
ORIGINAL PAPER

Brunovistulian terrane (Bohemian Massif, Central Europe)
from late Proterozoic to late Paleozoic: a review

J. Kalvoda Æ O. Babek Æ O. Fatka Æ J. Leichmann Æ
R. Melichar Æ S. Nehyba Æ P. Spacek

Received: 14 October 2005 / Accepted: 15 February 2007

� Springer-Verlag 2007

Abstract The Brunovistulian terrane represents a mi-

crocontinent of enigmatic Proterozoic provenance that was

located at the southern margin of Baltica in the early

Paleozoic. During the Variscan orogeny, it represented the

lower plate at the southern margin of Laurussia, involved

in the collision with the Armorican terrane assemblage. In

this respect, it resembles the Avalonian terrane in the west

and the Istanbul Zone in the east. There is a growing evi-

dence about the presence of a Devonian back-arc at the

margin of the Brunovistulian terrane. The early Variscan

phase was characterized by the formation of Devonian

extensional basins with the within-plate volcanic activity

and formation of narrow segments of oceanic crust. The

oldest Viséan flysch of the Rheic/Rhenohercynian remnant

basin (Protivanov, Andelska Hora and Hornı́ Benesov

formations) forms the highest allochthonous units and

contains, together with slices of Silurian Bohemian facies,

clastic micas from early Paleozoic crystalline rocks that are

presumably derived from terranes of Armorican affinity

although provenance from an active Brunovistulian margin

cannot be fully excluded either. The development of the

Moravo–Silesian late Paleozoic basin was terminated by

coal-bearing paralic and limnic sediments. The progressive

Carboniferous stacking of nappes and their impingement

on the Laurussian foreland led to crustal thickening and

shortening and a number of distinct deformational and

folding events. The postorogenic extension led to the for-

mation of the terminal Carboniferous-early Permian Bo-

skovice Graben located in the eastern part of the

Brunovistulian terrane, in front of the crystalline nappes.

The highest, allochthonous westernmost flysch units, lo-

cally with the basal slices of the Devonian and Silurian

rocks thrusted over the Silesicum in the NW part of the

Brunovistulian terrane, may share a similar tectonic posi-

tion with the Giessen–Harz nappes. The Silesicum repre-

sents the outermost margin of the Brunovistulian terrane

with many features in common with the Northern Phyllite

Zone at the Avalonia–Armorica interface in Germany.

Keywords Bohemian Massif � Brunovistulian terrane �
Paleogeography � Tectonic structure � Variscan orogeny

Introduction

The Brunovistulian terrane represents a Cadomian unit of a

problematic provenance located on the eastern flank of the

Bohemian Massif (Fig. 1; Dudek 1980; Matte et al. 1990;

Schulmann et al. 1991; Lobkowitz et al. 1998; Kalvoda

1995; Zelazniewicz et al. 1997, 2001; Finger et al. 1995,

2000a; Belka et al. 2000, 2002; Kalvoda et al. 2003;
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Schulmann and Gayer 2000; Edel et al. 2003). This terrane

was formed during the Pan-African (Cadomian) orogeny

and was strongly reworked and then incorporated into the

Variscan Bohemian Massif (van Breemen et al. 1982;

Franke 1989; Jelı́nek and Dudek 1993; Finger and Steyrer

1995; Kalvoda 1995; Schulmann et al. 1994; Lobkowitz

et al. 1998; Finger et al. 2000a). During the Variscan

orogeny, in contrast to the remaining part of the Bohemian

Massif, the Brunovistulian terrane acted as the southern

margin of Laurussia (Finger and Steyrer 1995; Kalvoda

1995; Finger et al. 1998; Kalvoda 1998). In this respect, it

shared a similar position with the eastern Avalonia and

both terranes correspond to the Rhenohercynian Zone and,

in a more distal foreland, to the Subvariscan Zone in the

classical concept of the Central European Variscides

(Kossmat 1927; Engel and Franke 1983; Franke 1989).

In the east, it is covered by the nappes of the Outer

Western Carpathians and below these units it extends as far

as the Vienna–Hodonı́n–Nowy Sacz axis of gravity low

(Stranik et al. 1993). The Brunovistulian terrane faces the

Malopolska unit along the Hamburg–Krakow Fault Zone in

the north, the Alpine crystalline rocks in the south (Frisch

and Neubauer 1989; Raumer and Neubauer 1993; Frisch

et al. 1993; Neubauer and Frisch 1993; Finger et al. 1993;

Neubauer and Handler 2000) and the Lugodanubian units

(terranes of the Armorican terrane assemblage in the

Bohemian Massif, i.e Moldanubian, Lugian and Central

Bohemian unit—Chlupac and Vrana 1994) of the Bohe-

mian Massif in the west (Figs. 1, 2).

The term Brunovistulicum was introduced by Havlena

(1976) and later redefined by Dudek (1980) as a late

Proterozoic unit comprising the Brno and the Vistulian

(Visla) areas, covered by the basal Devonian siliciclastics.

The term Brunovistulian unit is preferred here to other

terms such as the Brno, Upper Silesian or Moravo–

Silesian units because the first two refer solely to the

southern and the northern parts of the Brunovistulian ter-

rane, respectively, whereas the Moravian and Silesian

units (the terms Moravicum and Silesicum of Suess 1903,

1912 will be preferred here) constitute narrow zones

composed mostly of metamorphosed rocks with a Bruno-

vistulian affinity at the contact with the Lugodanubian unit

(Mı́sar and Dudek 1993; Lobkowitz et al. 1998; Schul-

mann and Gayer 2000; Kröner et al. 2000). In the regional

geological classification, the Brunovistulian terrane in-

cludes the Brunovistulicum as well as the eastern part of

the Silesicum (Desná dome; Dudek 1980; Mı́sar and Du-

dek 1993) and most probably the Moravicum (Lobkowitz

et al. 1998; Friedl et al. 2004) and the western part of the

Silesicum unit (Keprnı́k dome; Schulmann and Gayer

2000) and at least a part of Velke Vrbno high-grade rocks

forming a narrow belt along the contact of the Silesicum

and Lugicum (Fig. 2; Kröner et al. 2000). For the most

part, both the Moravicum and the Silesicum thus represent

metamorphosed equivalents of the Brunovistulicum, which

were incorporated in the Moravo–Silesian shear zone

(Fig. 2), most probably including in the Silesicum also

slices of Lugodanubian units (Hladil et al. 1999; Kröner

et al. 2000).

