

Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 (The first Nobel Price in Physics)

X-rays

Discovered on November 8, 1895

•X-ray Radiography - absorption is a function of Z and density

•X-ray Crystallography

•X-ray Spectrometry

X-rays

Between 0.1 and 10 Å (1 Å = 0.1 nm)

X-ray sources: Synchrotron Radiation

Brightest X-ray sources Far more intense (>10⁶) than X-ray tubes Tunable energy High collimation Pulsed operation - rapid pulses – timeresolved experiments

X-ray wavelength is comparable to atomic distances 4

X-ray Tubes

Interaction of Electrons with Matter

Emission of electromagnetic radiation:

- Characteristic radiation, discrete energies
- Bremsstrahlung, continuous energy distribution
- Luminiscence (UV or visible region)

Electron emission:

- Backscattered electrons (BSE)
- Auger electrons
- Secondary electron emission (SE)

Effects in the Target:

- Electron Absorption (ABS)
- Heat

Interaction of Electrons with Matter

Spectrum of an X-ray Tube

 K_{α} and K_{β} lines.

Spectrum of an X-ray Tube

Bremstrahlung (white radiation - continuous) Electrons hit target surface, loose energy, stop no change of target electron configuration Removed by filtering

Spectrum of an X-ray Tube

Characteristic X-ray Radiation

Wavelengths of Characteristic X-Radiation

Copper	Bearden	Holzer et al.	Cobalt	Bearden	Holzer et al.
Anodes	(1967)	(1997)	Anodes	(1967)	(1997)
Cu Kα1	1.54056Å	1.540598 Å	Co Κα1	1.788965Å	1.789010 Å
Cu Kα2	1.54439Å	1.544426 Å	Co Κα2	1.792850Å	1.792900 Å
Cu Kβ	1.39220Å	1.392250 Å	Co K β	1.62079Å	1.620830 Å
Molybdenum			Chromium		
Anodes			Anodes		
Μο Κα1	0.709300Å	0.709319 Å	Cr Kα1	2.28970Å	2.289760 Å
Μο Κα2	0.713590Å	0.713609 Å	Cr Kα2	2.293606Å	2.293663 Å
Μο Κβ	0.632288Å	0.632305 Å	Cr Kβ	2.08487Å	2.084920 Å

- Often quoted values from Cullity (1956) and Bearden, *Rev. Mod. Phys.* **39** (1967) are incorrect.
 - Values from Bearden (1967) are reprinted in *International Tables for X-Ray Crystallography* and most XRD textbooks.
- Most recent values are from Hölzer et al. *Phys. Rev. A* **56** (1997)
- Has your XRD analysis software been updated?

Selection Rules

- n = 1, 2, 3.... principal quantum numbers, correspond to K, L, M... shells
- 1 = 0, 1, ..., n 1 ...orbital quantum numbers: s, p, d, f,...
- $j = |1 \pm s|$; s = 1/2 spin-orbit coupling
- $m_j = j, j 1, j 2, ..., -j$

Transition only, when :

 $\Delta n \ge 1$, $\Delta l = \pm 1$, $\Delta j = 0 \text{ or } \pm 1$

$\Delta n \ge 1$, $\Delta l = \pm 1$, $\Delta j = 0 \text{ or } \pm 1$ Selection Rules

						M = 2J +
	X-ray notation	Quantum numbers			Maximum	
		n	l	j	m _j	population
	ĸ	1	0	12	$\pm \frac{1}{2}$	2
Κα	L_1	2	0	12	$\pm \frac{1}{2}$	2
		2	1	12	$\pm \frac{1}{2}$	2
	LIII	2	1	32	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
Ka	M,	3	0	1	± 1/2	2
1002	MI	3	1	Ĩ	$\pm \frac{1}{2}$	2
	- M _{III}	3	1	32	$\pm \frac{2}{2}, \pm \frac{1}{2}$	4
KB	MIV	3	2	- 32	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
rtp ₁	M_{\vee}	3	2	522	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
	N	4	0	ł	±1	2
	NII	4	1	Ĩ	$\pm \frac{1}{2}$	2
	NIII	4	1	32	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
	NIV	4	2	32	$\pm \frac{3}{2}, \pm \frac{1}{2}$	4
	Nv	4	2	52	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
$2s \rightarrow 1s$?	Nvi	4	3	22	$\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	6
	NVII	4	3	72	$\pm \frac{7}{2}, \pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$	8 15

Copper (Z = 29) X-ray Lines

Allowed Transitions

Characteristic Wavelengths as a Function of Z

Element (Z)	$K_{\alpha 2}$	$K_{\alpha 1}$	$\mathbf{K}_{\boldsymbol{\beta}}$	K abs. edge
Cu (29)	1.54433	1.54051	1.39217 1.38102	1.380
Mo (42)	0.713543	0.70926	0.62099	0.61977
Ag (47)	0.563775	0.559363	$0.49701 \\ 0.48701$	0.4858
W (74)	0.213813	0.208992	0.17950	0.17837

