Chemical shift for a given molecule:

- Number of signals = nonequivalent nuclei molecular symmetry
- Relative intensity = number of nuclei
- Position in the spectrum = shielding/chemical shift electronic structure
- Multiplicity = connectivity of atoms and groups

Magnetic Coupling

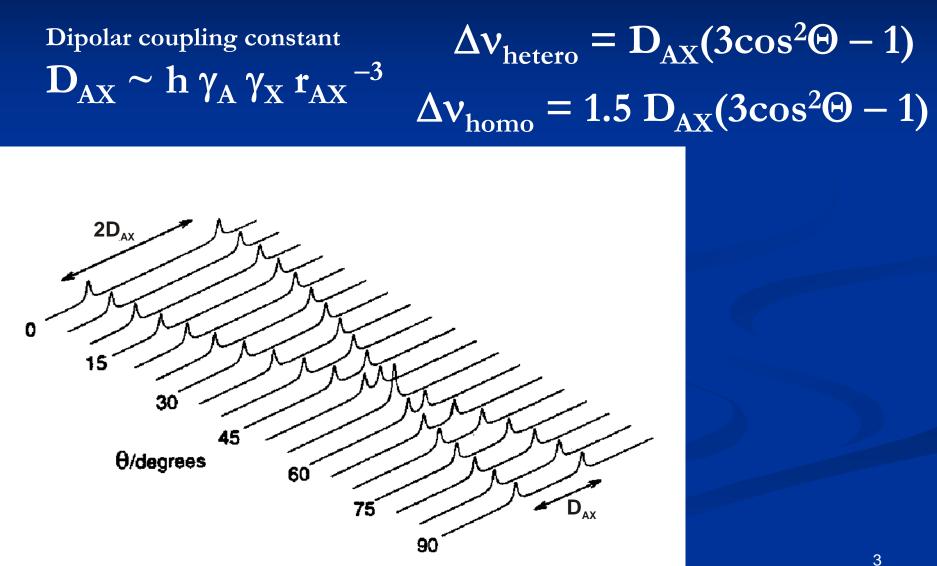
The interaction of nuclear spins is composed of two parts:

1. Dipolar coupling direct interaction of magnetic moments thru space solids oriented phases NOE $B_{\mu z} \sim \mu r_{AX}^{-3} (3\cos^2\Theta - 1)$ relaxation

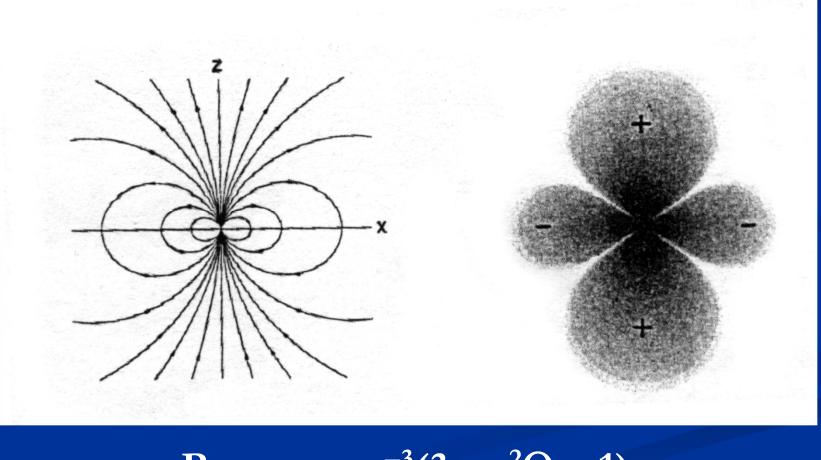
2. Scalar coupling

indirect interaction mediated by electrons chemical information about the bonding

Dipolar Coupling



Dipolar Coupling



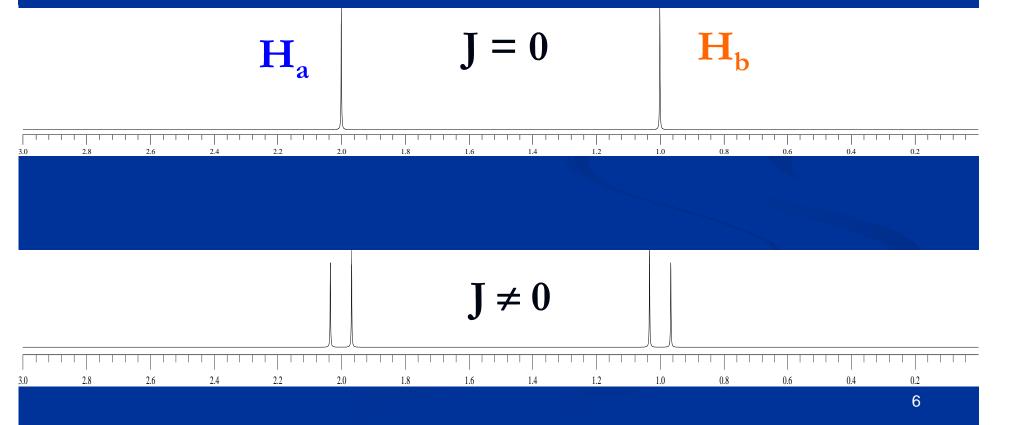
 $B_{\mu z} \sim \mu r_{AX}^{-3} (3 \cos^2 \Theta - 1)$

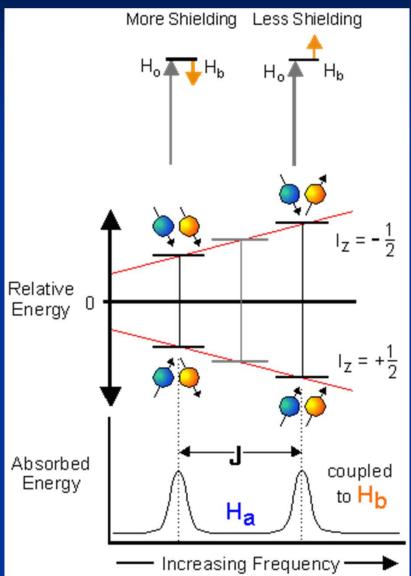
Analysis of the coupling patterns consists of three parts:

- number of lines in a multiplet
- relative intensities of lines in the multiplet
- magnitude (and possibly sign) of the coupling constants (Hz)

Scalar (Spin-Spin) Coupling

The simplest case: Two magnetically active nuclei Interacting through bonds (see each other) Both spins $I = \frac{1}{2}$





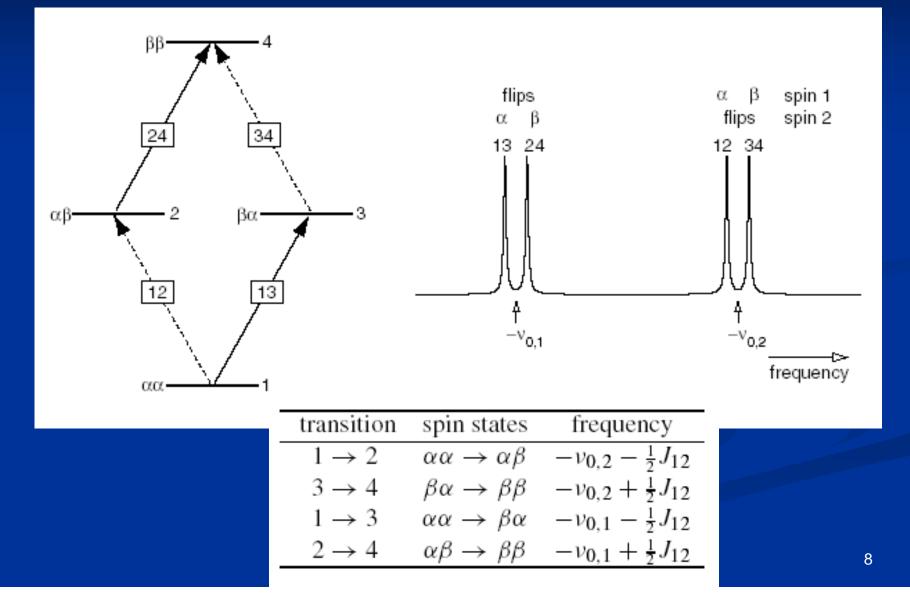
A splitting of a signal = more energy levels involved in the transitions

Origin = The magnetic moment of the nucleus H_a produces polarization at H_b (and vice versa)

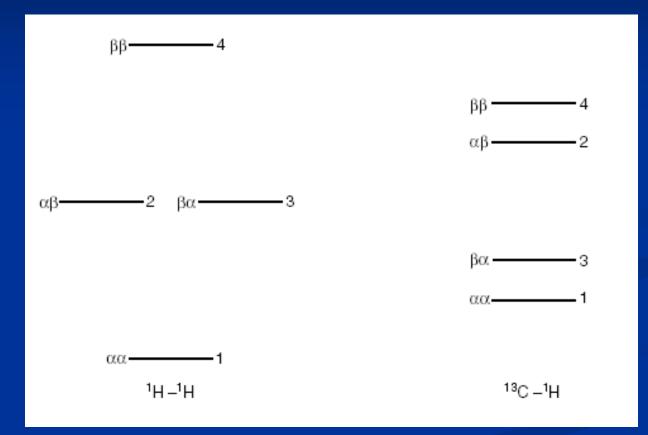
number	spin states	energy
1	αα	$+\frac{1}{2}v_{0,1}+\frac{1}{2}v_{0,2}+\frac{1}{4}J_{12}$
2	$\alpha\beta$	$+\frac{1}{2}v_{0,1} - \frac{1}{2}v_{0,2} - \frac{1}{4}J_{12}$
3	βα	$-\frac{1}{2}v_{0,1} + \frac{1}{2}v_{0,2} - \frac{1}{4}J_{12}$
4	$\beta\beta$	$-\frac{1}{2}v_{0,1} - \frac{1}{2}v_{0,2} + \frac{1}{4}J_{12}$

