation present in the crystal structure, variable bonding and magnetism.

 $W_2Cl_9^{3-}$ good overlap and a triple W-W bond with no unpaired electrons.

Triple M≡M Bond

 $Mo_2(NMe_2)_6$ a $\sigma^2\pi^4$ triple bond a short Mo–Mo bond length of 2.214(2) Å

M.H. Chisholm, F.A. Cotton, B.A. Frenz, W.W. Reichert, L.W. Shive, B.R. Stults, J. Am. Chem. Soc. 98 (1976) 4469

 $W_2(NMe_2)_6$ a W–W bond length of 2.294(1) Å

M.H. Chisholm, F.A. Cotton, M. Extine, B.R. Stults, J. Am. Chem. Soc. 98 (1976) 4477

Triple M≡M Bond in Gr13

N. Holzmann, A. Stasch, C. Jones, G. Frenking, Chem. Eur. J. 2011, 17, 13517.

Triple $E \equiv E$ Bond in Gr13

ground state of E_2 (E = Al–In)

ground state of B₂

Triple $E \equiv E$ Bond in Gr13

The ground state, seen in ligand free B_2 , has two doubly occupied bonding orbitals (blue) but one doubly occupied antibonding orbital (red), giving a bond order of 1 and hence a single bond.

In contrast, the third excited state observed in (NHC) \rightarrow B=B \leftarrow (NHC) has three doubly occupied bonding orbitals and hence a triple bond.

Triple E≡E Bond in Gr13

Quadruple Bond

1964 – F. A. Cotton – the first bond order higher than 3

 $\delta - \delta^*$ transition 14700 cm⁻¹ (1.82 eV)

EBO = 3.2

the sum of the partial bond orders 0.92 (σ), 1.74 (π) and 0.54 (δ)

Formal Shortness Ratio (FSR)

Bond	Ratio	Bond	Ratio
C≡C	0.783	$Cr \equiv Cr$	0.771
N=N	0.786	$Mo \equiv Mo$	0.807
		Re ≡ Re	0.848

A short bond?

The FSR is a dimensionless number given by the ratio of the atomatom distance, *d*, of a bond and the sum of the radii of the two atoms involved, $r_A + r_B$:

 $FSR = d/(r_A + r_B)$

The advantage of this formalism is its interelement applicability. The FSR is a useful tool for comparing formal quintuple bonding and short metal–metal distances

Quadruple Bond

the Mo–Mo distances changes as torsional strain is introduced by bridging diphosphines with concomitant diminution of the $d_{xy}-d_{xy}$ overlap, i.e., the δ bond.

 $\chi = 0^{\circ}$ - an eclipsed configuration (b.o. = 4) $\chi = 45^{\circ}$ - a staggered configuration (b.o. = 3)

Quadruple Bond in PES

PES spectrum of the $[Re_2Cl_8]^{2-}$ anion

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

Oxidation $Mo_2(TiPB)_4$ to $[Mo_2(TiPB)_4]^+$

 $Mo_2^{4+} \rightarrow Mo_2^{5+}$ one unpaired electron (EPR)

Mo–Mo distance 0.06 Å longer electron removed from a bonding δ orbital

Quintuple Cr-Cr Bonding

Strategies for stabilization of multiple bonds

Maximum of valence electrons at metal Minimum number of attached ligands Bulky ligands to prevent intermolecular reactions Monovalent m-terfenyl ligands

T. Nguyen, A. D. Sutton, M. Brynda, J.C. Fettinger, G. J. Long, P. P. Power, *Synthesis of stable compound with fivefold bonding between two chromium(I) centers*, Science **2005**, 310, 844. Doi 10.1126/science.1116789

Quintuple Cr-Cr Bonding

 $CrCl_2(THF)_2 + LiAr' \rightarrow \frac{1}{2} [Cr(\mu-CI)Ar']_2 + LiCI$

in THF, $Ar' = C_6H_3 - 2,6(C_6H_3 - 2,6-iPr_2)_2$

 $[Cr(\mu-CI)Ar']_{2} + 2 KC_{8} \rightarrow [Cr_{2}(C_{6}H_{3}-2,6-(C_{6}H_{3}-2,6-iPr_{2})_{2})_{2}] + KCI$