Mosley's Law (for multiple electron atoms)

Decreasing wavelength λ with increasing Z

Interaction of X-rays with Matter

X-ray interaction modality with matter depends on:

- the X-ray energy, E, of the incident beam
- the atomic number Z of the sample

Low energy X-ray (~10 keV) used in XRD interacts with matter by:

• Absorption: X-rays transfer energy to the sample (electronic transitions) Photoelectric Effect (low E and high Z)

• Scattering: X-ray is deflected in all direction from is original path with or without energy loss

Rayleigh - Coherent Scattering (very low E)

Compton - Incoherent Scattering (middle E and low Z)

Scattering

Scattering is the process in which waves or particles are forced to deviate from a straight trajectory because of *scattering centers* in the propagation medium.

X-rays scatter by interaction with the electron density of a material. Neutrons are scattered by nuclei and by any magnetic moments. Electrons are scattered by electric/magnetic fields.

Elastic

Rayleigh (
$$\lambda \gg d_{object}$$
)
Mie ($\lambda \approx d_{object}$)
Geometric ($\lambda \ll d_{object}$)
Thompson (X-rays)
Inelastic
Compton (photons + electron

Compton (photons + electrons) Brillouin (photons + quasiparticles) Raman (photons + molecular vib./rot.) Momentum transfer: $\mathbf{p'} - \mathbf{p} = (h/2\pi)\mathbf{q}$

Interaction of X-rays with Matter

Rayleigh Scattering

Elastic scattering = charged particles (electrons) scatter electromagnetic radiation (x-rays), incident X-ray does not lose energy. The varying electric field of the X-ray induces oscillations of the electron which then acts as a source of electromagnetic radiation, an X-ray with the **same energy** is re-emitted, the x-rays are scattered in all directions.

Scattering by an Atom

An atom = a collection of electrons The electrons around an atom scatter X-ray radiation Due to the coherence of the radiation - interference effects from different electrons within an atom.

This leads to a strong anglular dependence of the scattering

The scattering power of an atom is expressed by its **form factor (f)**

Scattering by an Atom

The Effect of Form Factors on Diffraction Patterns

The peak intensities drop off at high angles in an X-ray diffraction pattern because the form factor decreases

Absorption

X-ray intensity decreases exponentially on

Photoelectric effect

X-ray is absorbed by material and a photoelectron is ejected. A core-hole is left in the atom.

When X-ray energy is equal to the binding energy of an energetic level of the abosorber atom, μ increases suddenly (absorption edge). K (n=1) L (n=2)....

Monochromatisation of X-rays

 \bullet Filters - a foil of the next lightest element Ni filter for Cu K_{α} Zr filter for Mo K_{α}

• Crystal Monochromators diffraction from a curved crystal (or multilayer) to select X-rays of a specific wavelength

Characteristic Wavelengths

Kβ filtering

X-ray Absorption

At the absorption edge, the incident X-ray quantum is energetic enough to knock an electron out of the orbital = **Photoelectric effect**

Fluorescence

Cathode	Fluorescing elements
Мо	Y, Sr, Rb
Cu	Co, Fe, Mn
Со	Mn, Cr, V
Fe	Cr, V, Ti
Cr	Ti, Sc, Ca

Diffraction

Diffraction = apparent bending of waves around small objects and the spreading out of waves past small apertures.

Diffraction = the scattering of a coherent wave by the atoms in a crystal. A diffraction pattern results from interference of the scattered waves.

Refraction = the change in the direction of a wave due to a change in its speed.

Diffraction

 $\lambda \sim d$

d=1 μ m

39

REQUIREMENTS for DIFFRACTION

- Waves
- Sample with periodic structure
- Sample size ~ Wavelenght

Diffraction

Diffraction occurs when X-Rays are scattered (**Rayleigh**) by a periodic array of atoms with long-range order, producing constructive interference at specific angles

Interference

CONSTRUCTIVE INTERFERENCE

Summing 2 waves in phase (shifted by a integer multiple of λ) the resulting wave has double intensity

DESTRUCTIVE INTERFERENCE

Summing 2 waves **out of phase** (shifted by a integer **multiple of** $\lambda/2$) the resulting wave has **zero intensity**

No C' 7 ر جک July (2θ 2θ

42

Crystal

Crystal = parallel planes of atoms separated by distance d

Assume specular reflection of X-rays from any given plane

Peaks in the intensity of scattered radiation will occur when rays from successive planes interfere constructively

Bragg's Law

Diffraction is pictured as a reflection of incident X-Ray beam from atomic lattice planes = a simplicistic model that allows to calculate the distance between atomic planes

