Rings and Polyhedra

Coordination Modes

"Harris" Notation

J. Chem. Soc., Dalton Trans., 2000, 2349

The binding mode is referred to as

$$[X.Y_1Y_2Y_3...Y_n]$$

X = the **overall** number of **metals** bound by the whole ligand

Each value of **Y** refers to the **number** of metal atoms **attached** to the different donor atoms

n = number of donor atomsThe ordering of Y is listed by the Cahn–Ingold–Prelog priority rules

The ligand OStaH⁻ has three donor atoms S, O and N(1)
So the notation includes three values of Y

Ordered :
$$S > O > N$$

$$H_2OSta$$
 H_2OSta
 H_2OSta

"Harris" Notation

If the ligand is bound to more than one metal, and is chelating, it is difficult to indicate whether the N-

oxygen atom.

While the chelating N,S mode is inherently more likely (and observed), there is still a need to distinguish between this and the N,O-chelating mode.

To distinguish between these two alternatives include a **subscript** number to show to which **metal atom** the donor is attached.

donor is bound to the same metal as the sulfur or

The mode $[2.1_11_21_1]$ implies the N- and S-donors chelate to one metal and the O atom binds to the second metal

The mode $[2.1_11_21_2]$ implies the N- and O-donors chelate and the S-donor binds to the second metal

S > O > N

2.111211

$$\begin{array}{c|c}
 & NEt_2 \\
 & N \\
 & N \\
 & M
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & M
\end{array}$$

2.1₁1₂1₂

"Harris" Notation s>o>n

3.1122311

3.120

Five possible bonding modes for ligand OStaH⁻

The numbers below each bonding mode refer to the Harris notation

The mode $[2.1_11_21_2]$ shows how Harris notation distinguishes between possible binding modes (*cf.* $[2.1_11_21_1]$).

The dashed lines to H atoms indicate hydrogen bonds

Crystallographically established coordination modes of the sulfato ligand

6

Coordination modes of the phosphonato ligand

"Harris" Notation

Symmetry Labels nx_{yz}

Characters in group tables the labels can be used to describe the symmetry of orbitals

n = orbitals of the same symmetry are numbered successively in order of increasing energy

x = a - singly degenerate and symmetrical to C_{2n} rotation about the principle rotation axis

x = b - singly degenerate and unsymmetrical to C_{2n} rotation about the principle rotation axis

x = e - doubly degenerate

x = t - triply degenerate

y = 1 - symmetrical to reflection through a reference mirror plane

y = 2 - unsymmetrical to reflection through a reference mirror plane t_{2g}

z = 'nothing' if there is no inversion center

z = g - symmetrical to inversion

z = u - unsymmetrical to inversion

1a_{1g}

Allotropes of Carbon

- 12 pentagonal faces 6 pairs of opposite faces with a 5-fold rotation axis
- 20 hexagonal faces 10 pairs of opposite faces with a 3-fold rotation axis
- 60 pentagonal edges surrounding the pentagonal faces
- 30 hexagonal edges lying between two hexagons with a 2-fold rotation axis

(n,m) SWNTs

(n,m) SWNTs

- A) Armchair an achiral metallic conducting (10,10) tube
- B) Chiral semiconducting (12,7) tube
- C) Zigzag an achiral conducting (15,0) tube

All the (n,n) armchair tubes are metallic Chiral or zigzag tubes are metallic only if (n-m)/3 is a whole number, otherwise, they are semiconductors

(n,m) = (4,2)

A 2D graphite layer the lattice vectors a_1 and a_2 Angle of 60°

The roll-up vector $C_h = na_1 + ma_2$

Achiral tubes exhibit roll-up vectors derived from (n,0) (zigzag) or (n,n) (armchair).

The translation vector T is parallel to the tube axis and defines the 1D unit cell.