Quintuple Cr-Cr Bonding

Cr-Cr bonding = σ + 2π + 2δ

Quintuple bond = five electron pairs play a role in holding the metal atoms together. It does not imply that the bond order is five or that the bonding is very strong since the ground state of the molecule mixes with higher energy configurations with less bonding character. This gives lower, usually non-integer, bond orders.
Quintuple Cr-Cr Bonding

Quintuple Cr-Cr Bonding

The Hein– Cotton concept three-atom bridging ligands to establish short metal–metal distances

Importance of the ligand in establishing short metal–metal bonds: The N–N distances correlate with the Cr–Cr bond lengths.

The Shortest M–M Bond

а

Cr-Cr, 1.7293(12) Å

Steric pressure

a bulky substituent at the bridging carbon a further reduced M-M distance Guanidinates π system is delocalized and planar

Quintuple Mo-Mo Bond

Bonding in R-MM-R

R. Hoffmann - the potential energy surfaces of RMMR, R = H, F, Cl, Br, CN, and CH_3 ; M = Cr, Mo, and W.

The potential energy surface is complex with several local minima.

The linear geometry is always a minimum, but almost never the global minimum; A preference for either a trans-bent conformation or one of the R groups bridging The potential energy surface is relatively flat, the lowest energy conformation - the best compromise between maximization of the MM bonding and minimization of orbital interactions that are MR antibonding the MM quintuple bond persists

77

R. Hoffmann - the potential energy surfaces of RMMR, R = H, F, Cl, Br, CN, and CH_3 ; M = Cr, Mo, and W.

The potential energy surface is complex with several local minima.

The linear geometry is always a minimum, but almost never the global minimum; A preference for either a trans-bent conformation or one of the R groups bridging The potential energy surface is relatively flat, the lowest energy conformation - the best compromise between maximization of the MM bonding and minimization of orbital interactions that are MR antibonding the MM quintuple bond persists

Sextuple Bonding in Gr6 M₂ Dimers

 M_2 (M = Cr, Mo, W)

Matrix isolation IR and UV spectroscopy Short M-M distances Singlet ground state

Laser-evaporated Cr_2 in the gas phase d(Cr-Cr) = 1.68 Å

Spectroscopic studies of Cr_2 generated from pulsed photolysis of $Cr(CO)_6$ d(Cr-Cr) = 1.71 Å

Mo-Mo molecule in the gas phase at low temperatures d(Mo-Mo) = 1.93 Å

Sextuple Bonding in Gr6 M₂ Dimers

 M_2 (M = Cr, Mo, W) $(n+1)p \equiv$ σ* (n+1)s π* -δ* nd δ d_{vz} d_{7}^2 Μ d_{z^2} M_2 Μ

π

p-orbitals too high in energy

overlap **increases down** a group and can reach the bonding manifold

 δ -bonds are weaker than π -bonds due to poor overlap between orbitals.

M-M bonding energy increases down a group which is in contrast to the *p*-block.

Sextuple Bonding in Gr6 M₂ Dimers

Cr₂ – poor delta bonding, 4 AF coupled electrons, larger 4s orbitals generate a considerably longer bond than the 3d-3d. This unbalance weakens the 3d bonds and makes the 4s bond repulsive at equilibrium geometry, the repulsive interaction between the closed 3p, which have about the same radial extension as 3d. Effective bond order (EBO) Dissociation energy (DE)

М	EBO	d(M-M), Å	DE, eV
Cr	3.5	1.66	1.65
Мо	5.2	1.95	4.4
W	5.2	2.01	5.4

Multiple Bonding

The bond energy only 1.66 eV for Cr₂ sextuple bond but 3.17 eV for quintuple bond in [PhCrCrPh] = no direct relation between bond order and bond energy, a complex quantity depends on many factors, such as atomic promotion energy, the interplay between attractive nuclear forces and electron repulsion, spin–orbit couplingdecreases the bond energy

