

Central European Institute of Technology BRNO | CZECH REPUBLIC

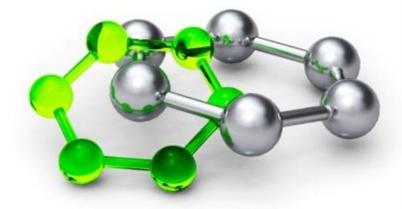
## Image analysis I

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

March 6, 2017







| Week | Date | Instructor             | Topic                        |
|------|------|------------------------|------------------------------|
| 1    | 20.2 | T. Shaikh              | Introduction/History/Optics  |
| 2    | 27.2 | J. Novacek             | Specimen preparation         |
| 3    | 6.3  | J. Novacek             | instrumentation              |
| 4    | 13.3 | T. Shaikh              | Image analysis I             |
| 5    | 20.3 | T. Shaikh              | Image analysis II            |
| 6    | 27.3 | J. Novacek             | Tomography I                 |
| 7    | 3.4  | J. Novacek             | Tomography I                 |
| 8    | 10.4 | T. Shaikh              | Image analysis III           |
|      | 17.4 |                        | (Easter)                     |
| 9    | 24.4 | T. Shaikh              | Image analysis IV            |
|      | 1.5  |                        | (May Day)                    |
|      | 8.5  |                        | (Liberation Day)             |
| 10   | 15.5 | J. Novacek             | Visualization/Hybrid methods |
| 11   | 22.5 | J. Novacek & T. Shaikh | Journal club                 |

| Week | Date | Instructor             | Topic                          |
|------|------|------------------------|--------------------------------|
| 1    | 20.2 | T. Shaikh              | Introduction/History/Optics    |
| 2    | 27.2 | J. Novacek             | Specimen preparation           |
| 3    | 6.3  | T. Shaikh              | Image analysis I               |
| 4    | 13.3 | J. Novacek             | Instrumentation                |
| 5    | 20.3 | T. Shaikh              | Image analysis II (Room 1S102) |
| 6    | 27.3 | J. Novacek             | Tomography I                   |
| 7    | 3.4  | J. Novacek             | Tomography I                   |
| 8    | 10.4 | T. Shaikh              | Image analysis III             |
|      | 17.4 |                        | (Easter)                       |
| 9    | 24.4 | T. Shaikh              | Image analysis IV              |
|      | 1.5  |                        | (May Day)                      |
|      | 8.5  |                        | (Liberation Day)               |
| 10   | 15.5 | J. Novacek             | Visualization/Hybrid methods   |
| 11   | 22.5 | J. Novacek & T. Shaikh | Journal club                   |

#### **Outline**

#### Image analysis I

- Fourier transforms
  - Why do we care?
  - Theory
  - Examples in 1D
  - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function
- Resolution



## Fourier transforms



#### **Outline**

#### Image analysis I

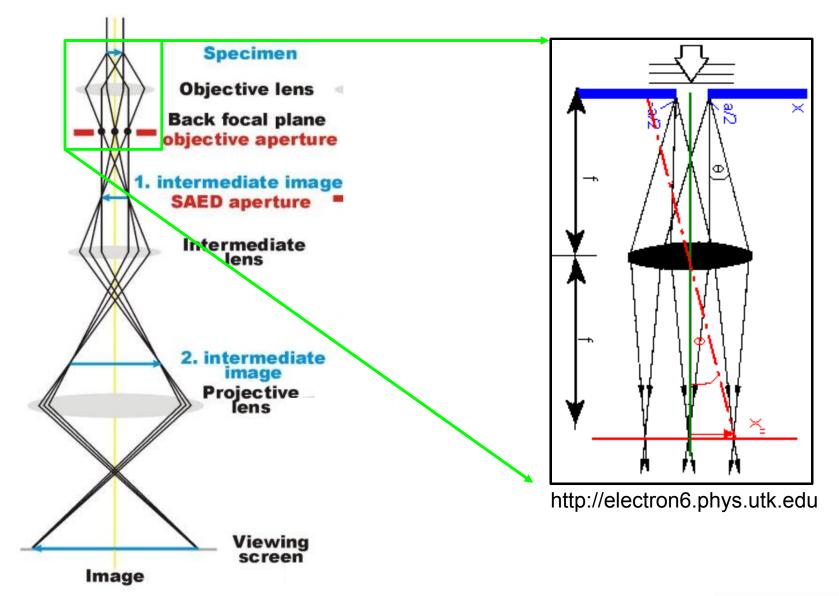
- Fourier transforms
  - Why do we care?
  - Theory
  - Examples in 1D
  - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function



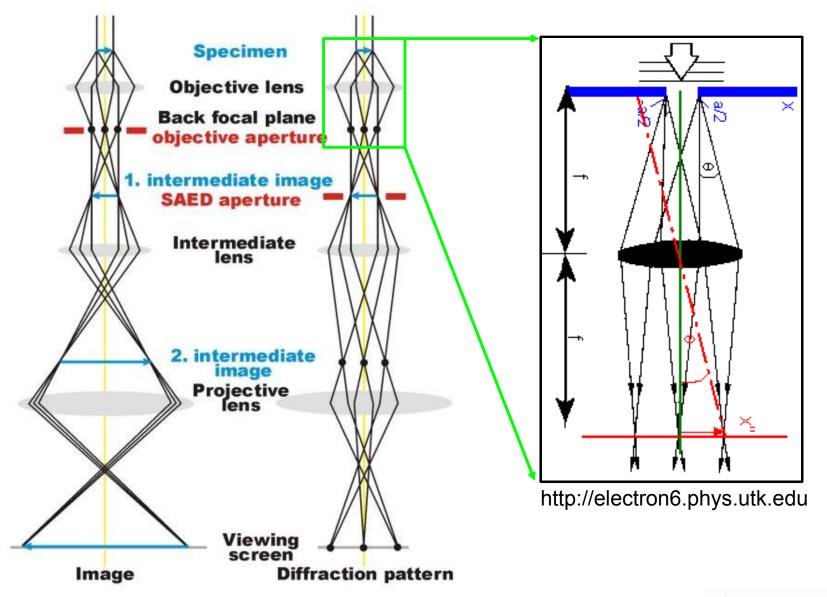
## A quiz



### A quiz



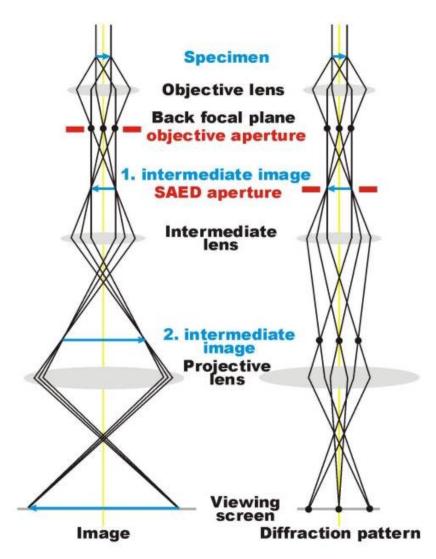
### Relationship between imaging and diffraction



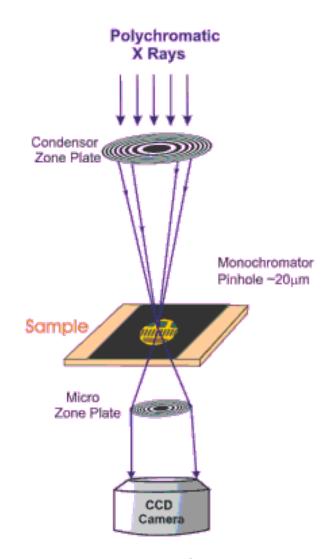
The only difference between microscopy and diffraction is that, in microscopy, you can (easily) focus the scattered radiation into an image.