In the present paper, we will examine the geologic

evolution (Pan-African and Variscan) and paleogeographic

position of the Brunovistulian terrane from its late Prote-

rozoic birth to the late Paleozoic amalgamation with the

remaining parts of the Bohemian Massif.

Pan-African (Cadomian) tectonosedimentary record

The Pan-African (Cadomian) Brunovistulicum is exposed

in the large Thaya (Finger et al. 1995) and Brno batholiths

Fig. 1 Geological position of

the Brunovistulian terrane in the

European Variscides
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(Leichmann 1996), each of which of about 600 km2 in size

(Fig. 2). On the surface, the Brunovistulicum and its

equivalents are also known from the Jesenı́ky Mts. (the

Desna and Keprnik domes; Fisera and Patocka 1989;

Schulmann and Gayer 2000; Kröner et al. 2000), a small

tectonic window beneath the Variscan Nappes near Tisnov

and several isolated outcrops in the Carpathian Foredeep

near Olomouc. The Brunovistulicum is known from deep

boreholes penetrating the Alpine Carpathian foredeep in

the Czech Republic (Jelı́nek and Dudek 1993), Austria

(Dirnhofer 1996; Finger and Riegler 1999; Riegler 2000)

and Poland (Moczydlowska 1995a, 1997). The reach of the

Brunovistulian positive magnetic anomaly to the S beneath

the Alps and to the NE beneath the Outer Western Car-

pathians suggests that the total area of the Brunovistulicum

is an order of magnitude higher than that indicated by its

surface exposure.

A structure of crucial importance for the whole Bruno-

vistulicum is the Brno batholith. It consists of three major

units, each of distinct evolution, which were amalgamated

at the end of the Pan-African (Cadomian) orogeny (Finger

et al. 2000a). A narrow, N–S trending almost complete

ophiolite belt exposed in the central part of the Brno

batholith divides the whole Brunovistulicum into two dif-

ferent units, the Thaya terrane in the SE and the Slavkov

terrane in the NE (Fig. 2; Finger et al. 2000a). The

available petrological data (Leichmann 1996; Hanzl and

Melichar 1997; Finger et al. 2000b) indicate that the

ophiolite complex was derived most probably from a

supra-subduction environment. 580–600 Ma granitoids

Fig. 2 Simplified geological

sketch and subdivision of the

Brunovistulian terrane and its

position at the easten margin of

the Bohemian Massif
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(van Breemen et al. 1982, Dallmeyer et al. 1994) intrude

into the ophiolite belt on both sides.

The granitoids of the Thaya terrane are not uniform;

both S-types as well as I-types predominate over small

granitic plutons with an A-type affinity. The areal extent of

biotite–amphibole bearing diorites and tonalites is limited,

they are spatially associated with S-type granites. How-

ever, the gravity data (Skacelová and Weiss 1978) indicate

that the S-type granites are underlain by the diorites. The

granitoids and the diorites intruded into high-grade

metapelites. A high 87Sr/86Sr initial ratio (0.708–0.710) and

low eNd from –4 to –7 are typical for the granitoids (Finger

et al. 2000a). Therefore, the S-type granitoids of the Thaya

terrane originated as a consequence of basalt underplating.

Such geological structure indicates the presence of older

crust in the Thaya terrane.

The granitoids of the Slavkov terrane are petrographi-

cally more homogenous, consisting of I-type, amphibole-

to amphibole–biotite bearing quartz diorites to granodior-

ites. Typically, they have low (0.704 to 0.705) Sr initial

ratios and high (0 to +3) eNd (Finger et al. 2000a), high Sr/

Rb ratio and low concentration of HFS elements. All these

data suggest that the rocks can be interpreted as primitive

volcanic-arc granitoids (Chappel and White 1992; Pearce

et al. 1984). Metamorphic rocks of the Slavkov terrane are

known mainly from boreholes in its NE part. They include

flyschoid greywackes, silstones and arenites with interca-

lations of metabasalts and metaandesites (Dudek 1980).

The initial 87Sr/86Sr ratios (0.704–0.706) as well as the eNd

values (–1 to +2) are similar to those of the granitoids.

Consequently, Finger et al. (2000a) interpreted them as arc-

derived metamorphosed volcanoclastic sediments.

For the most part the Brunovistulian crystalline rocks

are directly overlain by Paleozoic deposits but in the N and

NE parts of the Brunovistulicum in southern Poland, a

Vendian flysch sequence of phyllites, metapelites, met-

arenites and metaconglomerates is present. These anchi-

metamorphic rocks are regarded as deposits of a Cadomian

foreland basin (Bula and Jachowicz 1996). The Cambrian

Pan-African (Cadomian) molasse occurs in two areas, one,

which can be correlated with the Slavkov terrane, is located

in the N and NE part of the Brunovistulicum in Upper

Silesia and the other corresponding to the Thaya terrane, is

located in its SE part. The two occurrences were not nec-

essarily deposited in the same geotectonic position,

reflecting the as yet unclear course of the Cadomian

orogeny (Finger et al. 2000a). The lithology of these rocks

ranges from conglomerates to shales, with a predominance

of sandstones (quartzose sandstones to subarcoses). Sedi-

mentological and ichnological data (Mikulas and Nehyba

2001; Vavrdova et al. 2003) reflect terrestrial (fluvial) and

marine (shoreface, shallow marine) depositional environ-

ments. The source area of the clastics was an active

continental margin with predominance of intermediate and

acid igneous rocks (Gilikova et al. 2003). Micropaleonto-

logical and palynological data (acritarchs, vendotaenids,

prasinophytes) suggest an Early Cambrian age for a

majority of these deposits (Jachowicz and Prichystal 1997;

Fatka and Vavrdova 1998; Vavrdova et al. 2003) and re-

veal strong paleobiogeographic similarity with the East

European Platform.