Bond orders higher than 6? Lanthanides – 4f orbitals? Actinides – 5f orbitals participate in bonding

The EBO is always smaller than the maximum formal bond order (MBO = the number of electrons forming the bond divided by two)

Molecule	MBO	EBO	D ₀ [eV]
Cr ₂	6	3.5	1.6
[PhCrCrPh]	5	3.5	3.2
Ac ₂	3	1.7	1.2
Th ₂	4	3.7	3.3
Pa ₂	5	4.5	4.0
U ₂	6	4.2	1.2

Multiple Bonding Trends In Groups

Main-Group Elements

Tendency to multiple bonding **decreases down the group** s + 3×p orbitals available s/p size difference increases and propensity to hybridization decreases down the group

Transition Metals

Multiple bonding increases down the group

s + 5×d orbitals available

difference in size between the smaller nd and larger (n+1)s orbitals decreases down the group

relativistic effects contract s and p orbitals while d and f are expanded the s and d orbitals in second- and especially third-row transition metals are more equal in size. This greater equivalency in size considerably enhances the bond strength

Inverted Bond

isoelectronic molecules C₂, CN⁺, BN, and CB⁻ singlet ground state $X^{1}\Sigma_{g}^{+}$ valence bond (VB) theory and full configuration interaction (FCI)

bond order = 2

 $2\sigma_g$ and $2\sigma_u$ orbitals are both filled, two π -bonds unsupported by an underlying σ -bond and two σ lone pairs.

```
bond order = 3
sp-hybridized carbons, one \sigma- and two \pi-bonds,
two electrons in the outwardly pointing hybrids
```

triplet state $c^{3}\Sigma_{u}^{+}$, electrons are unpaired, 26.4 kcal mol⁻¹ above the ground state these electrons maintain a significant bonding interaction in the ground state

Sigma Hole Interactions

Halogen/chalcogen/pnictogen/tetrel bonding

a noncovalent interaction between
a covalently-bonded atom of Groups
14–17 and a negative site, *e.g.* a lone
pair of a Lewis base or an anion.

 σ -hole = a region of positive electrostatic potential on the extension of one of the covalent bonds to the atom caused by the anisotropy of the atom's charge distribution

Heavy atoms without hybridization $4p_{z}$ occupied by only one electron

Sigma Hole Interactions

Electrostatic potential (ESP)

$$V(\mathbf{r}) = \sum_{\mathbf{A}} \frac{Z_{\mathbf{A}}}{|\mathbf{R}_{\mathbf{A}} - \mathbf{r}|} - \int \frac{\rho(\mathbf{r}') d\mathbf{r}'}{|\mathbf{r}' - \mathbf{r}|}$$

Bond strength $13 - 100 \text{ kJ mol}^{-1}$ H-bond in $(H_2O)_2$ 20 kJ mol $^{-1}$

Directionality increase Cl < Br < I

Isomerism

- the *molecular conformation* specifies a combination of relative atomic positions conferring on the molecule a certain stability.

- the *potential energy (hyper)surface* (PES) characterizes through its minima the various molecular conformations that could be expected for a given assembly of atoms, and defines by means of saddle points the thermodynamic pathways interconnecting them.

Isomers = molecular conformations corresponding to distinct minima on the PES, separated by an energy barrier high enough to impede immediate interconversion at room temperature, separable, 100 - 120 kJ mol⁻¹ or more.

