
Regions of Organic Proton Shifts

1

Table 14.1 Approximate Values of Chemical Shifts for ¹H NMR^a

Type of proton	Approximate chemical shift (ppm)	Type of proton	Approximate chemical shift (ppm)
(C <mark>H</mark> ₃) ₄ Si	0	<mark>∕∕−</mark> H	6.5-8
-CH ₃	0.9		
-CH ₂ -	1.3	O │	9.0–10
-C <mark>H</mark> -	1.4	I—C <mark>—H</mark>	2.5-4
$-C = C - CH_3$	1.7	Br—C— <mark>H</mark>	2.5-4
O U -C-CH ₃	2.1		2.3-4
CH ₃	2.3	Cl—C <mark>—H</mark>	3–4
−C≡C−H	2.4	F—C—H	4-4.5
R—O—C <mark>H</mark> 3	3.3	RN <mark>H</mark> 2	Variable, 1.5–4
$R-C=CH_2$	4.7	RO <mark>H</mark>	Variable, 2–5
$\mathbb{R} \xrightarrow[R]{} \mathbb{R} \mathbb{C} = \mathbb{C} \mathbb{H}_2$		ArO <mark>H</mark>	Variable, 4–7
$\begin{array}{c} R-C=C-H\\ & \\ R & R \end{array}$	5.3	O ∥ −C−O <mark>H</mark>	Variable, 10–12
		$\overset{O}{\overset{\parallel}{\overset{\parallel}{}}}_{-C-NH_2}$	Variable, 5–8

^aThe values are approximate because they are affected by neighboring substituents.

Shoolery Chemical Shift Rules

The different effects on chemical shifts have been tabulated.
Most of the effects are additive, meaning that if we can estimate the different effects on the chemical shift from different groups and bonds, we can estimate chemical shift by adding all the effects together.

• There are several empirical rules, derived mostly by Shoolery in the late 50s/early 60s.

• In order to use them, we first have to identify the type of proton we have, such as aliphatic CH_3 , CH_2 , CH, olefinic CH_2 or C_H , aromatic, α or β to a ketone or alcohol, belonging to an a α , β -unsaturated system, etc. They will have a base value.

• Then we look up the contributions from different groups attached to carbons in the surrounding of our system, and add them up to obtain the estimated chemical shift.

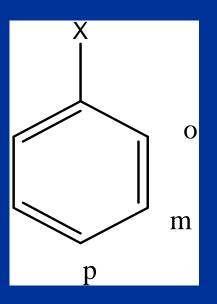
¹H NMR Chemical Shift Increments

Aliphatic compounds Methane $\delta(^{1}H) = 0.23 \text{ ppm}$ $\delta = 0.23 + \Sigma S_{i}(\delta)$ **CH₃Cl** δ (calc) = 2.76 $\delta(\exp) = 3.1$ **CH**₂**Cl**₂ δ (calc) = 5.29 $\delta(exp) = 5.3$

Substituent constants, S(8), for proton resonances in substituted methanes Substituent \$(ð) (ppm) Cl 2.53 Br 2.33 1.82 NRR' 1.57 OR 2.36 SR 1.64 CR-O 1.70 CR=CR'R' 1.32 C≡CH 1.44 C≣N 1.70 CH, 0.47 1.85 Phenyl OH 2.56 OCOR 3.13 COOR 1.55 CF₃ 1.14

CHCl₃ δ (calc) = 7.82 $\delta(\exp) = 7.27$

Shoolery chemical shift rules

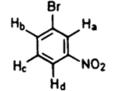

Table 4.3

¹H NMR Chemical Shift Increments

Aromatic compounds

Benzene $\delta(^{1}H) = 7.27 \text{ ppm}$

 $\delta = 7.27 + \Sigma S_i(\delta)$



Chemical Shift Calculation for Aromatic compounds

 $\delta = 7.27 + \sum S(\delta)$

Table 4.6 S(3) values for substituted benzenes (after Ref. 9)

