

Central European Institute of Technology BRNO | CZECH REPUBLIC

S1007 Doing structural biology with the electron microscope

C9940 3-Dimensional Transmission electron microscopy

Lecture 4: Principles of image formation

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Task 1: What is the electron wavelength at acceleration voltage of 200kV?

Task 1: What is the electron wavelength at acceleration voltage of 200kV?

U=300KV 2 = 1.61.10-19 C $m = \frac{m_0}{1 - \frac{v_0^2}{2}} = \frac{1}{1 - \frac{v_0^2}{2}}$ me - 9.31 - 10-31 kg Ep= UR Ex= 1mm2 $\begin{aligned}
\Lambda = \frac{h}{\mu} = \frac{h}{\mu v} = \frac{h}{\sqrt{2m! U}} \\
U_{2} = \frac{1}{2m v^{2}} \\
\kappa = \sqrt{2U_{2}}
\end{aligned}$ 1)0 1+Ue

Task 2: How many electron are there in the microscope at one point? (U=300kV, I=1nA, column length: 2m)

Task 2: How many electron are there in the microscope at one point? (U=300kV, I=1nA, column length: 2m)

U = 300 kV I = 1 m f l = 2 m $l = 1.61 \cdot 10^{-19} \text{ C}$ C = 3.108 m

 $E_{p} = 0:e \qquad E_{k} = \frac{1}{2}mb^{2} \qquad l = \frac{ko}{1 - \frac{n^{2}}{c^{2}}} = \frac{ko}{1 - \frac{nc^{2}}{c^{2}}} = \frac{ko}{1 - \frac{2u}{mc^{2}}} = \frac{ko}{1 - \frac{2u}{mc^{2}}} = \frac{ko}{1 - \frac{2u}{mc^{2}}} = \frac{ko}{1 - \frac{2u}{mc^{2}}}$ $A_0 = \frac{l}{10} = \sqrt{\frac{l^2 m}{200}}$ A = Rm [1+ Ue]

I = The

 $m = \frac{T \cdot A}{N} = \frac{T}{e} \left| \frac{l^2 m}{2Ue} \right| 1 + \frac{Ue}{mc^2} = 61,2$

Task 3: What is the radiation damage (electron dose in e-/A2) of the specimen in SEM? (U=2kV, I=5pA, dwell time: 1us, spot size: 5nm)

Task 3: What is the radiation damage (electron dose in e-/A2) of the specimen in SEM? (U=2kV, I=5pA, dwell time: 1us, spot size: 5nm)

U=24V L= 1,61. 10-19 1= 1= 62 A A = Agus M= 5 mm $q = \overline{I} \cdot \lambda \implies q_e = \frac{I}{k}$ $S = \frac{\pi d^2}{4}$ $D(e/3^2) = \frac{Gre}{S}$ $=\frac{4IL}{TId^2e}=0,016$

Outline

Image analysis I

- Fourier transforms
 - Why do we care?
 - Theory
 - Examples in 1D
 - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution

Fourier transforms

Outline

Image analysis I

- Fourier transforms
 - Why do we care?
 - Theory
 - Examples in 1DExamples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function

A quiz

http://www.microscopy.ethz.ch

Relationship between imaging and diffraction

http://www.microscopy.ethz.ch

The only difference between microscopy and diffraction is that, in microscopy, you can (easily) focus the scattered radiation into an image.

Outline

Image analysis I

Fourier transforms

Relationship between imaging and diffraction

Theory

Examples in 1D

- Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function

Relevance of Fourier transforms to EM

Fourier transform ~ diffraction pattern see John Rodenburg's site, http://rodenburg.org

NOTE: $v=\alpha/\lambda$

Fourier series

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

- *f*: function which we are transforming (1D)
- *x*: axis coordinate
- *i*: √-1
- *k*: spatial frequency
- *F(k)*: Fourier coefficient at frequency k

Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

Euler's Formula: $e^{i\phi} = \cos \phi + i \sin \phi$

$$F(k) = \int_{-\infty}^{\infty} f(x) \cos(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x) \sin(-2\pi kx) dx$$
$$+ i \qquad b$$

Fourier transforms: Sines + cosines

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

$F(k) = a\cos(-2\pi kx) + ib\sin(-2\pi kx)$

(NOTE: This isn't the same a & b from the previous slide.)

Fourier transforms: Definition

Fourier coefficients, discrete functions

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Task 1: Calculate Fourier transform coefficients of following signal?8 5 3 7 0 -1 9 1

4.80194, -0.0982937

4.80194, -0.0982937

4.80194, -0.0982937

The higher the spatial frequencies (i.e., higher resolution) that are included, the more faithful the representation of the original function will be.

