COCEITEC

Central European Institute of Technology
BRNO | CZECH REPUBLIC

Image analysis IV

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

April 24, 2017

Outline

Image analysis III

- More on FFTs
- Classification
- Review of multivariate data analysis
- Classification in 2D
- Classification in 3D
- Resolution estimation
- Fourier Shell Correlation
- Expectation value of noise
- "Gold standard" resolution

Some simple 2D Fourier transforms: a row of points

Some simple 2D Fourier transforms: a series of lines

Some simple 2D Fourier transforms:

 a 2D lattice

Single point

If the point was infinitely sharp, the FFT would be flat.

Some simple 1D transforms: a sharp point (Dirac delta function)

http://en.labs.wikimedia.org/wiki/Basic_Physics_of_Nuclear_Medicine/Fourier_Methods

Single point

If the point was infinitely sharp, the FFT would be flat.

Two points

Three points

Five points

$\mathscr{8} \subset$ ㅌITEC

One row

Two rows

Three rows

Five rows

Full lattice

Animation

What if?

Convolution: a review

Adapted from David DeRosier

Set a molecule down at every lattice point.

Cross-correlation: $F^{*}(X) G(X)$

What if?

$$
\mathscr{A} \subset \text { EITE } \subset
$$

What if?

$f(x)$

$g(x)$

$F(X) G(X)$

Classification

Reiteration of the problem

8 classes of faces, 64×64 pixels

With noise added

Average:

Before we can average the data, we first should find homogeneous subsets.

Multivariate data analysis (MDA)

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Our 16-pixel image can be reorganized into a 16-coordinate vector.

MDA: Reconstituted images

Linear combinations of these images will give us approximations of the images that make up the data.

Average Eigenimage \#1 Eigenimage \#2 Eigenimage \#3

Display Select class 1 start key: 1

*	3	*	*	*	\%	*	\%	*	\$	*	8
\%	*	\%	*	*	*	*	*	*	*	\%	-
*	-	8	*	*	*	*	-	\%	*	*	\bigcirc
*	*	*	-	*	-	*	\%	*	\%	\%	\%
\%	\%	\%	$\%$	\%	*	*	8	*	\%	\%	-
\%	*	\%	\%	*	3	*	*	*	*	*	9
)	*	\%	8								

MDA of worm hemoglobin
Average:

Classification

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

How do we categorize/classify the images?

K-means classification

A number K of images are chosen as seeds.

BAD: Some clusters may be overrepresented/underrepresented.

Diday's method of moving centers

Factor 1 vs 2

싱․

Diday's method of moving centers

Diday's method of moving centers

Diday's method of moving centers

We will note the images that always "travel" together, and will call them a class.

Dendrogram

CLA/dendrogram.ps

Dendrogram

Hierarchical ascendant classification

Hierarchical Ascendant Classification

All images are represented.
The dendrogram will be too heavily branched to interpret without truncation.

Binary-tree viewer

BAD: Information about the height of the branch is lost.

Classification in 3D

Classification:
 Reference-based classification vs. Maximum likelihood (ML3D)

Reference-based classification: ML3D

- Possible conformations must be - Possible conformations are known.
- The combination of parameters (shift, rotation, class) is chosen from the highest correlation value.
- Possible reference bias not known.

The probability of the occurrence of the parameters (shift, rotation, class) is maximized.

- Random, data-dependent

RELION is a variation of maximum likelihood.

Seeding ML3D classification

We split the data set into K classes at random.

There will be slight differences in the reconstructions.
We will iteratively maximize the likelihood of a particle belonging to a particular class.

How good is our reconstruction?

How do we evaluate the quality of a reconstruction?

We split the data set into halves and compare them.

Fourier Shell Correlation (FSC)

Properties:

- Fourier terms have amplitude + phase.
- Correlation values range from -1 to +1 .
- Noise should give an average of 0 .
- The comparison is done as a function of spatial frequency (or "resolution")

Fourier Shell Correlation curve

FSC curve with expectation value of noise

Why does σ vary with spatial frequency?

Random walks:
Why signal-to-noise improves with $\sqrt{ } N$

The "Drunkard's walk"

Let's conduct an experiment.

The "Drunkard's walk"

We're going to assume that each step is random and independent of previous steps.

The "Drunkard's walk"

$\mathscr{8} \subset$ ЕITEС

The teetotaler's walk

-4	-3	-2	-1	0	1	2	3	4

$t=2$
$t=3$
$t=4$

Expectation value

The expected distance that "noise" travels increases with $\sqrt{ } \mathrm{N}$. However, it is not as fast as the distance that "signal" travels.
Thus, as we collect more data, the SNR increase by $N / \sqrt{N}=\sqrt{ } N$

Random walks: more information

Expectation values

and how they related to resolution criteria

With small N , behavior is more unpredictable

One resolution criterion was to compare the FSC to, say, $3^{*} \sigma$. BUT:
The σ value describes the behavior of unaligned noise.

Review: model bias

The model bias can yields false correlations in real space is equivalent to false correlations in Fourier space.

Refinement: classical and "gold standard"

Different resolution criteria

Thank you for your attention

CCEITEC

Central European Institute of Technology
Masaryk University
Kamenice 753/5
62500 Brno, Czech Republic
www.ceitec.muni.cz | info@ceitec.muni.cz
 Development for Innovation

