Multinukleární NMR spektroskopie C6800

Jiří Pinkas, A12-224 Materiály z přednášky v ISu Řešené úlohy ze spektroskopie nukleární magnetické resonance http://nmr.sci.muni.cz Úlohy – vyřešit a odevzdat Prezentace (na konci semestru) 10-15 min na vybrané téma NMR Závěrečná písemná zkouška

 1922 Electron spin is observed (Stern-Gerlach)
 1926 Nuclear spin - David Dennison (H₂)
 1938 I. I. Rabi observes NMR in a molecular beam of H₂
 Isidor I. Rabi awarded Nobel prize in physics 1944

"for his resonance method for recording the magnetic properties of atomic nuclei"

(1898 - 1988)

1945 Purcell, Torrey, Pound (a) Harvard

solid paraffin

liquid H₂O

- 1945 Bloch, Hansen, Packard @ Stanford
- Varian Bros. & Russell klystron for radars (WWII)
- 1948 Pake, van Vleck solid state NMR
- 1950 W. G. Proctor, F. C. Yu @ Stanford δ- chemical shift in ¹⁴NH₄¹⁴NO₃
 1950 W. C. Dickinson @ MIT

 δ - chemical shift in ¹⁹F

1952 Commercial NMR instruments used at DuPont, Shell, Humble Oil

Edward M. Purcell (1912-1997) & Felix Bloch (1905-1983)

NP in physics 1952

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

- 1951 Proctor, Yu the first observed J scalar coupling ¹²¹Sb-¹⁹F in NaSbF₆
- 1951 Gutowsky, McCall, Slichter @ U. of IL J scalar coupling ³¹P-¹⁹F
- 1952 Hahn, Maxwell @ Berkeley
 J scalar coupling
- 1955 Bloom, Shoolery spin decoupling
- 1960 Shoolery

integration

- **1966 Ernst, Anderson**
- **1968 Waugh (***a***) MIT**
- FT NMR at Varian
 - HR, multipulse NMR in solids

- **1971** Jeener 2D NMR
- 1971 Damadian different NMR relaxation times of tissues and tumors
- **1972 CP, HP decoupling**
- 1972 The first routine ¹³C NMR spectrometer (before mainly ¹H, ¹⁹F, and ³¹P NMR)
- **1973** Lauterbur MRI

MRI-Magnetic Resonance Imaging

Paul C. Lauterbur (1929-)

Transverse (axial, x-y plane) Coronal

(x-z plane)

Sagittal (y-z plane) Slices of the Brain

Sir Peter Mansfield (1933-)

- 1974/1979 R. R. Ernst 2D COSY, NOESY
- **1977** MAS
- **1981** Bax, Freeman INADEQUATE
- **1982** APT
- 1983 Freeman BB decoupling, MLEV, WALTZ
- 1990 3D and ¹H/¹⁵N/¹³C Triple resonance
- **1991 R. R. Ernst NP** in chemistry
- 2001 The first commercial 900 MHz instrument
- **2002** K. Wüthrich NP in chemistry

Richrad R. Ernst (1933-) NP in chemistry 1991

"for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"

"for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"

Reviews K. Wüthrich NMR of Biomacromolecules NMR Studies of Structure and Function of Biological Macromolecules (Nobel Lecture)** Kurt Wüthrich* Keywords: NMR spectroscopy - Nobel lecture proteins - structure determination D/ a.146/ 8.5 Angewandte Chemie DOI: 10.1002/infe.200300595 3340 © soog Villey-VCH Verlag GrabH II. Co. KGaA, Wilriterin Angew Chain. Int. Ed. 2003, 49, 3340-3343

Nuclear Magnetic Resonance

- High resolution liquid state NMR spectroscopy
- Solid state NMR spectroscopy
- High-pressure NMR
- NMR in the gas phase
- NMR spectroscopy in liquid crystalline media
- Magnetic resonance imaging (MRI)

Hyperfine Interactions

• Interactions of nuclei with the electric and magnetic fields

 Interactions between a nucleus and electrons

• Transfer of chemical (electronic) information from bonds and lone pairs to a nucleus:

• Indirect

• Direct

Hyperfine Interactions

Indirect

• Electric field gradient (EFG) with nuclear electric quadrupole

• Induced magnetic field with nuclear magnetic moments (shielding)

Direct

• s-electrons within nuclei, polarization of bonding spins by nuclear spin (J-coupling)

Direct Interactions

ONLY s-electrons can interact with nuclei

ONLY s-electrons have non-zero electron density at a nucleus

Which quantum number determines the number of angular nodes? Which quantum number determines the number of radial nodes?

