

Why use NMR ?

- some proteins do not crystallize
- crystals do not diffract well, or at all
- can not solve the phase problem
- functional differences in crystal vs in solution
- can get information about dynamics

Nucleus	Nuclear spin	Natural abundance	Relative NMR sensitivity
Н	1/2	99.98%	100
² H	1	0.02%	0.96
¹³ C	1/2	1.1%	1.6
¹⁵ N	1/2	0.366%	0.1
¹⁹ F	1/2	100%	83.3
³¹ P	1/2	100%	6.6

The two major advantages of multidimensional NMR are:

Improved resolution: Signals are spread over a surface (2D) or in a three-dimensional space (3D, 4D)

Magnetization transfer: Signals result from the interaction between nuclei. That can be interactions through bond (via J-coupling) or through space (via NOE)

Taken together this eases the interpretation and the assignment of the spectra considerably

• Backbone • The	eriments Assignments					
Backbone The	Assignments					
• The	<u> </u>					
	process is a mult	i-step approa	ach:			
		r approx				
orralata all t	ha avnarimantal d	lata with and	h NH root	obcerved in	the 2D III	ISN USOC enactra
orrelate all ti	ne experimentar c	iata witti eac	11 1011 1001	observed II	i the 2D 'H	ma noque spectra
Pk-ID	NH	N15	Сα	СВ	Cai-1	CBi-1
2.00	8.58	129.50	60.65	38.63	64.84	69.56
3.00	8.68	128.63	53.65	18.58	53.27	43.21
4.00	8.98	128.56	53.07	45.72	60.66	32.82
5.00	8.93	127.98	61.03	40.67	60.58	34.68
6.00	9.15	127.45	60.20	32.32	61.13	40.71
7.00	9.38	126.47	53.76	44.74	61.70	69.26
8.00	9.38	126.46	54.26	44.74	61.70	69.26
9.00	8.63	125.79	60.91	29.76	57.23	30.09
10.00	8.79	125.73	60.61	34.73	54.47	35.21
11.00	8.19	125.61	58.67	42.86	61.38	62.40
12.00	8.21	125.51	57.15	****	61.31	62.40
13.00	8.11	125.59	60.76	32.89	61.17	36.07
14.00	9.01	125.50	59.76	41.21	57.95	35.22
15.00	8.22	125.40	57.22	****	55.69	29.56
16.00	8.22	125.40	55.83	****	55.69	29.56
17.00	9.04	125.12	54.75	39.51	58.80	33.07
18.00	7.82	124.78	54.62	32.46	62.56	33.07
	8.57	124.32	57.99	35.22	59.26	36.57
19.00	9.05	123.83	64.05	31,96	53,90	42.80

NMR Assignments									
D NMR Experiments • Backbone Assignments • The process is a multi-step approach: (2) Match pairs of NH roots based on i and i.l. correlations									
Pk-I	D NH	N15	Ca	сβ	Cai=1	CBi-1			
2.00	8.58 00 8.55	129.49 116.39	60.61	38.63	64 82	69 56 38.62			
3.00	8.68	128.63	53.65	18.58	53.27	43.21			
230.	00 8.78	105.35	45.64		53.72	18.60			
4.00	8.98	128.57	52.96	45.72	60.64	32.82			
	00 8.22	117.39	54.54	36.27	52.95	45.73			
5.00	8.93	127.98	60.90	40.67	60.57	34.68			
	9.16	127.45	60.14	32.32	61.10	40.71			
6.00	9.16	127.45	60.14	32.32	61.10	40.71			
	8.78	119.65	58.97	34.36	60.16	32.27			
7.00	9.38	126.46	54.17	44.74	61.65	69.26			
	00 8.95	117.12	55.46	37.23	54.14	44.78			
8.00	8.64	125.80	60.88	29.76	57.16	30.09			
206.	00 8.85	116.15	58.95		60.86	29.65			
9.00	8.79	125.73	60.59	34.73	54.37	35.21			
5.00	8.93	127.98	60.90	40.67	60.57	34.68			
10.0	0 8.19	125.62	58.60	42.86	61.31	62.40			
203.	00 8.55	116.32	62.15	69.49	58.61	42.85			
-									

ssignme	ents re sensitivity of t	rinle resonance experi	ments
Experiment	Assignment	Comment	Relative
			S/N [%]
HNCO	H(i), N(i), C'(i-1)	<20 kD, above use ² H labeling	100
HNCA	H(i), N(i), C _Q (i),C _Q (i-1)	<20 kD, above use ² H labeling	50/15
HN(CO)CA	H(i), N(i), C ₀ (i-1)	<20 kD, above use ³ H labeling	71
HN(CA)CO	H(i), N(i), C'(i)	<20 kD, above use ² H labeling	13/4
CBCA(CO)NH	$H(i), N(i), C_0(i1), C_{\hat{\beta}}(i1)$	<20 kD, above use ² H labeling	13/9 α/β
HBHA(CO)NH	$H(i), N(i), H_{\Omega}(i\text{-}1), H_{\beta}(i\text{-}1)$	<20 kD, above use ² H labeling	13/9 α/β
CBCANH, HNCACB	$\begin{array}{c} H(i), N(i), C_{0}(i), C_{\beta}(i), \\ C_{0}(i-1), C_{\beta}(i-1) \end{array}$	<15 kD, above use ³ H labeling	4/1.7 α/β(i) 1.3/0.5 α/β(i-1)
(H)CC(CO)NH- TOCSY	H(i), N(i), C ^{aliph} (i-1)	<15-20 kD, above use ² H labeling	
H(CC)(CO)NH- TOCSY	H(i), N(i), H ^{aliph} (i-1)	<15-20 kD, above use ² H labeling	
HCCH-TOCSY	Haliph, Caliph	<25 kD, - sensitive, but tedious to analyze, combine with HCCONH type experiments	

NMR Structure Determination								
Protein Secondary Str. • TALOS+	ucture	and	Carb	on Chemi	cal Shifts			
 Given the back 	kbone ch	emica	al shift	s and prima	ry sequence			
associated high- • comparis with simila > Provides poten	resolution on based r chemic tial φ , ψ	n stru on "t al shi back	cture riplet" fts and bone to	of amino ac l secondary orsion const	id sequences pre structure raints	sent in database structure:		
	<u> </u>	154	20.39	T14 L15 E16	ubiquitin	9		
	<u> </u>	164	20.67	S210 L211 N212	maxacal			
	<u>■</u> -147	154	21.02	Y208 A209 S210	maxacal			
	F -128	151	23.55	L180 F181 E182	alpha_LP			
	F -103	155	23.66	T66 L67 H68	ubiquitin			
	-139	171	24.61	E16 V17 E18	ubiquitin			
	-134	100	25.05	11/2 41/3 01/4	dehydrase			
	□ -140	125	26.28	T156 A157 S158	dehydrase			
	□ -124	150	27.05	R165 I166 K167	lligic			
	133	155	23.81		Average			

