CEITEC

Central European Institute of Technology
BRNO | CZECH REPUBLIC

Image analysis III

C9940 3-Dimensional Transmission Electron Microscopy
S1007 Doing structural biology with the electron microscope

April 10, 2017

QUESTION:
Why do we need to average the signal from many images?

ANSWER: Our signal-to-noise is poor

What happens if we don't align our images?

aligned images 1-4 of 4096 total

unaligned images 1-4 of 4096 total

This is a simple 2D case, but the effects are analogous in 3D.

What happens as we include more particles?

Signal-to-noise ratio increases with $\sqrt{ } n$

(P)review of 3D reconstruction: The parameters required

Two translational:

```
\(\checkmark \Delta x\)
\(\Delta y\)
```

Three orientational (Euler angles):
$`$ phi (about z axis)
\checkmark theta (about y)
psi about new z)

How do find the relative translations between two images?

Cross-correlation

Image f

Cross-correlation coefficient:

$$
\sum^{16} f(\vec{x}) g(\vec{x})
$$

Image g
constant
"normalization"

Cross-correlation

Image f

Image g

Unnormalized CCC $=f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}+f_{4} g_{4}+f_{5} g_{5}+f_{6} g_{6}+f_{7} g_{7}+f_{8} g_{8}$

$$
+f_{9} g_{9}+f_{10} g_{10}+f_{11} g_{11}+f_{12} g_{12}+f_{13} g_{13}+f_{14} g_{14}+f_{15} g_{15}+f_{16} g_{16}
$$

Cross-correlation

Image f

Image g

Unnormalized CCC $=f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}+f_{4} g_{4}+f_{5} g_{5}+f_{6} g_{6}+f_{7} g_{7}+f_{8} g_{8}$

$$
+f_{9} g_{9}+f_{10} g_{10}+f_{11} g_{11}+f_{12} g_{12}+f_{13} g_{13}+f_{14} g_{14}+f_{15} g_{15}+f_{16} g_{16}
$$

Cross-correlation coefficient

$$
\text { Cross-correlation coefficient: } \frac{\sum_{N=1}^{16} f(\vec{x}) g(\vec{x})}{\sigma_{f} \sigma_{g}}
$$

If the alignment is perfect, the correlation value will be 1.

What if the correlation isn't perfect?

Cross-correlation

What if the correlation isn't perfect?
ANSWER: You try other shifts (perhaps all).

Cross-correlation map

We would need to repeat this for all combinations of shifts.

Cross-correlation function (CCF)

Brute-force translational search is CPU-intensive

 BUTFourier transforms can help us.

Cross-correlation function (CCF)

Brute-force translational search is CPU-intensive BUT

Fourier transforms can help us.

Complex conjugate:
If a Fourier coefficient $F(X)$ has the form: a + bi
The complex conjugate $F^{*}(X)$ has the form: a - bi

$$
F^{*}(X) G(X)=F . T .(C C F)
$$

This gives us a map of all possible shifts.

Cross-correlation function (CCF)

Image $f(x)$

Image $g(x)$

F.T. $F^{*}(X)$ (complex conjugate)

F.T. $G(X)$

F.T. (CCF)

The position of the peak gives us the shifts that give the best match, e.g., (8,-6).

Well, that was an easy case. We only needed to do translational alignment. What about orientation alignment?

Orientation alignment

Image 1

Image 2

We take a series of rings from each image, unravel them, and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.

Reference image

Orientation alignment

Image 1

radius 1
radius 2 radius 3 radius 4

Image 2

Polar representation

Orientation alignment

radius 1
radius 2
radius 3 radius 4

$356.141,-2.50024$

Orientation alignment: After rotation

radius 1 radius 2
radius 3
radius 4

0

[^0]

[^1]Which do you perform first?
Translational or orientation alignment?

Translational and orientation alignment are interdependent

Image 1

Image 2

Superimposed

SOLUTION: You try a set of reasonable shifts, and perform separate orientation alignments for each.

Translational and orientation alignment are interdependent

Set of all shifts of up to 1 pixel
Set of all new shifts of up to 2 pixels
Shifts of ($0,+/-1,+/-2$) pixels results in 25 orientation searches.

Outline

Image analysis II

- Fourier transforms revisited
- Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

How to apply the best shift and rotation?

Suppose we shift the image in $x \& y$.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be. $\subset \subseteq I T \equiv \subset$

Effect of shifts

Two more properties of Fourier transforms: Noise

- The Fourier transform of noise is noise
* "White" noise is evenly distributed in Fourier space
- "White" means that each pixel is independent

White noise
Power spectrum
CEITEC

Effects of interpolation are resolution-dependent

Image

Power spectrum

-0.0212983, 0.000483952

Profile

$-0.0574127,0.000869291$

Suppose we rotate the image.
The new pixels will be weighted averages of the old pixels.

Suppose we rotate the image.
New pixel \#9 will be a weighted sum of old pixels $9,10,13$, and 14.

Power spectrum profile

$-0.0574127,0.000869291$

The degradation of the images means that we should minimize the number of interpolations.

From two weeks ago...

Typical magnification: 50,000X Typical detector element: $15 \mu \mathrm{~m}$ (pixel size on the camera scale)

Pixel size on the specimen scale: $15 \times 10^{-6} \mathrm{~m} / \mathrm{px} / 50000=$ $3.0 \times 10^{-10} \mathrm{~m} / \mathrm{px}=3.0 \AA / \mathrm{px}$

In other words, the best resolution we can achieve (or, the finest oscillation we can detect) at $3.0 \AA / \mathrm{px}$ is 6.0 A .

Transmission Electron Microscope
It will be worse due to interpolation, so to be safe, a pixel should be 3 X smaller than your target resolution.
http://www.en.wikipedia.org

Different alignment strategies

Reference-based alignment

There's a problem with reference-based alignment:
Model bias

Model bias

Reference

Images of pure noise

Averages of images of pure noise

$N=1024$
$N=2048$
original

There are reference-free alignment schemes

Reference-free alignment (SPIDER command AP SR)

Single image picked randomly as reference

Disadvantage: Alignment depends on the choice of random seed.

Pyramidal/pairwise alignment

Marco... Carrascosa (1996) Ultramicroscopy

You have aligned images, but they don't all look the same.

Outline

Image analysis II

- Fourier transforms revisited
- Ducks and other animals
- Analogy to the Ewald sphere
- Aliasing
- Alignment
- Interpolation
- Multivariate data analysis

A one-pixel image

http://isomorphism.es

A two-pixel image

A 16-pixel image

Now, we have a 16-dimensional problem.

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

Suppose pixel 6 coincided with pixel 11, And pixel 7 coincided with pixel 10.
Then, we're back to two variables, and a 2D problem.

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Our 16-pixel image can be reorganized into a 16-coordinate vector.

Covariance of measurements x and y :

$$
\langle x y>-<x\rangle\langle y\rangle,
$$

where $\langle x\rangle$ is the mean of x.

A high covariance is a measure of the correlation between two variables.

MDA: An example

8 classes of faces, 64×64 pixels

With noise added

Average:

From http://spider.wadsworth.org/spider_doc/spider/docs/techs/classification/tutorial.html

Principal component analysis (PCA) or Correspondence analysis (CA)

- For a 4096-pixel image, we will have a 4096×4096 covariance matrix.
- Row-reduction of the covariance matrix gives us "eigenvectors."
- The eigenvectors describe correlated variations in the data.
- The eigenvectors have 4096 elements and can be converted back into images, called "eigenimages."
- The first eigenvectors will account for the most variation. The later eigenvectors may only describe noise.
- Linear combinations of these images will give us approximations of the classes that make up the data.

Eigenimages

Reconstituted images

Linear combinations of these images will give us approximations of the classes that make up the data.

Average Eigenimage \#1 Eigenimage \#2 Eigenimage \#3

A reminder of what our original images looked like

Another example: worm hemoglobin

PCA of worm hemoglobin

Average:

Thank you for your attention

CCEITEC

Central European Institute of Technology
Masaryk University
Kamenice 753/5
62500 Brno, Czech Republic
www.ceitec.muni.cz | info@ceitec.muni.cz
 Development for Innovation

[^0]: 374.951, 4.53721

[^1]: 372.357, - 3.21418

