
X-rays

Wilhelm K. Roentgen 
(1845-1923) 

NP in Physics 1901
(The first Nobel Price in Physics)

•X-ray Radiography - absorption is 
a function of Z and density

•X-ray Crystallography

•X-ray Spectrometry

Discovered on
November 8, 1895
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X-rays

Between 0.1 and 10 Å (1 Å = 0.1 nm)

nonionizing ionizing
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X-ray sources: Synchrotron Radiation
Brightest X-ray sources
Far more intense (>106) than X-ray tubes
Tunable energy
High collimation
Pulsed operation - rapid pulses – time-
resolved experiments

Bremsstrahlung (“braking radiation”)
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X-ray Tubes

Cu K E = 8.05 keV  = 1.541 Å

X-ray wavelength is comparable to atomic distances 4



X-ray Tubes
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X-ray Tubes Tungsten wire 
1200 - 1800 C
Filament current: 2 - 3 A

High Voltage 20 - 60 kV 
Electronic current: 30 - 40 mA

Power    0.6 - 3 kW 
(1% converted to X-ray, 
99% to heat)

Typical operating values

Cu: 40 kV, 35 mA

Mo: 45 kV, 35 mA
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Interaction of Electrons with Matter

Emission of electromagnetic radiation:
• Characteristic radiation, discrete energies
• Bremsstrahlung, continuous energy distribution
• Luminiscence (UV or visible region)

Electron emission:
• Backscattered electrons (BSE)
• Auger electrons
• Secondary electron emission (SE)

Effects in the Target:
• Electron Absorption (ABS)
• Heat 7



Interaction of Electrons with Matter

Binding Energy = energy 
needed to remove an electron 
from its energy level
BE increases (absolute value) 
for energy levels closer to the 
nucleus and in atoms with 
higher Z 
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Spectrum of an X-ray Tube

Characteristic radiation

Bremstrahlung (white radiation)

Emax= E0 = e × V0

E = (h × c) / 
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Spectrum of an X-ray Tube
Bremstrahlung 
(white radiation - continuous)
Electrons hit target surface, 
loose energy, stop
no change of target electron 
configuration
Removed by filtering
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Spectrum of an X-ray Tube
• Characteristic radiation
• Electrons interact with target electron

configuration
• Quantized energy
• Fingerprint of target metal
• K radiation has more energy than 

K radiation
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Characteristic X-ray Radiation

Primary (incident) 
electron

X-ray (fluorescence)
photon  K
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Wavelengths of Characteristic X-Radiation

Copper
Anodes

Bearden
(1967)

Holzer et al.
(1997)

Cobalt
Anodes

Bearden
(1967)

Holzer et al.
(1997)

Cu K1 1.54056Å 1.540598 Å Co K1 1.788965Å 1.789010 Å

Cu K2 1.54439Å 1.544426 Å Co K2 1.792850Å 1.792900 Å

Cu K 1.39220Å 1.392250 Å Co K 1.62079Å 1.620830 Å

Molybdenum
Anodes

Chromium
Anodes

Mo K1 0.709300Å 0.709319 Å Cr K1 2.28970Å 2.289760 Å

Mo K2 0.713590Å 0.713609 Å Cr K2 2.293606Å 2.293663 Å

Mo K 0.632288Å 0.632305 Å Cr K 2.08487Å 2.084920 Å

• Often quoted values from Cullity (1956) and Bearden, Rev. Mod. Phys. 39
(1967) are incorrect. 
– Values from Bearden (1967) are reprinted in International Tables for X-Ray 

Crystallography and most XRD textbooks.
• Most recent values are from Hölzer et al. Phys. Rev. A 56 (1997)
• Has your XRD analysis software been updated?
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• n = 1, 2, 3…. principal quantum numbers, 
correspond to K, L, M... shells

• l = 0, 1, ..., n  1 …orbital quantum numbers: s, p, d, f,...