Conformers = barrier is lower, not separable under ambient conditions, but could be observed and characterized at lower temperature.

the potential energy (hyper)surface (PES)

R. Hoffmann 1972

Bond-stretch *isomers* = distinct, separable and stable at room temperature

Bond-stretch isomerism (BSI) = the unusual phenomenon whereby molecules differ only in the length of one or more bonds

NOT Bond-stretch *isomers*:

Complex Re(*cis*-Cl₂)(NCMe)(NO)-*trans*-(PMe₃)₂

Crystallizes in $P2_1/a$ with 44 molecules in the asymmetric unit

a dense and low-symmetry hydrogen bonding network

the Re–N(NO) and the Re–N(NCMe) distances vary by as much as 0.10 or 0.12 Å, respectively.

S orbital = symmetric combination wrt σ_h , transannular C–C bond **A** orbital = antibonding, antisymmetric

Interaction (through-bond coupling) between A and the high-lying σ^* orbitals of the C–C bonds (2–3, 5– 6 and 7–8) results in a stabilization of A. A crossing between A and S, A becomes the HOMO when the transannular distance is larger than 2.25 Å and gives rise to a diradical form. The orbital crossing makes the interconversion between the diradical and the tricyclic form symmetry forbidden and should generate isomers = equilibrium conformations separated by an energy barrier

91

Table I. Selected Bond Lengths (Å) for Mo(O)Cl₂(PMe₂Ph)₃ and Mo(O)Cl₂(PEt₂Ph)₃^a

	$\begin{array}{c} blue \\ Mo(O)Cl_2(PMe_2Ph)_3 \end{array}$	$\begin{array}{c} green\\ Mo(O)Cl_2(PEt_2Ph)_3 \end{array}$
Mo-O	1.676(7)	1.803(11)
$Mo-Cl(1)^b$	2.551(3)	2.426(6)
$Mo-Cl(2)^b$	2.464(3)	2.479(5)
Mo-P(1)	2.500(3)	2.521(5)
Mo-P(2)	2.541(3)	2.582(6)
Mo-P(3)	2.558(3)	2.556(6)

 a Taken from ref 12a. b Cl(1) and Cl(2) are trans and cis to O, respectively.

Chatt, J.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc. (D) 1971, 655-656 Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1972, 686-690

Distribution of Mo=O distances (Å) for monooxo complexes in the oxidation states +4, +5, and +6.

Crystallographic disorder difficult to detect, results in the incorrect determination of bond lengths and the incorrect formulation of compounds

Cocrystallization of structurally related molecules resulting in the formation of single-crystal solid solutions

Yoon, K.; Parkin, G.; Rheingold, A. L. J. Am. Chem. Soc. 1992,114, 2210

Chromium Dimer?

Valence electron configuration:

 $(3d\sigma_g)^2(3d\pi_u)^4(3d\delta_g)^4(4s\sigma_g)^2$ sextuple bond, Cr–Cr distance: 1.6788 Å (2.5 Å in Cr metal) Singlet, observed dissociation energy = 1.44 ± 0.05 eV

The optimal bonding regions are quite different for the 3d and 4s orbitals

1st minimum: *R*e = 1.59 Å; *D*e = 1.38 eV 2nd minimum: *R*e = 2.40 Å; *D*e = 1.14 eV

Balance between covalent bonding (d-d) at short distance and (s-s) bonding and antiferromagnetic coupling of the 3d electrons at long distance

Calculated 2nd minimum of the ground-state energy curve is extremely shallow

corresponding isomer rather short-lived and difficult to trap and to characterize

M₂X₂ Rings

Isomers with or without ligand–ligand bonds Electron transfer from ligands X to metal M

$L_{n}M \xrightarrow{X} ML_{n} \Longrightarrow L_{n}M \xrightarrow{X} ML_{n} \Longrightarrow L_{n}M \xrightarrow{X} ML_{n}$					► ML _n
FEC = Metal configuratio Bridge	8 n d ⁿ (X ₂) ^{x-}		6 d ⁿ⁺¹ (X ₂) ^{2-x}	4 d ⁿ⁺² (X ₂) ^{4-x}	
M		Х	L ₂	β	Δ_{XX}
Experimental data					
Pd		Te	$(PEt_3)_2$	108	0.07
Pt		S	$(PpyPh_2)_2$	103	0.96
Pt		S	dppe	86	1.10
Pt		Se	$(PPh_3)_2$	100	0.70
Pt		Te	$(PEt_3)_2$	106	0.32
Pt		Te	$(PPh_3)_2$	100	0.32
Pt		Te	dppe	86	0.53

 β is the LML bond angle, Δ_{XX} is the difference b/w the X–X distance and the atomic radii sum.

