HW 1	Multinuclear NMR	Name:	
Points:	C6800	Date:	
Max. 100 points	Spring 2018	Version A	

1. (10 points) Show that $E_{\text{mag}} = -\mu \cdot B_0 = -\mu_z |B|$

2. (15 points) Consider symmetry properties of following molecules. Find symmetry elements and give their point group labels. How many signals would you expect in the ³¹P NMR spectra.

3. (10 points) Calculate the energy difference between the spin levels inside a 950 MHz magnet for a 3 H nucleus.

4. (10 points) Calculate the excess of nuclei on the lowest energy level of 3 H at 300 K and 173 K.

5. (25 points) Octahedral complexes $Sn(2-PyCHCOCF_3)_2(O^tBu)_2$ may form several geometrical isomers. Find all of them, draw their geometrical formulas (ligand 2-PyCHCOCF₃ schematically), and give their symmetry point group labels.

6. (10 points) How many signals would you expect in the ¹⁹F NMR spectra for each isomer? 7. (10 points) How many signals of ¹BuO groups would you expect in ¹³C NMR spectra for each isomer?

8. (10 points) How many signals would you expect in the ¹⁹F and ³¹P NMR spektra and why?