• j =| l ± s|; s = 1/2   spin-orbit coupling

• mj = j, j  1, j  2, ...,  j

Transition only, when :

n  1,         l = ± 1,            j = 0 or ±1

Selection Rules
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Selection Rules

M = 2J + 1

n  1,         l = ± 1,            j = 0 or ±1

K1

K2

K1

2s  1s ?
15



Characteristic X-ray Radiation
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Copper (Z = 29) X-ray Lines

L series

K series 17



Allowed Transitions
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n  1,  l = ± 1,  j = 0 or ±1



Characteristic Wavelengths as a Function of Z

Element  (Z) K2 K1 K K abs. edge

Cu  (29) 1.54433 1.54051 1.39217 1.380
1.38102

Mo (42) 0.713543 0.70926 0.62099 0.61977

Ag  (47) 0.563775 0.559363 0.49701 0.4858
0.48701

W  (74) 0.213813 0.208992 0.17950 0.17837
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Mosley’s Law 
(for multiple electron atoms)

• Z = atomic number
•  = shielding constant
• n = quantum number

Decreasing wavelength  with increasing Z
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Interaction of X-rays with Matter

X-ray interaction modality with matter depends on:
• the X-ray energy, E, of the incident beam
• the atomic number Z of the sample

Low energy X-ray (~10 keV) used in XRD interacts with matter by:

• Absorption: X-rays transfer energy to the sample (electronic transitions)
Photoelectric Effect (low E and high Z)

• Scattering: X-ray is deflected in all direction from is original path with or 
without energy loss

Rayleigh - Coherent Scattering (very low E)

Compton - Incoherent Scattering (middle E and low Z)
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Scattering
Scattering is the process in which waves or particles are forced to 
deviate from a straight trajectory because of scattering centers in the 
propagation medium.

X-rays scatter by interaction with the electron density of a material.
Neutrons are scattered by nuclei and by any magnetic moments.
Electrons are scattered by electric/magnetic fields.

Momentum transfer: 
p’ - p = (h/2)q
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Elastic
Rayleigh (λ >> dobject)
Mie (λ ≈ dobject)
Geometric (λ << dobject)
Thompson (X-rays)
Inelastic
Compton (photons + electrons)
Brillouin (photons + quasiparticles)
Raman (photons + molecular vib./rot.)



Interaction of X-rays with Matter
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Rayleigh Scattering
Elastic scattering = charged particles (electrons) scatter
electromagnetic radiation (x-rays), incident X-ray does not lose 
energy. The varying electric field of the X-ray induces oscillations
of the electron which then acts as a source of electromagnetic
radiation, an X-ray with the same energy is re-emitted, the x-rays 
are scattered in all directions.
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Scattering by an Atom
An atom = a collection of electrons 
The electrons around an atom scatter X-ray radiation
Due to the coherence of the radiation - interference effects from 
different electrons within an atom. 

This leads to a strong anglular dependence of the scattering

The scattering power of an atom is expressed by its form 
factor (f)
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Scattering by an Atom
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The Effect of Form Factors on
Diffraction Patterns

The peak intensities drop off 
at high angles in an X-ray
diffraction pattern because 
the form factor decreases
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Absorption
X-ray intensity decreases exponentially on 
passing through matter (Beer’s Law)

( ) = −

I0 = initial X-ray intensity [m-1s-1]
 = X-ray absorption coefficient [m-1]
x = penetration depth [m]

 decreases with increasing X-ray E 
for a selected absorber Z:

  E3

 increases with increasing Z for a 
selected X-ray E:

  Z3 28



Photoelectric effect
X-ray is absorbed by material and a photoelectron is ejected. A core-hole is 
left in the atom. 