 $M_3(dpa)_4X_2$ M = Cr, Co, Ni, Cu, Ru, Rh X = halogenide, BF_4^- , PF_6^-

Ox. state of M?

unsymmetrical (u) Co3 chain symmetrical (s) Co3 chain Cl Cl 1.38 1.38 1.38 1.36 _{124.8} 1.39 1.40 .36 1.37 1.39 119.1 1.36 116.4 115.1 .37 124 115.5 19.3 1.37 115.2 115.1 1.37 1.35 1.36115.71.35 N_{121.5} 118.9 **N** Ν 119.7 N 119.9 122.1 120.4 1.885 1.967 1.995 1.955 1.880 1.90-1.91 1.95-2.01 1.97-1.99 2.10-2.14 1.91 85.9 *85.5* 86.7 82.6 85.9 2.424* 2.326 2.510* 2.498* - CO₍₃₎ Co(2) Co_(1')-Co(2)-- Cl CI CI CO(1) **;O**(1) 2.363 2.459 2,285 2.32-2.34 2.44-2.51

less unsymmetrical at low temperature

both the s and the u isomers are in an S = 1/2 ground state at low temperature

Linear triatomic system: M-M-M

the equivalent atomic orbitals of every type give rise to a set of three molecular orbital (MO) combinations:

(i) a bonding MO, lowest in energy(ii) a nonbonding, antisymmetric, localized on the terminal atoms(iii) an antibonding MO

Five orbital sets:

One σ set - d_z2 orbital combinations (z is collinear with the framework axis)

Two degenerate π sets - combinations of d_{xz} and d_{vz} orbitals

Two δ sets - combinations of d_{xy} and $d_x 2 - 2^y$ orbitals. One δ set accepts the lone pairs of the equatorial dpa ligands

The 3d atomic orbitals are compact in space and the 3d–3d overlap between π and δ orbitals is weak except at supershort distances

The nine metal MOs belonging to the two π sets and to the remaining δ set are not split in energy

 $Co_3(dpa)_4Cl_2$ S = 1/2 ground state Cr₃(dpa)₄Cl₂

S = 2 ground state

Three-electron, three-center system

18 electrons in the π and δ orbital sets do not take part in any metal–metal interaction, *localized* on individual metal atoms The bonding in the M-M-M fragment is exclusively due to the 3 σ electrons, which are *delocalized* over the metal framework

Three-electron, three-center system

12 electrons in the π/δ block singly occupied, the 10 unpaired electrons including the one in the σ nonbonding orbital and shared between the terminal Cr atoms—are *spin-coupled*-antiferromagnetic interaction

Structure	S value	Spin Coupling Atomic Spin Populations	Relative Energies	
Symmetric ∆d _{Cr-Cr} = 0	2	↑↑↑↑	0.0	
Non-symmetric ∆d _{Cr-Cr} = 0.106	2	↑↑↑↑↓↓↓↑↑↑↑ 3.60 -3.00 3.44	+0.97	
Non-symmetric ∆d _{Cr-Cr} = 0.679	2	↑↑↑↑↓↓↓ ===== ↑↑↑ 3.79 –2.27 2.50	+4.25	AF to bonding
Non-symmetric ∆d _{Cr-Cr} = 0.679	2	^↑↑↑↑↑↑↑====↓↓↓↓ 3.84 2.17 –2.09	+10.12	Short = bonding Long = ferromg
Symmetric ∆d _{Cr-Cr} = 0	5	↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 3.50 2.93 3.50	+30.8	

state (S = 5) is destabilized by 30.8 kcal $m_{O}l^{-1}$

Со-Со-Со

A ground-state potential energy curve (PES) has only one shallow minimum corresponding to the *s* conformation