## How do X-ray microscopes work?



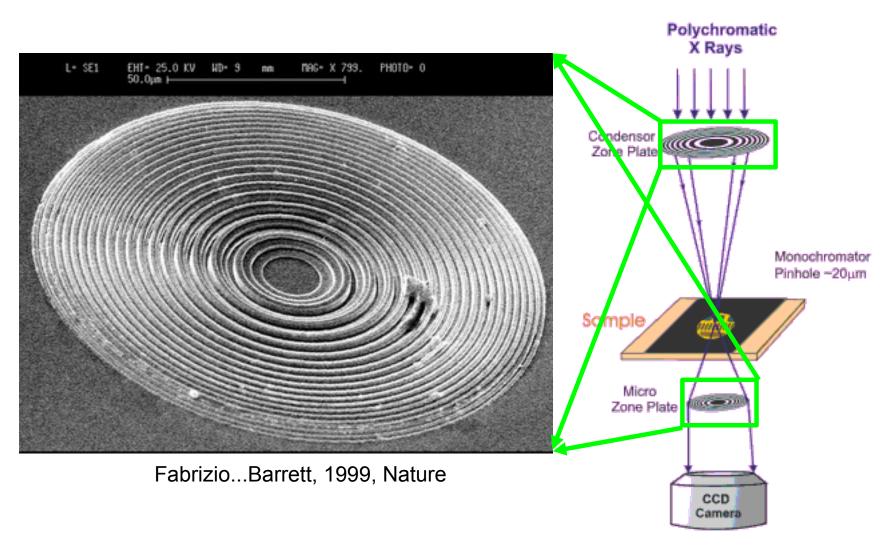
http://www.microscopy.ethz.ch



http://ssrl.slac.stanford.edu



## How do X-ray microscopes work?



Best resolution: ~20nm

http://ssrl.slac.stanford.edu



#### **Outline**

#### Image analysis I

- Fourier transforms
  - Relationship between imaging and diffraction
  - Theory
  - Examples in 1D
  - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function



#### Relevance of Fourier transforms to EM

Fourier transform ~ diffraction pattern see John Rodenburg's site, http://rodenburg.org

NOTE:  $v=\alpha/\lambda$ 



#### Fourier series

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

#### Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i kx} dx$$

f: function which we are transforming (1D)

x: axis coordinate

i:  $\sqrt{-1}$ 

k: spatial frequency

F(k): Fourier coefficient at frequency k



### Fourier transforms: Exponential form

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i kx} dx$$

Euler's Formula:  $e^{i\phi} = \cos \phi + i \sin \phi$ 

$$F(k) = \int_{-\infty}^{\infty} f(x)\cos(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x)\sin(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x)\sin(-2\pi kx) dx$$

#### Fourier transforms: Sines + cosines

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i kx} dx$$

$$F(k) = a\cos(-2\pi kx) + ib\sin(-2\pi kx)$$

(NOTE: This isn't the same a & b from the previous slide.)



#### Fourier transforms: Definition

$$F(k) = \int_{-\infty}^{\infty} f(x) \cos(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x) \sin(-2\pi kx) dx$$

$$+i \qquad b$$
Amplitude, A:  $\sqrt{a^2 + b^2}$ 
Phase,  $\Phi$ :  $\arctan \frac{b}{a}$ 

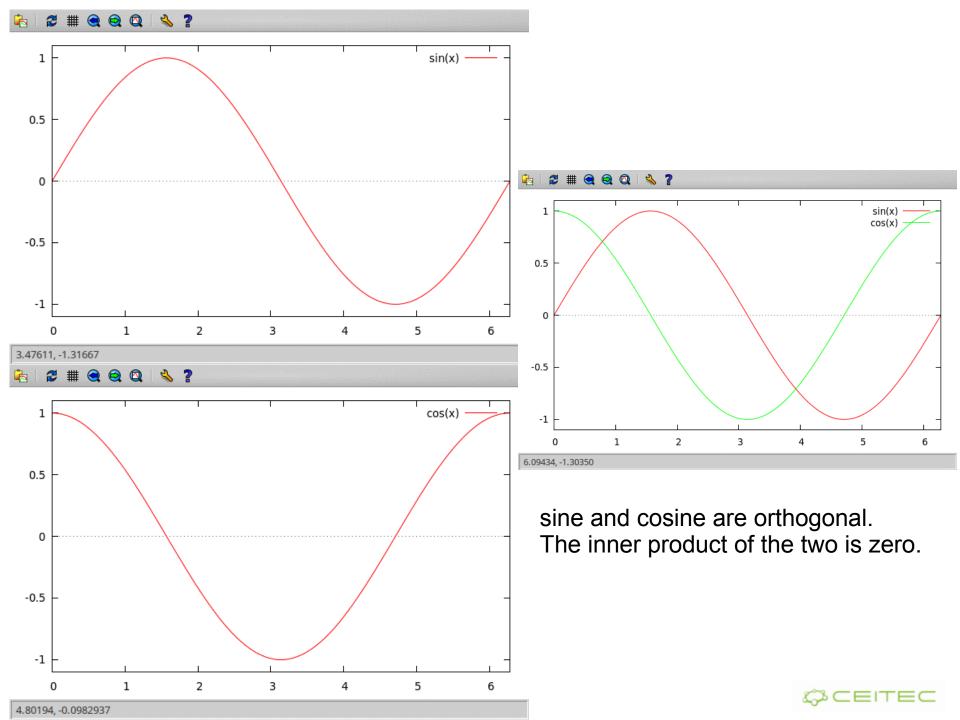
#### Fourier coefficients, discrete functions

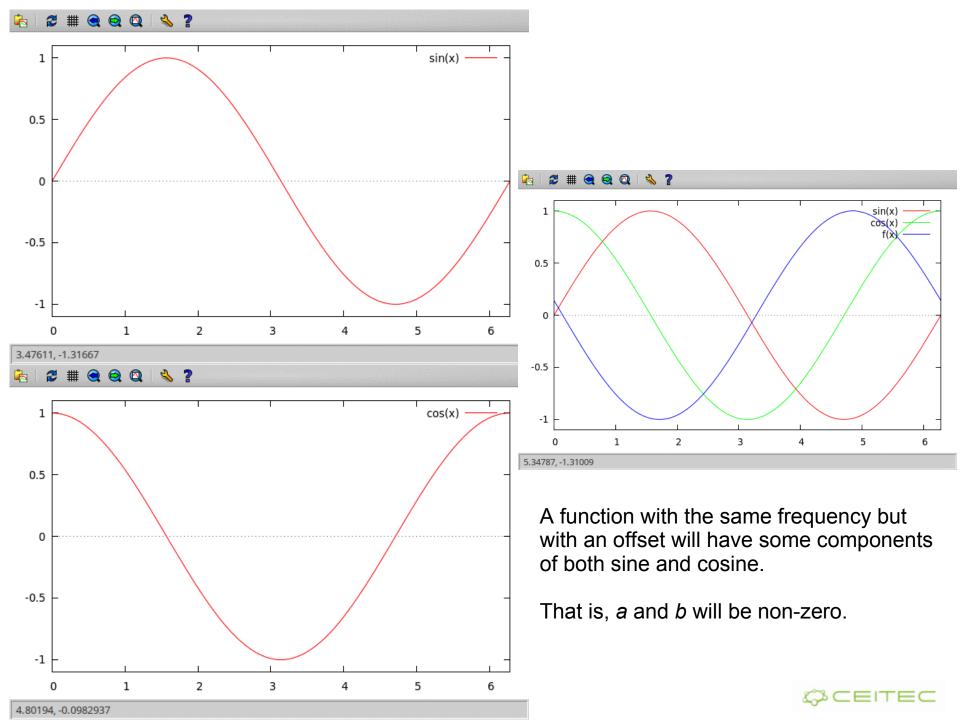
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