When X-ray energy is equal to the binding energy of an energetic level of the 
abosorber atom,  increases suddenly (absorption edge).
K (n=1) L (n=2)….
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Monochromatisation of X-rays
• Filters - a foil of the next lightest element
Ni filter for Cu K
Zr filter for Mo K

• Crystal Monochromators
diffraction from a curved crystal (or multilayer) to select
X-rays of a specific wavelength
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Characteristic Wavelengths
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Kβ filtering 
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X-ray Absorption

At the absorption edge, the incident X-ray quantum is 
energetic enough to knock an electron out of the orbital = 
Photoelectric effect

Absorption edge

 = absorption coefficient
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Action of the Ni filter
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Fluorescence

Cathode Fluorescing elements

Mo Y, Sr, Rb

Cu Co, Fe, Mn

Co Mn, Cr, V

Fe Cr, V, Ti

Cr Ti, Sc, Ca
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Diffraction

38

Diffraction = apparent bending of waves around small objects and the
spreading out of waves past small apertures.

Diffraction = the scattering of a coherent wave by the atoms in a
crystal. A diffraction pattern results from interference of the scattered 
waves.

Refraction = the change in the direction of a wave due to a change in 
its speed.



Diffraction 

REQUIREMENTS for DIFFRACTION
• Waves
• Sample with periodic structure
• Sample size  Wavelenght
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Diffraction

Diffraction occurs when X-Rays are scattered (Rayleigh) by a 
periodic array of atoms with long-range order, producing constructive 
interference at specific angles
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Interference

CONSTRUCTIVE INTERFERENCE 
Summing 2 waves in phase (shifted by a 
integer multiple of ) the resulting wave 
has double intensity 

DESTRUCTIVE INTERFERENCE 
Summing 2 waves out of phase (shifted 
by a integer multiple of /2) the resulting 
wave has zero intensity
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Crystal

43

Crystal = parallel planes of atoms separated by 
distance d

Assume specular reflection of X-rays from any 
given plane

Peaks in the intensity of scattered radiation will 
occur when rays from successive planes 
interfere constructively



Bragg’s Law

Diffraction is pictured as a reflection of incident X-Ray beam from 
atomic lattice planes = a simplicistic model that allows to calculate 
the distance between atomic planes
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William Bragg (1912)

n. = 2 d sin 

X-ray Powder Diffraction
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Diffraction Order

46

By convention, set the diffraction order = 1 for XRD
when n = 2, just halve the d-spacing to make n = 1
e.g. the 2nd order reflection of d100 occurs at same θ as 1st order reflection of d200



X-ray Powder Diffraction
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X-ray Powder Diffraction
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Single crystals

polycrystalline
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Different Geometries of Powder Diffractometers

• Debye-Scherrer

• Bragg-Brentano 

• Guinier
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Debye-Scherrer
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Debye-Scherrer
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Bragg-Brentano
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Bragg-Brentano
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X-ray Powder Diffraction
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X-ray Powder Diffraction
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X-ray Powder Diffraction
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X-ray Powder Diffraction
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X-ray Powder Diffraction
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increasing θ, decreasing d
Minimum d:   dmin =  / 2,      max = 90



Results
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X-Ray Optics
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X-Ray Optics
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X-Ray Optics
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X-Ray Optics

66



Sample Holders

Capillary

Transmission

Reflection

67



Sample Holders
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Detection of X-rays

• Film (in the linear range, Guinier, Debye-Scherrer, precession 
cameras)
• Gas Proportional Counter
• Si(Li) solid state detector (powder diffractometers)
• Scintillation counter (photocathode, dynodes, 4-circle diffractometer,
Stoe powder diffractometer)
• Position Sensitive Detectors (1D or 2D)
• Image Plate Detectors (2D detection)
• CCD Detectors (Bruker SMART system)

Detectors
•convert energies of individual photons to electric current
•convert current into voltage pulses that are counted 
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Point Detectors
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Scintillation counters



Point Detectors
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Gas proportional counters



Area Detectors
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Charge-coupled devices