Both the shape of this PES and the symmetric position of its minimum are consequences of the threeelectron, three-center bond

The crystal forces could influence the molecular geometry or population of a low-energy, high-spin excited state induce a temperature-dependent distortion of the framework

Cr-Cr-Cr

A shallow, symmetric PES governed by σ metal electrons π and δ electrons, though localized on the metal atoms take part in the bonding through their magnetic coupling

Spin State Isomers

Spin Crossover (SCO)

a reversible change in the spin state of from low spin (LS) to high spin (HS) affected by the application of external stimuli:

- Temperature
- Pressure
- Photoexcitation
- Magnetic field
- Electric fields

Fe(II) complexes (O_h) - most abundant cases

the Fe-N bond lengths and orbital overlap change upon SCO, and therefore 10Dq is different for the LS and HS states of the same complex

Spin State Isomers

Relativistic Effects

Einstein's special theory of relativity (1905)

$$m = m_0 / \sqrt{1 - (v/c)^2}$$

Bohr atomic model (1913)

space-time; a single continuum (one entity)

 a_0 – Bohr radius ε_0 – permittivity of free space h – Planck constant m – mass of an electron Z – atomic number e – elementary charge c = 3.10⁸ m/s

- e	$a_0 = \frac{\varepsilon_0 h^2}{mZe^2 \pi} \qquad \qquad V_{electron} = \left(\frac{nh}{nh}\right)^2$		$a^{-}\left(\frac{-nh}{nh}\right)^{2}$	z – atomic number e – elementary charge $c = 3.10^8$ m/s	
Y		1s electron velocity m/s	relativistic mass	relativistic radius contraction	
n+	H (Z = 1)	$v = 2.18 \cdot 10^6$ $v = 0.00727 \cdot c$	<i>m</i> = 1.0000265 m ₀	~ 0 %	
	Au (Z = 79)	$v = 1.73 \cdot 10^8$ $v = 0.577 \cdot c$	<i>m</i> = 1.23 m ₀	~ 20 %	
	Fm (Z = 100)	$v = 2.18 \cdot 10^8$ $v = 0.727 \cdot c$	<i>m</i> = 1.46 m ₀	~ 30 %	

 $v_{electron} = \left(\frac{2\pi e^2}{nh}\right)Z$

Relativistic Effects

• direct effect: stabilization (decrease) of s- and p-orbitals

• **indirect effect:** destabilization (expanding) of *d*- in *f*-orbitals due to the increased shielding by *s*- and *p*-orbitals

•very high first ionization energy (Au 9.23 eV, Ag 7.58 eV, Cu 7.73 eV)

Au ¹⁺ /Ag ¹⁺ Au ³⁺ /Ag ³⁺	Au ⁴⁺ Au ⁵⁺
---	-----------------------------------

•the highest electron affinity of all metals: simple reduction to auride anion Au⁻ (Cs⁺Au⁻ is known since 1931, it has CsCl structure) – pseudohalogen

•Au₂(g) dissociation energy: 221 kJ/mol

Ag₂(g) 160 Br₂(g) 193 Cl₂(g) 243

•gold is the most electronegative of all metals

 $Li^{\delta+}-H^{\delta-}$ $Au^{+0,02}-H^{-0,02}$ $H^{\delta+}-Cl^{\delta-}$

Relativistic Atomic Radius and Bond-Length Contractions

Expected order: **Cu < Ag < Au** Actual order: **Cu < Au < Ag**

d(Ag–P) d(Au–P) 2.44 Å 2.35 Å

Distance, Å	Ag	Au
In solid state d(M–M)	2.889	2.885
Ionic radius for two-coordinate M ¹⁺	1.33	1.25
Ionic radius for four-coordinate M ¹⁺	1.46	1.37