Spectrum of H_a

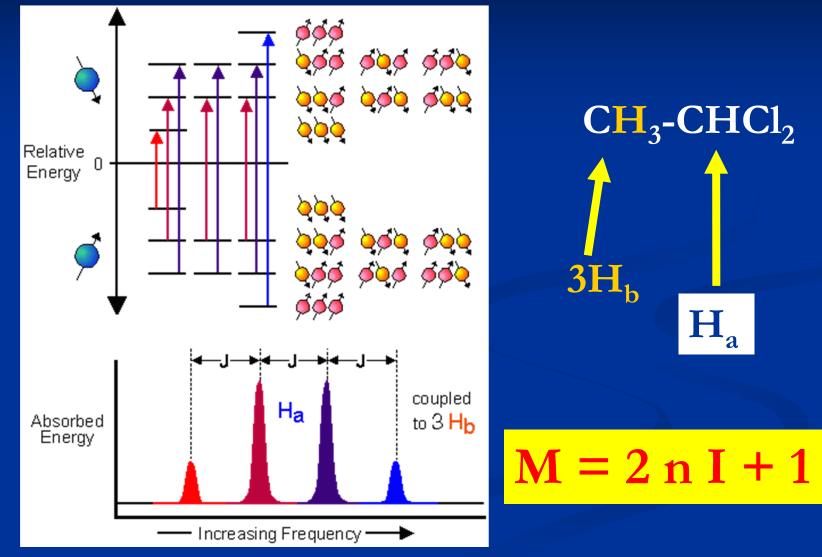
Two Spins $I = \frac{1}{2}$



Homo vs. Hetero Coupling

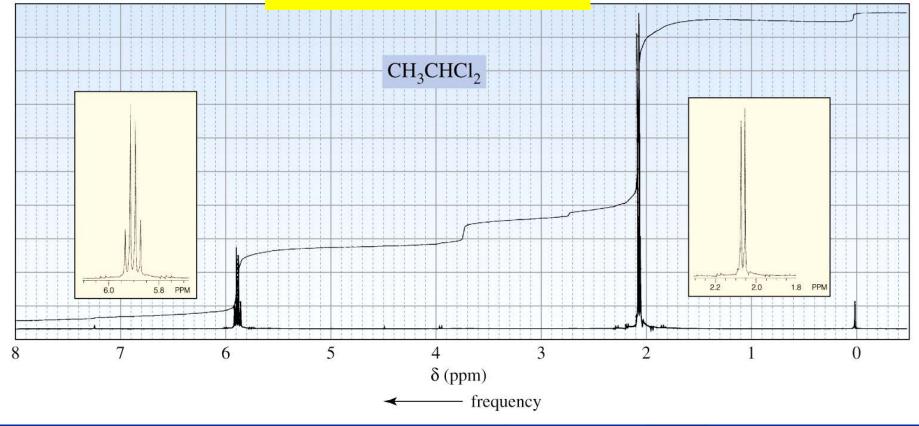


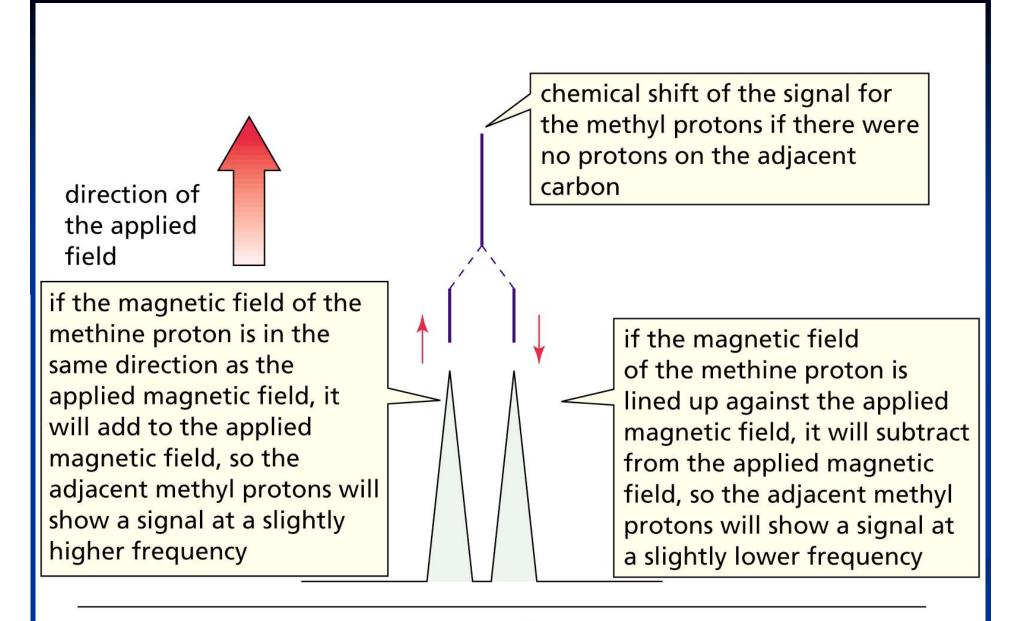
Number of Lines in a Multiplet



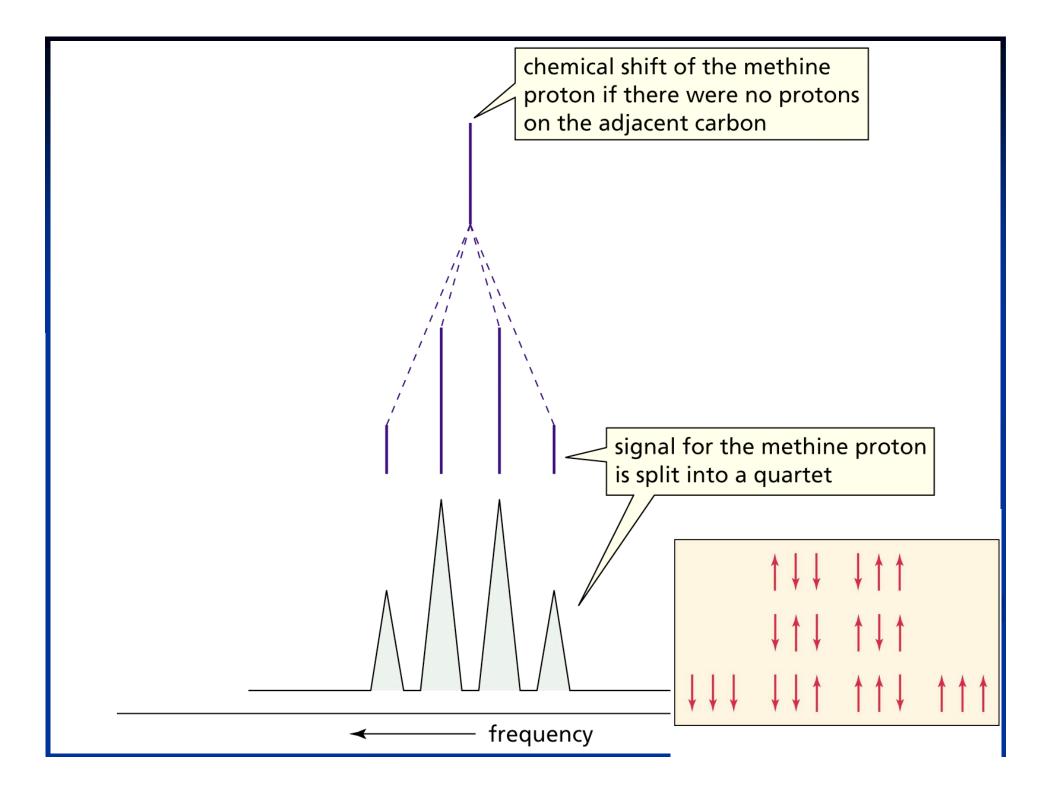
Number of Lines in a Multiplet

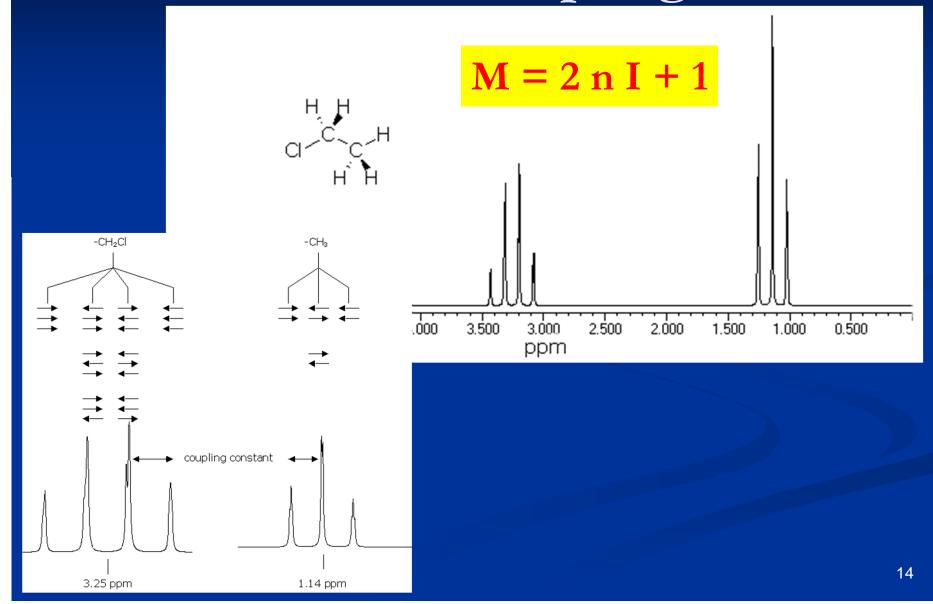
M = 2 n I + 1





——— frequency





Relative Intensities of Lines in the Multiplet

Line intensities of the multiplet A are given by the coefficients of polynomial expansion

A-----X_n

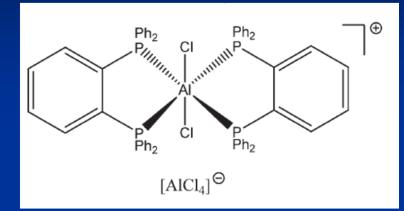
Spin, I_X	Polynomial, n = number of nuclei X	Examples
4.40		17.7
1/2	$(x + y)^n$	$^{1}\mathrm{H}$
1	$(x^2 + xy + y^2)^n$	² H, ⁶ Li, ¹⁴ N
3/2	$(x^3 + x^2y + xy^2 + y^3)^n$	¹¹ B , ⁷ Li
2	$(x^4 + x^3y + x^2y^2 + xy^3 + y^4)^n$	-
5/2	$(x^5 + x^4y + x^3y^2 + x^2y^3 + xy^4 + y^5)^n$	¹⁷ O , ²⁷ Al
$3 \qquad (x^6 + x^5y + x^4y^2 + x^3y^3 + x^2y^4 + xy^5 + y^6)^n$		¹⁰ B
7/2	$(x^7 + x^6y + x^5y^2 + x^4y^3 + x^3y^4 + x^2y^5 + xy^6 + y^7)^n$	⁵¹ V, ⁵⁹ Co