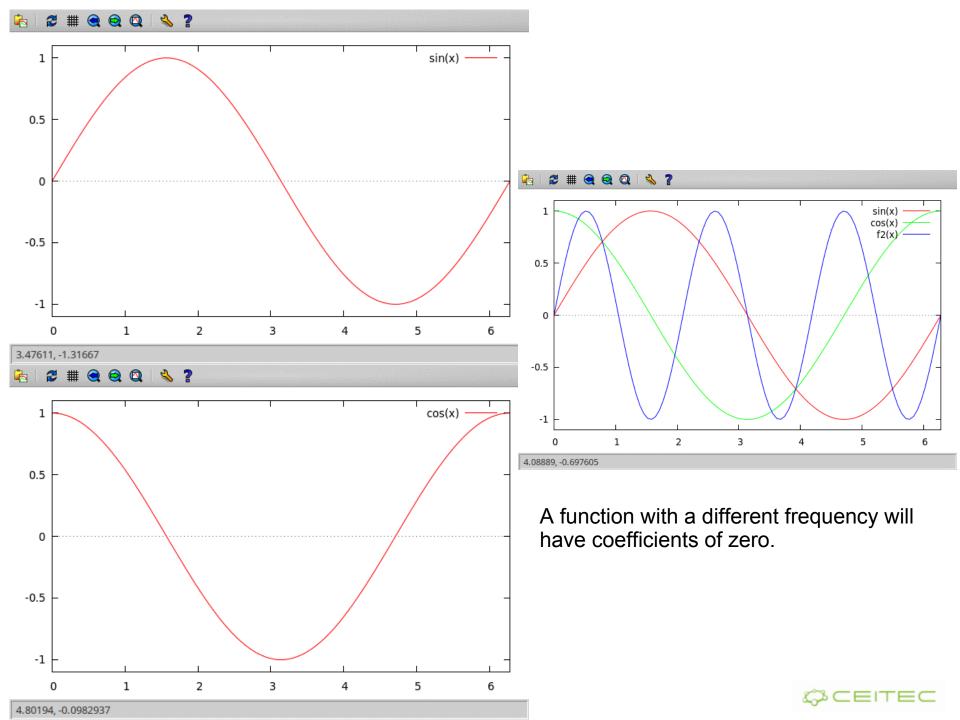
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

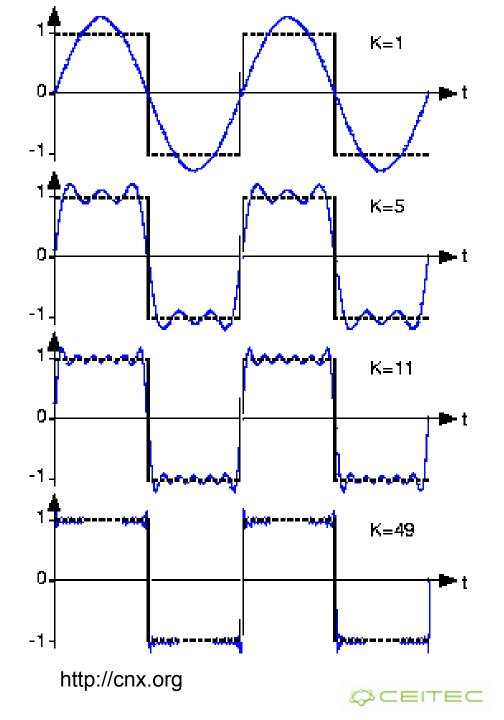








The higher the spatial frequencies (i.e., higher resolution) that are included, the more faithful the representation of the original function will be.

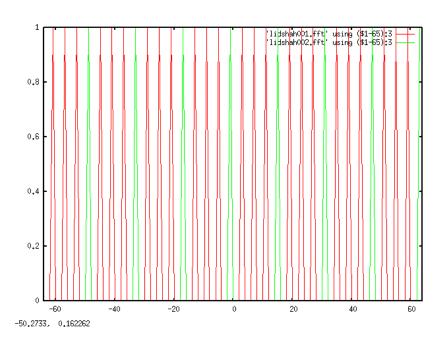


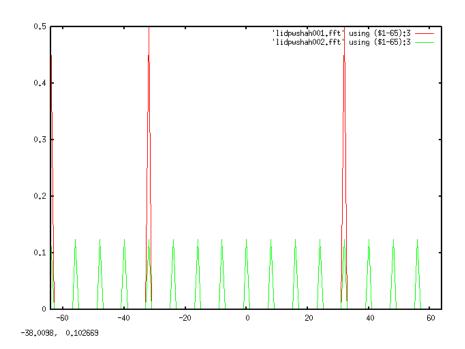
### Some properties

- As *n* increases, so does the spatial frequency, *i.e.*, the "resolution."
  - For example, sin(2x) oscillates faster than sin(x)
- Computation of a Fourier transform is a completely reversible operation.
  - There is no loss of information.
- Fourier terms (or coefficients) have amplitude and phase.
- The diffraction pattern is the physical manifestation of the Fourier transform
  - Phase information is lost in a diffraction pattern.
  - An image contains both phase and amplitude information.



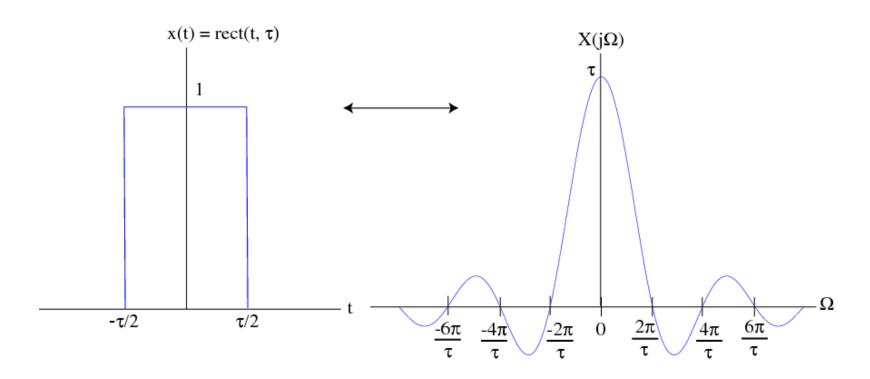
## Some simple 1D transforms: a 1D lattice







## Some simple 1D transforms: a box

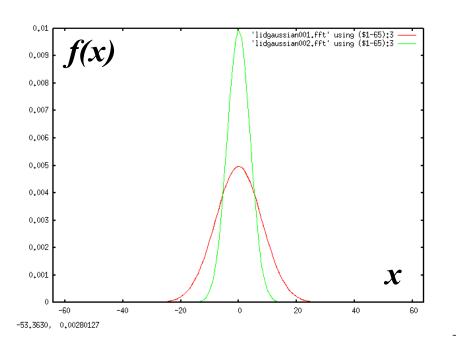


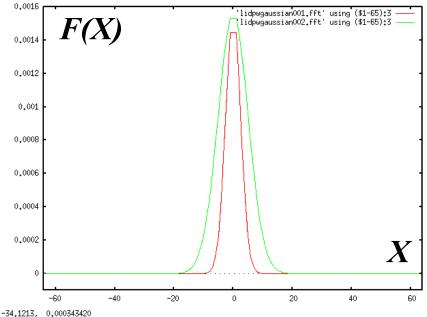
http://cnx.org

Later, you will learn that multiplying a step function is bad, because of these ripples in Fourier space.