Variscan tectonosedimentary record

Ordovician and Silurian rocks

The early Paleozoic sedimentary record represented by

Ordovician and Silurian rocks is rather scanty, restricted

only to very small areas. The only occurrence of the Or-

dovician sediments includes light green clay-rich siliceous

rocks, interbedded with fine-grained quartz sandstones with

a variable degree of silicification. It has only been

encountered in a restricted area in the northern part of

Upper Silesia (Gladysz et al. 1990; Bula and Jachowicz

1996).

The only record of Silurian sedimentation is preserved

in a tectonic slice at the base of a Carboniferous flysch

overthrust near Stı́nava in the W allochthonous part of the

Brunovistulian terrane (Figs. 2, 3; Kettner and Remes

1936; Chadima and Melichar 1998; Babek et al. 2006). The

provenance of the tectonic slice is difficult to identify more

precisely. The Silurian succession comprises graptolite

shales and calcareous shales with subordinate lenses of

impure limestone and contains graptolites and nautiloid

cephalopods, which indicate Telychian, Sheinwoodian,

Gorstian and Ludfordian ages (Kettner and Remes 1936;

Kraft and Marek 1999). Silurian (438 ± 16 Ma) magmatic

activity has been documented through K–Ar dating of a

basalt vein intruding into the Brunovistulian basement

(Prichystal 1999). The cooling ages of detrital white micas

and monazites present in the Devonian and Carboniferous

sediments ranging from 487 to 420 Ma (Schneider 2002)

suggest an important magmatic or thermal activity in their

source area during the Ordovician–Silurian period.

Devonian and Carboniferous rocks

We can subdivide the Devonian to Carboniferous interval

into two evolutionary phases, an extensional phase and a

compressional to transpressional phase. The extensional

phase is documented by volcano-sedimentary facies

deposited in a passive continental margin setting. During

the compressional phase, deep-marine siliciclastics (Vari-

scan synorogenic flysch) were deposited in a trench to a

deep-marine foreland basin setting (Kumpera and Martinec
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1995). The compression gradually turned to a dextral

transpressive tectonic regime, during which marine to ter-

restrial sediments accumulated in a foreland basin setting.

Extensional phase followed by thermal subsidence

In the Devonian, tectonic extension predominated in most

of the area. In the western marginal part of the Brunovi-

stulian terrane, facing the Rheic Ocean (Fig. 4; Cocks and

Fortey 1982), a back-arc extension is assumed. Patocka and

Valenta (1996) and Patocka and Hladil (1997) outlined a

model in which the volcanic rocks of the NW part of the

Brunovistulian terrane originated in a volcanic arc geo-

tectonic setting with a transition to a back-arc spreading. In

the eastern interior part of the terrane, the extension is

thought to have resulted from a slab pull with subsequent

rifting connected with the collision and thrusting of the

Lugodanubian group of terranes (Kalvoda 1995, 1998;

Kalvoda and Melichar 1999).

During the rifting, old NW–SE trending basement faults

parallel to the Teisseyre–Tornquist Zone and the Krakow–

Lubliniec Zone were reactivated perpendicular to the

Drahany (Rhenohercynian) aulacogen (Fig. 5; Hladil 1994;

Hladil et al. 1999; Kalvoda 1998; Kalvoda and Melichar

1999). Relicts of the tectonically undisturbed sedimentary

record deposited in extensional zones can be distinguished

in the Nesvacilka, Rataje, Jablunka, Jablunkov and other

grabens in the eastern part of the Brunovistulian terrane

(Fig. 5). More to the W, tectonically detached segments of

Devonian to Carboniferous sediments and their basement

were incorporated in the complicated mosaic of the Mor-

avo–Silesian shear zone (Fig. 2; Hladil 1994; Hladil et al.

1999; Kalvoda 1998; Kalvoda and Melichar 1999).

The extensional Moravo–Silesian basin was recently

reconstructed by Kalvoda (1998) and Kalvoda and Meli-

char (1999) as a complicated structure that comprised NW–

SE trending halfgraben subbasins, where more pronounced

passive rifting took place in the west (Fig. 5) and where a

marked W–E polarity can be distinguished. Five principal

Devonian facies domains (facies developments following

the terminology of Chlupac 1964) running parallel with the

present day NNE–SSW and NW–SE tectonic strike were

distinguished reflecting different geotectonic regimes.

From the W to the E, they include the Vrbno and Drahany,

Ludmı́rov (transitional), Tišnov and Moravian Karst

(platform) facies domains (Figs. 4, 5; Chlupac 1965; Zu-

kalova and Chlupac 1982; Hladil 1994; Hladil et al. 1999).

The allochthonous Vrbno and Drahany facies and the

parautochthonous Ludmirov facies (see Fig. 4) are pre-

served only in tectonic slices, the former incorporated in

the metamorphic nappes of the Silesicum and the latter two

in the Carboniferous flysch nappes (Chab et al. 1990;

Kumpera and Martinec 1995; Chadima and Melichar 1998;

Schulmann and Gayer 2000; Babek et al. 2006). The Tis-

nov facies restricted only to a small area (Fig. 2) and the

western part of the Moravian Karst facies are incorporated

in the nappe structure of the Moravicum and the Carbon-

iferous flysch nappes. The eastern part of the Moravian

Karst facies is in a (par)autochthonous position.