Pascal's Triangle only for Spin ¹/₂

Pattern	n	Relative Peak Height $(x + y)^n$
Singlet	0	1
Doublet	1	1:1
Triplet	2	1:2:1
Quartet	3	1:3:3:1
Quintet	4	1:4:6:4:1
Sextet	5	1 : 5 : 10 : 10 : 5 : 1
Septet	6	1:6:15:20:15:6:1
And so on		

Splitting by a Spin > $\frac{1}{2}$

³¹P NMR

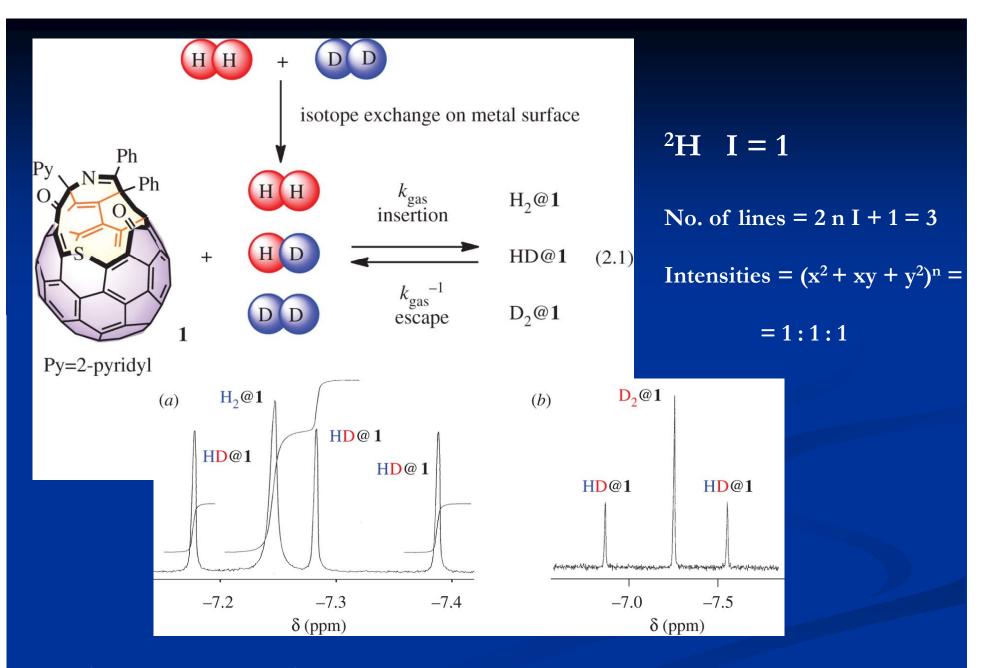


²⁷A1 I = 5/2NA = 100 %

Number of lines = 2 n I + 1 = 6

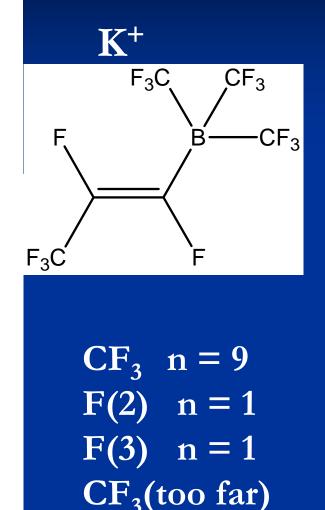
Intensities = $(x^5 + x^4y + x^3y^2 + x^2y^3 + xy^4 + y^5)^n =$

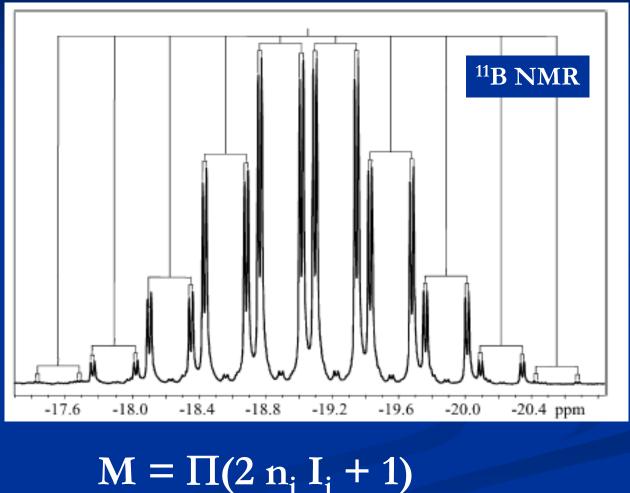
=1:1:1:1:1:1



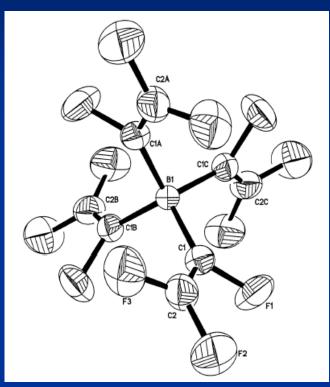
(a) ¹H (400 MHz) and (b) ²H NMR (60.7 MHz) spectra (*o*-dichlorobenzene- d_4) of the region for encapsulated hydrogen molecule inside open-cage fullerene 1

Coupling with Several Spins

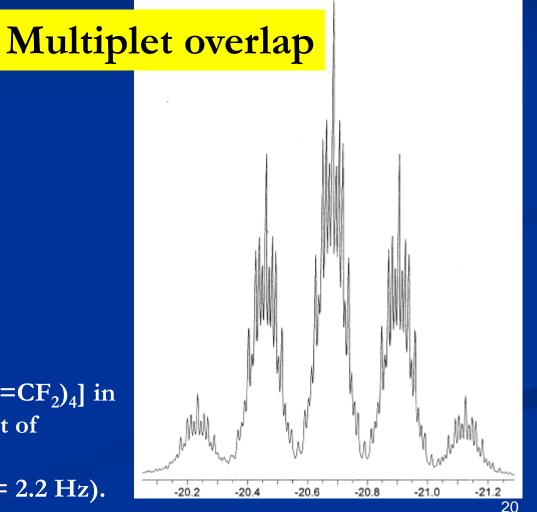




¹¹B NMR Spectrum of K[B(CF=CF₂)₄]

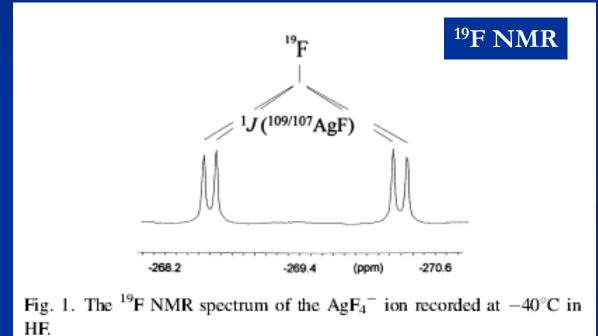


¹¹B NMR spectrum of K[B(CF=CF₂)₄] in CD₃CN: an overlapping quintet of quintets of quintets $({}^{2}J_{B,F} = 21.5, {}^{3}J_{B,F} = 3.2, {}^{3}J_{B,F} = 2.2 \text{ Hz}).$



$$K[AgF_4]$$

$K[AgF_4] d^8$ square planar



¹⁰⁹Ag I = $\frac{1}{2}$ NA = 48.2% γ = -1.2448 10⁷ rad T⁻¹ s⁻¹ ¹⁰⁷Ag I = $\frac{1}{2}$ NA = 51.8% γ = -1.0828 10⁷ rad T⁻¹ s⁻¹

 $\mathbf{M} = 2\mathbf{n}\mathbf{I} + 1$

 $^{1}J(^{109}Ag - F) = 425.8 \text{ Hz}$

 $^{1}J(^{107}Ag - F) = 370.4 \text{ Hz}$

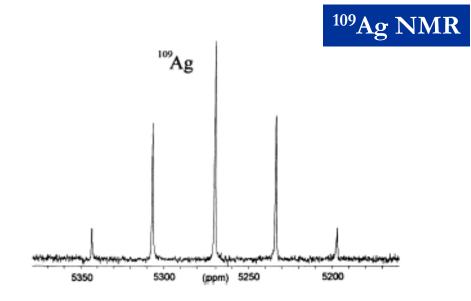
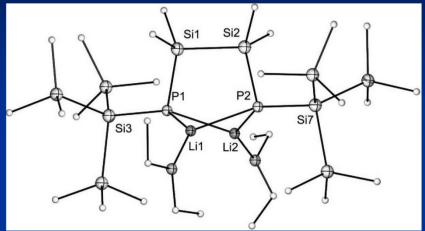
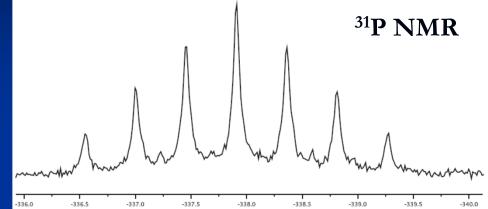


Fig. 2. The ¹⁰⁹Ag NMR DEPT spectrum of AgF_4 - ion recorded at $-40^{\circ}C$ in HF utilizing polarization transfer from ¹⁹F (DEPTC pulse train, repetition delay 1 s, d2 1.2 ms, number of scans 3948, acquisition time 0.7 s).