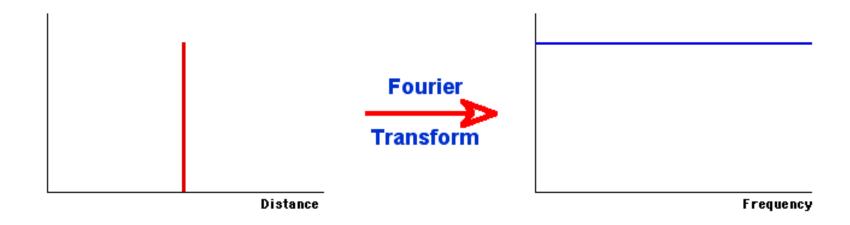
## Fourier transforms: plot of a Gaussian







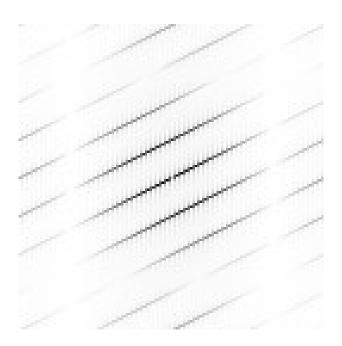
# Some simple 1D transforms: a sharp point (Dirac delta function)



http://en.labs.wikimedia.org/wiki/Basic\_Physics\_of\_Nuclear\_Medicine/Fourier\_Methods



# Some simple 2D Fourier transforms: a row of points



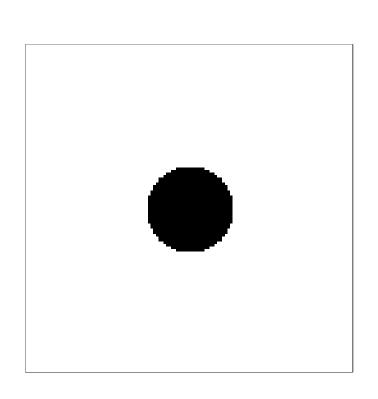


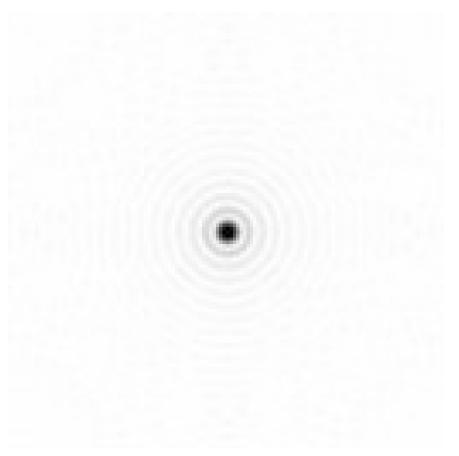
## Some simple 2D Fourier transforms: a series of lines

| • |
|---|
|   |
|   |
|   |
|   |
|   |
|   |



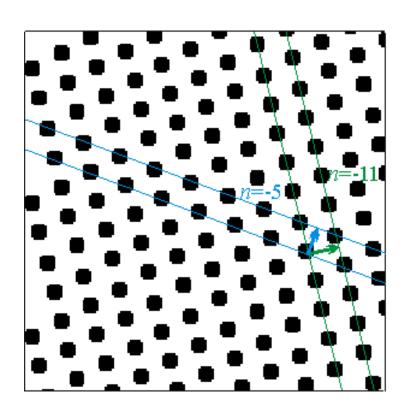
# Some simple 2D Fourier transforms: a sharp disc