Image Plate Detectors
• Metal plate, 18 cm diameter, coated with Eu2+doped 
BaFBr
• X-rays ionize Eu2+ to Eu3+ and the electrons are 
trapped in color centers
• Read out process with red laser leads to emission of 
blue light, when electrons return to ground state
• The blue light is amplified by a photomultiplier and
recorded as a pixel image
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Detector properties

•quantum-counting efficiency

•linearity

•energy proportionality

•resolution
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Resolution
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Linear Sensitive Position Detector
Single-photon-counting silicon microstrip

Detector active area made by many single 
point detectors (pixels)

Energy range 4 – 40 keV

76



Red = Step 0.1 °2 theta
Blue = Step 0.02 °2 theta
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Information Extracted from Diffraction 
Experiments

• Crystallinity

• Identification of known phases in databases (PDF)

• Determination of lattice constants

• Domain size - particle size

• Microstrain

• Quantitative analysis – Rietveld refinement

• Structure solution – Rietveld refinement

• In-situ measurements – temperature, pressure, atmosphere, kinetics78



Crystalline and Amorphous Phases
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Crystallinity Degree 
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Domain size - particle size

> 150 nm 20 nm 5 nm
(LaB6) (Fe3O4) (-Fe2O3)

> 3 nm
(-Fe2O3)

Coherent domain size
- Scherrer method
- Rietveld analysis
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Scherrer method

C = K  / (B cos )

B – FWHM

Particle Shape factor K

sphere 0.89

cube 0.83 - 0.91

tetrahedron 0.73 - 1.03

octahedron 0.82 - 0.930.000
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High-temperature XRD

83



Databases

• ICSD (Karlsruhe, inorganics, single crystal data) 

• CSD (Cambridge, organics, organometallics, sc data) 

• NRCC CRYSTMET (metals)

• PDB (proteins, Brookhaven)

• NIST (NBS)

• JCPDS = ICDD (PDF files, 60000 patterns)
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(110) (200) (211)

X-ray powder diffraction pattern of Fe
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Quantity

Quality
Line position is given by interplanar distance

d and wavelenght 

d =  / 2 sin 

More complicated, volume fraction
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Wavelength [nm]Anode K1 [100] K2 [50] K1

Beta
filter

Cr 0.228970 0.229361 0.208487 V
Fe 0.193604 0.193998 0.175661 Mn
Co 0.178897 0.179285 0.162079 Fe
Cu 0.154056 0.154439 0.139222 Ni
Mo 0.070930 0.071359 0.063229 Zr

d =  / 2 sin longer  ... better multiplet separation
... shorter  ... more lines

Bcc crystal, Cu radiation
a = 1.5 nm --> 2 = 11.8
a = 1.2 nm --> 2 = 14.8
a = 0.9 nm --> 2 = 19.7
a = 0.6 nm --> 2 = 29.8
a = 0.3 nm --> 2 = 61.8

Selecting radiation
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LINE HEIGHT
- integral intensity

- quantitative analysis
- texture

LINIE POSITION
- qualitative (phase) 

analysis
- lattice macrodistortions

LINIE WIDTH
- size of diffracting

domains
- lattice microdistortions

GAUSS I(x) = A exp (-x2/a2)
LORENTZ I(x) = A exp [1+(x2/a2)]-1

Mod. LORENTZ I(x) = A exp [1+(x2/a2)]-2

PEARSON VII I(x) = A exp [1+(x2/a2)]-n

Pseudo – VOIGT I(x) = A [cL(x) + (1-c)G(x)]
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???

(111)

(200) (220) (311) (222) (400)
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(111)

(222)
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Phase analysisPhase analysis ZrO2 + Y2O3
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Results

of phase

analysis

Results

of phase

analysis
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Which of these is not involved in the 
diffraction of X-rays through a crystal? 

a Electron transitions 

b Crystallographic planes 

c Nuclear interactions 

d Constructive interference 
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What is the largest wavelength of radiation that will 
be diffracted by a lattice plane of the interplanar 
spacing d? 

a 0.5d

b d

c 2d

d No limit 
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