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Multinukleární NMR spektroskopie
C6800 

 Jiří Pinkas, A12-224
 Materiály z přednášky v ISu
 Řešené úlohy ze spektroskopie nukleární 

magnetické resonance 
http://nmr.sci.muni.cz

 Úlohy – vyřešit a odevzdat
 Prezentace (na konci semestru) 10-15 min na 

vybrané téma NMR
 Závěrečná písemná zkouška
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NMR – Historical Perspective

 1922 Electron spin is observed (Stern-Gerlach)

 1926 Nuclear spin - David Dennison (H2) 

 1938 I. I. Rabi observes NMR 

in a molecular beam of H2

 Isidor I. Rabi awarded Nobel prize in physics 1944

"for his resonance method for 
recording the magnetic 
properties of  atomic nuclei"

(1898 – 1988)
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NMR – Historical Perspective

 1945 Purcell, Torrey, Pound  @ Harvard solid paraffin

 1945 Bloch, Hansen, Packard  @ Stanford liquid H2O

 Varian Bros. & Russell   klystron for radars (WWII)

 1948 Pake, van Vleck solid state NMR

 1950 W. G. Proctor, F. C. Yu  @ Stanford  
 - chemical shift  in 14NH4

14NO3

 1950 W. C. Dickinson @ MIT
 - chemical shift  in 19F

 1952 Commercial NMR instruments used at DuPont, Shell, Humble Oil
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NMR – Historical Perspective

Edward M. Purcell (1912-1997) & Felix Bloch (1905-1983)
NP in physics 1952

"for their development of  new methods for nuclear magnetic precision 
measurements and discoveries in connection therewith"
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NMR – Historical Perspective

 1951 Proctor , Yu - the first observed J scalar coupling 121Sb-19F in NaSbF6

 1951 Gutowsky, McCall, Slichter @ U. of IL - J scalar coupling 31P-19F

 1952 Hahn, Maxwell @ Berkeley - J scalar coupling 

 1955 Bloom, Shoolery spin decoupling

 1960 Shoolery integration

 1966 Ernst, Anderson FT NMR at Varian

 1968 Waugh @ MIT HR, multipulse NMR in solids
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NMR – Historical Perspective

 1971 Jeener - 2D NMR

 1971 Damadian - different NMR relaxation times of 
tissues and tumors

 1972 CP,  HP decoupling
 1972 The first routine 13C NMR spectrometer

(before mainly 1H, 19F, and 31P NMR)

 1973 Lauterbur - MRI
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MRI-Magnetic Resonance 
Imaging

Paul C. Lauterbur
(1929-)

Sir Peter Mansfield
(1933-)

NP in physiology and medicine 2003
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NMR – Historical Perspective

 1974/1979 R. R. Ernst 2D COSY, NOESY
 1977 MAS
 1981 Bax, Freeman INADEQUATE
 1982 APT
 1983 Freeman BB decoupling, MLEV, WALTZ
 1990 3D and 1H/15N/13C Triple resonance
 1991 R. R. Ernst NP in chemistry
 2001 The first commercial 900 MHz instrument
 2002 K. Wüthrich NP in chemistry
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NMR – Historical Perspective

Richrad R. Ernst
(1933-)
NP in chemistry 1991

"for his contributions to the 
development of  the methodology 
of  high resolution nuclear 
magnetic resonance (NMR) 
spectroscopy"

Kurt Wüthrich
(1938-)
NP in chemistry 2002

"for his development of  nuclear magnetic 
resonance spectroscopy for determining the 
three-dimensional structure of  biological 
macromolecules in solution"
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NMR – Historical Perspective
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Nuclear Magnetic Resonance

 High resolution liquid state NMR 
spectroscopy

 Solid state NMR spectroscopy

 High-pressure NMR

 NMR in the gas phase

 NMR spectroscopy in liquid crystalline 
media

 Magnetic resonance imaging (MRI)
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Hyperfine Interactions

• Interactions of  nuclei with the electric and 
magnetic fields

• Interactions between a nucleus and 
electrons

• Transfer of chemical (electronic) 
information from bonds and lone pairs to a 
nucleus:

• Indirect

• Direct
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Hyperfine Interactions