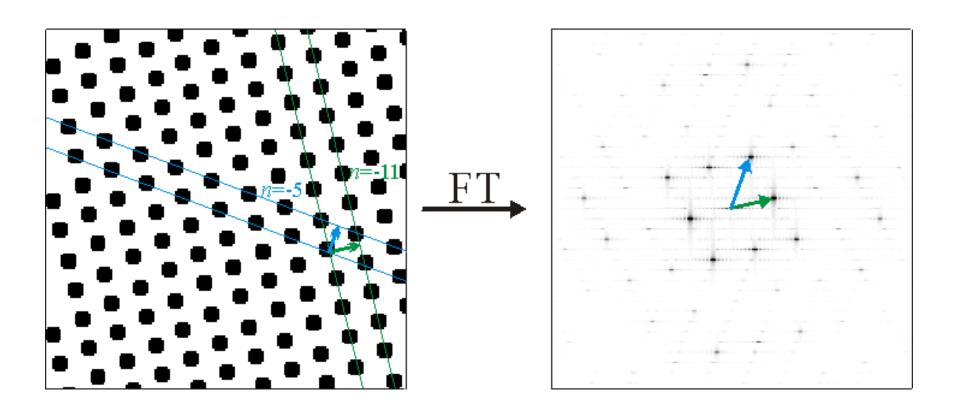


# Some simple 2D Fourier transforms: a 2D lattice



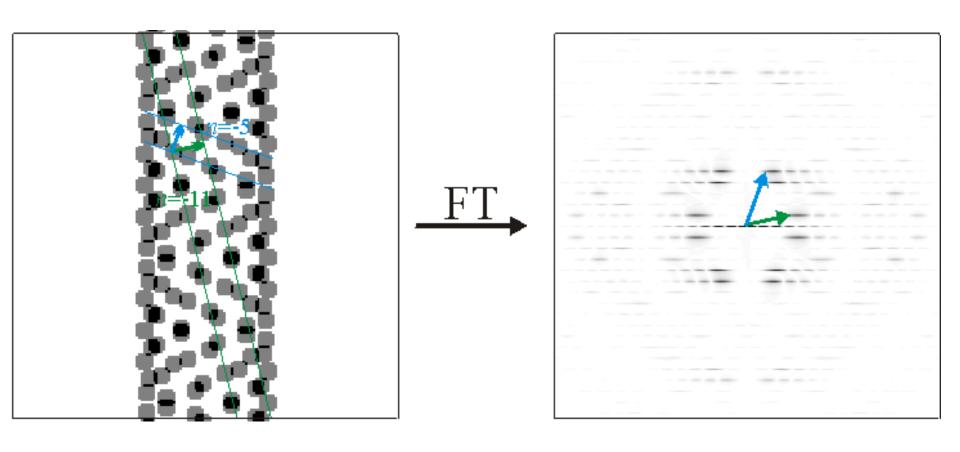


# Some simple 2D Fourier transforms: a 2D lattice





## Some simple 2D Fourier transforms: a helix





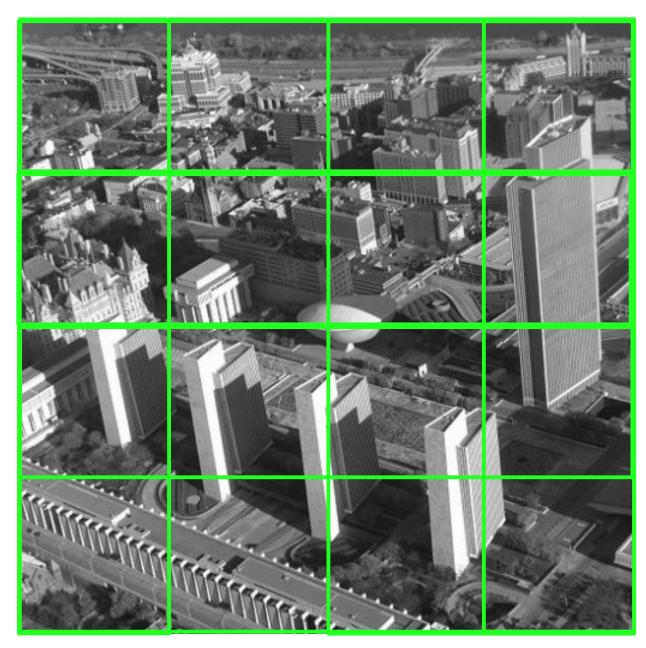
#### **Outline**

#### Image analysis I

- Fourier transforms
  - Relationship between imaging and diffraction
  - Theory
  - Examples in 1D
  - Examples in 2D
- Digitization
- Fourier filtration
- Contrast transfer function



## Digitization in 2D



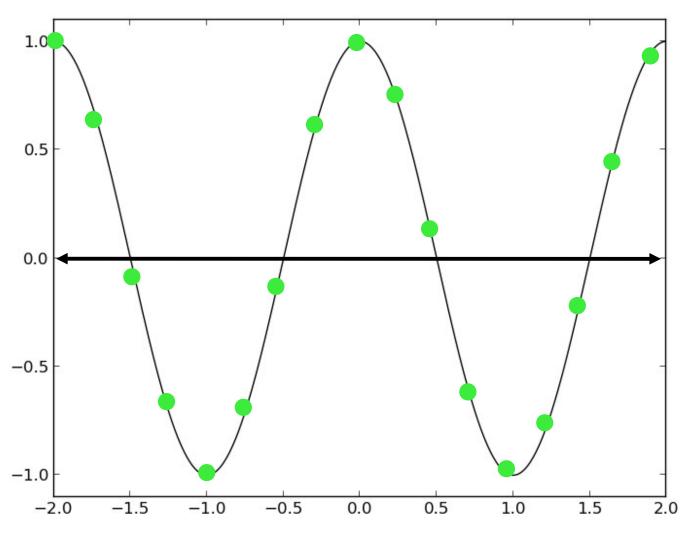


## Digitization in 1D: Sampling





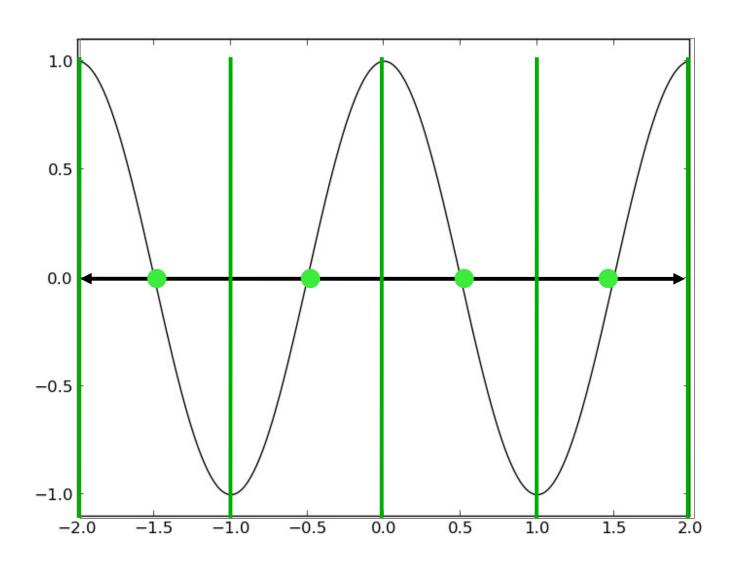
#### Digitization: Is our sampling good enough?



Here, our sampling is good enough.

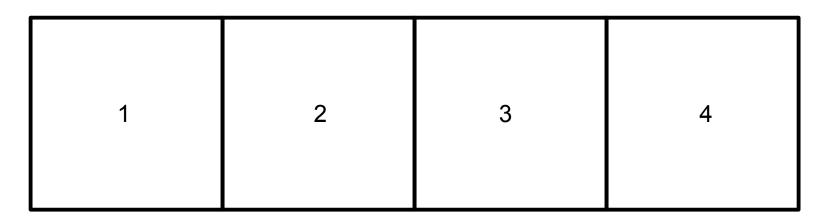


## Digitization in 1D: Bad sampling





# What's the best resolution we can get from a given sampling rate?

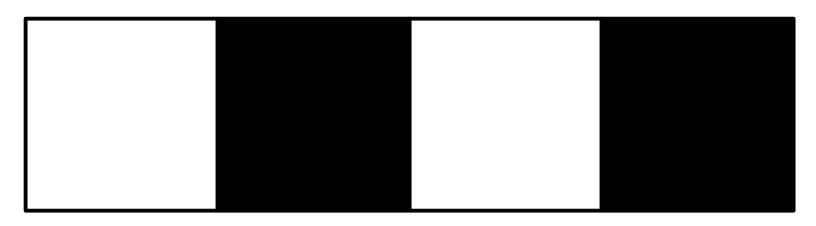


A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect?



# What's the best resolution we can get from a given sampling rate?

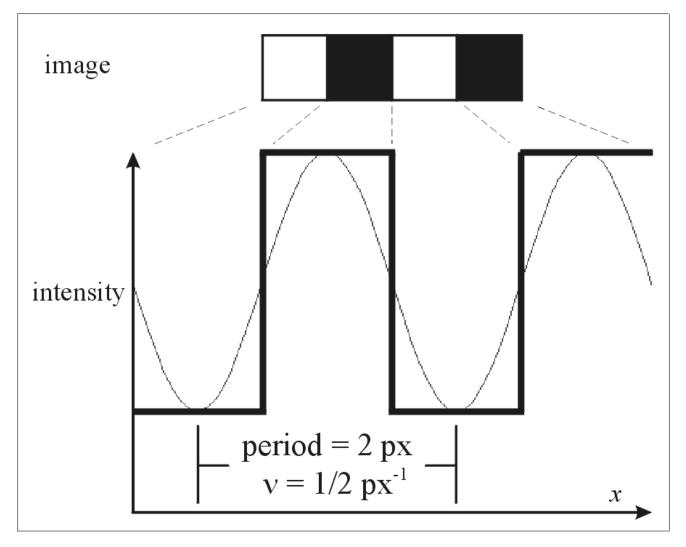


A 4-pixel "image"

In other words, what is the most rapid oscillation we can detect?

