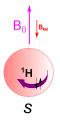
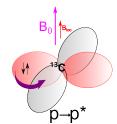
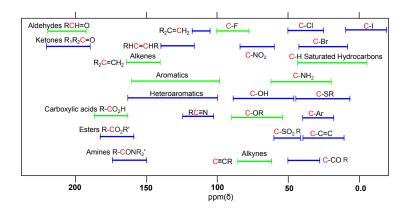

C8953 NMR structural analysis - seminar 1D 13C-NMR + APT

Ondřej Jurček, Martin Novák jurcekondrej@mail.muni.cz, 323460@mail.muni.cz

February 28, 2018


¹H vs ¹³C NMR


	¹ H	¹³ C	
Spin number	¹ H: S= ¹ / ₂ × ² H: S=1	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$	
Abundance [%]	99.98 1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7	
Chemical shift range [ppm]	0 - 15	0 - 200	
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\sf dia}$ + $\sigma_{\sf para}$	
Integration of signals	✓	×	
T_1 relaxation [s]	1-20	1-40	
Homonuclear J-interaction	✓	×	
H↔C <i>J</i> -interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling	


¹H vs ¹³C NMR

	¹ H	¹³ C
Spin number	¹ H: S= ¹ / ₂ × ² H: S=1	¹³ C: s=½ × ¹² C: s=0
Abundance [%]	99.98	1.1
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7
Chemical shift range [ppm]	0 - 15	0 - 200
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\sf dia}$ + $\sigma_{\sf para}$
Integration of signals	✓	×
T_1 relaxation [s]	1-20	1-40
Homonuclear J-interaction	✓	×
H↔C <i>J</i> -interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling

Important regions of ¹³C chemical shifts

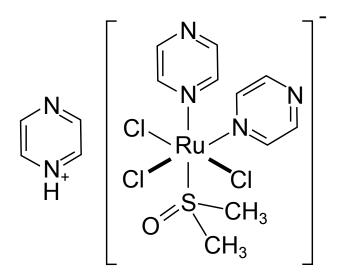
$^1J_{\text{CH}}$ depends on the bond order (hybridization \Leftrightarrow s-character)

- ightharpoonup -C-H $^1J_{\mathrm{CH}} pprox$ 125 Hz
- ightharpoonup =C-H $^1J_{\mathrm{CH}} \approx 160~Hz$
- ► \equiv C-H $^1J_{\rm CH}\approx 250~Hz$
- X-C-H
 - ► X = N, O, S, F, CI, ... ${}^{1}J_{CH}$ ↑
 - \rightarrow X = Li, Mg, ... $^{1}J_{CH} \Downarrow$

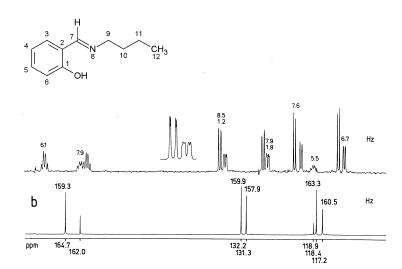
$^2J_{\rm CH} < 0$ or close to zero (<3 Hz)

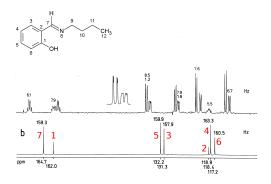
often not observable

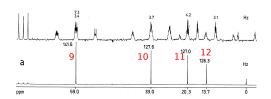
Values of chemical shift of important solvents


Abbr.	Formula	¹ H	¹³ C
ACN	CH₃CN	1.9	118
Benzene	C_6H_6	7.2	128
	CHCl ₃	7.2	77
DCM	CH_2CI_2	5.3	54
DMF	(CH ₃) ₂ NCHO	2.9, 8.0	32, 163
DMSO	$(CH_3)_2SO$	2.5	40
MeOH	CH₃OH	3.3, 4.8	49
Water	H_2O	4.8	-

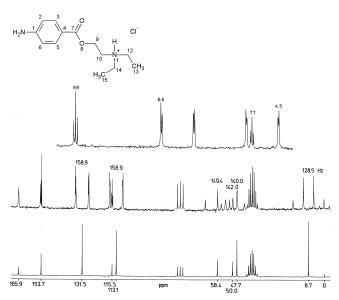
Effect of solvent on the position of residual ¹H water signal:

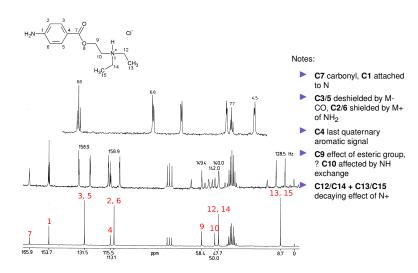

CHCl₃ - 1.6, ACN - 2.1, DMSO - 3.3, MeOH - 4.9

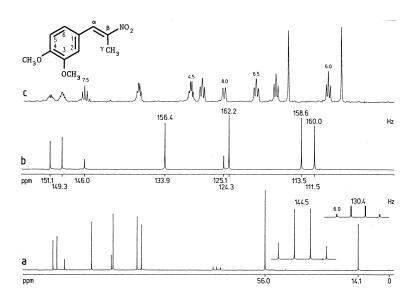


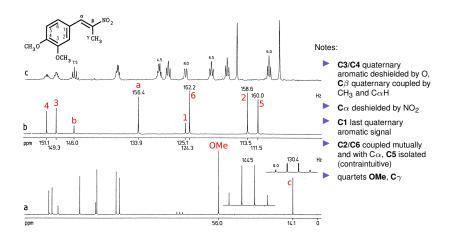

How many ¹³C signal would you expect in the NMR spectrum?

1D 13C-NMR 1



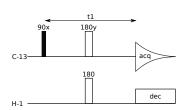


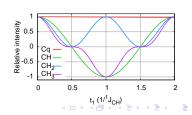



Notes:

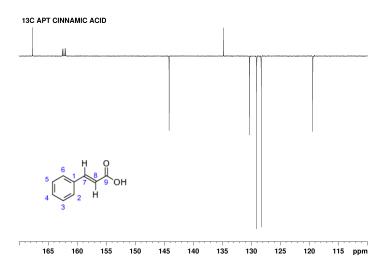
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close
- C9→C12: decaying effect of N8

APT - Attached Proton Test

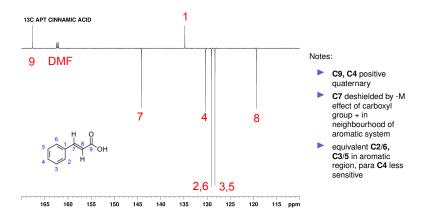

based on heteronuclear spin echo

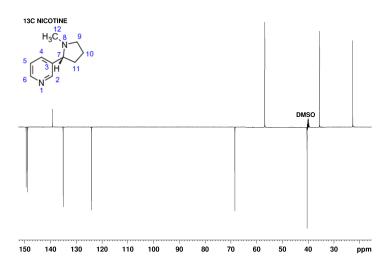

$$t_1 = 1/^1 J_{CH}$$

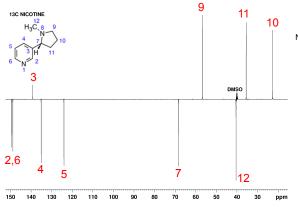
¹³C signals are differentiated according to the number of directly bound ¹H


- ▶ Cq, CH₂ positive
- ► CH, CH₃ negative

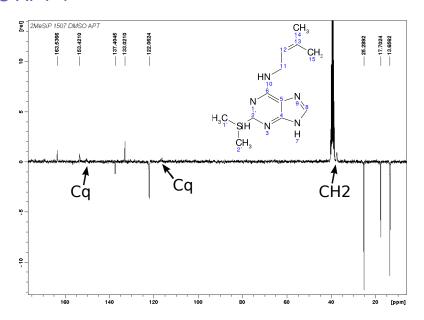
Evolution of signal governed by the value of $^1J_{CH} \implies$ reflected by the intensity of APT signal

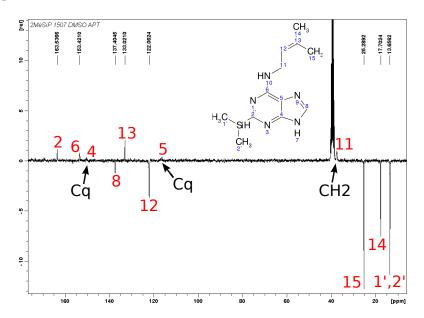



¹³C APT Cinnamic acid


¹³C APT Cinnamic acid

¹³C APT of Nicotine


¹³C APT of Nicotine


Notes:

- C2, C6 CH negative connected to N
- C3 quaternary, C4 more deshielded
- C7 tertiary carbon, in neighbourhood of aromatic system and N
- C9 secondary, close to N; C12 primary attached to N
- C11 connected to tertiary carbon

¹³C APT 4

¹³C APT 4

Next topic

Vector Model