Indirect

• Electric field gradient (EFG) with nuclear 
electric quadrupole

• Induced magnetic field with nuclear 
magnetic moments (shielding)

Direct

• s-electrons within nuclei, polarization of
bonding spins by nuclear spin (J-coupling) 
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Direct Interactions

ONLY s-electrons can interact with nuclei

ONLY s-electrons have non-zero electron density at a nucleus

p, d - nodal planes
Which quantum number determines the number of angular nodes?
Which quantum number determines the number of radial nodes?
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Relationship Between Wavelength, 
Frequency and Energy

 Speed of light (c) is the same for all wavelengths
c = 2.9979 108 m s1

 Frequency (), the number of wavelengths per second, is 
inversely proportional to wavelength:

 c

 Energy of a photon is directly proportional to frequency 
and inversely proportional to wavelength:

E = h = hc/
h = Plank’s constant = 6.626176 1034 J s
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Electromagnetic Radiation

NMR
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Method Energy Scale
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Energy Scale Conversion Factors

Hz eV J mol1

Hz 1 4.136 1015 3.990 1010

eV 2.418 1014 1 9.649 104

J mol1 2.506 109 1.036 105 1
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Isotopes
Isotopes = a set of nuclides of an element, same Z, different A
there is about 2600 nuclides (stabile and radioactive)
340 nuclides found in nature
270 stabile and 70 radioactive

Monoisotopic elements: 
9Be, 19F, 23Na, 27Al, 31P, 59Co, 127I, 197Au

Polyisotopic elements: 
1H, 2H (D), 3H (T)
10B, 11B
Sn has the highest number of stabile isotopes – 10

112, 114, 115, 116, 117, 118, 119, 120, 122, 124Sn
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Natural Abundance, %

AHg I NA%

196 0 0.146

198 0 10.02

199 1/2 16.84

200 0 23.13

201 3/2 13.22

202 0 29.80

204 0 6.850
Mass number, A

Isotopic Compositions of  the Elements 

I = Nuclear Spin
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Natural Abundance, %

1H 99.985 
2H 0.015 

12C 98.89 
13C 1.11 

14N 99.63 
15N 0.37

16O 99.759 
17O 0.037 
18O 0.204 

32S 95.00 
33S 0.76 
34S 4.22 
36S 0.014 

Isotopic Compositions of  the Elements 
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Variability in Isotopic Compositions

Isotope Range Average

10B 18.927 - 20.337 19.9 (7)
11B 81.073 - 79.663 80.1 (7)

16O 99.7384 - 99.7756 99.757 (16)
17O 0.0399 - 0.0367 0.038 (1)
18O 0.2217 - 0.1877 0.205 (14)

Natural Abundance, %
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Nuclear Spin

electron spin    s =  ½

proton and neutron    I = ½

nuclear spin   I = z ½     z = integer  0, 1, 2, 3, .....

Number of  protons, Z Number of  neutrons, N I

even even 0

odd odd integer

even odd
multiples of  ½

odd even
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Nuclear Spin
protons and neutrons are Fermions, obey Pauli exclusion principle

12C 13C

n np p

I = ½I = 0
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Nuclear Spin

 even – even: I = 0 4He, 12C, 16O, 20Ne, 
24Mg, 28Si, 32S, 36Ar, 40Ca

 odd – odd: I = integer
ONLY  2H, 6Li, 10B, 14N, 40K, 50V, 138La, 176Lu

 even – odd and odd – even:
I = multiples of ½ 
13C ½,   17O 5/2, 33S 3/2
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Nuclear Spin

Number of  protons

Z
Number of  neutrons

N
Number of  nuclides

even even 168

odd odd 8

odd even 50

even odd 57
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Nuclear Spin
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Nuclear Spin

 NO stable nucleus has spin 2

 the highest value of spin for a stable nucleus 
is 7 176Lu

 unstable nuclei

highest integral spin 16 - isomer 178Hf
highest half-integer 37/2 - isomer 177Hf) 
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Nuclear Spin

• Nuclei with spin ½ - a spherical charge distribution

• Nuclei with I > ½ - nonspherical charge distributions 

(prolate or oblate)

• Nuclei with a non-zero spin → magnetic moment ()