	<i>S(δ)</i> (ppm)				
Substituent	Ortho	Meta	Para		
NO ₂	0.95	0.17	0.33		
CHO	0.58	0.21	0.27		
COCI	0.83	0.16	0.3		
COOH	0.8	0.14	0.2		
COOCH,	0.74	0.07	0.20		
COCH,	0.64	0.09	0.3		
CN	0.27	0.11	0.3		
C6H3	0.18	0.00	0.0		
CCI,	0.8	0.2	0.2		
CHCl ₂	0.1	0.06	0.1		
CH ₂ Cl	-0.0	0.01	0.0		
CH ₃	-0.17	0.09	-0.1		
CH ₂ CH ₃	-0.15	-0.06	-0.1		
CH(CH ₃) ₂	-0.14	-0.09	-0.1		
C(CH ₃) ₃	0.01	-0.10	-0.24		
CH ₂ OH	-0.1	-0.1	-0.1		
CH ₂ NH ₂	-0.0	-0.0	-0.0		
F	-0.30	-0.02	-0.22		
Cl	0.02	-0.06	-0.04		
Br	0.22	-0.13	-0.03		
1	0.40	-0.26	-0.03		
OCH,	-0.43	-0.09	-0.37		
OCOCH3	-0.21	-0.02	_		
OH	-0.50	-0.14	-0.4		
p-CH ₃ C ₆ H ₄ SO ₃	-0.26	-0.05	_		
NH ₂	-0.75	-0.24	-0.63		
SCH ₃	-0.03	-0.0	_		
N(CH ₃) ₂	-0.60	-0.10	-0.62		

 $\delta(H_{a}) = 7.27 + 0.22 + 0.95 = 8.44$ $\delta(H_{b}) = 7.27 + 0.22 + 0.33 = 7.82$ $\delta(H_{c}) = 7.27 - 0.13 + 0.17 = 7.31$ $\delta(H_{d}) = 7.27 - 0.03 + 0.95 = 8.19$

¹H NMR Chemical Shift Increments

Olefinic compounds

Ethylene $\delta(^{1}H) = 5.28 \text{ ppm}$

$$\delta = 5.28 + \Sigma S_{i}(\delta)$$

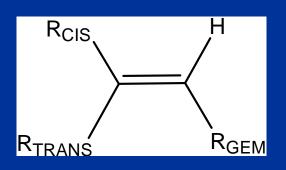
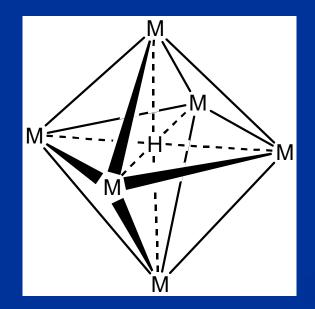


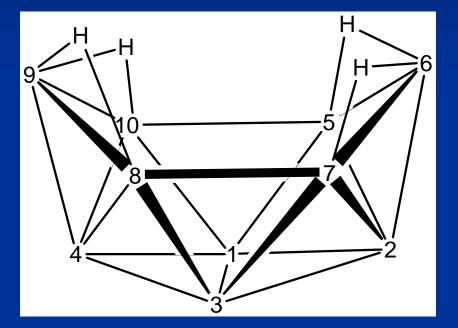
Table 4.7 $S(\delta)$ values for substituted ethylenes (after Ref. 10)

		<i>S</i> (δ)(ppr	n)		<i>S</i> (δ)(ppm)		
Substituent R*	gem	cis	trans	Substituent R*	gem	cis	trans
-H	0	0	0	н			
-Alkyl	0.44	-0.26	-0.29	-C=0	1.03	0.97	1.21
-Alkyl ring	0.71	-0.33	0.30	NR ₂			
-CH2O, -CH2I	0.67	-0.02	-0.07	-C=0	1.37	0.93	0.35
–CH₂S	0.53	-0.15	-0.15	Cl			
-CH ₂ Cl, -CH ₂ Br	0.72	0.12	0.07	-C=0	1.10	1.41	0.99
-CH ₂ N	0.66	-0.05	-0.23	-OR (R aliph.)	1.18	-1.06	-1.28
C≡C	0.50	0.35	0.10	-OR (R conj.)	1.14	-0.65	-1.05
-C≡N	0.23	0.78	0.58	-OCOR	2.09	-0.40	-0.67
-C=C (isol.)	0.98	-0.04	-0.21	-Aromatic	1.35	0.37	-0.10
-C=C (conj.)	1.26	0.08	-0.01	-Cl	1.00	0.19	0.03
-C=C (isol.)	1.10	1.13	0.81	-Br	1.04	0.40	0.55
-C=O (conj.)	1.06	1.01	0.95	∠R			
-COOH (isol.)	1.00	1.35	0.74	-Ń (Raliph.)	0.69	-1.19	-1.31
-COOH (conj.)	0.69	0.97	0.39	R			
-COOR (isol.)	0.84	1.15	0.56	∕R			
-COOR (conj.)	0.68	1.02	0.33	$-\dot{N}$ (R conj.)	2.30	-0.73	-0.81
				-SR	1.00	-0.24	-0.04
				-SO2	1.58	1.15	0.95


