Four Contributions to the Resonance Frequency of Nuclei in Matter

 $\omega = \gamma B$

ALL TENSORS

1) Shielding, chemical shift electron distribution around nuclei, induced magnetic field

2) Dipolar interactions magnetic nuclei distribution, through space interactions, in solids

3) Electric field gradient distribution of nuclei (positive charge) and electrons (negative charge) quadrupolar nuclei

4) Scalar coupling dipolar interactions through electrons in molecules, bonds

Nuclear Spin Interactions

Shielding, Chemical shift

Chemical Shift Information

- (The presence of an element in the sample)
- Number of signals = number of chemically different atoms Symmetry of the molecule
- **Relative intensity** = ratio of atoms integration
- Position = chemical shielding / shift electronic environment, type of bonds, oxidation state, coordination number
- Multiplicity = connectivity of functional groups, J-coupling

Chemical Shift Information

The presence of an element in the sample

Chemical Shift Information

¹⁹F NMR

The three peaks of ethyl alcohol as first observed in 1951 at Stanford University.

Ż.

8

6

Chemical shift for a given molecule:

• Number of signals = nonequivalent nuclei molecular symmetry

• Relative intensity = number of nuclei

• Position in the spectrum = shielding/chemical shift electronic structure

• Multiplicity = connectivity of atoms and groups

hift CH₃CH₂OH

Molecular Symmetry

Number of signals = nonequivalent nuclei, molecular symmetry

Flow chart for point group determination

Symmetry Elements and Operations

Symbol	Element	Operation	
E	Identity	Identity	No change, (= 1)
i	Center of symmetry (inversion center) POINT	Inversion	Inversion through the central point every point x,y,z translated to -x,-y,-z
C _n	Rotation axis LINE	True (proper) rotation	Rotation by an angle 360/n
σ	Plane of symmetry, mirror PLANE	Reflection	Reflection through a mirror plane
S _n	Improper axis Roto-reflection axis LINE	Improper rotation	Rotation by an angle 360/n followed by reflection through a mirror plane 10

Inversion Center

Inversion Center

Rotation Axis \overline{C}_2

Rotation by 360/n about C_n brings the object to an indistinguishable position from the original

Rotation Axis C₃

Rotation Axis C₄

 $C_4^1 \rightarrow C_4^2 \rightarrow C_4^3 \rightarrow C_4^4 = E_{15}$

Rotation Axis C_n

cucurbit[5]uril

cucurbit[6]uril

 $C_n^1 \rightarrow C_n^2 \rightarrow C_n^3 \rightarrow C_n^4 \dots \rightarrow C_n^n = E$

Rotation Axis C_{∞}

Linear molecules

Plane of Symmetry σ

Plane of Symmetry σ

Planar molecules – symmetry plane of the molecule

 σ_h = horizontal plane, perpendicular to principal axis C_n

 σ_v = vertical plane, parallel to principal axis, bisects the most atoms

 σ_d = dihedral plane, colinear with principal axis C_n, bisecting two C₂'

Plane of Symmetry σ

Improper Axis S_n

Rotation-reflection = a compound operation, rotation (C_n) followed by a reflection through a plane perpendicular to the C_n axis

 $S_1 = C_1 \times \sigma = \sigma$

Improper Axis S_n

 BF_3, C_6H_6

Symmetry Elements in a Molecule

Equivalent atoms = exchanged by symmetry operations $F_4 = F_5$ $F_1 = F_2 = F_3$

Chirality

Figure 2. The Founding Fathers. R. M. Barrer (1910–1996) (right) and R. M. Milton (1920–2000) photographed

Chirality

Condition of chirality: no S_n present in a molecule

Number of signals = nonequivalent nuclei

Chemically different atoms

¹³C NMR

3 x t-Bu groups

No C_3 axis

Geometrical difference = chemical difference

Molecular Symmetry

 C_2 axis

1 x Me group signal 1 x NCH₂ 1 x H₂CN₂

30

Cl

Ή

¹H NMR (600 MHz, CDCl₃, TMS): 3.25 (s, 2H, H-2' and H-6'), 1.70 (br s, 2H, H-1 and H-3), 1.57 (br s, 2H, H-5 and H-7), 1.55 (br s, 4H, H-4, 8, 9, 10), 1.45 (m, 6H, H-4, 8, 9, 10 and H-6), 1.34 (m, 4H, H-3' and H-5'), 0.96 ppm (m, 2H, H-4')