• Nonspherical nuclei → electric quadrupole moment (eQ)
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Nuclear Spin

Rotating positive charge generates magnetic field
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Nuclear Spin
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Nuclear Spin

Nuclear spin = Spin angular momentum, P (vector)
(moment hybnosti)

Spin quantum number I
Magnetic quantum number mI

Magnitude of  P is quantized:

Direction with respect to the magnetic 
field B0 is quantized:

P

µ

 1
2

 IIhP


Iz mhP
2
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Spin Angular Momentum, P
59Co, I = 7/2

mI

I = Nuclear spin quantum number
I = 0, ½, 1, 3/2, 5/2, 3, 7/2,.....

mI = Nuclear spin magnetic quantum 
number 

Multiplicity,  M 2I + 1 values
mI = I, I  1, I  2, ..., I + 2, I + 1, I

1/2

3/2

5/2

-3/2

7/2

-1/2

-5/2

-7/2

B0 1
2

 IIhP
 Iz mhP

2


 1
cos




II
m

P
P Iz
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Spin Angular Momentum, P

I [I (I + 1)]½

½ 0.866

1 1.414

3/2 1.936

5/2 2.958

3 3.464

7/2 3.969

4 4.472

9/2 4.975

 1
2

 IIhP
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Spin Magnetic Moment, µ

The electrons, nucleons (protons, neutrons) and some
nuclei possess intrinsic magnetism, which is not due to a
circulating current. 
Permanent magnetic moment similarly as spin angular 
momentum.

Magnetic moment, µ, is directly proportional to the spin 
angular momentum, P :

µ = γ  P

γ is the gyromagnetic (magnetogyric) ratio
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Magnetogyric Ratio

γ - the magnetogyric ratio is the ratio of the
nuclear magnetic moment µ to the nuclear
angular momentum P.

µ = γ  P

γ - Important characteristic of  nuclei !!!

[rad T1 s1]
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Spin Magnetic Moment, µ
µ = γ P = γ ħ [I (I + 1)]½

µz = γ Pz = γ ħ mI

Nucleus 1H 2H 13C 15N 19F 29Si 31P

γ [10-7 rad T-1s-1] 26.75 4.11 6.73  2.71 25.18 5.32 10.84

electron

γe = 17 609  107

= 658 γ(H)
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Nuclear Spin in Magnetic Field
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Nuclear Spin in Magnetic Field

E =  absorbed light

Applied

Magnetic
Field

Hext

E =  absorbed light

Applied

Magnetic
Field

Hext

Random orientation

No Field Magnetic Field

Zeeman plitting to 2I + 1 levels
Alignment of  spins 
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Nuclear Spin in Magnetic Field

magnetic dipole



42

Nuclear Spin in Magnetic Field

• An angular momentum is associated with each 
rotating object 
• A nuclear spin possesses a
magnetic moment µ arising from
the angular momentum of  the
nucleus
• The magnetic moment µ is a
vector perpendicular to the
current loop
• In a magnetic field (B) the magnetic moment 
behaves as a magnetic dipole

 = i A
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Nuclear Spin in Magnetic Field

In B0, a magnetic moment µ
is directed at some angle w.r.t.
B0 direction

the B0 field will exert a torque 
on the magnetic moment. 
This causes µ to precess about
the magnetic field direction

Torque is the rate of  change
of  the nuclear spin angular
momentum 
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Nuclear Spin in Magnetic Field

Spin precession in the external magnetic field.

Quantum description of  precession shows that the 
frequency of  the motion is:

ω0 =  γ B0 [rad s1] or ν0 =  γ B0/ 2π [Hz]

It is called the Larmor frequency (if  γ > 0   then ν0 < 0)
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Larmor Frequency

ω0 =  γ B0 [rad s-1] 

ν0 =  γ B0/ 2π [Hz]



2

0
0

B
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Larmor Frequency

Sir Joseph Larmor
(1857-1942)

ω0 =  γ B0 [rad s1] or ν0 =  γ B0/ 2π [Hz]

Ensemble of  spins



Resonance Frequencies of Nuclei
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Resonance Frequencies of Nuclei
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Nucleus Magnetogyric
Ratio