*isol. = isolated; conj. = conjugated; aliph. = aliphatic. The increments for 'R conj.' are used instead of those for 'R init" when the substituent R or the double bond in question is conjugated with additional substituents. The increments he 'Alkyl ring' are used when the substitutent under consideration and the double bond form a ring.

Regions of Inorganic Proton Shifts

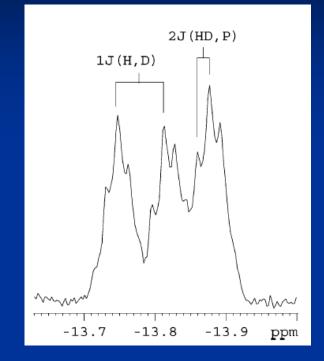
Organometallic hydrides

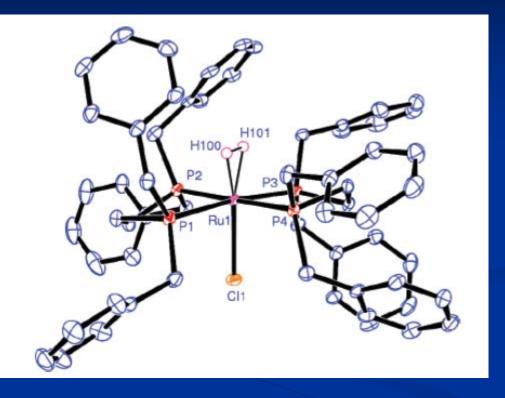

Highly shielded -5 to -60 ppm

 $[H-Rh(CN)_5]^{3-}$ -10.6 ppm multiplet? unpaired electrons?

Highly deshielded $[HRu_6(CO)_{18}]^-$ 16.4 ppm $[HCo_6(CO)_{15}]^-$ 23.2 ppm

¹H NMR of Boranes

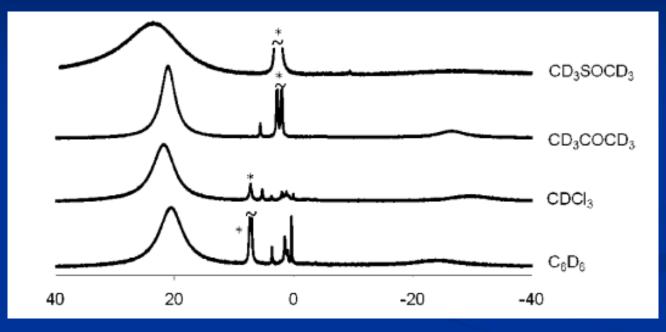



nido-Decaborane(14)

bridging B₂H -2.12 ppm

terminal BH (2,4) 0.62 (5,7,8,10) 3.13 (1,3) 3.63 (6,9) 3.90

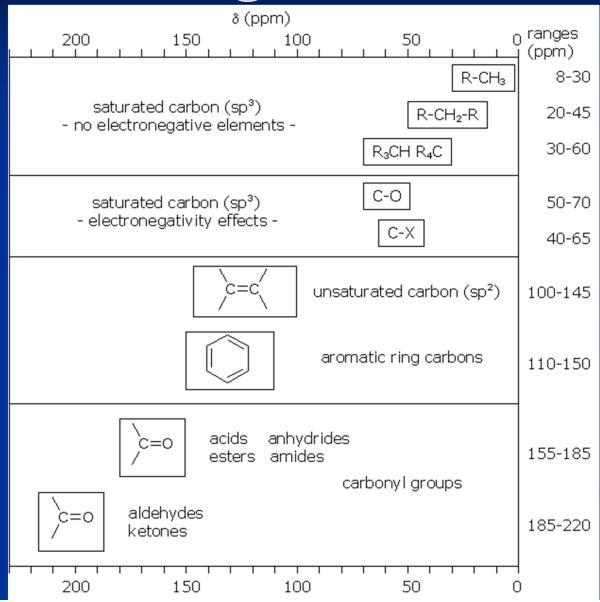
¹H NMR Organometallic Hydrides



unpaired electrons?