¹³C NMR (75 MHz, CDCl₃, TMS):
102.2 (C-8'=C-2),
80.8 (2C, C-2' and C-6'),
40.0 (4C, C-4, 8, 9, 10),
39.1 (C-6),
29.2 (2C, C-5 and C-7),
28.7 (2C, C-1 and C-3),
22.3 (2C, C-3' and C-5'),
20.8 (C-4'),
20.2 ppm (2C, C-1' and C-7').

¹¹B NMR Isomers of B₁₀H₁₀C₂H₂

¹¹B NMR <u>Mono- and Disubstituted B₁₂H₁₂²⁻ Molecules with</u>

Identical Substituents

Fullerenes

Icosahedron

Truncated icosahedron

 δ (¹³C) = 143 ppm

δ (¹³ C)	ppm
a	150.07
С	147.52
b	146.82
d	144.77
e	130.28

Geminal Groups

Geminal groups – paired ligands

Y-E-Y: CH_2 , $C(CH_3)_2$, CF_2 , $SiMe_2$, $P(CH_3)_2$, ...

Prochiral Groups

Substitution

Geminal groups in Prochiral Groups

X = rest of the molecule

M = transition metal fragment

A = Lewis acid

Chemical Shift Nonequivalence of Geminal Ligands in Prochiral Groups

Me, Me Enantiotopic Equivalent (isochronous) in achiral media Nonequivalent (anisochronous) in chiral media Me, Me Diastereotopic Nonequivalent (anisochronous) If X is chiral, the paired ligands in a prochiral group are always diastereotoppic

Pyramidal N - Fast inversion on N

$$\mathbf{R} = {}^{i}\mathbf{P}\mathbf{r}$$

FIGURE 1 NMR spectra of CH(P) moiety of compound 2: a), b) ¹H NMR spectra in CDCl₃ and CDCl₃, D₂O respectively; c) ²¹P{¹H} NMR spectrum in CDCl₃; d) CH COSY diagram in CDCl₂.

[4] triangulane

Prochiral Groups

¹H NMR spectrum

6 CH aromatic signals

6 CH₃ mesityl signals

How many CH_2 signals ?

Prochiral Groups

steric congestion

¹H NMR spectrum

The methylene hydrogens are diastereotopic

6 CH aromatic signals6 CH₃ mesityl signals

two signals at 3.69 and 4.81 ppm

Chemical shift for a given molecule:

- Number of signals = nonequivalent nuclei molecular symmetry
- **Relative intensity = number of nuclei**
- Position in the spectrum = shielding/chemical shift electronic structure
- Multiplicity = connectivity of atoms and groups

Integration

Quantitative conditions – Relaxation time vs. Recycle delay

Phasing and Baseline correction applied

The area under each signal is proportional to the number of nuclei that give rise to that signal

The height of each integration step is proportional to the area under a specific signal

The integrated intensity tells us the relative number of nuclei that give rise to each signal, not absolute number

Polyphosphate Chain Length

Measuring the amount of epoxide on nanomaterials such as carbon nanotubes and fullerenes by monitoring a catalytic reaction of methyltrioxorhenium and PPh₃.

The relative amounts of PPh₃ and OPPh₃ can be used to stoichiometrically determine the amount of epoxide on the nanotube by determining the relative amounts of of PPh₃ and OPPh₃

O=PPh

62

Monitoring a reaction course

The reaction is followed by ³¹P NMR by taking a small aliquot from the reaction mixture at different reaction times.

The changing peak intensity can be used to monitor the reaction.

The reaction begins with a single signal at -4.40 ppm, corresponding to the free diphosphine ligand.

After an hour, a new signal appears at 41.05 ppm, corresponding the the diphosphine nickel complex.

The downfield peak grows as the reaction proceeds relative to the upfield peak. No change is observed between 4 and 5 hours, suggesting the conclusion of the reaction.