ANSWER: Alternating light and dark pixels.





The period of this finest oscillation is 2 pixels.

The spatial frequency of this oscillation is 0.5 px<sup>-1</sup>.

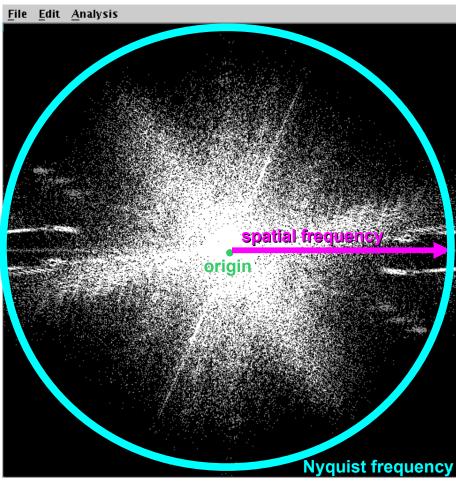
The finest detectable oscillation is what is known as "Nyquist frequency."

The edge of the Fourier transform corresponds to Nyquist frequency.



#### Nyquist frequency





The period of this finest oscillation is 2 pixels.

The spatial frequency of this oscillation is 0.5 px<sup>-1</sup>.

The finest detectable oscillation is what is known as "Nyquist frequency."

The edge of the Fourier transform corresponds to Nyquist frequency.



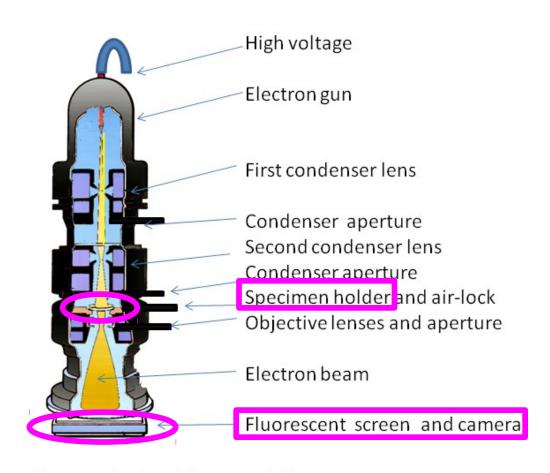
#### What do we mean by pixel size?

Typical magnification: 50,000X Typical detector element: 15µm (pixel size on the camera scale)

Pixel size on the specimen scale:  $15 \times 10^{-6} \text{ m/px} / 50000 = 3.0 \times 10^{-10} \text{ m/px} = 3.0 \text{ Å/px}$ 

In other words, the best resolution we can achieve (or, the finest oscillation we can detect) at 3.0 Å/px is **6.0** Å.

It will be worse due to interpolation, so to be safe, a pixel should be 3X smaller than your target resolution.



Transmission Electron Microscope

http://www.en.wikipedia.org



# What happens if you're not oversampled enough?



#### Aliasing

https://www.youtube.com/watch?v=6LzaPARy3uA



What do we mean by spatial frequency?



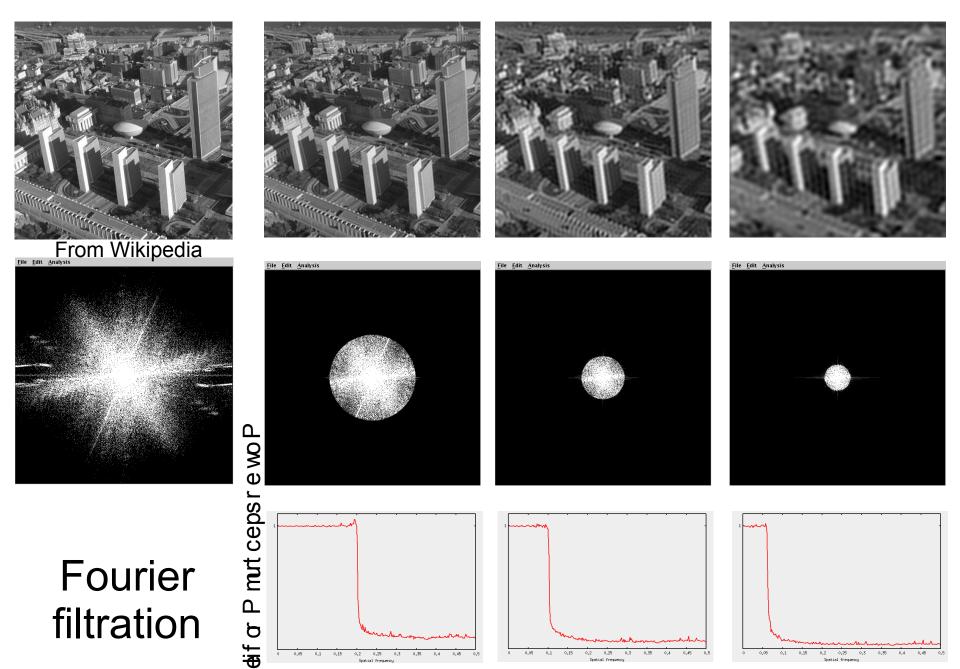


spatial frequenc origin

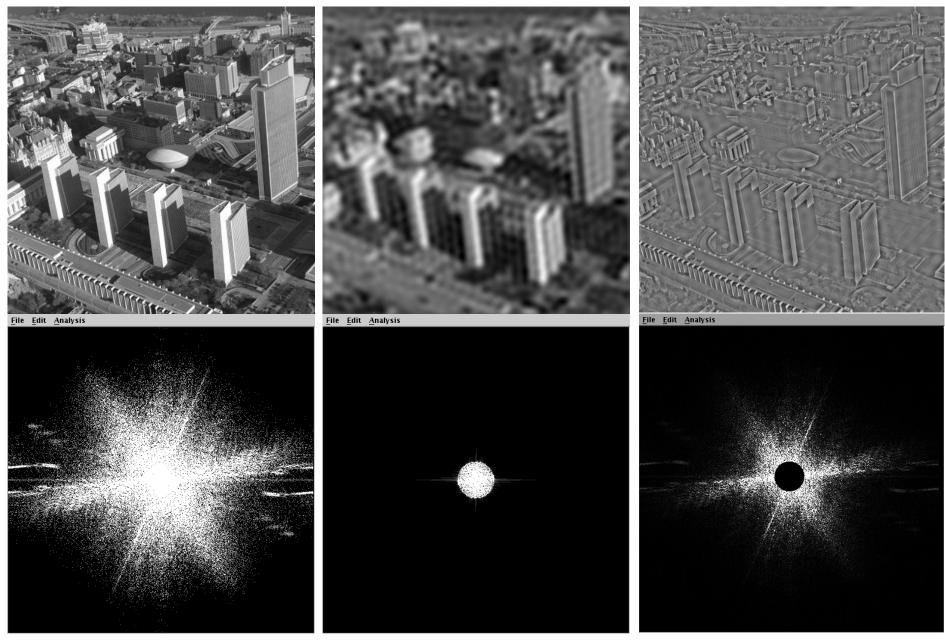
<u>F</u>ile <u>E</u>dit <u>A</u>nalysis

From Wikipedia









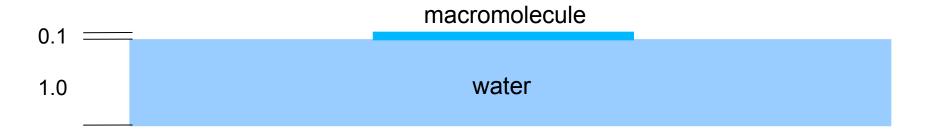
A "low-pass" filter

A "high-pass" filter ⇔⊂≡□≡⊂

#### Contrast transfer function



#### Why do we defocus?



Typical amplitude contrast is estimated a 0.08-0.12 (minus noise)