The rectangle represents an unrolled unit cell, defined by T and C_h

$$d(Csp^2-Csp^2) = 1.42 \text{ Å}$$

$$a_0 = a_1 = a_2$$

$$a_0$$
 = 2 d cos(30) = = 1.42 $\sqrt{3}$ = 2.49 Å

$$\overrightarrow{C_h} = n\overrightarrow{a_1} + m\overrightarrow{a_2} \equiv (n, m)$$
 (and $0 \le |m| \le n$)

Tube diameter

$$d_{t} = \frac{|C_{h}|}{\pi} = \frac{a_{0}\sqrt{(n^{2} + nm + m^{2})}}{\pi}$$

$$|a_{1}| = |a_{2}| = a_{0} = 0.249 \text{ nm}$$

$$\theta = \tan^{-1} \left[\sqrt{3}m / (m + 2n) \right]$$

$$\theta = 0 - 30^{\circ}$$

Allotropes of Silicon

Na₄Si₂₄ synthesized at high pressure, Na removed by thermal degassing, Open framework structure – Cmcm A quasidirect band gap 1.3 eV

Si₁₃₆ and Ge₁₃₆ Clathrate II Fd-3m

M = Si, Ge Cages occupied by Na or K that can be removed

Allotropes of Germanium

120 kilobars, allotrope *beta*-germanium = *beta*-tin 2014, the vapor of germanium deposited on a gold surface by molecular beam epitaxy, a 2D single-layered "germanene"

Expands as it solidifies

Semiconductor, refined to impurity concentration of only 1 part in 10¹⁰

Allotropes of Tin

Beta White Sn (metallic) Coordination number 6, Sn-Sn bond lengths 302 and 318 pm

Alpha Gray Sn - diamond type stable below 13 °C, semiconductor Coordination number 4 Sn-Sn bond length 281 pm

Allotropes of Gr15 Elements

Allotropic modifications only known for phosphorus (some are known as P-As alloys):

Allotropes of Gr16 Elements

Other sulfur allotropes such as 7, 9, 10, 11, 13, 14, 15, 18, and 20-membered rings have been synthesized

1930's

Zintl Phases

Zintl Phases = discrete charges at some intermetallic phases, valence compounds formed between the electropositive elements (alkali, alkaline-earth, and rare-earth elements) and the electronegative post-transition, main group elements (including Al, Si, P, and, to some extent, S). Solids that can exhibit metallicity, ionicity, and covalency simultaneously.

triels (trielides, Tr, Group 13: B - Tl)
tetrels (tetrelides, Tt, Group 14: C - Pb)
pnicogens (pnictides, Pn, Group 15: N - Bi)
chalcogens (chalcogenides, Ch, Group 16, O - Po)

Zintl Boundary: separates the triels from the tetrels, different chemistry in reactions with alkali metals in liquid ammonia:

- Tetrel elements form soluble (typically highly colored) clusters
- Triel elements form insoluble, extended solids

Eduard Zintl (1898 – 1941)

Zintl Phases Characteristics

Compounds with fixed compositions (fixed stoichiometry)

Key concept: **isoelectronic** principle - same number of valence electrons and the same structure, i.e. number and connectivity of atoms, but different chemical composition (CO / N_2)

Stable (mono)anions of the later *p*-elements, the connectivity of the various elements follows the 8-N rule

- in the solid state salt-like structures, e.g., Mg₂Si is anti-fluorite
- in solution polyanionic clusters

typically brittle, deeply colored, semiconducting, adopting fixed compositions (no homogeneity width or little compositional variation), show large heats of formation and volumes of formation (charge-transfer effects)

some Zintl-phases are soluble in liquid ammonia (cluster anions)

- brittle (like salts)
- higher melting points than the pure metals they are build of
- semiconductors (the higher the atomic number of the electronegative part, the smaller is the bandgap of the semiconductor)

Octet rule

the "pseudoatom" approach from Klemm

- isolated atoms will be isoelectronic with noble gases (closed shell): Sb³⁻
- atoms in dimers will be isoelectronic with halogens: Sb₂⁴⁻
- atoms in chains or rings will be isoelectronic with chalcogens: square Sb₄⁴⁻
- atoms that are 3-bonded (in sheets or 3D nets) will be isoelectronic with pnicogens
- atoms that are 4-bonded (tetrahedral coordination) will be isoelectronic with tetrels

Hypervalent (not octet) linear Sb₃⁷⁻

Zintl Phases - Synthesis

Syntheses of Zintl-phases

a) reduction in **liquid ammonia** (titration of PbI₂ with Na solution)

22 Na + 9 PbI₂ + n NH₃ (I)
$$\rightarrow$$
 Na₄Pb₉ \cdot nNH₃ + 18 NaI

b) direct solid state reaction

$$Ca + Si \rightarrow CaSi$$

c) cathodic decomposition - binary compound is decomposed at the cathode and polyanions go into solution

Wilhelm Klemm expanded the concept to the "pseudoatom" approach: polyanions look like a following element.