2.66 Å 2.59 Å

d(Ag–H) d(Au–H) 1.62 Å 1.52 Å

Attractive interactions Au¹⁺···Au¹⁺:

d(Au–Au) 3.27 Å

aurophilicity or aurophilic interaction

two-coordinate Au 5d¹⁰ closed-shell interactions

energy comparable to hydrogen-bonding (5–10 kcal/mol)

distances shorter 2.50–3.50 Å then the sum of van der Waals radii (3.80 Å) or d(Au-Au) in ccp (2.89 Å)

correlation effects + relativistic effects ~20 %

metallophilicity or metallophilic interactions $d^{10}-d^{10}$ Au⁺, Ag⁺, Cu⁺, Hg²⁺, Pt⁰, Pd⁰, Tl³⁺, also Ir

Aurophilic Interactions

L-Au⁺ isolobal to H⁺, R⁺

 $L = PR_3$, X = CIL = carbene, X = CIL = CN, X = CI $L = PPh_2S$, $X = PPh_3$

 $(R_3P)AuCl + Ag_2O, KOH, H_2E, E(SiMe_3)_2$ (E = O, S, Se, Te)

Bond Energies of Aurophilic Interactions

Compound/model	Au-Au contact mode	Method	Bond energy/kcal mol ⁻¹
(CO)AuCl	Unsupported intermolecular	MP2	10.0
(Et ₃ P)AuCl	Unsupported intermolecular	DFT	9.5
(NHC)AuCl	Unsupported intermolecular	DFT	8.6
$[Au(CN)_2]^-$	Unsupported inter-anionic	EH/MP2	7.2
$\left[Cl(AuPH_3)_2\right]^+$	Unsupported inter-cationic	MP2/DFT	19.8
S(AuPH ₃) ₂	Unsupported intermolecular	MP2/DFT	29.8
$[HS(AuPH_3)_2]^+$	Unsupported inter-cationic	MP2/DFT	a
$[(Et_3PAu)_2C \equiv CB_{11}H_{11}]$	Unsupported inter-cationic	NMŔ	8.8
$(dppe)Au_2[S_2C_2(CN)_2]$	Fully supported intramolecular	UV/vis	15.0
$[(Xantphos)_2Au_2]^{2+}$	Fully supported intramolecular	NMR	11.6

^{*a*} Non-bonding due to Coulomb repulsion; attraction verified upon addition of anionic point charges.

H+	R+	LAu+
H ₂ O	R ₂ O	$(LAu)_2O$
H ₃ O ⁺	$R_{3}O^{+}$	$(LAu)_{3}O^{+}$
$H_4^{\prime}O^{2+}$	$R_4^{0}O^{2+}$	$(LAu)_4O^{2+}$
H ₃ N	R ₃ N	(LAu) ₃ N
H_4N^+	$R_4 N^+$	$(LAu)_4N^+$
H_5N^{2+}	$R_{5}N^{2+}$	$(LAu)_5 N^{2+}$
H₄C	R₄C	(LAu)₄C
$H_{s}C^{+}$	R_5C^+	$(LAu)_5C^+$
H ₆ C ²⁺	R_6C^{2+}	$(LAu)_6C^{2+}$

Hydrogen Bond

D-H----A

D–H bond elongates = weakenedD–H bond dipole increasesDipole-dipole electrostatic energy increasesAttractive interaction increases

Charge transfer from A (lone pair, pi density) to sigma* (antibonding) MO of D–H

D–**H** bond weakened = elongated

D-H vibration decreases = **RED** shift $(10 - 100 \text{ cm}^{-1})$

D–**H** dipole increases = intensity in IR increases

Improper (Blue-Shifting) H-bond

P. Hobza et al.: JPC A 102, 2501 (1998) benzene...H-X $(X = CH_3, CCl_3, C_6H_5)$ P. Hobza, Z. Havlas: Chem. Rev. 100, 4253 (2000)

Charge transfer from electron donor to distant parts of electron acceptor (restructuralization of acceptor electrons)