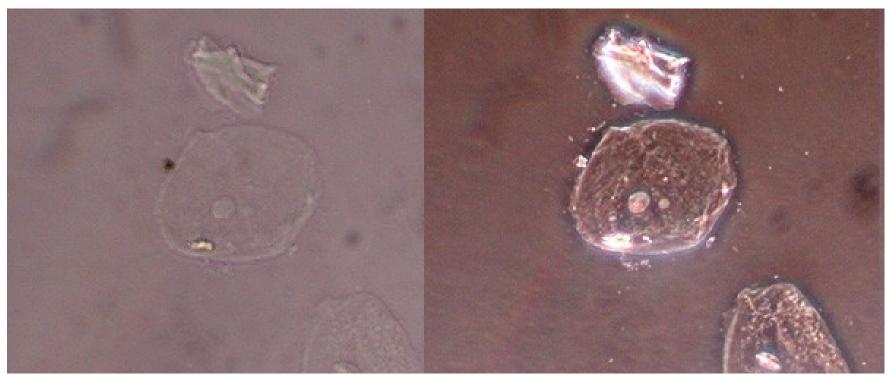
Instead of amplitude contrast, we'll use phase contrast.



## Phase contrast in light microscopy

Bright-field image

Phase-contrast image

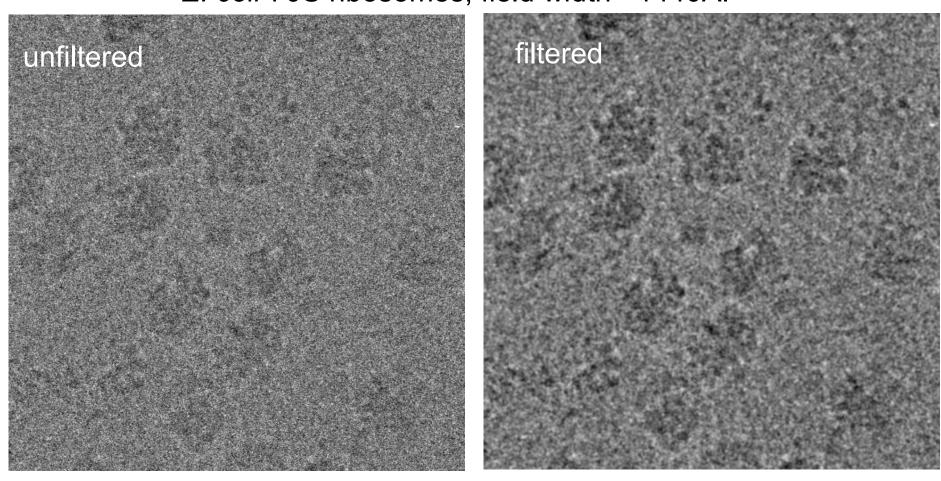


http://www.microbehunter.com



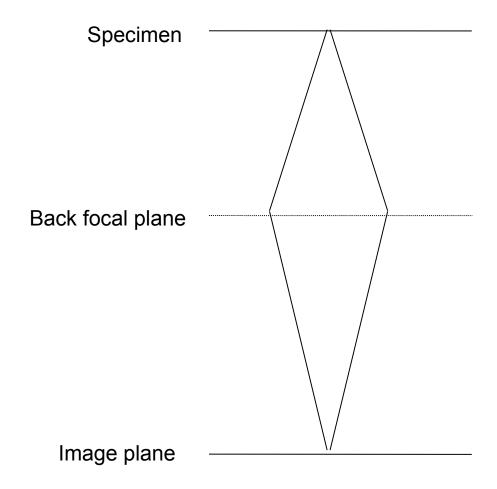
#### In EM, even with defocus, the contrast is poor.

E. coli 70S ribosomes, field width ~1440Å.



Signal-to-noise ratio for cryoEM typically given to be between 0.07 and 0.10.

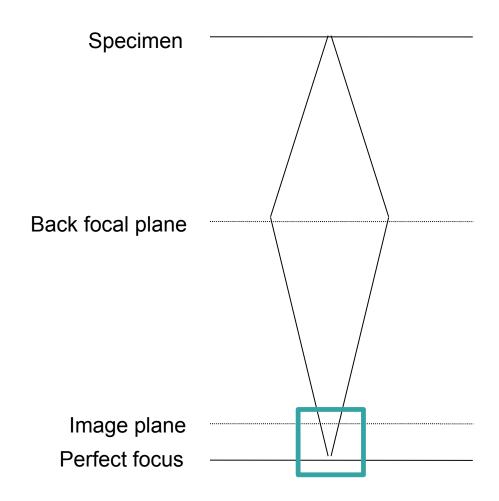
#### Optical path



At focus, all we would see is amplitude contrast.

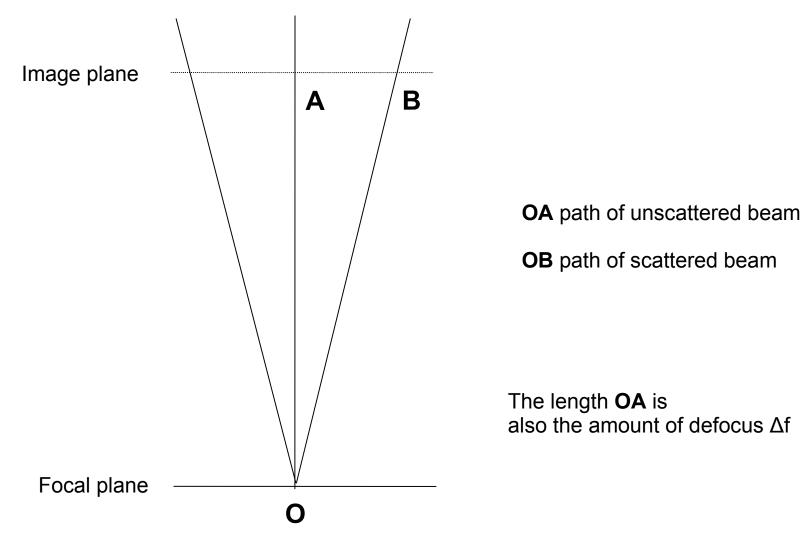


## Optical path with defocus





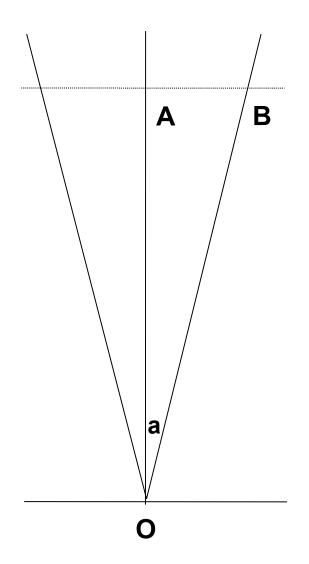
### Optical path with defocus



What is the path difference between the scattered and unscattered beams?