Diffraction Order

By convention, set the diffraction order = 1 for XRD when n = 2, just halve the d-spacing to make n = 1 e.g. the 2nd order reflection of d₁₀₀ occurs at same θ as 1st order reflection of d₂₀₀

$$2\lambda = 2d\sin\theta_2 \quad \Longrightarrow \quad \lambda = 2(d/2)\sin\theta_2$$

46

47

Laue method \rightarrow Single crystals Debye-Scherrer, diffractometers \rightarrow polycrystalline

Different Geometries of Powder Diffractometers

- Debye-Scherrer
- Bragg-Brentano
- Guinier

Debye-Scherrer

52

Bragg-Brentano

Minimum d: $d_{min} = \lambda / 2$, $\theta_{max} = 90^{\circ}$

61

Results

DIVERGENT BEAM OPTIC (A) conditions X-Ray beam from the **tube** and is composed by:

- Variable Divergent Slit A (controlls equatorial divergence α and X-ray beam projection L on the sample) variable from 0° to 4°
- Soller slit (reduces axial divergence β) fixed 2.3°

Divergence Slit A:

- L = Beam projection on the sample t = Depth illuminated •

Sample Holders

Capillary

Transmission

Reflection

Sample Holders

Detection of X-rays

Detectors

convert energies of individual photons to electric currentconvert current into voltage pulses that are counted

- Film (in the linear range, Guinier, Debye-Scherrer, precession cameras)
- Gas Proportional Counter
- Si(Li) solid state detector (powder diffractometers)
- Scintillation counter (photocathode, dynodes, 4-circle diffractometer, Stoe powder diffractometer)
- Position Sensitive Detectors (1D or 2D)
- Image Plate Detectors (2D detection)
- CCD Detectors (Bruker SMART system)

Point Detectors

Scintillation counters

Point Detectors

Gas proportional counters

Area Detectors

Image Plate Detectors

- Metal plate, 18 cm diameter, coated with Eu²⁺doped BaFBr
- X-rays ionize Eu²⁺ to Eu³⁺ and the electrons are trapped in color centers
- Read out process with red laser leads to emission of blue light, when electrons return to ground state
- The blue light is amplified by a photomultiplier and recorded as a pixel image

Detector properties

quantum-counting efficiency

•linearity

energy proportionality

resolution

Resolution

75

Linear Sensitive Position Detector

Single-photon-counting silicon microstrip

Detector active area made by many single point detectors (pixels)

Energy range 4 – 40 keV

Red = Step 0.1 °2 theta Blue = Step 0.02 °2 theta

Information Extracted from Diffraction Experiments

- Crystallinity
- Identification of known phases in databases (PDF)
- Determination of lattice constants
- Domain size particle size
- Microstrain
- Quantitative analysis Rietveld refinement
- Structure solution Rietveld refinement
- In-situ measurements temperature, pressure, atmosphere, kinetics

Crystalline and Amorphous Phases

Crystallinity Degree

Domain size - particle size

Coherent domain size - Scherrer method - Rietveld analysis

High-temperature XRD

Databases

- ICSD (Karlsruhe, inorganics, single crystal data)
- CSD (Cambridge, organics, organometallics, sc data)
- NRCC CRYSTMET (metals)
- PDB (proteins, Brookhaven)
- NIST (NBS)
- JCPDS = ICDD (PDF files, 60000 patterns)

X-ray powder diffraction pattern of Fe

Anode	Wavelength [nm]			Beta
	Κα 1 [100]	Κα ₂ [50]	Κβ1	filter
Cr	0.228970	0.229361	0.208487	V
Fe	0.193604	0.193998	0.175661	Mn
Со	0.178897	0.179285	0.162079	Fe
Cu	0.154056	0.154439	0.139222	Ni
Mo	0.070930	0.071359	0.063229	Zr

 $\mathbf{d} = \lambda / 2 \sin \Theta$... longer λ ... better multiplet separation

... shorter λ ... more lines

Selecting radiation

Bcc crystal, Cu radiation $a = 1.5 \text{ nm} --> 2\Theta = 11.8$ $a = 1.2 \text{ nm} --> 2\Theta = 14.8$ $a = 0.9 \text{ nm} --> 2\Theta = 19.7$ $a = 0.6 \text{ nm} --> 2\Theta = 29.8$ $a = 0.3 \text{ nm} --> 2\Theta = 61.8$

87

Comparison of Debye-Scherrer versus diffractometer Polycrystalline sample

Which of these is *not* involved in the diffraction of X-rays through a crystal?

- a Electron transitions
- b Crystallographic planes
- c Nuclear interactions
- d Constructive interference

What is the *largest* wavelength of radiation that will be diffracted by a lattice plane of the interplanar spacing *d*?

а	0.5 <i>d</i>	
b	d	
С	2 <i>d</i>	
d	No limit	