In all the facies domains except the Vrbno one (Figs. 4,

5), sedimentation started with Devonian basal clastics

(Fig. 6) which have been recently interpreted by Kalvoda

(1995) and Nehyba et al. (2001) as representing the initial

phase of the passive rifting. In the Drahany facies domain,

the basal clastics are represented by quartz sandstones,

greywacke sandstones and oligomict to polymict con-

Fig. 3 Geological profile in the

central part of the Drahany

Upland showing the tectonic

position of the Silurian

sediments. Modified according

to Kettner (1966)

Fig. 4 Plate tectonic scheme

showing the closure of the

Rheic Ocean between the

Brunovistulian terrane and

Lugodanubian terranes and the

facies of the Brunovistulian

foreland basin in Devonian
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glomerates with greywacke matrix (Chlupac and Svoboda

1963; Dvorak 1973), which yielded in their upper part early

Devonian marine fauna (Chlupac and Svoboda 1963).

Similar age is assumed for quartz conglomerates and

sandstones and locally arcose sandstones in the Ludmirov

facies domain (Chlupac and Svoboda 1963). In the Mor-

avian Karst facies domain, two basic types of basal clastics,

quartzose siliciclastics and polymict siliciclastics, have

been recognized (Skocek 1980). The Devonian basal

clastics are very similar to the Cambrian molasse (see

above) and the available petrological, mineralogical and

geochemical data show a similar or even identical prove-

nance (Gilikova et al. 2003). Paleontological data from

limestone intercalations (Zukalova 1976; Skocek 1980) in

the upper part of ‘‘basal clastics’’ indicate early to middle

Devonian ages. Facies and plant relics indicate deposition

in alluvial to fluvial depositional environment. Towards the

top of the succession, the depositional setting gradually

transformed to a shallow marine environment (Nehyba

et al. 2001).

In the early to late Devonian, deep-marine fossiliferous

shales (Stı́nava–Chabicov Fm.), calciturbidites (Jesenec

Limestone) and submarine bimodal within-plate volcanics

with transition to oceanic crust (Prichystal 1990; 1993;

Hanzl 1999) were deposited in the basinal Drahany (Rhe-

nohercynian) facies domain located in the western part of

the Moravo–Silesian basin (Figs. 4, 5, 6). A succession

including Lower Devonian shallow marine quartzites

(Drakov Quartzite), Emsian to Famennian black phyllites,

metavolcanites–amphibolites and greenschists interfinger-

ing with Givetian to Famennian carbonates and radiolarian

cherts (Fig. 6) are preserved in the Vrbno facies domain

(Rhenohercynian basin; Fig. 4) in the NW part of the

Brunovistulian terrane (Chlupac 1989; Hladil et al. 1987).

Petrological study of metavolcanic suite indicates different

tectonic settings in different locations of the Vrbno facies

ranging from arc and back-arc within-plate volcanites

(Patocka and Valenta 1990, 1996; Patocka and Hladil

1997; Janousek et al. 2006) to oceanic tholeites with

transition to the continental tholeites associated with rift

zones (Soucek 1981; Jedlicka and Pecina 1990).

During the same time interval, terrestrial siliciclastics

accumulated in the Moravian Karst (platform) facies do-

main, followed by platform carbonates with coral-stroma-

toporoid reefs (Macocha Fm.). In contrast, at the transition

between the platform and basin (Ludmı́rov facies domain)

fossiliferous shales (Stı́nava–Chabicov Fm.), periplatform

carbonates and carbonate turbidites (so-called equivalents

of Macocha Fm.; Fig. 6) were deposited. These deposits

are interpreted as indicating incipient crustal extension,

platform drowning and basement subsidence (Babek 1996).

In the late Frasnian to late Tournaisian time, carbonate-

free pelagic shales and radiolarian cherts with rare lime-

stone intercalations (Ponikev Fm.), which were deposited

in the both Drahany and Ludmı́rov facies domains, indicate

further deepening, retreat of carbonate platforms source

and/or local submersion under CCD, most probably due to

advanced crustal extension and subsequent subsidence

(Babek 1996). In the Frasnian to late Famennian interval,

the carbonate platform in the Moravian Karst facies do-

main began to be progressively destroyed in an W–E

direction and differentiated along NW–SE oriented half-

grabens with the deposition of hemipelagic nodular lime-

stones and carbonate turbidites (Lisen Fm) as the result of

advanced crustal extension and block subsidence (Kalvoda

1998; Kalvoda and Melichar 1999). In the eastern part of

the Moravian Karst facies domain on the slope of the

Bohemian massif shallow water carbonate platform sedi-

Fig. 5 Paleogeographic

reconstruction of late Devonian

rift-related sedimentary basins

developing on the

Brunovistulicum in the southern

part of the Moravo–Silesian

basin
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mentation (Drazovice Limestones) continued also in the

Famennian (Figs. 5, 6). In the western part of the Moravian

Karst facies domain, hemipelagic limestones and calcitur-

bidites accumulated till the middle Tournaisian.

In the late Tournaisian to Viséan time, the deep-water

carbonates of the Moravian Karst facies domain were re-

placed by deposition of sandy limestones, microbrecciated

and brecciated limestones and flyschoid Brezina Formation

(Fig. 6). Even more to the east, this interval corresponds to a

prominent unconformity (Fig. 6; Kalvoda 1982a). At the

same time, several carbonate platforms persisted in the

northeastern portion of the basin in Poland (Narkiewicz

2005). In the Tournaisian to late Viséan interval, these plat-

forms became progressively drowned in a W–E direction and

carbonate platform sedimentation was replaced by basinal

spiculitic wackestones and carbonate turbidites preceding the

onset of siliciclastic flysch sedimentation (Belka 1987).