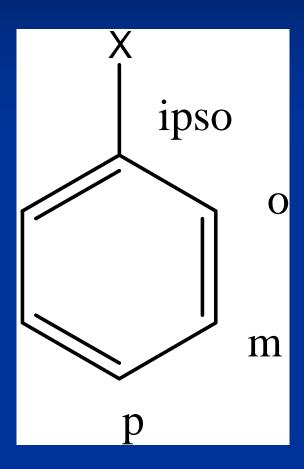
$$\begin{array}{c|c} Ar_{2} & H & Ar_{2} \\ P & H & P \\ P & H & P \\ Ar_{2} & CI & Ar_{2} \end{array} + HBF_{4} \cdot Et_{2}O \underbrace{CD_{2}CI_{2}}_{H_{2}, 298 \text{ K}} \xrightarrow{Ar_{2} & H + Ar_{2}}_{P & H + Ar_{2}} [BF_{4}] \\ P & H & P \\ Ar_{2} & CI & Ar_{2} \end{array}$$

¹H NMR of Paramagnetic Compounds



¹H NMR spectra of Fe(acac)₃

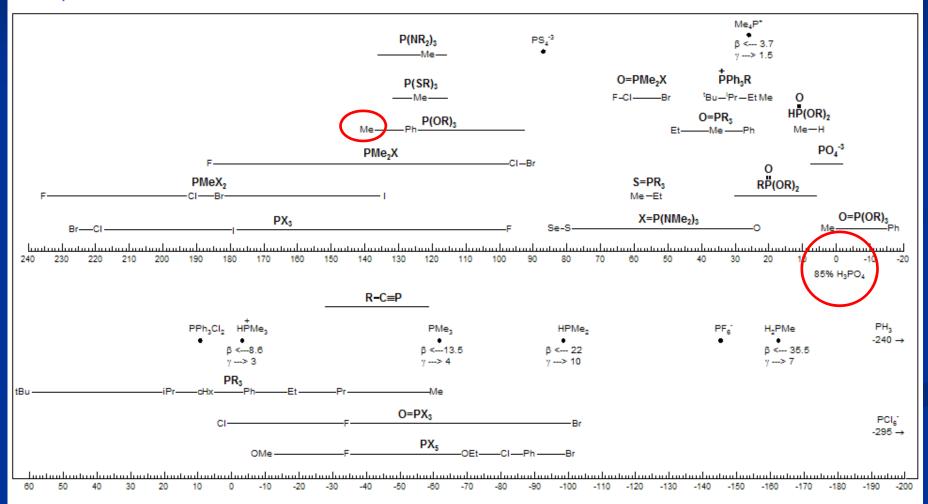
CH₃


Regions of Organic Carbon Shifts

11

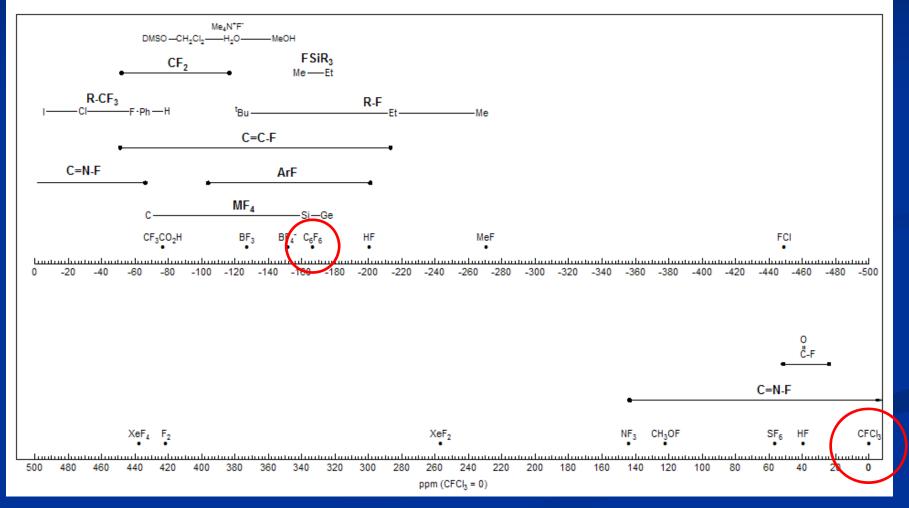
Table 14.4 Approximate Values of Chemical Shifts for ¹³ C NMR					
Type of carbon	Approximate chemical shift (ppm)	Type of carbon	Approximate chemical shift (ppm)		
(<mark>C</mark> H ₃) ₄ Si	0	C—I	0–40		
R— <mark>C</mark> H ₃	8–35	C-Br	25–65		
R— <mark>C</mark> H ₂ —R	15–50	C—Cl C—N C—O	35–80 40–60 50–80		
R R— <mark>C</mark> H—R	20–60		165–175		
R R— <mark>C</mark> —R R	30–40	R RO	165–175		
≡ <mark>C</mark>	65–85	R C=0	175–185		
= <mark>C</mark>	100–150	R H C=O	190–200		
C	110–170	R R	205–220		