Some properties

- As n increases, so does the spatial frequency, *i.e.*, the "resolution."
 - For example, sin(2x) oscillates faster than sin(x)
- Computation of a Fourier transform is a completely reversible operation.
 - There is no loss of information.
- Fourier terms (or coefficients) have amplitude and phase.
- The diffraction pattern is the physical manifestation of the Fourier transform
 - Phase information is lost in a diffraction pattern.
 - An image contains both phase and amplitude information.

Some simple 1D transforms: a 1D lattice

Some simple 1D transforms: a box

http://cnx.org

Later, you will learn that multiplying a step function is bad, because of these ripples in Fourier space.

Fourier transforms: plot of a Gaussian

http://en.labs.wikimedia.org/wiki/Basic_Physics_of_Nuclear_Medicine/Fourier_Methods

Some simple 2D Fourier transforms: a row of points

Some simple 2D Fourier transforms: a sharp disc

Some simple 2D Fourier transforms: a 2D lattice

Some simple 2D Fourier transforms: a 2D lattice

Some simple 2D Fourier transforms: a helix

Outline

Image analysis I

Fourier transforms

Relationship between imaging and diffraction

Theory
Examples in 1D
Examples in 2D

Digitization

- Fourier filtration
- Contrast transfer function

Digitization in 2D

Digitization in 1D: Sampling

Digitization: Is our sampling good enough?

Digitization in 1D: Bad sampling

Discrete Fourier Transform

• 1D discrete Fourier transform of function f(x)

$$\Phi(\omega_x) = \sum_{x=0}^{N-1} f(x) e^{-i(\frac{2\pi}{N}\omega_x x)}$$

• 1D inverse discrete Fourier transform of function $\Phi(\omega_x)$

$$f(x) = \frac{1}{N} \sum_{\omega_x=0}^{N-1} \Phi(\omega_x) e^{i(\frac{2\pi}{N}\omega_x x)}$$

Discrete Fourier Transform

Task 2: Show that Discrete Fourier Transform is periodic?

What's the best resolution we can get from a given sampling rate?

A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect?

What's the best resolution we can get from a given sampling rate?

A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect? ANSWER: Alternating light and dark pixels.

- The period of this finest oscillation is 2 pixels.
- The spatial frequency of this oscillation is 0.5 px⁻¹.
- The finest detectable oscillation is what is known as "Nyquist frequency."
- The edge of the Fourier transform corresponds to Nyquist frequency.

Nyquist frequency

The period of this finest oscillation is 2 pixels. The spatial frequency of this oscillation is 0.5 px⁻¹. The finest detectable oscillation is what is known as "Nyquist frequency." The edge of the Fourier transform corresponds to Nyquist frequency.

What do we mean by pixel size?

Typical magnification: 50,000X Typical detector element: 15µm (pixel size on the camera scale)

Pixel size on the specimen scale: 15 x 10^{-6} m/px / 50000 = 3.0 x 10^{-10} m/px = **3.0 Å/px**

In other words, the best resolution we can achieve (or, the finest oscillation we can detect) at 3.0 Å/px is **6.0** Å.

Transmission Electron Microscope

It will be worse due to interpolation, so to be safe, a pixel should be 3X smaller than your target resolution. http://www.en.wikipedia.org

What happens if you're not oversampled enough?

https://www.youtube.com/watch?v=6LzaPARy3uA

What do we mean by spatial frequency?

<u>File Edit Analysis</u>

From Wikipedia

Fourier filtration

File Edit Analysis

<u>File</u> <u>Edit</u> <u>Analysis</u>

A "high-pass" filter

Contrast transfer function

Typical amplitude contrast is estimated a 0.08-0.12 (minus noise)

Instead of amplitude contrast, we'll use phase contrast.

Phase contrast in light microscopy

Bright-field image

Phase-contrast image

http://www.microbehunter.com

In EM, even with defocus, the contrast is poor.

E. coli 70S ribosomes, field width ~1440Å.

Signal-to-noise ratio for cryoEM typically given to be between 0.07 and 0.10.

Optical path

At focus, all we would see is amplitude contrast.

Optical path with defocus

What is the path difference between the scattered and unscattered beams?

Path difference as a function of Δf

Some typical values

A more precise formulation of the CTF can be found in Erickson & Klug A (1970). Philosophical Transactions of the Royal Society B. 261:105.

QUICK QUIZ:

What other example did we discuss where rays scattered at different angles experienced different path lengths?

EITEC

Lens with Spherical Aberration

Proper form the CTF

 $-\sin\left(\frac{\pi}{2}C_{s}k^{4}+\pi\Delta f\lambda k^{2}\right)$

where:

- C_s: spherical aberration
- k: spatial frequency (resolution)

How does the CTF affect an image?

original

BCEITEC

combined

original

QUICK QUIZ:

What would happen if you collected all of your images at the same defocus?
Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