NaTl is the protoptype Zintl phase. NaTl is formulated as Na⁺Tl⁻, and Tl⁻ adopts a structure like Si, Ge or Sn (one element to the right, but NOT Pb!).

Na donates its 3s electron to TI, resulting in a formal TI anion with 4 valence electrons. This "anion" behaves as a pseudotetrel atom, each of which forms 4 covalent bonds and adopts the diamond structure.

Each Na⁺ "cation" acts as a charge balancer and space filler.

KTI

Na and TI form sublattices - independent interpenetrating diamond networks. The atoms sit on the sites of a bcc lattice with $a_{bcc} = \frac{1}{2} a$.

Each Na atom is surrounded by 4 Na atoms arranged tetrahedrally and 4 Tl atoms arranged tetrahedrally. Together the 8 surrounding atoms form a cube. Each Tl atom is similarly surrounded by 4 Tl atoms and 4 Na atoms forming a cube. Four of each type of cube combine to make the unit cell, smaller cube having sodium atom at its center

NaTl a = 749 pm Space group Fd3m (227)

LiAl, LiGa, and LiIn form NaTl structure, KTl and contains Tl₆ distorted octahedra while LiTl adopts a CsCl-type structure.

NaSi (Na₄Si₄)

each Na atom donates 1eeach Si atom accepts 1e-

Si₄⁴⁻ tetrahedra are isoelectronic with P₄ tetrahedra (white phosphorus)

MgB_2

each Mg atom donates 2eeach B atom accepts 1e-

Two-dimensional B network isoelectronic with graphene

CaSi

each Ca atom donates2*e*⁻ each Si atom accepts 2*e*⁻

The resulting one-dimensional Si-chains are related to S/Se/Te -chains (but planar, not helical)

CaSi₂

each Ca atom donates 2e⁻ each Si atom accepts 1e⁻

The resulting two-dimensional Si-network is isoelectronic and structurally analogous with As/Sb/Bi

[Ge₂]^{4–} in the Zintl Phase Li₃NaGe₂

$$(Li^{+})_{3}(Na^{+})[Ge_{2}]^{4-}$$

How to Characterize the [Ge₂]^{4–} Double-Bond?

Bond distance Ge=Ge

Raman spectroscopy – Ge=Ge stretching

⁶Li NMR spectroscopy – chemical shift of coordinated lithium atoms Li1/Li3

MO calculation

Band structure calculation

Bond Lengths in E=E (Si and Ge)

[Ge₂]⁴⁻ bond distance in Li₃NaGe₂ 2.390(1) Å

Ge-Ge bond distance in bulk α -Ge 2.45 Å

Raman Spectrum of a Li₃NaGe₂ Single Crystal

Assignment of the modes: Quantum chemical calculations

⁶Li NMR on Li₃NaGe₂

Molecular Orbitals of [Ge₂]^{4–} and O₂

 $[Ge_2]^{4-}$ = a solid-state equivalent to O_2

Band Structure Analysis

Unoccupied bands

Fermi level

Occupied bands

metallic (conducting) solid

Clathrate Frameworks

Zintl Phases Semiconducting Gr14 Clathrates

Charge transfer occurs between the guest and the framework

Clathrate-I (*Pm*-3*n*, 46 framework atoms in the unit cell)

 $Ba_8[Ga_{16}Ge_{30}]$

each Ba atom donates 2e⁻ each Ga atom accepts 1e⁻

Ga and Ge forms 4-coordinated frameworks

 $I_8[As_8Ge_{38}]$

each I atom accepts 1e⁻ each As atom donates 1e⁻

As and Ge forms 4-coordinated frameworks

Polyhedral Cages

A large family of polyhedral molecules

Iminoalanes [R-Al=N-R']_n

Follow Smith's Rule

n = degree of aggregation (4 to 12)

Alumoxanes [R-Al=O]_n

Contain 6 squares and n – 4 hexagons

Both M and E centers are four-coordinate for Al and N, three-coordinate for O

Polyhedral Cages n = 4

n = 4
What is wrong?

