CEITEC

Central European Institute of Technology
BRNO | CZECH REPUBLIC

Image analysis II: 3D Reconstruction

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

March 20, 2017

Outline

Image analysis II

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

Some simple 2D Fourier transforms:

 a 2D lattice

Outline

Image analysis ||

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

How do you go from 2D to 3D?

John O'Brien, 1991, The New Yorker

What information do we need for 3D reconstruction?

1. different orientations

2. known orientations 3. many particles

What happens when we＇re missing views？

$$
\begin{gathered}
\text { sparse } \\
\text { sampling } \\
+
\end{gathered}
$$

missing
views

sparse sampling

missing views

Baumeister et al．（1999），Trends in Cell Biol．，9：81－5．

Your sample isn＇t guaranteed to adopt different orientations， in which case you many need to explicitly tilt the microscope stage．

What information do we need for 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

I have all of this information.
Now what?

There are two general categories of 3D reconstruction

1. Real space
2. Fourier space

Reconstruction in real space

We are going to reconstruct a 2D object from 1D projections. The principle is the similar to, but simpler than, reconstructing a 3D object from 2D projections.

Projection of our 2D object

Now, project in several directions

Reconstruction is the inversion of projection

Reconstruction is the inversion of projection

Reconstruction is the inversion of projection

$\mathscr{8} \subset$ ЕITEС

Reconstruction is the inversion of projection

Reconstruction is the inversion of projection

The reconstruction doesn't agree well with the projections. What can we do?
(one) ANSWER:
Simultaneous Iterative Reconstruction Technique

Simultaneous Iterative Reconstruction Technique

The idea:

- You compute re-projections of your model.
- Compare the re-projections to your experimental data.
- There will be differences.
- You weight the differences by a fudge factor, λ.
- You adjust the model by the difference weighted by λ.
- Repeat.

Simultaneous Iterative Reconstruction Technique

Simultaneous Iterative Reconstruction Technique

Here, the differences (which will be down-weighted by λ) are the ripples in the background.

If we didn't down-weight by λ, we would overcompensate, and would amplify noise.

Reconstruction in Fourier space

Projection theorem (or Central Section Theorem)

A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction.

Projection theorem (or Central Section Theorem)

The disadvantage is that you have To resample your central sections from polar coordinates to Cartesian space, i.e. interpolate. There are new methods to better Interpolate in Fourier space.

Converting from polar to Cartesian coordinates

A simple weighting scheme is to divide the weight by the radius: r^{*} weighting, or "r-weighted backprojection"

Going from 2D to 3D

If you know the orientation angles for each image, you can compute a back-projection.

How do we determine the last two Euler angles?

Parameters required for 3D reconstruction

Two translational：
$\checkmark \Delta x$
Δy
Three orientational （Euler angles）：
phi（about z axis）
theta（about y ）
psi about new z）

These are determined in 2D． These are determined in 3D．

Going from 2D to 3D

If you know the orientation angles for each image, you can compute a back-projection.

Outline

Image analysis II

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

Tomography

We have:

" known orientations

- different views

BUT...

What happens when we image the sample?

Baker et al. (1999) Microbiol. Mol. Biol. Rev. 63: 862
We are destroying the sample as we image it.

Consequences of repeated exposure

If we have many identical molecules, and if we can determine the orientations, we can use one exposure per molecule and use these images in the reconstruction.

BUT:
Unlike in the tomographic case, we don't know how the orientations between the different images are related.

Reference-based alignment

You will record the direction of projection (the Euler angles), such that if you encounter an experimental image that resembles a reference projection, you will assign that reference projection's Euler angles to the experimental image.

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

The model

(The extra features helped determine handedness in noisy reconstructions.)

$$
\operatorname{Sos}^{\circ} \subset E \mid T E \subset
$$

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
$p s i=000$

phi $=000$
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
$p s i=000$

phi $=000$
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=036
thet $a=030$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=036
thet $a=030$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi $=000$
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi $=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=036
thet $a=030$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi $=000$
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=048
thet $a=045$
psi=000

phi=000
thet $a=000$
psi=000

phi= 000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=036
thet $a=030$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi $=000$
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=048
thet $a=045$
psi=000

phi=000
thet $a=000$
psi=000

phi=072
thet $a=045$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$
psi=000

phi=036
thet $a=030$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi $=000$
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=048
thet $a=045$
psi=000

phi=000
thet $a=000$
psi=000

phi=072
thet $a=045$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$ psi=000

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
psi=000

phi $=000$
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=048
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=072
thet $a=045$
psi=000

$\mathrm{ph} i=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$
psi=000

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
psi=000

phi $=000$
thet $a=045$
psi=000

phi=016
thet $a=075$
psi=000

phi=048
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=072
thet $a=045$
psi=000

$\mathrm{phi}=000$
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$

phi=036
thet $\mathbf{a}=030$
psi=000

phi=216
thet $a=045$
psi=000

phi=000
thet $a=045$
psi=000

phi=016
thet $a=075$
psi=000

phi=048
thet $a=045$
psi=000

phi=115
thet $a=075$
psi=000

phi=072
thet $a=045$
psi=000

phi= 000
thet $a=000$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$ psi=000

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
psi=000

phi=000
thet $a=045$
psi=000

phi=016
thet $a=075$
psi=000

phi=048
thet $a=045$
psi=000

$\mathrm{phi}=115$
thet $a=075$
psi=000

phi=072
thet $a=045$
psi=000

phi=131
thet $a=090$
psi=000

phi=000
thet $a=000$
psi=000

phi=192
thet $a=045$ psi=000

phi=036
thet $a=030$
psi=000

phi=216
thet $a=045$
psi=000

phi=000
thet $a=045$
psi=000

phi=016
thet $a=075$
psi=000

phi=048
thet $a=045$
psi=000

$\mathrm{phi}=115$
thet $a=075$
psi=000

phi=072
thet $a=045$
psi=000

phi=131
thet $a=090$
psi=000

Reference-based alignment

Stack of projections
Stack of rotational CCF's

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

Steps:

1. Compare the experimental image to all of the reference projections.
2. Find the reference projection with which the experimental image matches best.
3. Assign the Euler angles of that reference projection to the experimental image.