¹J(¹⁰⁹Ag – F) must have the same value in both ¹⁰⁹Ag and ¹⁹F spectra

Coupling with Several Spins I > 1/2





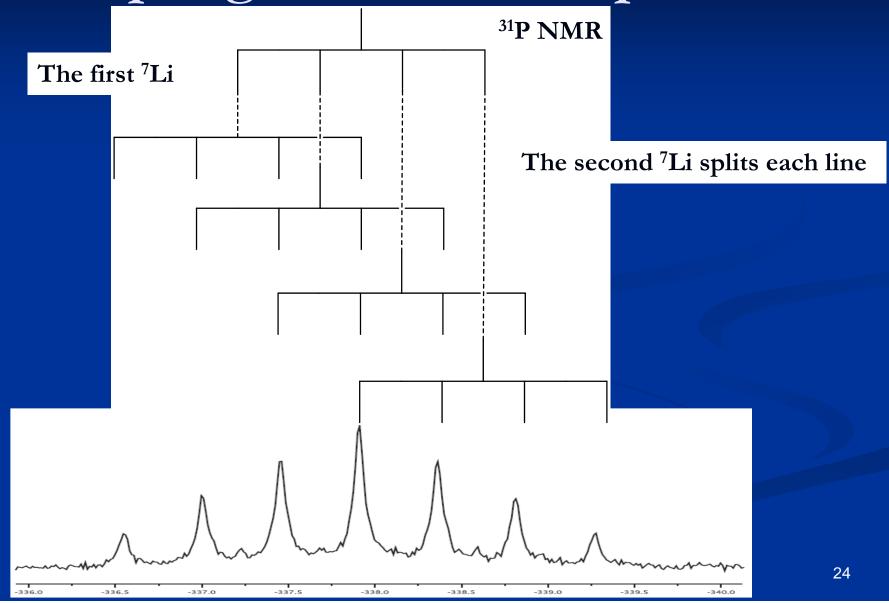
⁷Li I = 3/2NA = 92.6 %

n = 2

Number of lines = 2 n I + 1 = 7

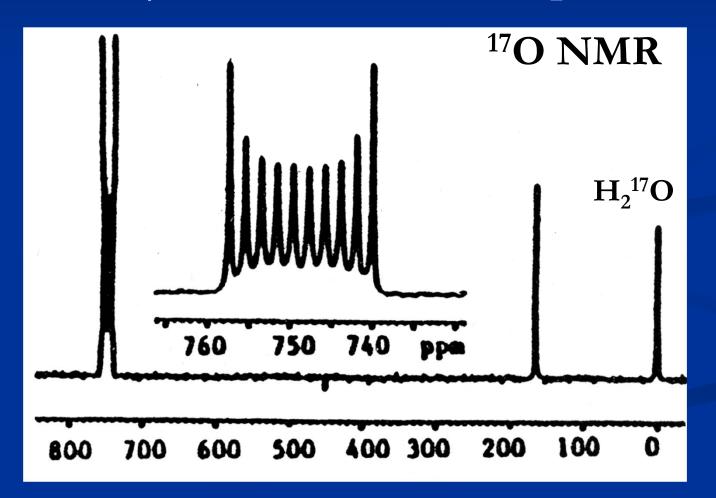
Intensities = $(x^3 + x^2y + xy^2 + y^3)^2$ =good luck

Coupling with Several Spins > $\frac{1}{2}$

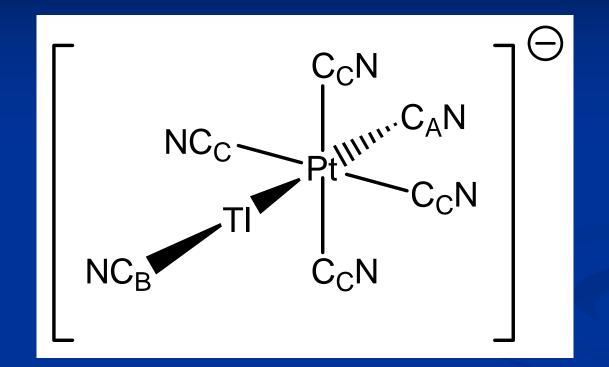


Signal Multiplicity

 TcO_4^- in 20.1% enriched $H_2^{17}O$.

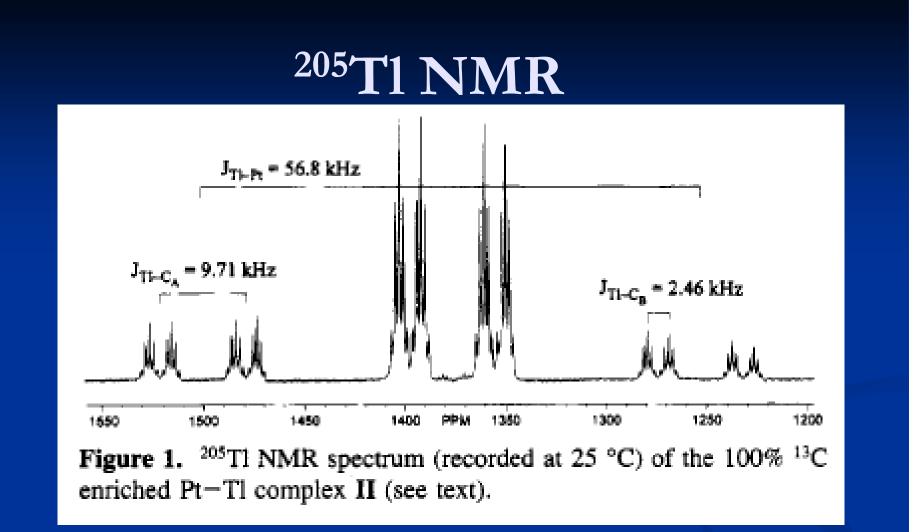


Signal Multiplicity



¹³C enriched CN⁻

 $M = \Pi(2 n_i I_i + 1)$

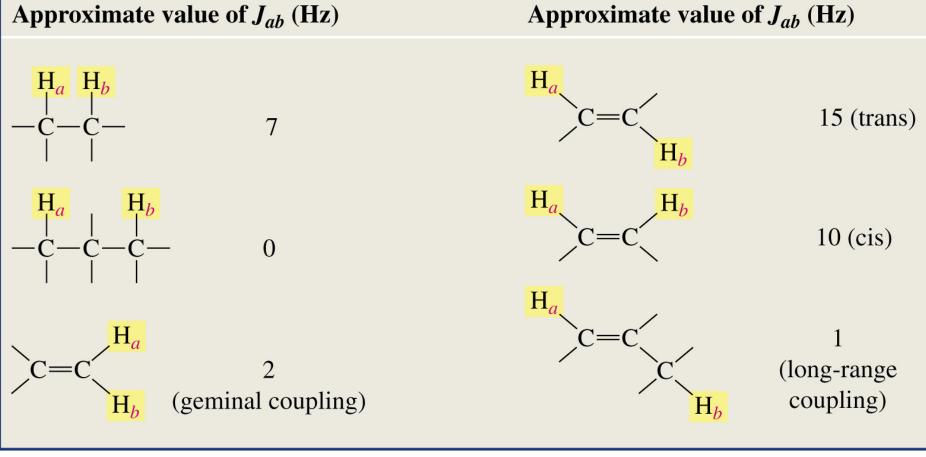


 ^{2}J (T1-C_C) < ^{1}J (T1-C_B) < ^{2}J (T1-C_A)

cis C_C 0.45 kHztrans C_A 9.71 kHz

¹H Scalar Coupling

Table 14.3 Approximate Values of Coupling Constants



Magnitude and Sign of the Coupling Constants Indirect nuclear spin-spin coupling constants

- •through-bond
- •through-space
- •through hydrogen bonds

Spin-spin couplings between two nuclei will be dependent upon several factors:

- the nuclei involved magnetogyric ratio
- the distance between the two nuclei
- the angle of interaction between the two nuclei
- the nuclear spin of the nuclei

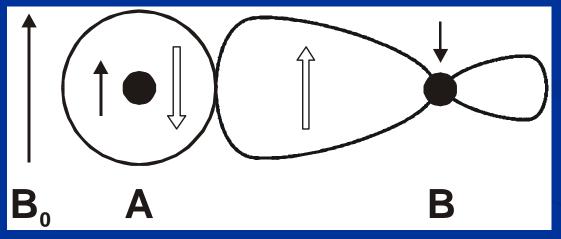
Scalar Coupling Isotropic part of J

Four (Ramsey) contributions:

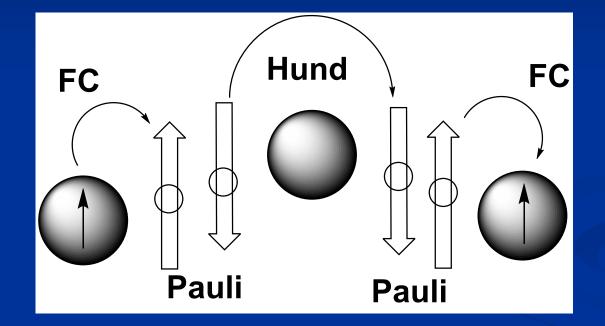
- Fermi-contact (FC)
- Spin-dipolar (SD)
- Paramagnetic orbital (PARA)
- Diamagnetic orbital (DIA)

The most important contribution to scalar coupling arises from the FERMI-CONTACT INTERACTION

which can be described in the Dirac-vector model:



The nuclear spin polarization of nucleus A in a magnetic field polarizes the spins of a bonding electron pair, which in turn transfer this polarization to nuclear spin B.



FERMI-CONTACT INTERACTION is mediated only by selectrons (p, d, f electrons have no contact with the nucleus)

s-electron has definite probability at nucleus e-spin and nuclear spin can interact only when they occupy same space

An approximate expression for the scalar coupling constant J was given by Mc CONNELL:

 $J_{AB} \sim \gamma_A \ \gamma_B \ s_A^2(0) \ s_B^2(0) \ (\Delta E)^{-1} \alpha_{AB}^2$ $s^2(0) = s \text{-electron density at the nucleus}$ $\alpha_{AB}^2 = s \text{-character in the A-B bond}$

Conventions on the Notation of Scalar Coupling Constants

Spin-spin couplings are generally expressed in terms of the COUPLING CONSTANT ${}^{n}J$ where n denotes the number of bonds between coupled nuclei Dimension $[J] = s^{-1}$ [Hz]

The magnitude of J depends on the gyromagnetic ratios γ_A , γ_B of the coupled nuclei. For comparison of coupling constants involving different isotopes use the REDUCED COUPLING CONSTANT K

$$K_{AB} = (4\pi^2/h) (\gamma_A \gamma_B)^{-1} J_{AB}$$

Dimension [K] = 10^{19} N A² m⁻³

Scalar Coupling Constants

To compare substituent influences on coupling for different nuclei, use

the EFECTIVE REDUCED COUPLING CONSTANT K'

 $K'_{AB} = K_{AB} [s_A^2(0) s_B^2(0)]^{-1}$

Dimension [*K*] = 10^{42} N A⁻² m³

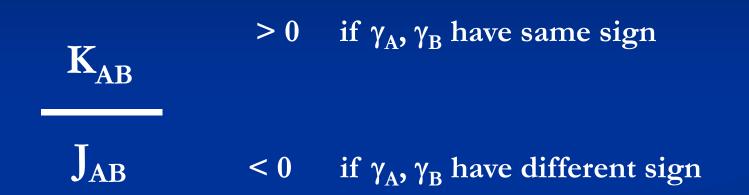
Signs of Scalar Coupling Constants

Signs of scalar coupling may be both POSITIVE or NEGATIVE. The sign of a coupling constant is defined as follows:

 $K_{AB} < 0$ if PARALLEL alignment of the spins I(A) and I(B) is energetically favored

 $K_{AB} > 0$ if ANTIPARALLEL alignment of the spins I(A) and I(B) is energetically favored

Signs of Scalar Coupling Constants



NMR spectroscopic measurements in liquids yield generally only information on RELATIVE SIGNS of two couplings, i.e. $K_{AB} / K_{AC} > 0$ or $K_{AB} / K_{AC} < 0$. Determination of absolute signs for K_{AB} or K_{AC} requires other experiments (e.g. molecular beam experiments, observation of dipolar interactions in the solid state) Signs of Scalar Coupling Constants The sign of ${}^{1}K_{EH}$ is generally positive.