¹³C NMR Chemical Shift Increments

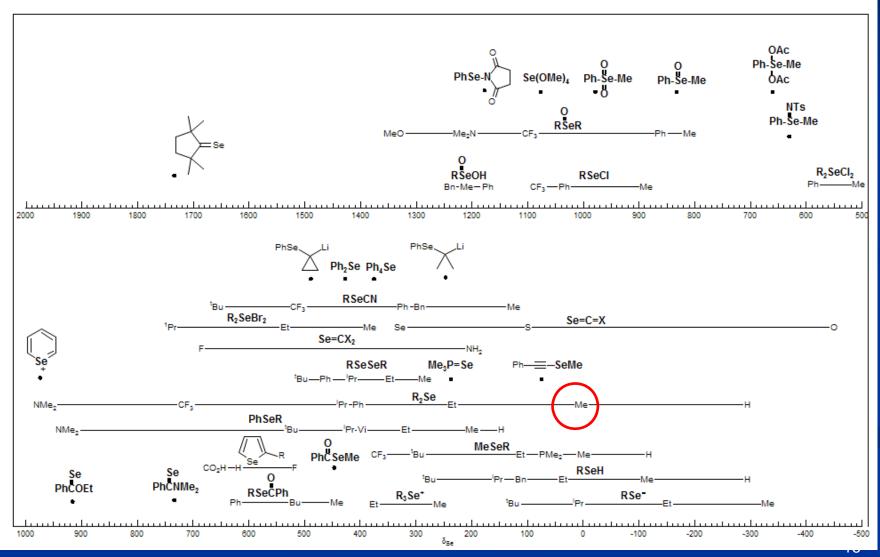


 $\delta(^{13}C) = 128.5 \text{ ppm}$

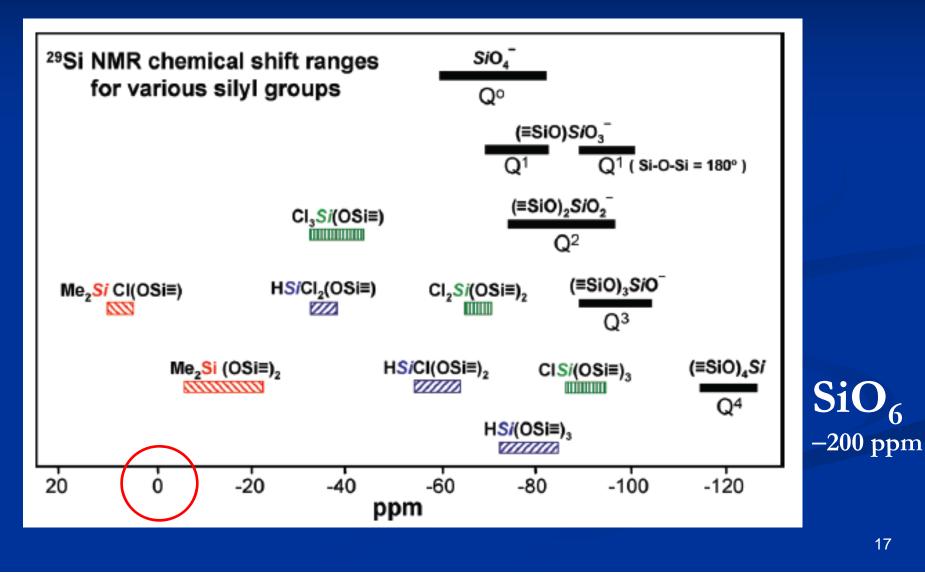
+/- substituent X increments for each carbon (ipso, o, m, p)


