C8953
 NMR structural analysis - seminar

Basic concepts \& Vector model

Jan Novotný
novotnyjan@mail.muni.cz

March 14, 2018

Assign correct value of chemical shift to labelled NMR active atoms ${ }^{1}$:

5.225 .46

4.644 .92

93142

 188197

${ }^{1}$ http://www.chem.wisc.edu/areas/reich/chem605/

Assign correct value of chemical shift to labelled NMR active atoms ${ }^{1}$:

5.225 .46
 4.644 .92

93
142

 188197

${ }^{1}$ http://www.chem.wisc.edu/areas/reich/chem605/

Diastereotopicity ${ }^{1}$

${ }^{1}$ http://www.chem.wisc.edu/areas/reich/chem605/

Diastereotopicity ${ }^{1}$

${ }^{1}$ http://www.chem.wisc.edu/areas/reich/chem605/

Determination of regioisomers

$300 \mathrm{MHz}^{1}{ }^{1} \mathrm{NMR}$ spectrain CDCl_{3}

Determination of regioisomers

$300 \mathrm{MHz}^{1}{ }^{1} \mathrm{NMR}$ spectra in CDCl_{3}

Draw the estimate of ${ }^{13} \mathrm{C}$ NMR spectrum (with and without ${ }^{1} \mathrm{H}$ decoupling) and APT experiment:

Draw the estimate of ${ }^{13} \mathrm{C}$ NMR spectrum (with and without ${ }^{1} \mathrm{H}$ decoupling) and APT experiment:

Analysis of simple pulse sequences using vector model

- simple model based on rotation of the vector of bulk magnetization in the plane perpendicular to the vector of magnetic field, direction is determined by the "right-hand rule"
- NMR signal is detectable only as coherent magnetization oscillating in $x y$ plane
- the free precession ω (due to the B_{0}) of magnetization vector is eliminated by introducing rotating frame $\omega_{0} \Rightarrow$ magnetic field of excitation pulses $\left(B_{1}\right)$ is motionless and the individual resonance frequencies differs in so called offset $\Omega_{i}=\omega_{i}-\omega_{0}$
- applicability of vector model is rather limited to simple single-quantum experiments without transfer of polarisation

T_{1} relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by a) $\tau=2 * T_{1}$ and b) $\tau=0.2 * T_{1}$. Draw semi-quantitatively resulting spectrum.

T_{1} relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by a) $\tau=2 * T_{1}$ and b) $\tau=0.2 * T_{1}$. Draw semi-quantitatively resulting spectrum.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence:

90(y) - τ - 90(y) - aq

Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau=0, \pi / 2, \pi$.
2. Draw lineshapes of resulting signal assuming the a) $y+b) x+$ corresponds to zero phase of receiver.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence:

90(y) - τ - 90(y) - aq

Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau=0, \pi / 2, \pi$.
2. Draw lineshapes of resulting signal assuming the a) $y+b) x+$ corresponds to zero phase of receiver.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. Ignore 180 pulse in hydrogen channel for isolated spin systems a) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and
b) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}_{2}$. Explain the role of CPD block.
2. Lets consider the complete sequence and isolated spin systems a) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and
b) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}_{2}$.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. Ignore $\mathbf{1 8 0}$ pulse in hydrogen channel for isolated spin systems a) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}_{2}$. Explain the role of CPD block.

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.
2. Lets consider the complete sequence and isolated spin systems a) ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}_{2}$.
$\mathrm{CH} . . . \mathrm{J}=\mathrm{J}_{\mathrm{HC}}$

$\mathrm{CH}_{2} \ldots \mathrm{~J}=2^{*} \mathrm{~J}_{\mathrm{HC}}$

$+\mathrm{M}_{\mathrm{x}}$

Next topic

2D NMR - homonuclear experiments