(E = any first to fourth row atom)

If the relative sign of a coupling constant ${}^{n}K_{XY}$ can be determined from ${}^{n}K_{XY}$ / ${}^{1}K_{EH}$, it can be translated into an absolute sign.

Methods for sign determination:

 analysis of higher order spectra
 homo- or heteronuclear 2D-Experiments
 selective irradiation experiment

 Coupling signs may provide useful structural information on:

 the number of bonds connecting two nuclei
 the oxidation state of elements
 the stereochemical details (conformation and configuration analysis)

Visualization of Spin–Spin Coupling

$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \left[E(\uparrow\uparrow) - E(\uparrow\downarrow) \right]$$

the energy splitting between states with parallel and antiparallel nuclear spins

$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \int \left[\varepsilon^{\uparrow\uparrow}(r) - \varepsilon^{\uparrow\downarrow}(r) \right] dV = \frac{\hbar}{2\pi} \gamma_A \gamma_B \int \varepsilon_{AB}(r) dV$$

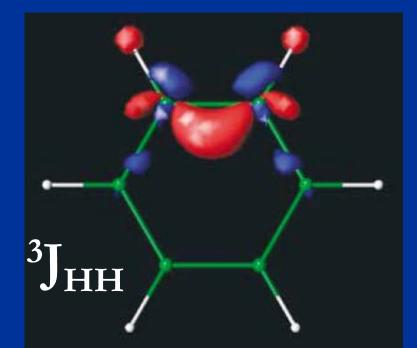
 $\varepsilon_{AB}(r)$ = the coupling energy density (CED) integral of CED over all space = K_{AB} CED is a real-space function, can be visualized in 3D contains all the information about the propagation of the nuclear spin-spin interaction throughout a molecule

Visualization of Spin–Spin Coupling

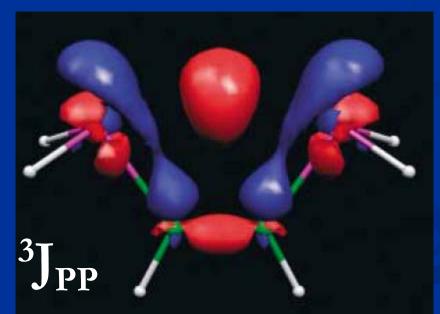
$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \int \left[\varepsilon^{\uparrow\uparrow}(r) - \varepsilon^{\uparrow\downarrow}(r) \right] dV = \frac{\hbar}{2\pi} \gamma_A \gamma_B \int \varepsilon_{AB}(r) dV$$

Benzene

H₂P-CH₂-CH₂-PH₂



through-bond

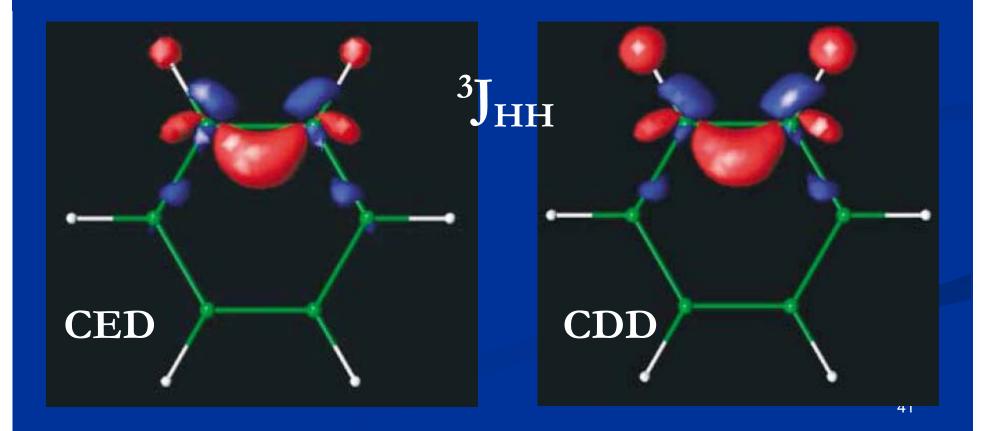


through-space

Visualization of Spin–Spin Coupling

$$\rho_{AB}(r) = \frac{\rho^{\uparrow\uparrow}(r) - \rho^{\uparrow\downarrow}(r)}{\lambda_1 \lambda_2}$$

The coupling electron deformation density (CDD), the integration of CDD over space = 0



Types of Coupling

Coupling between two nuclei can be categorized as follows:

Homonuclear Coupling

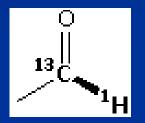
- coupling between nuclei of the same type ¹H-C-C-¹H, ¹⁹⁵Pt-¹⁹⁵Pt, ³¹P-C-³¹P, ¹⁹⁹Hg-C-C-¹⁹⁹Hg

Heteronuclear Coupling

- coupling between nuclei of different types ¹H-¹³C, ¹H-³¹P, ²⁰⁵Tl-¹⁹⁵Pt, ¹⁴N-⁵¹V

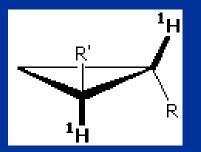
Distance Dependence

The absolute value of the coupling constant decreases as the number of interceding bonds between coupled nuclei increases. The order of the strength of coupling is as follows: ${}^{1}J > {}^{2}J > {}^{3}J > {}^{4}J > {}^{n}J$

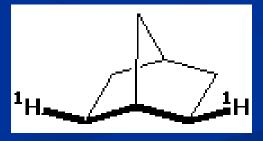


J one-bond or direct

²J two-bond or geminal

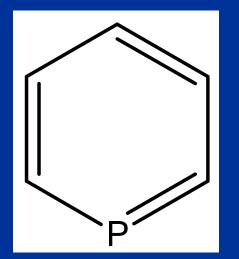


³J three-bond or vicinal



Distance Dependence

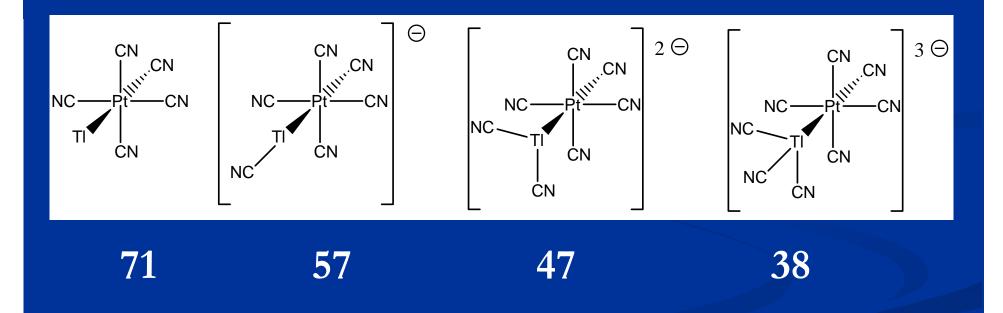
 ${}^{1}J > {}^{3}J > {}^{2}J$



 ${}^{3}J_{PCCC} = 14 \text{ Hz}$ ${}^{2}J_{PCC} = 12 \text{ Hz}$ ${}^{1}J_{PC} = 55 \text{ Hz}$

Largest Heteronuclear J

 $^{1}J(^{205}Tl-^{195}Pt)$, kHz !!!!



Largest Homonuclear J

 $^{1}J(^{199}Hg-^{199}Hg) =$

220 300 Hz

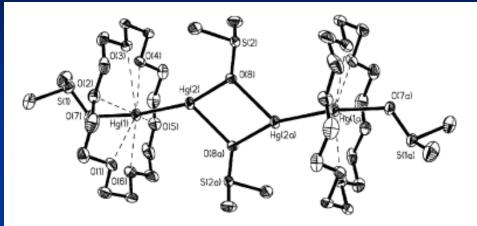


Fig. 1 Structure of $\{[Hg_2(18 \text{-crown-6})_2(Me_2SO)(\mu-Me_2SO)]\}_2^{4+}$ (cation of 2). Thermal ellipsoids are shown at the 20% probability level.

 $^{1}J(^{199}Hg-^{199}Hg) =$

263 200 Hz in CD₂Cl₂ 284 100 Hz in MeOH

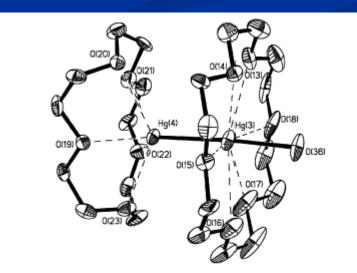
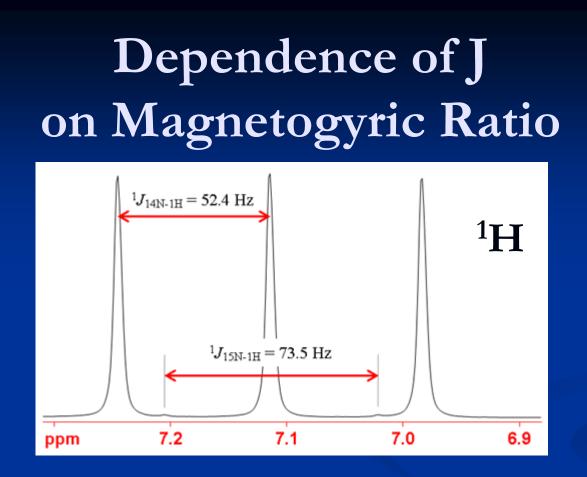


Fig. 2 Structure of $\{[Hg_2(18\text{-}crown-6)(15\text{-}crown-5)(H_2O)]^{2+}$ (part of 3c). Thermal ellipsoids are shown at the 20% probability level.