Regions of ³¹P NMR Shifts

- Phosphorus Shifts Overview

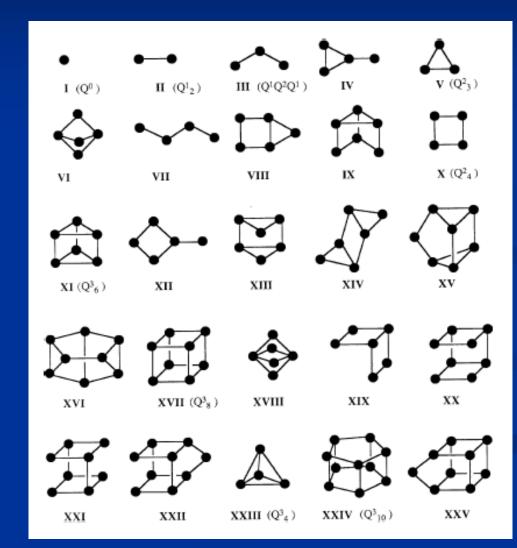

Regions of ¹⁹F NMR Shifts

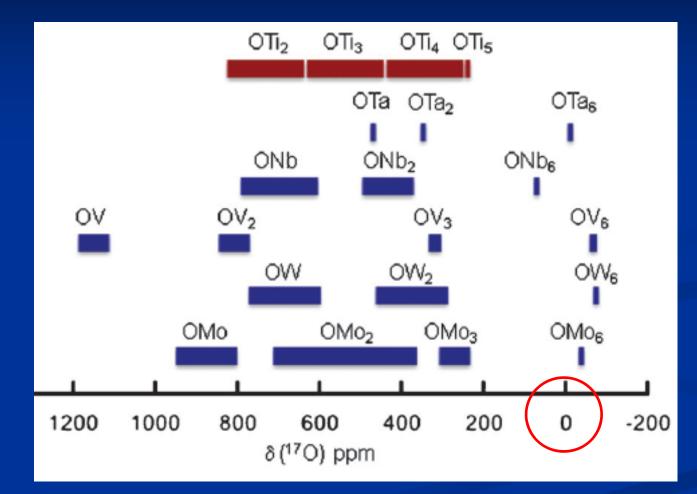
- Fluorine Shifts Overview



Regions of ⁷⁷Se NMR Shifts

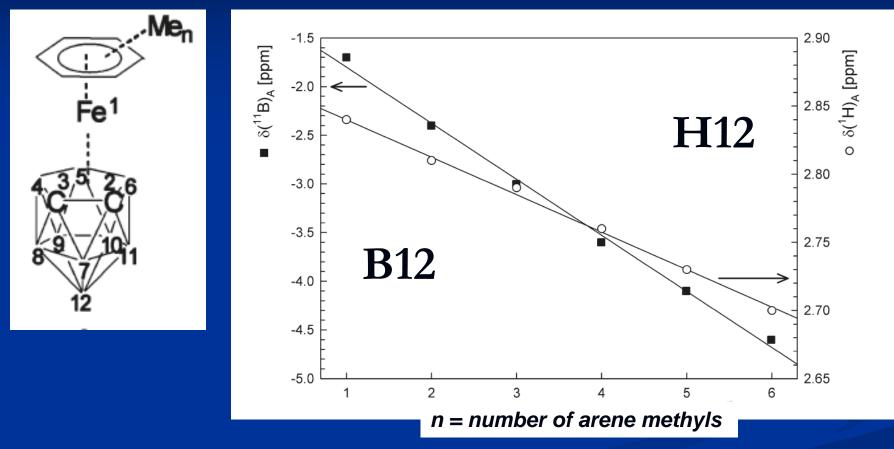
- Selenium Shifts Overview


Regions of ²⁹Si NMR Shifts


17

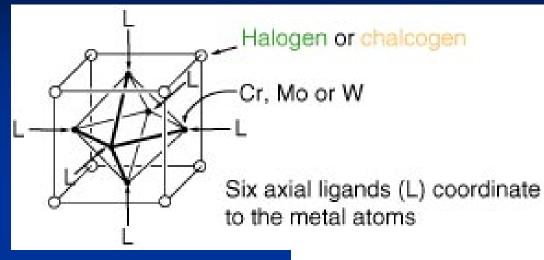
Silicate Anions in Aqueous Alkaline Media Detected by ²⁹Si-NMR

