Hyades log t = 8.90 d = 45 pc [Fe/H] = +0.17 dex Width of Main Sequence about 1.8 mag in MV NO Observational error What are the reasons? Haffner & Heckmann, 1937, VeGeo, 55, 77 MV B-V „color“ Absolute magnitude: MV = -2.5 log (L1 + L2) Maximum at L1 = L2 => MV = -0.753 mag The maximal width of the main sequence due to binary systems is 0.753 mag x = a(CAB – CA) + VA – VAB q Vertical distance from the main sequence Praesepe: Fossati et al., 2008, A&A, 483, 891 Fe: -4.28 to -4.62dex; 0.34 dex Metallicity => different opacity Isochrones for 10 Myr Von Zeipel theorem (1924, MNRAS, 84, 665) Energy generation rate From the rotational velocity => e => Teff and L (log g) Slettebak et al., 1980, ApJ, 242, 171 Rotation Vega Hill et al., 2010, ApJ, 712, 250 Collins & Smith, 1985, MNRAS, 213, 519 p … Degree of differential rotation Collins & Smith, 1985, MNRAS, 213, 519 Conclusions – Width of the Main Sequence • Differential reddening: k.DE(B-V) • Spectroscopic Binaries: 0.753 mag • Metallicity: up to 1.2 mag for MV, but only 0.2 mag for (U – B) versus (B – V) • Rotation: 1 mag for MV, 0.2 (?) mag for (U – B) versus (B – V) Binary fraction • Important for the formation and evolution of star clusters • Critical parameter for the IMF • Needed for N-body numerical simulations • Observations are biased in many respects • Many different types of binary systems Lower metallicities seem to favour binary formation Machida, 2008, ApJ, 682, L1 How to observe the binary fraction? • Photometric observations of star clusters 1. “Cluster main sequence” 2. Eclipsing binaries 3. Positions (astrometric binaries) • Spectroscopic observations 1. Radial velocity variability 2. Direct detection in spectrum (SB2) Hurley & Tout, 1998, MNRAS, 300, 977 Haffner & Heckmann, 1937, VeGeo, 55, 77 Simulation with randomly distributed mass ratios Observations of Praesepe with known binary systems Bin size of one day Bin size of one hundred days Bin size of ten thousand days Results for open clusters • Sollima et al., 2010, MNRAS, 401, 577 – NGC 188 (9.63): 21 – 58% – NGC 2204 (9.20): 12 – 36% – NGC 2243 (9.58): 34 – 70% – NGC 2420 (9.08): 17 – 51% – NGC 2516 (8.52): 25 – 66% • Sana et al., 2009, MNRAS, 400, 1479 – NGC 6611 (6.50): 44 – 67% • Sana et al., 2008, MNRAS, 386, 447 – NGC 6231 (6.50): 63% - ?  Bica & Bonatto, 2005, A&A, 431, 943 – IC 4651 (9.26): 50 +- 11% – NGC 2287 (8.20): 48 +- 45% – NGC 2447 (8.60): 21 +- 9% – NGC 2548 (8.56): 48 +- 23% – NGC 2682 (9.51): 39 +- 16% – NGC 3680 (9.20): 25 +- 5% – NGC 5822 (9.00): 16 +- 8% – NGC 6208 (9.11): 54 +- 30% – NGC 6694 (7.85): 18 +- 12% • Sandhu et al., 2003, A&A, 408, 515 – NGC 2099 (8.60): ~30% – King 5 (9.00): ~30% – King 7 (8.80): ~20% Davis et al., 2008, AJ, 135, 2155 Globular clusters