#### Path difference as a function of $\Delta f$



$$OB - OA$$

$$OB = OA/cos(a)$$

$$\frac{OA}{\cos(a)}$$
  $-OA$ 

$$OA \times (\frac{1}{\cos(a)} - 1)$$

Expressed in the number of wavelengths  $\lambda$ 

$$OA \times (\frac{\frac{1}{\cos(a)} - 1}{\lambda})$$

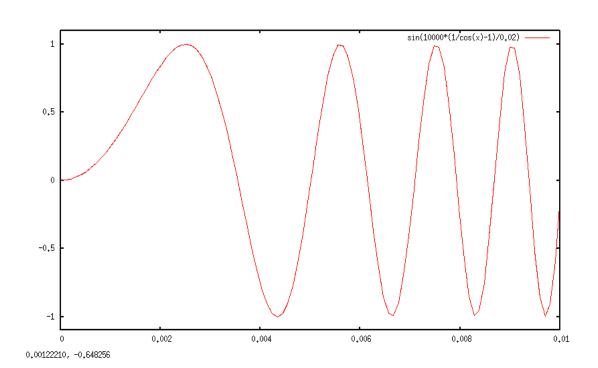
Phase difference is the sine

$$\sin\left(\frac{OA \times \left(\frac{1}{\cos(a)} - 1\right)}{\lambda}\right)$$

#### Some typical values

$$\sin\left(\frac{OA \times \left(\frac{1}{\cos(a)} - 1\right)}{\lambda}\right)$$

OA = 
$$\Delta f$$
 = 10,000 Å  
 $\lambda$  = 0.02 Å  
a < 0.01



A more precise formulation of the CTF can be found in Erickson & Klug A (1970). Philosophical Transactions of the Royal Society B. 261:105.

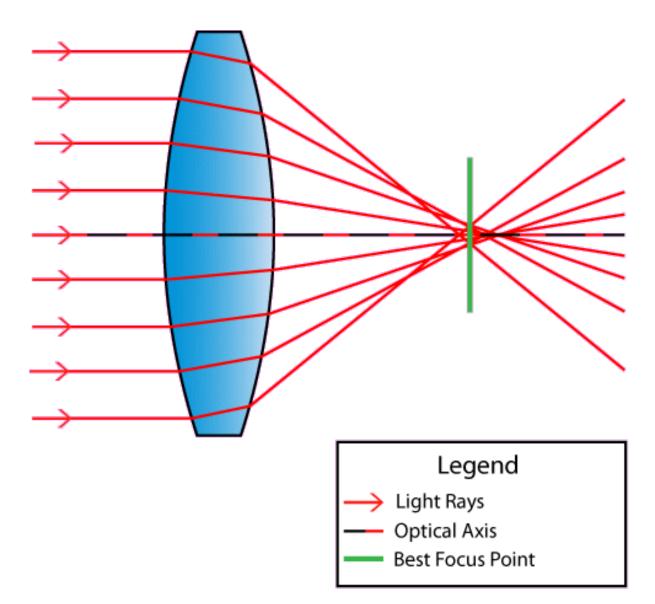


#### QUICK QUIZ:

What other example did we discuss where rays scattered at different angles experienced different path lengths?



## Lens with Spherical Aberration





#### Proper form the CTF

$$-\sin\left(\frac{\pi}{2}C_sk^4 + \pi\Delta f\lambda k^2\right)$$

#### where:

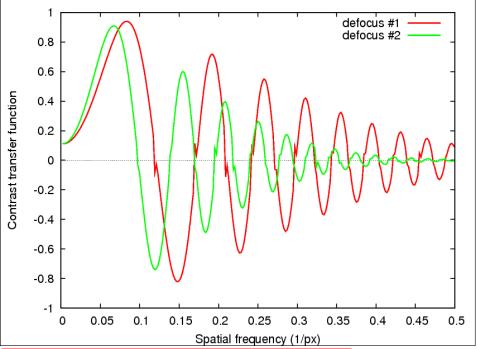
- C<sub>s</sub>: spherical aberration
- k: spatial frequency (resolution)

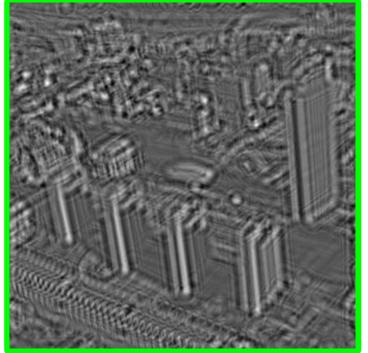


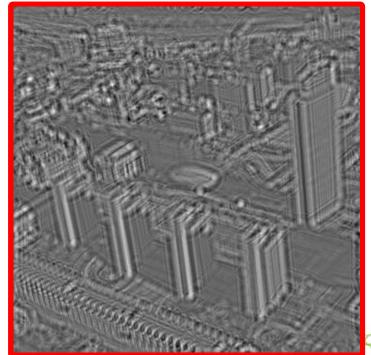
How does the CTF affect an image?

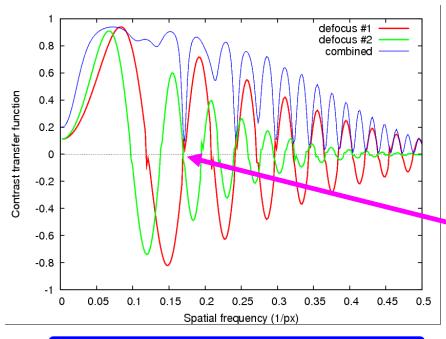






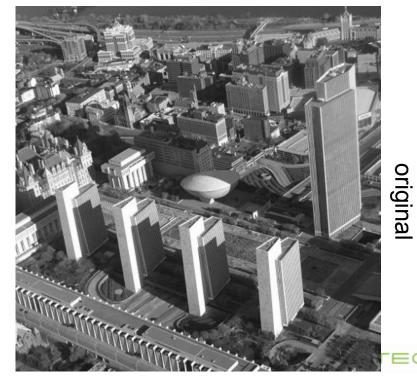






Still a zero present





#### QUICK QUIZ:

What would happen if you collected all of your images at the same defocus?



| Week | Date | Instructor             | Topic                          |
|------|------|------------------------|--------------------------------|
| 1    | 20.2 | T. Shaikh              | Introduction/History/Optics    |
| 2    | 27.2 | J. Novacek             | Specimen preparation           |
| 3    | 6.3  | T. Shaikh              | Image analysis I               |
| 4    | 13.3 | J. Novacek             | Instrumentation                |
| 5    | 20.3 | T. Shaikh              | Image analysis II (Room 1S102) |
| 6    | 27.3 | J. Novacek             | Tomography I                   |
| 7    | 3.4  | J. Novacek             | Tomography I                   |
| 8    | 10.4 | T. Shaikh              | Image analysis III             |
|      | 17.4 |                        | (Easter)                       |
| 9    | 24.4 | T. Shaikh              | Image analysis IV              |
|      | 1.5  |                        | (May Day)                      |
|      | 8.5  |                        | (Liberation Day)               |
| 10   | 15.5 | J. Novacek             | Visualization/Hybrid methods   |
| 11   | 22.5 | J. Novacek & T. Shaikh | Journal club                   |

# Thank you for your attention



Central European Institute of Technology
Masaryk University
Kamenice 753/5
625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz







