

Central European Institute of Technology BRNO | CZECH REPUBLIC

Image analysis IV

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

April 24, 2017

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Outline

Image analysis III

- More on FFTs
- Classification
 - Review of multivariate data analysis
 - Classification in 2D
 - Classification in 3D
- Resolution estimation
 - Fourier Shell Correlation
 - Expectation value of noise
 - "Gold standard" resolution

Some simple 2D Fourier transforms: a row of points

Some simple 2D Fourier transforms: a series of lines

Some simple 2D Fourier transforms: a 2D lattice

Single point

If the point was infinitely sharp, the FFT would be flat.

Some simple 1D transforms: a sharp point (Dirac delta function)

http://en.labs.wikimedia.org/wiki/Basic_Physics_of_Nuclear_Medicine/Fourier_Methods

Single point

If the point was infinitely sharp, the FFT would be flat.

Two points

Three points

Five points

One row

Two rows

Three rows

Five rows

Full lattice

Animation

What if?

Convolution: a review

Adapted from David DeRosier

lattice: f(x)

Set a molecule down at every lattice point.

Molecule g(x)

Cross-correlation: $F^*(X) G(X)$

f(x)

(FINGE)

F(X)

g(x)

G(X)

 $f(x) \cdot g(x)$

What if?

Hint

What if?

f(x)

g(x)

G(X)

 $f(x) \cdot g(x)$

F(X)

Classification

Reiteration of the problem

8 classes of faces, 64x64 pixels

With noise added

Average:

Before we can average the data, we first should find homogeneous subsets.

Multivariate data analysis (MDA)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Multivariate data analysis (MDA), or Multivariate statistical analysis (MSA)

Our 16-pixel image can be reorganized into a 16-coordinate vector.

MDA: Reconstituted images

Linear combinations of these images will give us approximations of the images that make up the data.

CEITEC

|--|

Phantom images of worm hemoglobin

MDA of worm hemoglobin

 $-\mathbf{C}_{1}$

 $-C_0$

 $-C_{2}$

Average:

stkreconstituted@1 stkreconstituted@2 stkreconstituted@3 stkreconstituted@4 stkreconstituted@5 stkreconstituted@6 stkreconstituted@7 stkreconstituted@8

 $-C_{2}$

-C₄

 $-C_5$

Classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

How do we categorize/classify the images?

K-means classification

BAD: Some clusters may be overrepresented/underrepresented.

Diday's method of moving centers

Diday's method of moving centers

Diday's method of moving centers

Diday's method of moving centers

We will note the images that always "travel" together, and will call them a class.

Dendrogram

Dendrogram

1.00 docdendro.dat 0.81	OPTIONS	COMMANDS	EDIT I	NFO SYST		
-0.61 -0.42 -0.22 0.03 ₂₅₄ 127 241 338 74 	1.00			docdend	lro.dat	
-0.42 -0.22 -0.32 -0	-0.81					
-0.22 0.03 254 127 241 338 74 74 74 74 74 74 74 74 74 74	-0.61					
r) 65 65 0ld: 17-JUN-2004 At 20:10:40 Header bytes: 1040	-0.42					
r) 65 65 0ld: 17-JUN-2004 At 20:10:40 Header bytes: 1040 .//RC_RF1/Particles/flt/flt005264.dat	-0.22					
.//RC_RF1/Particles/flt/flt005264.dat	-0.03 ₂₅₄		7	241	3 3 8	74
	.//RC_RF	1/Particles	s/flt/flt	005264.d	at	

Hierarchical ascendant classification

Hierarchical Ascendant Classification

All images are represented.

The dendrogram will be too heavily branched to interpret without truncation.

Binary-tree viewer

BAD: Information about the height of the branch is lost.

Çaceitec

Classification in 3D

Classification: Reference-based classification vs. Maximum likelihood (ML3D)

R	eference-based classification:	ML3D		
•	Possible conformations must be known.	 Possible conformations are not known. 		
•	The combination of parameters (shift, rotation, class) is chosen from the highest correlation value.	 The probability of the occurrence of the parameters (shift, rotation, class) is maximized. 		
•	Possible reference bias	 Random, data-dependent 		

RELION is a variation of maximum likelihood.

Seeding ML3D classification

We split the data set into *K* classes at random.

There will be slight differences in the reconstructions. We will iteratively maximize the likelihood of a particle belonging to a particular class.

How good is our reconstruction?

How do we evaluate the quality of a reconstruction?

We split the data set into halves and compare them.

Fourier Shell Correlation (FSC)

Properties:

- Fourier terms have amplitude + phase.
- Correlation values range from -1 to +1.
- Noise <u>should</u> give an average of 0.
- The comparison is done as a function of spatial frequency (or "resolution")

Fourier Shell Correlation curve

FSC curve with expectation value of noise

Why does σ vary with spatial frequency?

Random walks: Why signal-to-noise improves with \sqrt{N}

The "Drunkard's walk"

Let's conduct an experiment.

The "Drunkard's walk"

We're going to assume that each step is random and independent of previous steps.

The "Drunkard's walk"

The teetotaler's walk

Expectation value

The expected distance that "noise" travels increases with \sqrt{N} . However, it is not as fast as the distance that "signal" travels. Thus, as we collect more data, the SNR increase by N/ $\sqrt{N} = \sqrt{N}$

Random walks: more information

Expectation values and how they related to resolution criteria

With small N, behavior is more unpredictable

Review: model bias

N = 1024

N = 2048

original

The model bias can yields false correlations in real space is equivalent to false correlations in Fourier space.

Refinement: classical and "gold standard"

Different resolution criteria

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

