J. Humlíček FKL II JS2017 úterý 9.5. 13:00 ÚFKL

12. Transport na optických frekvencích II

Diskuse vybraných optických spekter: od krystalů k amorfním látkám

Mřížková absorpce v polárních krystalech - LiF

Lorentzovská rezonance na frekvenci TO fononu. Extrapolace reálné části do nulové frekvence dává vibrační příspěvek do statické permitivity.

 $-1/\varepsilon$ umožňuje vidět rezonanci podélného pole na frekvenci LO fononu, má Lorentzovský profil s šířkou ovlivněnou vícefononovou absorpcí.

Vibrace ve složitější krystalové struktuře – a-SiO2

Jednoosá anizotropie, velký počet mřížových módů v Γ (navíc: chirální struktura – optická aktivita)

Síly, polohy a šířky identifikovaných Lorentzových profilů. Střídání TO a LO módů.

l	F_l (10 ⁵ cm ⁻²)	(cm^{-1})	Γ_l (cm ⁻¹)
Drdinary r	ay (E-modes)		
TO ₁	1.78±0.01	449·5±0·2	4.0 ± 0.1
	0.144 ± 0.001	508-1±0-1	3·8±0·1
TO	0.12 ± 0.02	695·0±0·2	$8 \cdot 2 \pm 2 \cdot 0$
LO_2	0.0074 + 0.0002	697.5 ± 1.0	5.9 ± 1.0
TO ₃	0.79 ± 0.02	795·2±0·2	7.9 ± 0.5
	0.056 ± 0.002	808·8±0·3	7.1 ± 0.3
TO₄	7·95±0·03	$1065 \cdot 0 \pm 0 \cdot 2$	7.0 ± 0.2
LO₄	1.64 ± 0.01	1238.7 ± 0.3	$24 \cdot 1 \pm 0 \cdot 5$
TO	0.18 ± 0.04	1161 ± 1	12 ± 4
LO ₅	0.018 ± 0.002	1157·5±1·0	4.8+1.0
Extraordin	ary ray (A_2 modes)		
TO	1.88±0.02	494·5±0·2	5.6 ± 0.1
LO	0.157 ± 0.002	$552 \cdot 2 \pm 0 \cdot 1$	5.0 ± 0.2
TO	0.74 ± 0.02	775·7±0·2	6.5 ± 0.3
LO_2	0.063 ± 0.002	789·2±0·3	6.9 ± 0.3
TO ₃	8.68 ± 0.03	1073.4 ± 0.2	6.1 ± 0.1
LO ₃	1·76±0·01	1248.5 ± 0.3	27.6 ± 0.5

Šířky LO vibrací ovlivněny vícefononovou absorpcí.

"Oblast průhlednosti" mezi mřížovými vibracemi (IR) a elektronovou absorpcí (UV) – α -SiO₂

Zanedbatelná absorpce – permitivita a index lomu jsou reálné, vodivost je ryze imaginární

Disperzi lze popsat velmi přesně (s chybou ~10⁻⁵) rozvojem v sudých mocninách energie fotonu, se dvěma "fononovými" (j = -1, -2) a čtyřmi "elektronovými" (j = 0, ..., 3) členy:

$$\varepsilon(E) \approx \sum_{j} a_{2j} E^{2j}.$$

• · · ·	(10^{-4}eV^4)	$(10^{-2} e^{2} V^{2})$
Ordinary	-1.8 ± 0.3	-1.73 ± 0.01
Extraordinary	-1.4 ± 0.4	-1.83 ± 0.01

<i>a</i> ₀	(10^{-3}eV^{-2})	(10^{-5}eV^{-4})	$(10^{-7} eV^{-6})$
2.3568 ± 0.0001	6.95 ± 0.02	4.6 ± 0.1	$4\cdot 3\pm 0\cdot 2$
2.3841 ± 0.0001	7·19±0·02	$5 \cdot 0 \pm 0 \cdot 1$	4.5 ± 0.2

Proč je vhodné brát pouze sudé mocniny energie fotonu?

Vícefononová odezva nepolárních krystalů: intrinsický Si

Slabá absorpce v IR, deska nelegovaného Si tloušťky 1 mm propouští světlo i na vlnočtu maximálního útlumu (dvoufononový pás u 605 cm⁻¹). Spektrální změny indexu lomu způsobené vícefononovou absorpcí jsou velmi malé (≤ 0.0008).

Mřížové vibrace mají zanedbatelný vliv na index lomu v propustné oblasti (pod gapem), rozhodují mezipásové přechody elektronů. Do vlnočtů 4000 cm-1 je vhodná polynomiální parametrizace

 $n_{
m i}({\it p})=3.41626\,+1.443\, imes\,10^{-9}{\it p}^2$

Donorové stavy a volné elektrony v polovodiči n-typu: Si:P

Úroveň dopingu velmi blízko k přechodu izolátor—kov. Odezva se výrazně odlišuje od Drudeho modelu i při pokojové teplotě. Mohl by v ní být reziduum příspěvku absorpčních linií izolovaných donorů pro slabší doping?

Při menší úrovni dopingu pozorujeme "vymrzání" donorových stavů při snižování teploty.

Překryv odezvy volných elektronů a mezipásových přechodů ve vodičích: TiN

Spektrum $-1/\epsilon$ ukazuje plasmonovou rezonanci elektronů v okolí 2.2 eV, v dobré shodě se spektry EELS.

Volné elektrony kvantitativně:

Extrapolace Drudeho modelu do nulové frekvence dává stejnosměrný specifický odpor

$$\rho(0) = 0.007435 \frac{\Gamma}{E_p^2}$$

v 1/ Ω cm, vezmeme-li Γ a E_p v eV. Dobrá shoda extrapolace a přímo měřené rezistivity.

Odezva volných elektronů a mezipásových přechodů v kovech: Fe

Pro kovy je typický značný nesoulad odezvových funkcí z různých zdrojů (odlišnosti mezi vzorky, kvalita povrchů, velká odrazivost v IR, ...).

Pro Fe je charakteristický malý příspěvek volných elektronů do imaginární části dielektrické funkce v NIR-VIS, zatímco v reálné části je to příspěvek významný (velká spektrální váha volných elektronů spolu s malým tlumením).

Amorfní látky (skla)

Ztráta translační symetrie (LRO) při zachování podobného uspořádání na blízko (SRO) \rightarrow ostřejší struktury ve vibračních a elektronových příspěvcích jsou "rozmazány".

Průhledná oblast mezi nízko- a vysokoenergiovými excitacemi je obvykle zachována. Tlumení může být extrémně malé (optická vlákna).

Vibrační spektra sklovitého SiO₂ ukazují široké (přibližně Gaussovské) pásy v okolí frekvencí fononů v krystalickém SiO₂.

V propustné oblasti umíme oddělit příspěvky vibrací a elektronů k disperzi indexu lomu (podobně jako v krystalech).

Optická skla

Dobře definované vlastnosti v propustné oblasti – index lomu a jeho disperze (hodnota disperzní síly nebo Abbeho čísla).

Zmenšení vibračních frekvencí v těžkých (fluoridových) sklech vede v principu ke snížení minimálního útlumu, který závisí na Rayleighově rozptylu na nehomogenitách indexu lomu a nástupu vibrační absorpce.

Zatím překryto přítomností nečistot a defektů.