¹H spectrum of natural abundance NH_4Cl (1.5 M) in 1M HCl/H₂O

- coupling to ${}^{14}N$ (I = 1) a triplet (1:1:1)
- coupling to ${}^{15}N$ a weak doublet

The ¹⁴N coupling constant is smaller than that of ¹⁵N WHY??

Dependence on Magnetogyric Ratio

For the same elements, different nuclides

 $J_{AB} \sim \gamma_{\rm A} \gamma_{\rm B} s_{\rm A}^2(0) s_{\rm B}^2(0) (\Delta E)^{-1} \alpha_{\rm AB}^2$

 BH_4^-

 $\gamma^{(11B-H)} = 80 \text{ Hz}$ $\gamma^{(11B)} = 8.57 \text{ 10}^7 \text{ rad } \text{T}^{-1} \text{s}^{-1}$

 $^{1}J(^{10}B - H) = 28 \text{ Hz}$ $\gamma(^{10}B) = 2.87 \text{ 10}^{7} \text{ rad } \text{T}^{-1}\text{s}^{-1}$

Dependence on Magnetogyric Ratio

 $J(A-B) \sim \gamma_A \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

$$J(A-B) = \gamma_A \gamma_B F$$
$$J(A-B^*) = \gamma_A \gamma_{B^*} F$$

$$\frac{J(A-B)}{J(A-B^*)} = \frac{\gamma_B}{\gamma_{B^*}}$$

The nuclide with larger γ has larger coupling constant

Dependence on Magnetogyric Ratio $J_{AB} \sim \gamma_A \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

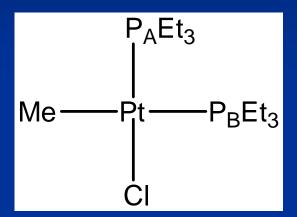
compound	γ (X) 10 ⁷ rad T ⁻¹ s ⁻¹	$^{1}J(^{117}Sn - X)$ Hz	$^{1}J(^{119}Sn - X)$ Hz
$^{n}Bu_{3}Sn - H$	26.7510	1505	1575
$^{n}Bu_{3}Sn - D$	4.1064	231	242
$^{n}Bu_{3}Sn - T$	28.5335	1610	1685

Effects of Electronegative Substituents

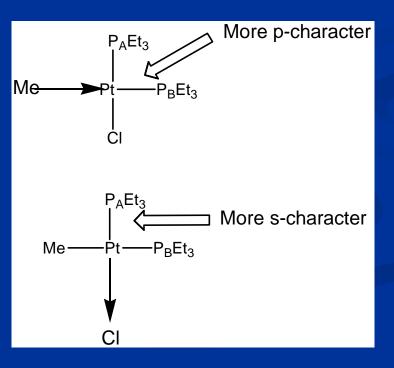
 $J_{AB} \sim \gamma_{\rm A} \gamma_{\rm B} s_{\rm A}^{2}(0) s_{\rm B}^{2}(0) (\Delta E)^{-1} \alpha_{\rm AB}^{2}$

- 1. Changes in hybridization: Bent's rule, more electronegative substituents prefer orbitals with more p-character. Remaining orbitals have more s-character α_{AB}^2 , hence the J increases
- 2. Removal of electron density increases effective nuclear charge, contraction of e-cloud, s-density increases $s_A^2(0)$, hence the J increases

Effects of Electronegativity $J_{AB} \sim \gamma_A \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

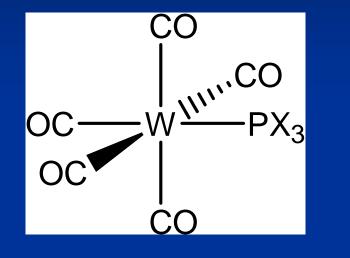


 ${}^{1}J({}^{195}Pt - P_A) = 4179 Hz$ ${}^{1}J({}^{195}Pt - P_B) = 1719 Hz$



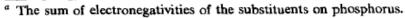
Effects of Electronegativity

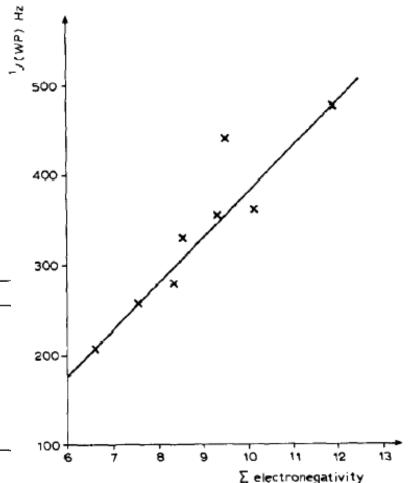
J increases with increasing sum of substituent electronegativity



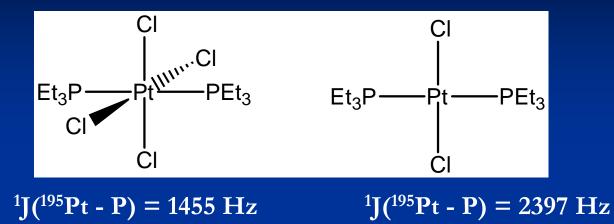
¹J(WP) (in Hz) data for some complexes of the type $[W(CO)_5(PX_nH_{3-n})]$

Compound	¹ J(WP)	$\sum x^{a}$	
[W(CO) ₅ (PH ₃)]	215.8	6.6	
[W(CO) ₅ (PH ₂ Cl)]	267.0	7.6	
$[W(CO)_{5}(PH_{2}F)]$	284.4	8.4	
[W(CO) ₅ (PHCl ₂)]	336.9	8.6	
[W(CO) ₅ (PHFCl)]	361.0	9.4	
$[W(CO)_5(PCl_3)]$	213.0	9.6	
[W(CO) ₅ (PHF ₂)]	376.0	10.2	
[W(CO) ₅ (PF ₃)]	485.0	12.0	





Effects of Coordination Number



Increasing coordination number results in decreasing J



 ${}^{1}J({}^{195}Pt - P) = 3740 \text{ Hz}$ ${}^{1}J({}^{195}Pt - P) = 2342 \text{ Hz}$

54

Effects of Coordination Number

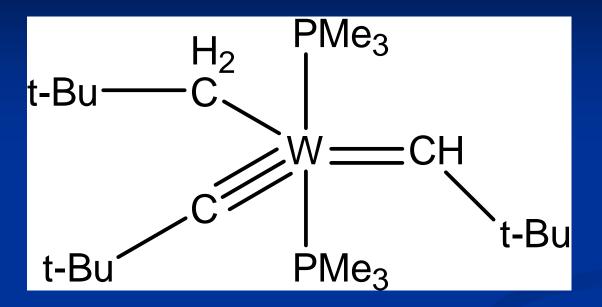
$[Cp_2WH_2] \qquad [Cp_2WH_3]^+$ ¹J(¹⁸³W - H) = 73.2 Hz 47.8 Hz

Increasing coordination number results in decreasing J

$${}^{1}J(P-X) = A \frac{\% s(P)\% s(X)}{1 - s^{2}(P-X)} + B$$

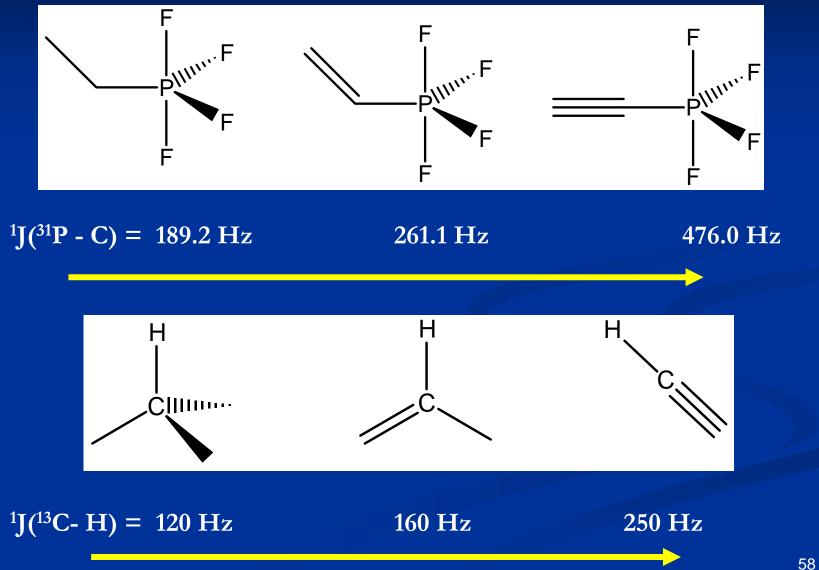
 s^2 (P-X) = overlap integral in the P-X bond

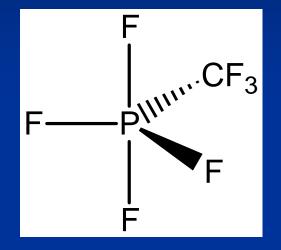
¹J(P - X) decreases with increasing coordination number and oxidation state

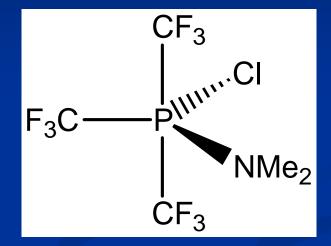


W oxidation state Point group Coupling C-H, P-C

Group	hybridization	$^{1}J(^{183}W - ^{13}C), Hz$
alkyl	sp ³	80
alkylidene	sp ²	120
alkylidyne	sp	210