 $M = OSiR_3$ $\mathbf{D} = \mathbf{O}_2 \mathbf{SiR}_2$ $T = O_3 SiR$ $\mathbf{Q} = \mathbf{O}_{4}\mathbf{S}\mathbf{i}$ $\mathbf{Q}^0 = \mathbf{O}_4 \mathbf{S}\mathbf{i}$ $Q^1 = O_3 SiOSi$ $Q^2 = O_2 Si(OSi)_2$ $Q^3 = OSi(OSi)_3$ $Q^4 = Si(OSi)_4$



Regions of ¹⁷O MAS NMR

 $H_{2}^{17}O$

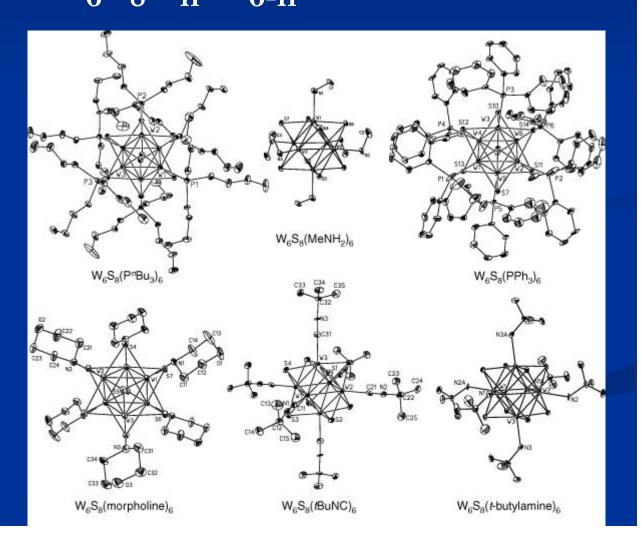

Linear Correlations of the NMR Parameters with the Number of Arene Methyls


Is diamagnetic or paramagnetic shielding affected?

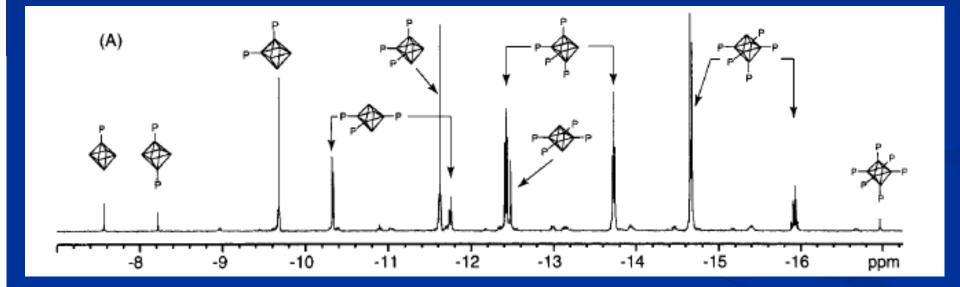
B. Stibr, M. Bakardjiev, J. Holub, A. Ruzicka, Z. Padelkova, P. Stepnicka Inorg. Chem. 2011, 50, 3097–3102

Octahedral Metal Clusters

Song Jin, Jennifer Adamchuk, Bosong Xiang, and Francis J. DiSalvo* J. AM. CHEM. SOC. 2002, 124, 9229-9240

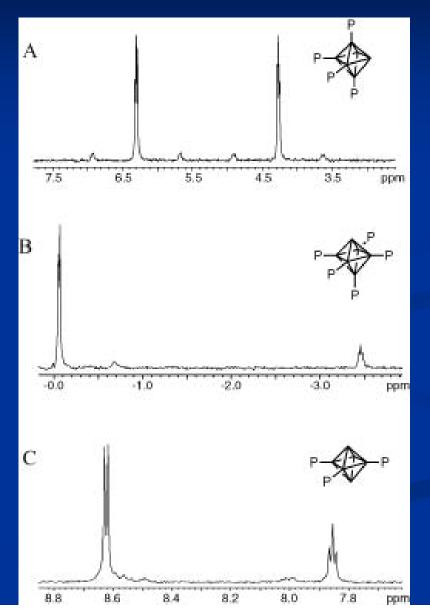


NMR Identification of the Clusters $W_6S_8L_nL_{6-n}'$


For 2 different L, L'

