HW 2	Multinuclear NMR	Name:	
Points:	C6800	Date:	
Max. 100 points	Spring 2018	Version A	

1. (3 pts) The ¹¹⁹Sn NMR resonance of the Sn atom at the apex of the square pyramid in **3** was found to be extraordinarily shielded, being observed at -2441.5 ppm. The value closely approaches those of the stannocene derivatives, with their record high-field tin resonances appearing in the range from -2100 to -2300 ppm. Explain these observations considering the two resonance structures of pyramidane **3**, covalent and ionic. Which one is more important?

2. (15 pts) Mark geminal protons of CH_2 in the following molecule as homotopic (**H**), enantiotopic (**E**) and diastereotopic (**D**). Find the symmetry point group of each molecule:

3. (4 pts) Explain the ¹⁹F $\{^{1}H\}$ NMR spectrum the following molecule, mark all peaks, spin interaction constants and give relative intensities:

4. (38 pts) Draw schematically all possible complexes $[PF_x(CN)_{6-x}]$ (x = 0 – 6) and give the label of the corresponding point group. Predict multiplicities of signals in ³¹P and ¹⁹F NMR spectra (number of resonances, name of a multiplet, and the relative intensities of lines in a multiplet).

		31_	19_
Х	Molecule	J	F
	Point group		
6			
5			
5			
1			
4			
2			
3			
2			
1			
0			

5. (6 pts) Calculate relative populations of ²⁰⁷Pb isotopologues in the molecule of plumbane:

6. (4 pts) Values of interaction constants in following anions recalculate for other NMR active isotopes of Ga, In and Tl.

$\left[\text{GaF}_6\right]^{3-}$	$^{1}J(^{71}Ga-F) = 245.4 \text{ Hz}$
$[Ga(CF_3)_4]^-$	$^{2}J(^{71}\text{Ga-F}) = 150.2 \text{ Hz}$
$[InF_6]^{3-}$	$^{1}J(^{115}\text{In-F}) = 420.0 \text{ Hz}$
$[Tl(CF_3)_4]^-$	$^{2}J(^{205}Tl-F) = 2072 \text{ Hz}$

7. (4 pts) Explain differences between values of interaction constants:

8. (26 pts) Classify spin systems (magnetic in/equivalence) in proton NMR spectra of following molecules. Give both prime and bracket notation labels:

	Prime	Bracket		Prime	Bracket
Α			Η		
В			Ι		
С			J		
D			Κ		
Е			L		
F			Μ		
G					