Relationship Between Wavelength, Frequency and Energy

Speed of light (c) is the same for all wavelengths $c = 2.9979 \ 10^8 \text{ m s}^{-1}$

Frequency (v), the number of wavelengths per second, is inversely proportional to wavelength: $v = c/\lambda$

Energy of a photon is directly proportional to frequency and inversely proportional to wavelength: $E = hv = hc/\lambda$ $h = Plank's constant = 6.626176 \, 10^{-34} \, J s$

Electromagnetic Radiation

Method Energy Scale

Energy Scale Conversion Factors

	Hz	eV	J mol ⁻¹
Hz	1	4.136 10 ⁻¹⁵	3.990 10-10
eV	2.418 10 ¹⁴	1	9.649 10 ⁴
J mol ⁻¹	2.506 10 ⁹	1.036 10-5	1

Isotopes

Isotopes = a set of nuclides of an element, same Z, different A there is about 2600 nuclides (stabile and radioactive) 340 nuclides found in nature 270 stabile and 70 radioactive

Monoisotopic elements: ⁹Be, ¹⁹F, ²³Na, ²⁷Al, ³¹P, ⁵⁹Co, ¹²⁷I, ¹⁹⁷Au

Polyisotopic elements: ¹H, ²H (D), ³H (T) ¹⁰B, ¹¹B Sn has the highest number of stabile isotopes – 10

112, 114, 115, 116, 117, 118, 119, 120, 122, 124Sn

Natural Abundance, %

Isotopic Compositions of the Elements

I = Nuclear Spin

Natural Abundance, %

Isotopic Compositions of the Elements

${}^{1}\mathrm{H}$	99.985	¹⁶ O	99.759
$^{2}\mathrm{H}$	0.015	¹⁷ O	0.037
		¹⁸ O	0.204
¹² C	98.89		
¹³ C	1.11	³² S	95.00
		³³ S	0.76
^{14}N	99.63	³⁴ S	4.22
^{15}N	0.37	36S	0.014

Variability in Isotopic Compositions

Natural Abundance, %

Isotope	Range	Average		
$^{10}\mathbf{B}$	18.927 - 20.337	19.9 (7)		
¹¹ B	81.073 - 79.663	80.1 (7)		

¹⁶ O	99.7384 - 99.7756	99.757 (16)
¹⁷ O	0.0399 - 0.0367	0.038 (1)
¹⁸ O	0.2217 - 0.1877	0.205 (14)

electron spin $s = \frac{1}{2}$

proton and neutron $I = \frac{1}{2}$

nuclear spin $I = z^{1/2}$ z = integer 0, 1, 2, 3,

Number of protons, Z	Number of neutrons, N	I
even	even	0
odd	odd	integer
even	odd	1/
odd	even	multiples of 72

protons and neutrons are Fermions, obey Pauli exclusion principle

• even – even: I = 0 ⁴He, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar, ⁴⁰Ca

odd – odd: I = integer
ONLY ²H, ⁶Li, ¹⁰B, ¹⁴N, ⁴⁰K, ⁵⁰V, ¹³⁸La, ¹⁷⁶Lu

• even – odd and odd – even: I = multiples of $\frac{1}{2}$ ${}^{13}C {}^{1}_{2}, {}^{17}O {}^{5}_{2}, {}^{33}S {}^{3}_{2}$

Number of protons	Number of neutrons	Number of nuclides
Z	N	
even	even	168
odd	odd	8
odd	even	50
even	odd	57