Compressional (flysch) phase

The final closure of the Rheic Ocean and the marginal

Rhenohercynian within-plate to ocean basin (Prichystal

1990, 1993; Hanzl 1999; Fig. 4) was a compressive to

transpressive event related to the accretion of the Armori-

can microcontinents to the Brunovistulian terrane. This

convergence took place along an N–S trending dextral fault

zone that marks the boundary between elements of the

northern and southern shores of the ocean (Kalvoda 1995,

1998; Finger et al. 1998). In many places, the transition

from an extensional to a compressional phase is docu-

mented by long-term hiatuses followed by the deposition of

breccias and fossiliferous shales (Moravský Beroun brec-

cia, Lisen Fm., Brezina Fm.; Figs. 6, 7). The breccias

contain reworked platform carbonate clasts, reworked

Upper Devonian and Tournaisian conodonts, phosphorite

fragments and red-coloured quartz grains resembling those

of the Lower Paleozoic ‘‘basal clastics’’ of the Brunovi-

stulicum. The first occurrence of the breccias shows a

strong diachroneity in the W/SW to E/NE direction (Kal-

voda et al. 1999, Dvorak et al. 1987, Dvorak and Friakova

1978). The clast composition indicates a relative lowstand

conditions related to basement uplift and erosion (Kalvoda

et al. 1999). Based on their composition and diachroneity

in the first occurrence, we consider the breccias to record

the W–E and probably S–N propagation of a wave of

tectonic uplift that preceded the major flux of siliciclastic

flysch.

The onset of plate convergence and a compressional

tectonic regime is indicated by the deposition of synoro-

genic, deep-marine siliciclastics (Variscan flysch or ‘‘Culm

facies’’). The age of the synorogenic siliciclastics (Fig. 7)

is early Viséan to earliest Namurian (Dvorak 1973; Kal-

voda et al. 1995; Kumpera 1983; Spacek and Kalvoda

2000; Zapletal et al. 1989). In the past, Famennian and

Tournaisian ages were claimed for the oldest flysch for-

mation (Andelska Hora Fm.) by Dvorak (1994), but the

evidence presented by the authors is problematic and does

not correspond to biostratigraphic and geochronologic data

Fig. 6 Representative

lithostratigraphic logs of the

principal preorogenic facies

domains and synorogenic

clastics of the Moravo–Silesian

basin
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(Otava et al. 1994, Schneider 2002). The synorogenic sil-

iciclastics are exposed in the Drahany Culm and the Nizky

Jesenik Culm basins (Fig. 2). Two major tectonic units are

distinguished, allochthonous unit deposited in the Rheic/

Rhenohercynian remnant basin (Andelska Hora, Horni

Benesov, Protivanov and partly Rozstani formations) and

parautochthonous unit deposited in the Variscan foreland

basin (Moravice, Hradec–Kyjovice, Myslejovice and partly

Rozstani formations). In the foreland basin phase, the

Drahany subbasin represented a proximal and the Jeseniky

subbasin a distal section of the formerly united Moravo–

Silesian Culm basin (Kumpera and Martinec 1995; Hartley

and Otava 2001). The synorogenic sediments include

polymict conglomerates, greywackes, quartzolithic and

quartzofeldspathic sandstones, siltstones and mudstones

deposited from turbidity currents, sandy and cohesive

debris flows and hypopycnal flows. The parautochthonous

flysch was deposited in elongated turbidite systems parallel

to the NNE–SSW oriented basin axis. The sediments show

cyclic stratigraphic arrangement, which resulted from

pulsating tectonic activity in the hinterland and variations

in the sediment supply from multiple point sources (Babek

et al. 2004). Kumpera and Martinec (1995) interpreted the

filling of both the Culm basins as a multiphase tectonic

event resulting from plate convergence between the

Lugodanubian group of terranes and the Brunovistulian

terrane. Sediments of the first, remnant basin phase (Pro-

tivanov, Andelská Hora and Hornı́ Benesov Fm.) are pre-

served in the western internal part, while deposits of the

second, deep-marine foreland basin phase (Rozstani,

Myslejovice, Moravice and Hradec–Kyjovice Fm.) are

preserved in the eastern external part of the Culm basin

(Fig. 7). Sandstone and conglomerate composition data

from the foreland basin phase indicate increasing sediment

supply from high-grade metamorphic and magmatic sour-

ces and decreasing supply from sedimentary, volcanic and

low-grade metamorphic sources in upward and W–E

directions. This trend is related to the uplift of the source

area and the progressive unroofing of its structurally deeper

crustal regions (Hartley and Otava 2001; Babek et al.

2004). In the upper parts of the flysch succession (Mysle-

jovice, Moravice, Hradec–Kyjovice Fm.), detrital material

with a typical Moldanubian provenance is abundant indi-

cating the late stages of collision and underplating of the

Brunovistulian terrane under the Lugodanubian terranes

(Hartley and Otava 2001; Schulmann and Gayer 2000).

Granulite pebbles in the Upper Viséan conglomerates of

the Myslejovice formation witness very rapid exhumation

and cooling of the Moldanubian orogenic root during

Middle to Late Viséan, with minimum exhumation rates

reaching 2.8–4.3 mm/year (Kotkova et al. 2003, 2007;

Tajcmanova et al. 2006). In late Viséan times, the basin

started to become overfilled (Hartley and Otava 2001;

Babek et al. 2004), which eventually led to cessation of the

deep-marine deposition and beginning of shallow-marine

and continental sedimentation in the early Namurian time.

The synorogenic flysch facies pass gradually upward to

Namurian to Westfalian paralic and continental coal-

bearing molasse of the Upper Silesia basin (Ostrava and

Karviná Formations) reaching up to 3,800 m of thickness.

The onset of the oldest synorogenic flysch in the Viséan

in Moravia contrasts with the middle to late Devonian ages

of its equivalents in the Rhenohercynian zone of SW

England and Germany (Franke and Oncken 1995; Dörr

et al. 1999) and may reflect the W–E diachronism in the

closure of the Rheic/Rhenohercynian Ocean.

Permian record of the Variscan gravitational collapse

The formation of narrow grabens with Stephanian to Au-

tunian sediments at the western margin of the outcropping

Brunovistulicum and in the Lugodanubian hinterland

Fig. 7 Geologic sketch of

Lower Carboniferous

synorogenic clastics of the

Moravo–Silesian basin
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indicates a gravitational collapse and extension of thick-

ened Variscan orogenic crust (Grygar and Vavro 1995).

The possible post-collisional extension may be indicated

also by the intrusions of basaltic dykes into the Permian

sediments (Maly 1993; Prichystal 1994).

The youngest Paleozoic sedimentation of the Brunovi-

stulian cover has been recorded in the Boskovice graben.

The Boskovice graben is an SSW to NNE trending, elon-

gated asymmetrical basin filled with Permo–Carboniferous

terrestrial deposits (Fig. 8). The present-day dimensions of

the basin are 5–12 km in width by 90 km in length, but the

original area of the basin was larger (especially in the E–W

direction). The maximum thickness of the basin fill is about

2,000 m and the post-Autunian denudation is estimated at a

maximum of 500 m. The formation, development and

deposition of the Boskovice graben were controlled by a

major NNE-trending marginal dextral strike-slip fault. This

basin was classified as a half graben with several stages of

development (Mastalerz and Nehyba 1997). The first,

extensional stage created space to accommodate Permo–

Carboniferous deposits. This stage was followed by com-

pressional deformation of the basin fill and westward

thrusting of the Brno batholith (and locally its Devonian

and Lower Carboniferous cover) over the eastern basin

margin; however, the post-Paleozoic age (Alpine) of this

deformation cannot be excluded. The interior part of the

basin was overthrusted leading to the formation of du-

plexes. Transversal segmentation of the basin by NW-

trending faults produced several ‘‘sub-basins’’ with a

slightly different sedimentation history. Deposition started

in the southern part of the Boskovice graben (the Rosice–

Oslavany area) during the Stephanian C and spread towards

the N and NE, where is also the deepest point of the basin.

The termination of the basin filling was diachronous; sed-

imentation ended in the Early Autunian in the south, in the

Early to Middle Autunian in the centre and in the Middle

Autunian in the NE part of the basin (Jaros 1961; Maly

1993; Melichar 1995).

The basin has typically strongly asymmetric distribution

of sedimentary facies and depositional settings (Fig. 8).

Deposits of alluvial fans (breccias and conglomerates)

represent the initial period of deposition. Afterwards, two

different facies successions developed in the opposite

(E–W) parts/limbs of the basin. In the eastern part,

deposition of alluvial conglomerates continued up to the

Autunian, whereas in the western part the conglomerates

passed upward into a heterogeneous, generally more fine-

grained fluvial, deltaic and lake deposits. Several coal

seams developed in the Rosice–Oslavany depression. Re-

peated cyclic alternation of red and grey beds reflects the

important role of climate in the deposition.

Lateral transport, indicated through provenance from the

opposite basin margins (Moldanubian unit, Moravian unit

in the W vs. Devonian to Lower Carboniferous sedimen-

tary cover of the Brno Batholith in the E), turned to axial

transport. The position and importance of the axial fluvial

transport and lake evolution were strongly influenced by

tectonic processes (Mastalerz and Nehyba 1997).

Tectonic structure

The Silurian to Westfalian rocks of the Brunovistulian

terrane are preserved in a strongly imbricated stack of

both E-vergent and W-vergent tectonic slices of the two

major units—allochthonous and parautochthpnous ones

(Figs. 2, 9). The progressive stacking of the nappes and

their impingement on the Laurussian foreland led to

crustal thickening and shortening, regional metamorphism

and a number of distinct deformation and folding events

(Schulmann et al. 1991; Grygar and Vavro 1995;

Chadima and Melichar 1998; Schulmann and Gayer

2000; Havir 2000). A certain E–W polarity in the tec-

tonic and thermal regime can be observed. The general

trend is one of the increasing grades of strain and ther-

mal overprint from late diagenetic conditions (<200�C)

in the distal foreland in the SE to the high-temperature

metamorphic conditions and ductile deformation in the

westernmost part. In most of the area, however, tem-

peratures were generally lower than 300�C (anchizone)

and primary features of the rocks were preserved (Francu

et al. 2002).

The western part of the Brunovistulian terrane, includ-

ing the preorogenic Drahany facies domain, the Silurian

exotics and the synorogenic Protivanov, the Andelská Hora

and Horni Benesov Formations (Fig. 7) are clearly allo-

chthonous (Chab et al. 1990; Hladil et al. 1999; Schulmann

and Gayer 2000; Babek et al. 2006). These units represent a

relic of a lower to middle Viséan remnant basin incorpo-

rated into an accretionary wedge (Kumpera and Martinec

1995, Grygar and Vavro 1995; Francu et al. 2002; Babek

et al. 2006).

The eastern part of the Brunovistulian terrane including

the preorogenic Ludmirov and Moravian Karst facies do-

mains, the synorogenic Myslejovice, Rozstani, Moravice

and Hradec–Kyjovice formations and the sediments of the

Upper Silesia basin represents a parautochthonous thin-

skinned stack and, for a small section, possibly a true

autochthon (Chab et al. 1990; Cizek and Tomek 1991;

Babek et al. 2006). In this part, the Variscan thrusting

ceased in the Late Westfalian to Early Stephanian interval

(Grygar and Vavro 1995).

This tectonic style is generally considered to be the re-

sult of Variscan oblique plate convergence between the

overriding Lugodanubian group of terranes and the sub-

ducted Brunovistulian terrane (Dallmeyer et al. 1992; Fritz

and Neubauer 1995; Kalvoda et al. 2002, 2003).
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The NNE structural trend of the Brunovistulian terrane

shows approximately 90� deflection from the E trend of the

central Rhenohercynian zone. It was explained by Devo-

nian orogenic bending (clockwise rotation) of the Bruno-

vistulian terrane with respect to the Rhenohercynian Belt in

Germany by Hladil (1995), Krs et al. (1995) and Tait et al.

(1996). More recently, the orogenic bending was modelled

by Franke and Zelazniewicz (2002). In the model of Kal-

voda (1995) and Kalvoda and Melichar (1999), the

deflection resulted from transpressional rotation of indi-

vidual tectonic slices during nappe stacking in the W part

of the Brunovistulian terrane while in the E, the original

Devonian and Carboniferous trends of facies zones re-

mained intact. Finger and Steyrer (1995) related the

southward bending of the Variscan fold belt in Moravia to

considerable indentation of the Moldanubian terrane. Hla-

dil et al. (1999) reinterpreted the paleomagnetic data as

indicating strong clockwise tectonic rotation and wedging

of individual massifs. Edel et al. (2003) stressed that the

magnetizations in the Devonian units are likely to be

Carboniferous overprints and contradicted the views of

Devonian rotation of the rigid Brunovistulian promontory

published by previous authors. Grabowski et al. (2004a, b)

reported a major syn- and postfolding, late Variscan re-

magnetization and a minor, residual, pre-325 Ma magnetic

component from the BVT; the latter accounting for about

60� clockwise rotation of the BVT with respect to the Old

Red continent. The same authors stressed a need for re-

evaluation of the orogenic bending hypothesis.

During the late phases of the collision (330–310 Ma),

the ongoing plate convergence resulted in a transition from

compressive to transpressive tectonic style and a major

zone of dextral shearing, the Moravo–Silesian Shear Zone

(Fig. 2) formed between the colliding terranes (Rajlich

1990; Schulmann and Gayer 2000). The transpression led

to imbrication and uplift of the western parts of the Bru-

novistulian terrane (Fig. 9) under medium- to low-tem-

perature conditions (Schulmann and Gayer 2000; Stipska

and Schulmann 1995) and it was associated with the

development of NNE-trending stretching lineations and

asymmetric structures indicating top-to-NNE shearing.

Paleobiogeography of the Brunovistulian terrane

Different and often conflicting paleogeographical positions

of the Brunovistulian terrane have been suggested in the

literature (Fig. 10; Moczydlowska 1997, 1998; Belka et al.

2000, 2002; Cocks 2002; Nawrocki et al. 2004a, b). Moc-

zydlowska (1995a; b, 1997, 1998) analysed acritarch

assemblages from three boreholes that reached the Lower–

Middle Cambrian sequence in northern part of the Bruno-

vistulian terrane in Poland and defined the Upper Silesian

terrane as a distal segment of the eastern Avalonia (cf.

Fig. 10). On the other hand, Belka et al. (2000, p. 94; 2002,

p. 30) considered the Lower Cambrian trilobite genera de-

scribed by Orlowski (1975, 1985) from the northern part of

the Upper Silesian Block as indicating a peri-Baltic affinity

Fig. 8 Lithologic and

lithostratigraphic log of Permian

sediments of the Boskovice

graben
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for this terrane. Based on the study of early Cambrian mi-

croflora the paleogeographic position was also discussed in

the southern part of the Brunovistulian terrane. Fatka and

Vavrdova (1998), Vavrdova et al. (2003) and Vavrdova

(2006) mentioned relations to the Baltoscandinavian Early

Cambrian microflora. Similarly, Mikulas and Nehyba

Fig. 9 a Simplified tectonic

cross-section showing tectonic

relationships between

autochthonous and

allochthonous units in the

souhern part of the

Brunovistulian terrane; b
Geologic cross-section of the

Drahany Upland. For location

refer to Fig. 2

Fig. 10 Paleogeographical map

showing possible position of the

Brunovistulian terrane in

Cambrian after various authors:

1 Moczydlowska (1995a,

1995b, 1997, 1998); 2 Fatka and

Vavrdova (1998); 3 Winchester

et al. (2002), Vavrdova et al.

(2003), Nawrocki et al. (2004a,

b). Map modified after

McKerrow et al. (1992) and

Courjault-Radé et al. (1992).

White band illustrates the range

of possible location of the

Brunovistulian terrane
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(2001) correlated the intensity of bioturbation and the ich-

nofabric pattern of lower Cambrian sediments in the Mor-

avian part of the Brunovistulian terrane and East European

Platform. In each of their seven paleogeographical maps

covering the Late Proterozoic to Early Carboniferous peri-

od, Winchester et al. (2002) first placed the Brunovistulian

terrane (indicated as BM = Bruno–Silesia–Moesia) in a

position between the Baltica and peri-Gondwanan terranes

(end of Proterozoic to Early Cambrian). During the Middle

Cambrian to the Ordovician, the Brunovistulian terrane

separated from the Gondwana but it was still attached to

Baltica (Nawrocki et al. 2004b) SE of its recent position,

while during the Silurian it started moving more or less

along the southern margin of the Baltica. In this model, the

Brunovistulicum acted as a bridge between the Baltica and

peri-Gondwana, never moving far from Baltica. Cocks

(2002) provided a short but comprehensive evaluation of

the Cambrian trilobites and inarticulate brachiopods estab-

lished in the Malopolska and Lysogory blocks. He sum-

marized his critical paleontological data in his conclusions:

‘‘There seems little doubt that neither the Malopolska nor

the Lysogory blocks formed part of the same terrane in the

Lower Paleozoic as the Bruno–Silesian Block. However,

the faunal evidence from the latter is currently inconclusive

as to whether the latter formed part of Baltica or Gondwana

or was a separate and independent terrane’’ (Cocks, 2002, p.