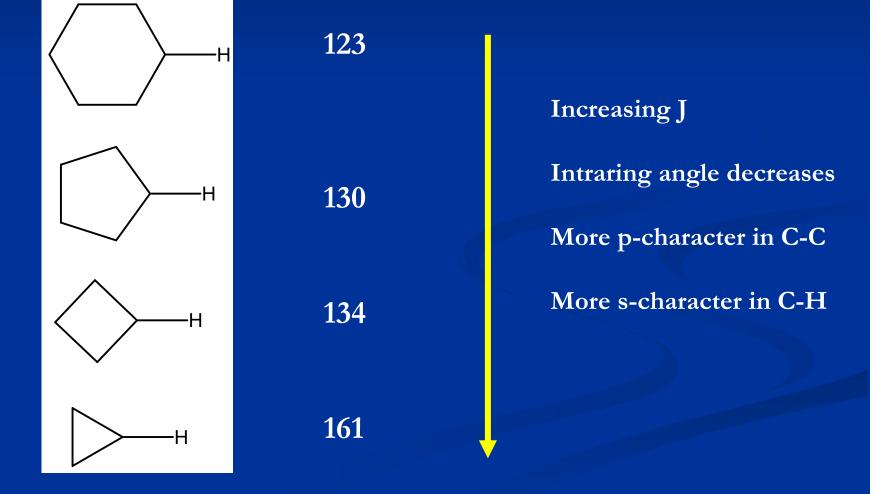


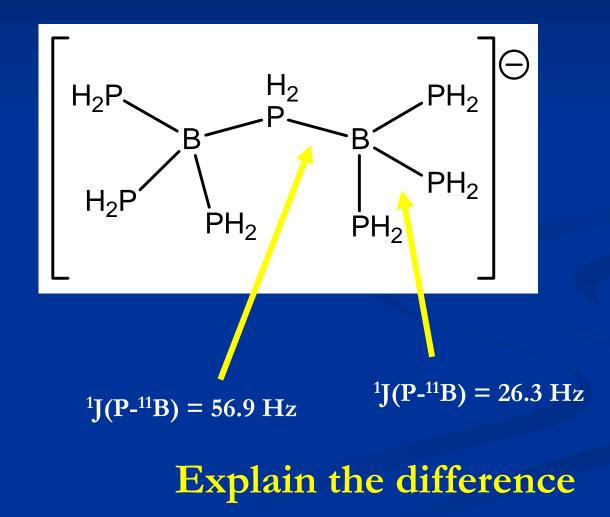
$${}^{1}J(P-F_{axial}) = 777 \text{ Hz}$$

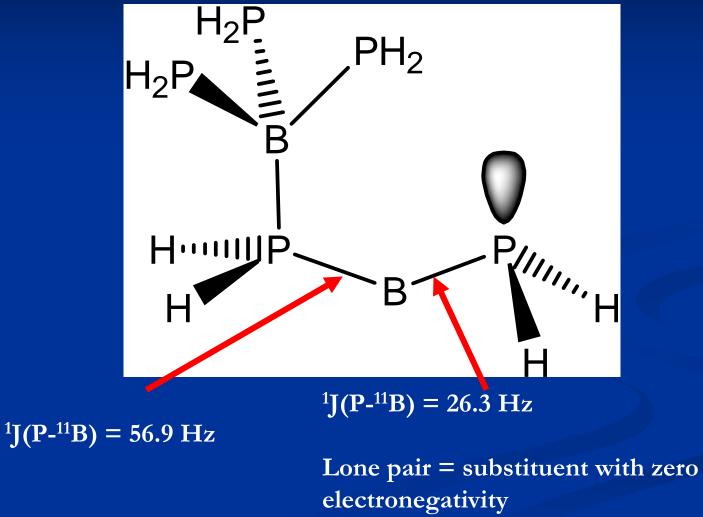
 ${}^{1}J(P-F_{equat}) = 966 \text{ Hz}$

 2 J(P-F_{axial}) = 53 Hz 2 J(P-F_{equat}) = 130 Hz

¹J (C-H), Hz



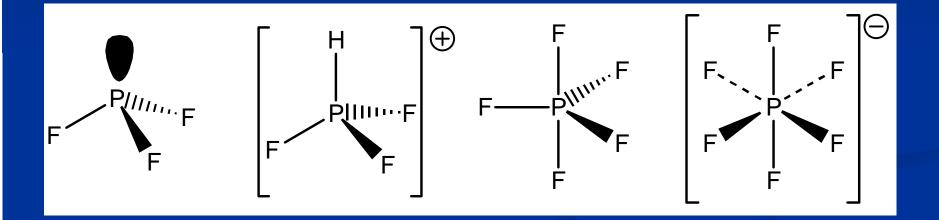




Resides in orbital with large s-character₆₂

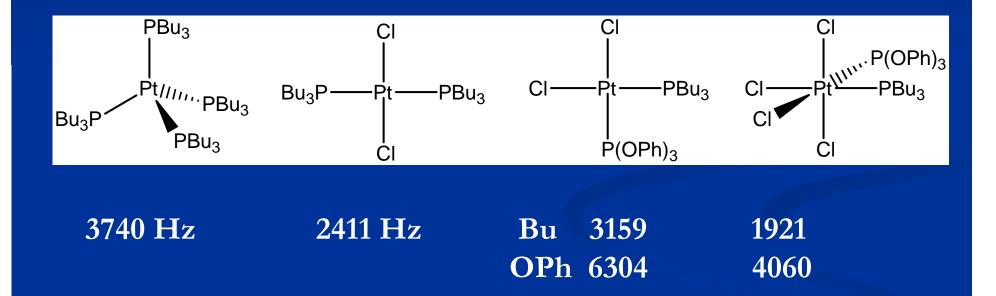
Effects of Coordination Number

 ${}^{1}J({}^{31}P - F)$ negative



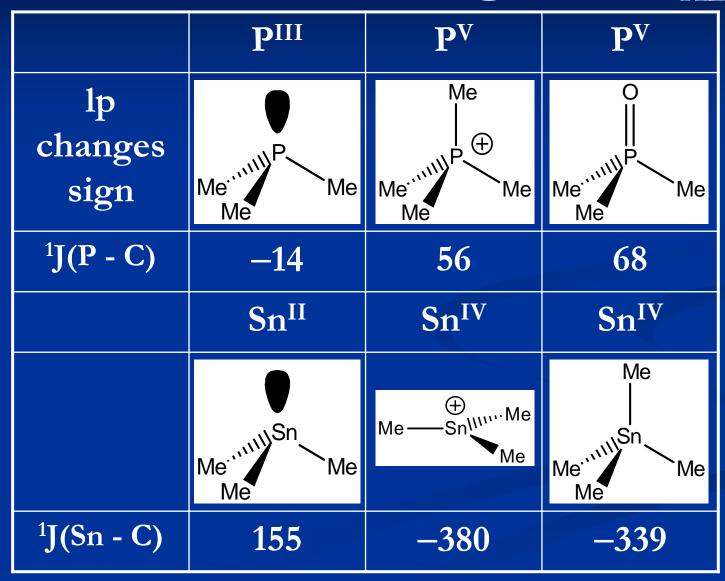
-1400 Hz -1109 Hz -1080 Hz -706 Hz Increasing coordination number results in decreasing J Dilution of s-character into more bonds

Effects of Oxidation State ¹J(¹⁹⁵Pt - ³¹P)



Increasing oxidation state results in decreasing J Decreasing electron density

Information from signs of K_{AB}



Angle Dependence

Two types of coupling are most affected by bond angles:

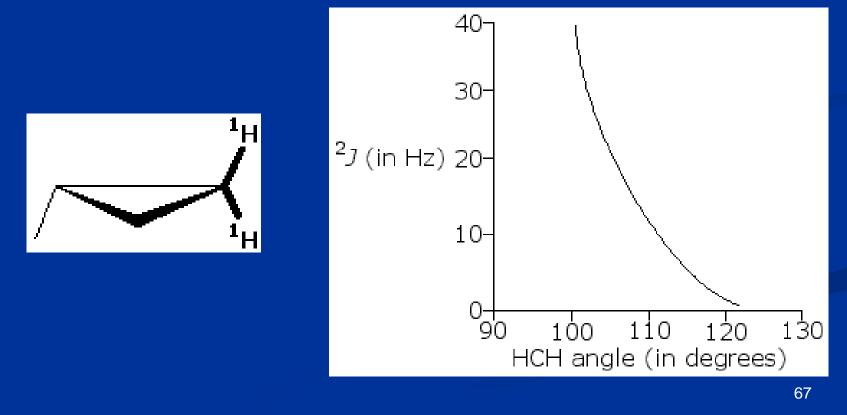
• geminal coupling (two-bond coupling or ²)

• vicinal coupling (three-bond coupling or 3)

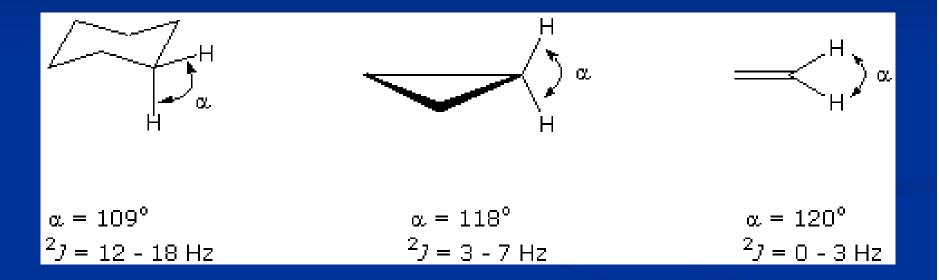
Geminal Coupling

Geminal coupling or ${}^{2}J$ coupling is dependent upon the bond angle between the nuclei.

The smaller the angle the bigger the coupling constant.

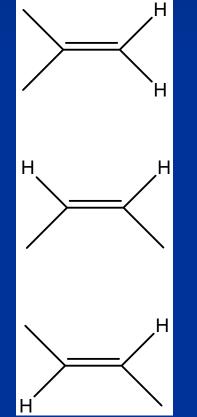


Geminal Coupling ${}^{2}J({}^{1}H - {}^{1}H)$



The smaller the angle the bigger the coupling constant.