Outline

Image analysis ||

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

Common lines (or Angular Reconstitution)

Summary:

* A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
" With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative
 orientations of all three.

Common lines (or Angular Reconstitution)

Summary:

* A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative
 orientations of all three.

Common lines: Problems

- Noise can lead to incorrect angles
- Symmetry helps
- Handedness cannot be determined without additional information
- Tilting
- $\quad \alpha$-helices
- Assumes conformational homogeneity

Outline

Image analysis ||

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

Random-conical tilt:
 Determination of Euler angles

From Nicolas Boisset

This scenario describes a worst case, when there is exactly one orientation in the 0° image. Since the in-plane angle varies, in the tilted image, we have different views available.

Random-conical tilt: Geometry

Two images are taken: one at 0° and one tilted at an angle of 45°.

Radermacher, M., Wagenknecht, T., Verschoor, A. \& Frank, J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50 S ribosomal subunit of Escherichia coli.J Microsc 146, 11336 (1987).

From Nicolas Boisset

One problem though:

We can't tilt the stage all the way to 90 degrees.

Review:
Projection theorem

Random-conical tilt: The "missing cone"

Representation of the distribution of views, if we display a plane perpendicular to each projection direction

The missing information, in the shape of a cone, elongates features in the direction of the cone's axis.

From Nicolas Boisset

Random-conical tilt: Filling the missing cone

If there are multiple preferred orientations, or if there is symmetry that fills the missing cone, you can cover all orientations.

Distribution of orientations

From Nicolas Boisset
Display Select class 1 start key: 1

*	3	*	*	*	\%	*	\%	*	\$	*	8
\%	*	\%	*	*	*	*	*	*	*	\%	-
*	-	8	*	*	*	*	-	\%	*	*	\bigcirc
*	*	*	-	*	-	*	\%	*	\%	\%	\%
\%	\%	\%	$\%$	\%	*	*	8	*	\%	\%	-
\%	*	\%	\%	*	3	*	*	*	*	*	9
)	*	\%	8								

We compute a separate reconstruction for each class

IF the classes simply correspond to different orientations, you can combine them, and boost the signal-to-noise.

Helicase G40P

If the classes correspond to different conformations, then you have to keep them as separate reconstructions.

Outline

Image analysis ||

- 2D Fourier transforms

3D Reconstruction

- Principles
- Tomography
- Reference-based alignment
- Common lines
- RCT
- CTF-correction
- 3D classification

More properties of Fourier transforms: Convolutions

Why might two images in a data set look different?

- different sample
- different magnification - better microscopy
- different illumination
- different orientations
- different defocus
- different conformations
- better biochemistry
- normalization
- determine angles
- CTF correction
- Classification

Convolution of a molecule with a lattice generates a crystal.

Notation: $f(x) \bullet g(x)$
Adapted from David DeRosier

lattice: $f(x)$

Molecule $g(x)$

Set a molecule down at every lattice point.

Convolution in real life

Notation: $f(x) \cdot g(x)$

lattice: $f(x)$
http://www.photos-public-domain.com

Molecule: $g(x)$ http://en.wikipedia.org

http://www.symbolicmessengers.com

Set a molecule down at every lattice point.

Cross-correlation vs. convolution

Complex conjugate:
If a Fourier coefficient $F(X)$ has the form: $\quad a+b i$
The complex conjugate $F^{*}(X)$ has the form: $a-b i$

Cross-correlation: $F^{*}(X) G(X)$
Convolution: $F(X) G(X)$

Remember:
$f(x), g(x)$ are real-space functions
$F(X), G(X)$ are Fourier-space functions

1D profile

2D power spectrum $G(X)$

Point spread function

$g(x)$
zoomed
An ideal point spread function would be an infinitely－sharp point．

Resolution, Ångstroms

Red: Power-spectrum profile calculated from experimental image Green: Fitted, theoretical power-spectrum profile
Blue: Phase-only correction profile

Defocus groups: CTF correction in 3D

Reference-based Reconstruction

N Micrographs

K Defocus groups

(Each has a full
set of projections)

Separate reconstruction
for each defocus group

CTF-correction of micrographs in 2D

File Edit View Bookmarks Tools Help
\square Overview of SPID... $\times \square$ Reconstruction Flo... $\times \square$ Reconstruction Flo... \times
$\leftarrow \Rightarrow \omega$ 个 (3) http://spider.wadsworth.org/spider_doc/spider/docs/techs/reconl/Docs/flowchart/flowchart.html
\& - Search with Google

Why might two images in a data set look different?

- different molecule
- different magnification
- different illumination
- different defocus
- different orientations
- different conformations
- better biochemistry
- better microscopy
- normalization
- CTF correction
- determine angles
- Classification

Thank you for your attention

CCEITEC

Central European Institute of Technology
Masaryk University
Kamenice 753/5
62500 Brno, Czech Republic
www.ceitec.muni.cz | info@ceitec.muni.cz
 Development for Innovation