No polyhedron known for n = 5 that would obey Smith's Rule

Polyhedral Cages n > 4

Iminoalanes $[RAINR']_n n > 4$

Most stable (AIN)n cages (n = 2-41)

Sphericity

Sphericity σ = a ratio of a polyhedron surface to the volume of a sphere of equal volume

 V_p = polyhedron volume A_p = polyhedron surface

$$\sigma = \sqrt[3]{\frac{36\pi V_P^2}{A_P^3}}$$

 $\sigma = 0 - 1$

Sphere: $\sigma = 1$

Truncated octahedron: σ = 0.909918

 $Al_{12}N_{12}$: $\sigma = 0.944751$

Truncated icosahedron: σ = 0.966622

 C_{60} : $\sigma = 0.966819$

Two C-C bond lengths: 1.4584, 1.4011 Å

Distortion brings more sphericity

Wade's Rules

Kenneth Wade
1913-2014
Durham University UK
formulated rules which provide qualitative understanding of the electron deficient multicentre bonding of boron hydrides and their shape based classification

Wade's rule - a cage molecule with a geometry based on a deltahedron (closed polyhedron constructed of triangles = Δ) with n vertices will possess n+1 skeletal bonding electron pairs

Boron hydride	Name	No. of skeletal electron pairs	Examples
$[\mathbf{B}_{\mathbf{n}}\mathbf{H}_{\mathbf{n}}]^{2}$ or $\mathbf{B}_{\mathbf{n}}\mathbf{H}_{\mathbf{n}+2}$	Closo	n+1	B ₆ H ₆ ²⁻ , B ₁₂ H ₁₂ ²⁻
B_nH_{n+4}	Nido	n+2	B ₂ H ₆ ,B ₅ H ₉ , B ₁₀ H ₁₄
B_nH_{n+6}	Arachno	n+3	$\mathbf{B_4H_{10}}$
B_nH_{n+8}	Hypho	n+4	${ m B_5 H_{12}^{-}}$

Deltahedra

6 vertices: Octahedron

7 vertices: Pentagonal Bipyramid

8 vertices: Bisdisphenoid ("D_{2d} Dodecahedron")

9 vertices: 4,4,4-Tricapped Trigonal Prism

10 vertices: 4,4-Bicapped Square Antiprism

11 vertices: Edge-coalesced Icosahedron

12 vertices: Icosahedron

Euler's rule: f + v = c + 2

f = faces, v = vertices, c = connections (bonds)

Deltahedral Boranes

Electron deficient molecules

Lines connecting B-B pairs are not 2e-bonds

- Exoskeletal B-H bonds
- Endoskeletal bonding:

n axial orbitals combine to 1 bonding MO and n-1 antibonding MO

2n tangential orbitals combine to n bonding and n antibonding or nonbonding MO

n + 1 bonding MO2n + 2 skeletal bonding electrons

Wade's Rules

Determine the number of **skeletal electron pairs** in a cluster

Number of **skeletal bonding electrons** contributed by a main group atom:

$$E = v + x - 2$$

v = number of valence elctrons

x = number of electrons from ligands: Cl, F, H = 1, Lewis base = 2

Each **BH** unit furnishes **2 skeletal bonding electrons**each B gives three, each C-H unit of a carborane furnishes 3 and each additional Hfurnishes 1 skeletal bonding electron
lonic charges must be included in the electron count

Borane clusters with hetero-elements: replace C, Si, Ge and Sn of a cluster with a BH unit; N, P and As with a BH₂ unit and S and Se with a BH₃ unit for counting purposes

Wade's Rules

Wade's rule states that a cage molecule with a geometry based on a closed polyhedron constructed of triangles with n vertices will possess n+1 skeletal bonding electron pairs.

Closo to Nido: remove vertex of **highest order** – highest connectivity atom

Nido to Arachno: remove vertex of **highest order** on an **open face** to generate minimum number of vertices of order 2