Trans/Cis Coupling ⁿJ(¹H – ¹H), Hz

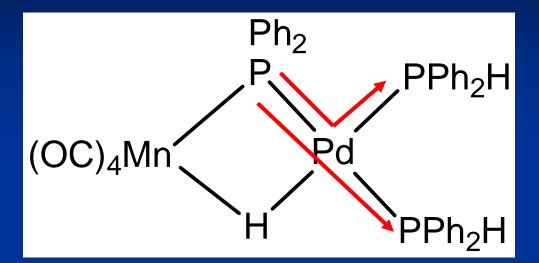


gem 0-3

vic cis 6-12

vic trans 12 - 18

Trans/Cis Coupling



²J (³¹P μ – Pd – ³¹P)

cis 0 Hz trans 213 Hz

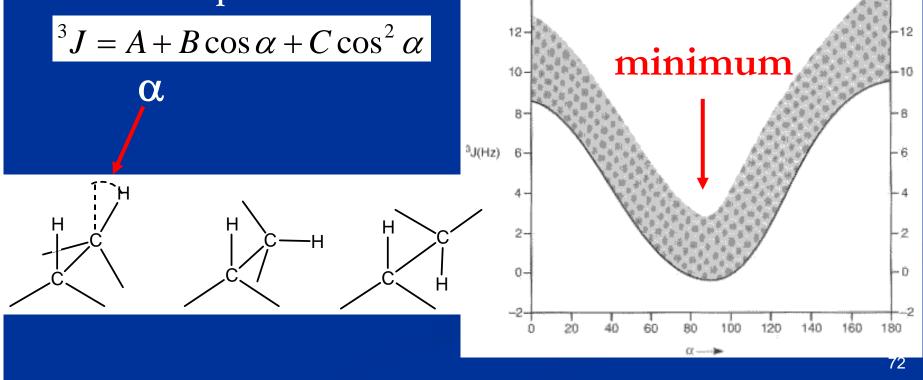
Trans/Cis Coupling

²J (³¹P – M – ³¹P) cis < trans

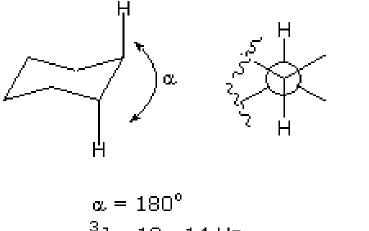
Complex	Coord.	² J _{PP} cis, Hz	² J _{PP} trans, Hz
$PdCl_2(PMe_3)_2$	SP1	-8	610
PtBr ₂ (PMe ₃) ₂	SP1	-16	514
$Cr(CO)_4(PF_3)_2$	Oh	-36	-28
$Mo(CO)_4(PF_3)_2$	Oh	55	312
$Mo(CO)_4[P(NMe_2)_3]_2$	Oh	12	101
$W(CO)_4(PF_3)_2$	Oh	38	315
mer-RhCl ₃ (PMe ₃) ₃	Oh	-29	567

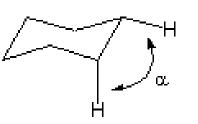
Vicinal Coupling

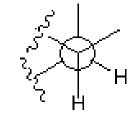
- Vicinal coupling or ${}^{3}J$ coupling is dependent upon the dihedral angle between the nuclei.
- The more eclipsed or antiperiplanar the nuclei the greater the coupling constant.
- The relationship between dihedral angle and coupling constant is known as the Karplus curve.



Vicinal Coupling







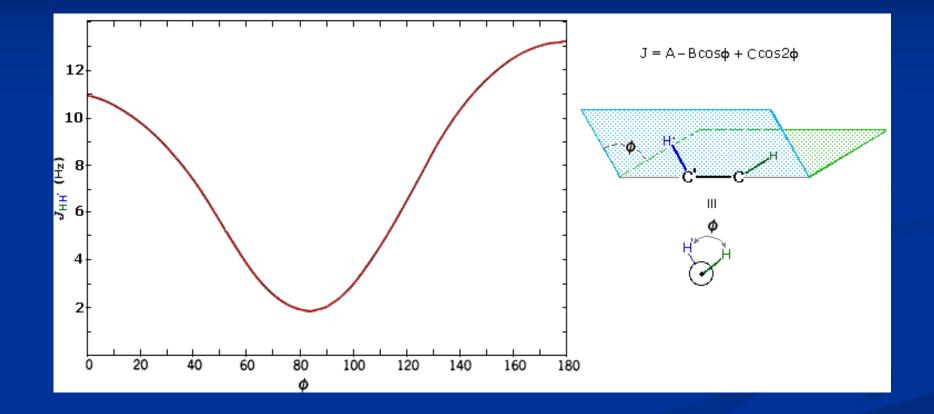
³J = 10 - 14 Hz

α = 60° ³7 = 4 - 5 Hz

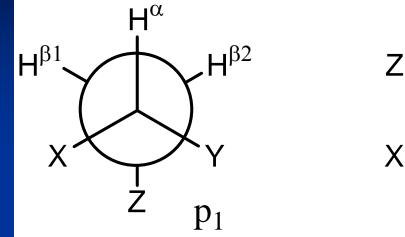
the Karplus equation

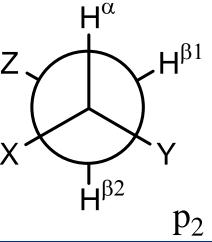
$$^{3}J = A + B\cos\alpha + C\cos^{2}\alpha$$

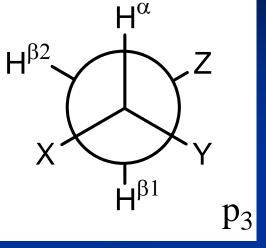
The Karplus Equation



Population Analysis







experiment

$$\langle J_{\alpha\beta1} \rangle = J_g p_1 + J_g p_2 + J_t p_3$$

$$\langle J_{\alpha\beta2} \rangle = J_g p_1 + J_t p_2 + J_g p_3$$

$$p_1 + p_2 + p_3 = 1$$

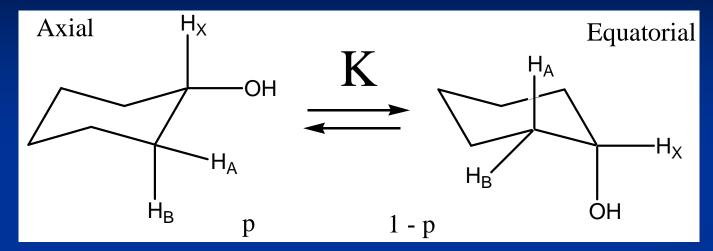
$$J_g (60^\circ)$$

3 inequivalent protons 2 time-averaged vicinal J (1 geminal J)

 $p_i = population of rotamers$

g = gauche, t = trans from independent measurements

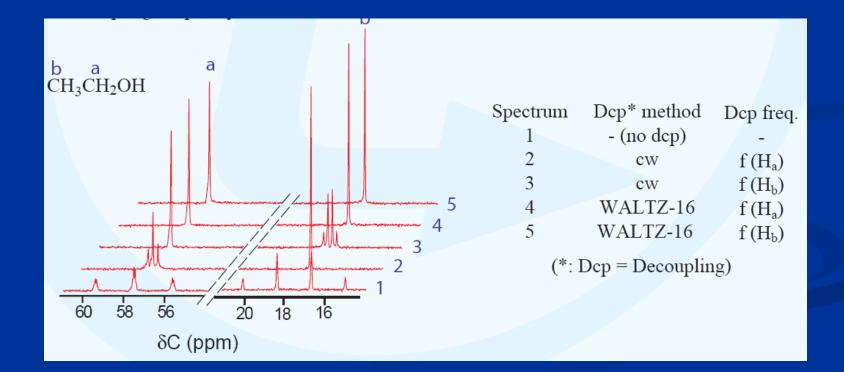
Population Analysis



$$\langle J_{AX} \rangle = p J_{AX}^{Axial} + (1-p) J_{AX}^{Equ}$$
$$\langle J_{BX} \rangle = p J_{BX}^{Axial} + (1-p) J_{BX}^{Equ}$$
$$K = \frac{p}{1-p} = \exp(\frac{-\Delta G^0}{RT})$$

Decoupling

Heteronuclear broadband decoupling Selective homonuclear decoupling



¹⁵N–¹⁵N Coupling Across an NHN Hydrogen Bond

 NO_2

[¹⁵N₂] 2 ⁻

C)

1Η

21.0

1J(N1.H1) = -24.7 Hz

ΘN

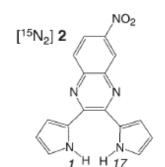
20.8

٢Η

¹J(N17,H1) = -55.2 Hz

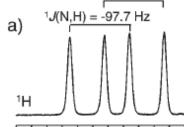
20.6

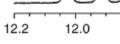
N17

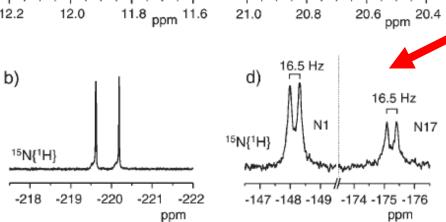


¹J(N,H) = -97.6 Hz

11.8 ppm 11.6



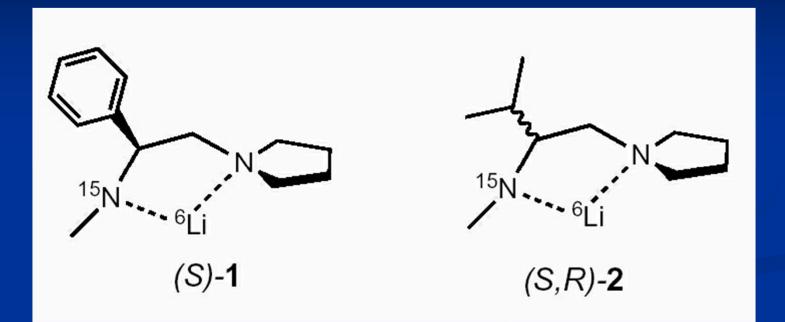




 $\overline{CD_2Cl_2/[d_6]DMSO(5:1)}$ a) 233 K b) 233 K c) 193 K d) 193 K

 $^{2}J(^{15}N-^{15}N) = 16.5 \text{ Hz}$

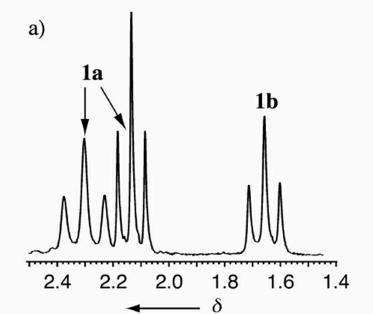
⁶Li-¹⁵N Coupling

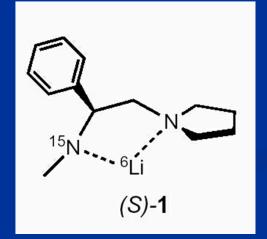


⁶Li I = 1 NA = 7.42 % ¹⁵N I = 1/2 NA = 0.37 %

⁶Li-¹⁵N Coupling

⁶Li NMR: •two triplets 1:1 δ = 2.15 ppm (J_{LiN} = 3.7 Hz) δ = 2.32 ppm (J_{LiN} = 6.1 Hz) •triplet δ = 1.63 ppm (J_{LiN} = 4.5 Hz)





⁶Li-¹⁵N Coupling

⁶Li NMR:

•two triplets 1:1 δ = 2.15 ppm (J_{LiN}= 3.7 Hz) a δ = 2.32 ppm (J_{LiN}= 6.1 Hz)

•triplet δ = 1.63 ppm (J_{LiN}= 4.5 Hz)