C–H strenghtening, shortening = **BLUE SHIFT** Rehybridization of C

Indirect mechanism

a two-step mechanism - a charge transfer from the proton acceptor to a remote part of the proton donor, followed by a structural reorganization of the proton donor itself

Dihydrogen Bonds

The dihydrogen bond = an interaction between a transition metal or main-group **hydride** (M–H) and a **protic** hydrogen moiety (H-X)

intra- and intermolecular proton-hydride hydrogen bonds

Play a role in:

- crystal packing
- potential hydrogen-storage materials
- organometallic reaction mechanisms

X-ray crystal structure of trans-[PtH(PhHNNC₃H₆)(PPh₃)₂]BF₄

NMR Spectral Criteria of Dihydrogen Bonding

• shifts of the ¹H resonance of HX to lower field by 2–4 ppm

• high-field shift of the hydride (M–H) signal by 0.1–0.8 ppm and a 1.5–3-fold decrease of its longitudinal relaxation time (T_{1min})

rapid exchange on the NMR time scale of free and hydrogen-bonded molecules weighted average between free and dihydrogen bonded hydrides

an enhancement of H–H exchange coupling, J_{H–H} on metal polyhydrides
 1D nuclear Overhauser effect (NOE) spectroscopy or 2D ¹H nuclear Overhauser enhancement spectroscopy (NOESY)

estimation of H···H distances from spin–lattice T_1 relaxation measurements short MH···HX contacts cause strong homonuclear dipolar coupling that provides an additional contribution to nuclear dipole–dipole_relaxation

$$r_{H-H} = 5.815 \left(\frac{T_{1\min}}{\nu}\right)^{\frac{1}{6}}$$

IR Spectroscopy Criteria of Dihydrogen Bonding

IR short time scale - detection of separate absorptions for free and hydrogenbonded species.

The formation of a dihydrogen bond MH···HX = appearance of a new wider and more intense band, v_{XH}^{bonded} , of the proton donor

a band shift: $\Delta v_{XH} = v_{XH}^{bonded} - v_{XH}^{free}$ (red shift up to -450 cm⁻¹)

elongation of the proton-donating HX bond

Enthalpies of intermolecular hydrogen bonds ΔH_{HB} changes in the IR band positions ($\Delta v_{\chi H}$) and intensities ($\Delta A_{\chi H}$) (in kcal mol⁻¹)

$$\Delta H_{\rm HB} = -18\Delta\nu_{\rm HX}/(\Delta\nu_{\rm HX} + 720)$$

$$\Delta H_{\rm HB} = -0.30 \Delta \nu_{\rm HX}^{1/2}$$

$$\Delta H_{\rm HB} = -2.9 \Delta A_{\rm HX}^{1/2} = -2.9 (A_{\rm bonded}^{1/2} - A_{\rm free}^{1/2})$$

Enthalpies of Dihydrogen Bonds

Complexes of Boron Tetrahydride with Different Proton Donors

ROH	$ \nu_{\sigma} \text{ in } CH_2Cl_2 \ (cm^{-1}) $	$_{\rm (cm^{-1})}^{\Delta\nu_{\rm OH}}$	$-\Delta H_{\mathrm{exp}}$ in $\mathrm{CH}_2\mathrm{Cl}_2$ (kcal/mol)	r _{H…H} (Å)
CFH ₂ CH ₂ OH	318	247	4.6	1.63
CF ₃ CH ₂ OH	324	290	5.2	1.55
$(CF_3)_2$ CHOH	362	402	6.5	1.46

 v_{σ} = intermolecular H····H stretching mode

Enthalpies of Dihydrogen Bonds

Correlation between the enthalpy of DHB formation (Δ H°DHB; derived from IR data) and the H···H distance (determined from NMR data on T_{1min}) for complexes of fluorinated alcohols [TFE = CF3CH2OH, HFIP = (CF3)2CHOH, PFTB = (CF3)3COH] in dichloromethane

Crystallographic Structural Data

Neutron diffraction crystal structure of ReH₅(PPh₃)₃·indole