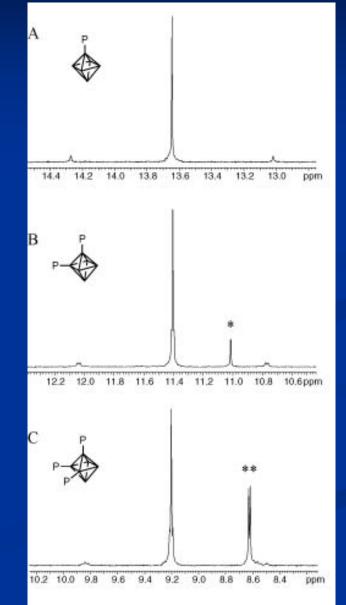
there are 10 complexes

How many signals in ³¹P NMR if $L' = PR_3$???


NMR Identification of the Clusters Series of 200 complexes

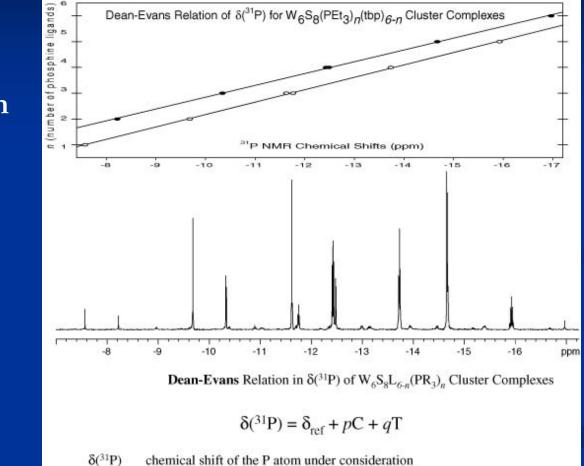
12 Signals in ³¹P NMR

$W_6S_8(PR_3)_n(L)_{6-n}$


P-W-W-P coupling through the cluster core in the ³¹P{¹H} NMR spectra

24

$\overline{W}_{6}S_{8}(\overline{PR}_{3})_{n}(L)_{6-n}$


¹⁸³W (I=1/2) the satellite peaks flanking the main P peaks

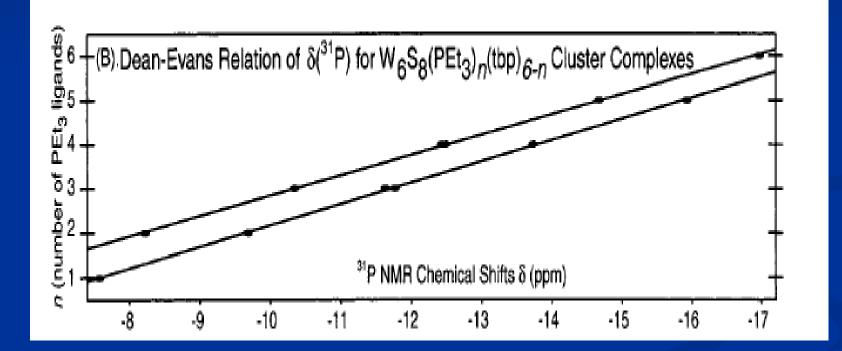
$W_6 \overline{S_8(PR_3)}_n(L)_{6-n}$

Dean-Evans relation

a two-parameter linear relation

- reference chemical shift
- δ_{ref} number of ligand L in cis position to P (0-4) p
 - number of ligand L in trans position to P (0,1)
- q C and T empirical increments of chemical shifts corresponding to cis and trans

Dean-Evans relation = a two-parameter linear relation


$$\delta(^{31}\mathbf{P}) = \delta_{\mathrm{ref}} + pC + qT$$

δ_{ref}

two variables (p and q, the number of ligands L in the cis or trans position to PR₃, respectively)

two constants (*C* and *T*, characteristic of a given ligand L)

Dean-Evans relation = a two-parameter linear relation

 $\delta(^{31}\mathbf{P}) = \delta_{\mathrm{ref}} + pC + qT$