Sg I I I I I I I Nuclear Magnetic Dipole Moment couples to magnetic field	Spir I = I = I = I =	0 $\frac{1}{2}$ 1 $\frac{3}{2}$ 2	l = mon elec elec elec elec	= 0 opo ctric ctric ctric ctric ctric		d ma ma ma	l = 1 lipol 0 agne agne	1 le etic etic	qua	l = adru 0 0	2 pole	C	l = octa; 0	= 3 pole	h	l exa	= 4 deca 0 0	pole	-
Sg I I I I I I I Nuclear Magnetic Dipole Moment couples to magnetic field	SpirI = I = I = I = I = I $I = I = I$	$\frac{1}{2}$	mon eleo eleo eleo eleo	opo etric etric etric etric etric	ele c c c c	d ma ma	lipol 0 agne agne	le etic etic	qua	adru 0 0	pole	C	octaj 0 0	pole	h	exa	deca 0 0	pole	_
I I I I I I Nuclear Magnetic Dipole Moment couples to magnetic field	I = I = I = I = I = I	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 1 \\ \frac{3}{2} \\ 2 \end{array} $	eleo eleo eleo eleo eleo	ctrio ctrio ctrio ctrio ctrio		ma ma ma	0 agne agne agne	etic	е	0 0			0)			0 0		_
I I I I I Nuclear Magnetic Dipole Moment couples to magnetic field	I = I = I = I = I	$\frac{1}{2}$ 1 $\frac{3}{2}$ 2	eleo eleo eleo eleo	ctrio ctrio ctrio ctrio		ma ma ma	agne agne agne	etic etic	е	0 lects			0)			0		
I I I Nuclear Magnetic Dipole Moment couples to magnetic field	I = I = I =	$\frac{3}{2}$	eleo eleo eleo	ctrio ctrio ctrio		ma ma	agne agne	etic	e	lect	-						~		
I I Nuclear Magnetic Dipole Moment couples to magnetic field	I = I =	$\frac{3}{2}$ 2	eleo eleo	ctrio ctrio		ma	agne			accu	ric		0)			0		
I Nuclear Magnetic Dipole Moment couples to magnetic field	<i>I</i> =	2	eleo	ctric	2		0	etic	е	lect	ric	n	nagr	netic	;		0		
Nuclear Magnetic Dipole Moment couples to magnetic field						ma	agne	etic	е	lect	ric	n	nagr	netic	;	ele	ectri	c	_
	H Li Na K Rb Cs Fr	Be Mg Ca Sr Ba Rd	Sc Y La Ac	S Ti Zr Hf	pin pin V Nb Ta Ce	$=\frac{1}{2}$ $>\frac{1}{2}$ Cr Mo V Pr Pr	Mı Ta Ra Nd	n Fe 2 Ru 2 Os Pm	Co Rh I Rh Ir	Ni Pd Pt	Cu Ag Au Gd	Zn Cd Hg [b]	B Al Ga In Tl	C Si Ge Sn Pb	N P As Sb Bi	O S Se Te Po	F Cl Br I At	He Ne Ar Kr Xe Rn	Nuclear Electric Quadrupole Moment couples to electric field gradient

Elements Accessible by NMR

The second secon	2 84			lement symbol	H	atomic number		l=1/2 nucl	6			13 104	14 N/A	15 VA	16 VIA	17 VBA	He
Lister 1	Be			sctope -[] atomic weight	spin number	frequenc (MHz)		I=1/2 and nuclei	ь 1.2			Baran 6 B 10.5 10.566 10.56 10.000 Automatic	C total at the later of the lat	N		F B10 H34	Ne
Na	Mg	3 IIII Bardan (1	4 53	5 VB	6 \13 Overant 34	7 VIII	8 VIII	9 VIII Genet #	10 VIII	11 B	12 88 296 10	Al the serv	Si	P	S Hist Tee Neter 14		Nyakar (H
	Ca	Sc	Ti stat tast stit tast Depres 41	V Notice of		Mn 5 10 11 10	Fe Print and	Co	Ni * 34 514		Zn ese tan	Ga	Ge	As 11.11 17:00 Armony 17	Se In a serie Televen M	Br	Kr maxim
	Sr staticae	Y	Zr 11 10 1000	Nb a se pe se		TC H M 20 MU		Rh	Pd	Ag	Cd	In	Sn	Sb to the second threads the	Te	 10138 84101	Xe
Cs	Ba	Тур	Hf 177.52 4.042 179.42 2.545	Та	W	Re	Os	Ir anse i ma anse i ma	Pt	Au	Hg		Pb	Bi			

Letteriot ST	Third B	The bigs 10
La	Tm	Yb
00.00.04.000	10110-0270	thing shared

NO stable nucleus has spin 2

the highest value of spin for a stable nucleus is 7 ¹⁷⁶Lu

unstable nuclei
 highest integral spin 16 - isomer ¹⁷⁸Hf
 highest half-integer 37/2 - isomer ¹⁷⁷Hf)

• Nuclei with spin $\frac{1}{2}$ - a spherical charge distribution

• Nuclei with $I > \frac{1}{2}$ - nonspherical charge distributions

(prolate or oblate)

• Nuclei with a non-zero spin \rightarrow magnetic moment (μ)

• Nonspherical nuclei \rightarrow electric quadrupole moment (eQ)

Properties of Nuclei:

Mass, Charge, Spin and Magnetism.