11.74 T 7.05 T

1H 26.75 950 MHz 700 MHz 500 MHz 300 MHz

11B
13C 6.73

19F 25.18

27Al
29Si - 5.32 

31P 10.84

103Rh



Nuclei are charged and 
if they have spin, they 
are magnetic

No Field

Applied 
Magnetic 
Field = B0

Energy of transition = 
energy of radiowaves

Higher energy state: magnetic 
field opposes applied field

Lower energy state: magnetic 
field aligned with applied field

Nuclear Zeeman Effect - Splitting

mI ½ 

mI +½ 
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Nuclear Spin in Magnetic Field

Emag =  µ  B0   (a scalar product of 2 vectors)

Emag =  µz B =  γ Pz B

Emag = mI ħ γ B

The magnetic energy depends on the interaction between the 
magnetic moment and B0 field:

NMR selection rule ∆mI = ± 1
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Spin in Magnetic Field

∆ Emag = Em=-1/2  Em=1/2 = ∆mI ħ γ B = h ν   ν = γ B/2π

I = ½

E m = 1/2

E m = 1/2

The frequency of  the electromagnetic radiation that 
corresponds to the energy difference between the two 
energy levels is equal to the precessional frequency of  
the nuclei.
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Spin in Magnetic Field

 =  2.7116 107
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Am
pl

itu
de

Frequency (Hz)

Excitation of NMR Spin

E





E



Irradiate with 
Frequency so as

to satisfy Planck's
Law

E=h
Energy
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Energy Levels for I = ½ 

Protons
∆E = (6.626 1034 J s 26.75 107 rad T-1s-1 11.743 T)/2π = 3.313 1025 J 
very small energy difference

∆ Emag = Em=-1/2  Em=1/2 = ∆mI ħ γ B = h γ B/2π
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Energy Levels for I = ½ 
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Energy Levels for I = ½ 
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Boltzmann Distribution
The excess of nuclei on the lower energy level is given by 
Boltzmann distribution:

N↑↓/N↑↑ = exp(∆E/kBT) = exp(ħ γ B /kBT)

= exp(3.313 10-25/ 4.101 10-21) = exp(8.078 10-5) = 
0.99991922

If N↑↑ = 1 000 000 then N↑↓ = 999919
Only 81 out of 2 million 1H nuclei contribute to NMR signal at 500 MHz!

ħ = 1.055 10-34 J s
γH = 26.75 107 rad T-1s-1

B = 11.7433 T (500 MHz)
kB = 1.3807 10-23 J K-1

T = 297 K
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Boltzmann Distribution
N↑↓/N↑↑ = exp(∆E/kBT) = exp(ħ γ B /kBT)

the stronger the field and 
the higher the 
magnetogyric ratio, the 
larger the population 
difference

the higher the 
temperature, the smaller 
the population difference
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Boltzmann Distribution

The higher the field B, 

the larger the energy difference, 

the larger the population difference, 

the larger the net magnetization, 

and the bigger the NMR signal
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Nuclear Magnetic Resonance 
(NMR)

 Nuclear – spin ½ nuclei (e.g. protons) behave as 
tiny bar magnets.

 Magnetic – a strong magnetic field causes a small 
energy difference between + ½
and – ½ spin states.

 Resonance – photons of radio waves can match the 
exact energy difference between the + ½ and – ½ 
spin states resulting in absorption of photons as 
the protons change spin states. 
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Magnetization
More nuclei point in parallel to the 
static magnetic field.
The macroscopic magnetic 
moment, M0

M0 = Σ μi

In-Field

Bloch equations: the nuclear magnetization M = (Mx, My, Mz) 
as a function of  time and relaxation timesT1 and T2
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Longitudinal Magnetization
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Spin-Lattice Relaxation Time

R1 = 1/T1 [Hz] longitudinal relaxation rate constant

T1 [s] longitudinal relaxation time

spin-lattice relaxation time

enthalpy
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Transverse Magnetisation

Spin coherence
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Spin-Spin Relaxation Time

R2 = 1/T2 [Hz] transverse relaxation rate constant

T2 [s] transverse relaxation time constant

spin-spin relaxation time

entropy



68

One RF Pulse
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Relaxation
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Free Induction Decay FID
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