"The concept of spin is difficult. It was forced upon scientists by the experimental evidence". Malcolm Levitt.

Rotating positive charge generates magnetic field

Nuclear spin = Spin angular momentum, *P (vector)* (moment hybnosti) Spin quantum number *I*

Magnetic quantum number m_{I}

Magnitude of *P* is quantized:

$$P = \frac{h}{2\pi} \sqrt{I(I+1)}$$

Direction with respect to the magnetic field B_0 is quantized:

$$P_z = \frac{h}{2\pi} m_I$$

Spin Angular Momentum, P

 $P = \frac{h}{2\pi} \sqrt{I(I+1)} \qquad P_z = \frac{h}{2\pi} m_I$

I = Nuclear spin quantum number $I = 0, \frac{1}{2}, 1, \frac{3}{2}, \frac{5}{2}, 3, \frac{7}{2}, \dots$

 $m_{\rm I}$ = Nuclear spin magnetic quantum number

Multiplicity, M = 2I + 1 values $m_{I} = I, I - 1, I - 2, ..., -I + 2, -I + 1, -I$

$$\cos\theta = \frac{P_z}{P} = \frac{m_I}{\sqrt{I(I+1)}}$$

 59 Co, I = 7/2

Spin Angular Momentum, P

Ι	$[I(I+1)]^{1/2}$
1/2	0.866
1	1.414
3/2	1.936
5/2	2.958
3	3.464
7/2	3.969
4	4.472
9/2	4.975

Spin Magnetic Moment, µ

The electrons, nucleons (protons, neutrons) and some nuclei possess intrinsic magnetism, which is not due to a circulating current. Permanent magnetic moment similarly as spin angular momentum.

Magnetic moment, μ , is directly proportional to the spin angular momentum, P:

$$\mu = \gamma P$$

y is the gyromagnetic (magnetogyric) ratio
Magnetogyric Ratio

 γ - the magnetogyric ratio is the ratio of the nuclear magnetic moment μ to the nuclear angular momentum **P**.

 $\mu = \gamma P$

γ - Important characteristic of nuclei !!!

 $[rad T^{-1} s^{-1}]$

Zeeman plitting to 2I + 1 levels Alignment of spins

magnetic dipole

• An angular momentum is associated with each rotating object

• A nuclear spin possesses a magnetic moment μ arising from the angular momentum of the nucleus

• The magnetic moment μ is a vector perpendicular to the current loop

 $\mu = iA$

• In a magnetic field (*B*) the magnetic moment behaves as a magnetic dipole

In B_0 , a magnetic moment μ is directed at some angle w.r.t. B_0 direction

the B_0 field will exert a torque on the magnetic moment. This causes μ to precess about the magnetic field direction

Torque is the rate of change of the nuclear spin angular momentum

Spin precession in the external magnetic field.

Quantum description of precession shows that the frequency of the motion is: $\omega_0 = -\gamma B_0 \text{ [rad s}^{-1} \text{] or } \nu_0 = -\gamma B_0 / 2\pi \text{ [Hz]}$

It is called the Larmor frequency (if $\gamma > 0$ then $\nu_0 < 0$)

Larmor Frequency

Larmor Frequency

Sir Joseph Larmor (1857-1942)

 $\omega_0 = -\gamma B_0 \text{ [rad s}^{-1} \text{] or } \nu_0 = -\gamma B_0 / 2\pi \text{ [Hz]}$

Resonance Frequencies of Nuclei

Resonance Frequencies of Nuclei

Nucleus	Magnetogyric Ratio			11.74 T	7.05 T
¹ H	26.75	950 MHz	700 MHz	500 MHz	300 MHz
^{11}B					
¹³ C	6.73				
¹⁹ F	25.18				
²⁷ Al					
²⁹ Si	- 5.32				
³¹ P	10.84				
¹⁰³ Rh					

Nuclear Zeeman Effect - Splitting

The magnetic energy depends on the interaction between the magnetic moment and B_0 field:

 $E_{\text{mag}} = -\mu \cdot B_0$ (a scalar product of 2 vectors)

$$E_{\rm mag} = -\mu_z B = -\gamma P_z B$$

 $E_{\rm mag} = -m_{\rm I} \hbar \gamma B$

NMR selection rule $\Delta m_{\rm I} = \pm 1$

Spin in Magnetic Field

 $\overline{\Delta E_{\text{mag}}} = E_{\text{m=-1/2}} - E_{\text{m=-1/2}} = \Delta m_{\text{I}} \hbar \gamma B = \hbar \nu \implies \nu = \gamma B/2\pi$

The frequency of the electromagnetic radiation that corresponds to the energy difference between the two energy levels is equal to the precessional frequency of the nuclei.

Spin in Magnetic Field

Excitation of NMR Spin

Energy Levels for $I = \frac{1}{2}$

$$\Delta E_{\text{mag}} = E_{\text{m}=-1/2} - E_{\text{m}=1/2} = \Delta m_{\text{I}} \hbar \gamma B = \hbar \gamma B/2\pi$$

Protons

 $\Delta E = (6.626 \ 10^{-34} \text{ J s} \ 26.75 \ 10^7 \text{ rad } \text{T}^{-1} \text{s}^{-1} \ 11.743 \ \text{T})/2\pi = 3.313 \ 10^{-25} \text{ J}$ very small energy difference

Energy Levels for $I = \frac{1}{2}$

Energy Levels for $I = \frac{1}{2}$

Boltzmann Distribution

The excess of nuclei on the lower energy level is given by Boltzmann distribution:

$$\frac{N \uparrow \downarrow}{N \uparrow \uparrow} = \exp\left(-\frac{\Delta E}{k_B T}\right) = \exp\left(-\frac{\hbar \gamma B}{k_B T}\right) =$$

 $= \exp(-3.313 \ 10^{-25} / \ 4.101 \ 10^{-21}) = \exp(-8.078 \ 10^{-5}) = 0.99991922$

If $N\uparrow\uparrow = 1\ 000\ 000$ then $N\uparrow\downarrow = 999919$ Only 81 out of 2 million ¹H nuclei contribute to NMR signal at 500 MHz!

$$\begin{split} \hbar &= 1.055 \; 10^{-34} \; J \; s \\ \gamma_{\rm H} &= 26.75 \; 10^7 \; rad \; T^{\text{-1}} s^{\text{-1}} \\ B &= 11.7433 \; T \; (500 \; \text{MHz}) \\ k_{\rm B} &= 1.3807 \; 10^{-23} \; J \; \text{K}^{\text{-1}} \\ T &= 297 \; \text{K} \end{split}$$

Boltzmann Distribution $N\uparrow\downarrow/N\uparrow\uparrow = \exp(-\Delta E/k_{\rm B}T) = \exp(-\hbar\gamma B/k_{\rm B}T)$

the stronger the field and the higher the magnetogyric ratio, the larger the population difference

the higher the temperature, the smaller the population difference

Boltzmann Distribution

The higher the field B,

the larger the energy difference,

the larger the population difference,

the larger the net magnetization, and the bigger the NMR signal

Nuclear Magnetic Resonance (NMR)

- Nuclear spin ½ nuclei (e.g. protons) behave as tiny bar magnets.
- Magnetic a strong magnetic field causes a small energy difference between + ¹/₂ and – ¹/₂ spin states.

Resonance – photons of radio waves can match the exact energy difference between the + 1/2 and – 1/2 spin states resulting in absorption of photons as the protons change spin states.

Magnetization

More nuclei point in parallel to the static magnetic field. The macroscopic magnetic moment, M_0

 $M_0 = \Sigma \mu_i$

Bloch equations: the nuclear magnetization $M = (M_x, M_y, M_z)$ as a function of time and relaxation times T_1 and T_2

Longitudinal Magnetization

Spin-Lattice Relaxation Time

 $R_1 = 1/T_1$ [Hz] longitudinal relaxation rate constant T_1 [s] longitudinal relaxation time spin-lattice relaxation time enthalpy

Transverse Magnetisation

Spin-Spin Relaxation Time

 $R_2 = 1/T_2$ [Hz] transverse relaxation rate constant

 T_2 [s] transverse relaxation time constant

spin-spin relaxation time

entropy

One RF Pulse

Time

 M_y

68

Relaxation

Free Induction Decay FID