44). In their recent discussion on the trilobites described by

Orlowski (1975) from the Goczalkowice IG-1 borehole,

Nawrocki et al. (2004a) confirmed the presence of the Baltic

endemic genus Schmidtiellus, which is associated with the

paleogeographically more widely distributed genera Orna-

mentaspis and Strenuaeva.

Silurian fauna was described from graptolite shales at

Stinava (Figs. 2, 3) by Kettner and Remes (1936) and Kraft

and Marek (1999), which form a tectonic slice at the base

of the Protivanov Formation thrust (Fig. 9; Kettner 1966;

Chadima and Melichar 1998; Babek et al. 2006). Similar

facies are widespread in the Barrandian area (Chlupac et al.

1992) and other Armorican terranes. However, graptolite

shales also occur in the SW part of Laurussia in Poland

(Malopolska terrane) and their graptolite associations show

a resemblance to both Avalonia and Armorica (Masiak

et al. 2003).

According to Hladil and Bek (1999) and Hladil et al.

(1999), the Early to Middle Devonian shallow water coral

fauna of the Brunovistulian terrane is quite dissimilar to the

associations of the Barrandian area – a representative of the

Armorican Terrane Assemblage, in contrast with the plant

spores, although the Barandian area was already located

fairly close to the southern Laurussian margin. In their

interpretation, the Ibermaghian faunas of the Barrandian

area show close links to the other southern terranes located

at the southern Rheic margin and NW Africa. They

hypothesized that a land barrier producing populations of

Laurussian plant spores may have prevented the migration

of shallow water marine fauna directly across the Rheic

remnant ocean.

The Late Devonian and Early Carboniferous paleobi-

ogeographic data are based mostly on calcareous forami-

nifers. The Brunovistulian terrane contains highly

diversified foraminiferal fauna, which is typical for the

tropical/subtropical Paleotethyan Realm (Mamet and Bel-

ford 1968). Its clear affinity to the East European Platform

was already recognized by Kalvoda (1982b). Kalvoda

(2001) defined the Fennosarmatian Province to include the

East European Platform, the Urals and the accreted pre-

Variscan Brunovistulian group of terranes, which included

the Malopolska, Brunovistulian, Moesian and Istanbul

terranes (Fig. 1, 11) and, with some reservation, also the

eastern Avalonia. In SW and W Europe, he defined the

Armorican Province to include the Variscan peri-Gondw-

ana terranes. This province is characterized by incomplete

foraminiferal phylogenies and foraminiferal assemblages

with lower diversity than those of the Fennosarmatian

Province. The differences, however, decreased progres-

sively during the Viséan. In this respect, the Brunovistulian

terrane was in the same geotectonic position as the eastern

Avalonia, i.e. on the northern margin of the closing Rheic

Ocean in the Devonian. Although paleomagnetic data

demonstrate that the final consolidation of the Armorican

Terrane Assemblage with the Laurussia occurred in the

Late Devonian (Tait et al. 1997), the terranes located

originally on the southern and northern margins of the

Rheic Ocean interestingly show different paleobiogeo-

graphic affinities to the Armorican and Fennosarmatian

provinces even at the beginning of the Carboniferous.

Discussion

Proterozoic to early Paleozoic record

There exists a broad similarity in the geological structure,

lithology and geochronology between the Cadomian crys-

talline basement of the Brunovistulian terrane and the

Istanbul Zone, supported by their similar Devonian and

Carboniferous tectonosedimentary record and paleobioge-

ography (Kalvoda 2001, 2002, Kalvoda et al. 2002, 2003).

The Proterozoic affinity and evolution of the Brunovistu-

lian terrane remains open. In the view of Finger et al.

(2000a) and Friedl et al. (2000, 2004), petrological data

seem to fix its position within the Amazonian part of the

Pan-African orogenic belt. On the basis of the lithological

and structural evidence, Leichmann (1996) advocated its

similarity with the Eastern Desert of Egypt. On the other

hand, there is also a good fit with the geochronological data
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from the Urals (Scarrow et al. 2001; Gee 2001; Glassm-

acher et al. 1999) and, accordingly, some authors prefer the

Baltic affinity of the Brunovistulian terrane (Pharaoh 1999;

Zelazniewicz et al. 1997, 2001). According to Pharaoh

(1999), terranes with the Cadomian basement originating in

the vicinity of the Urals may have dispersed dextrally along

the Tornquist margin of Baltica in the Early Paleozoic.

Unfortunately, the available paleomagnetic studies offer

diverse Late Proterozoic to Cambrian paleogeographic

reconstructions (Hartz and Torsvik 2002; Torsvik and

Rehnström 2001; Nawrocki 2004a, b; Popov et al. 2002)

leaving the precise location of the Brunovistulian terrane

open to interpretation. The Cambrian paleobiogeographic

data, however, suggest its proximity to Baltica (Fatka and

Vavrdova 1998; Vavrdova et al. 2003; Belka et al. 2000;

Winchester et al. 2002).

Summarizing, even though there may be the best fit of

the Vendian petrological data with the Amazonia, the

Baltoscandinavian affinity of microflora and ichnofauna in

the lower Cambrian molasse of the Brunovistulian terrane

is hard to reconcile with the model of the Vendian location

in the Pan-African belt of Gondwana. Consequently, both

paleobiogeographic, petrologic and paleomagnetic inter-

pretations require a careful scrutiny.

Origin of the Silurian exotics and the lower Paleozoic

detrital micas

The provenance of the Silurian pelagic graptolite shales

and limestones near Stı́nava, the only sedimentary record

before the early Devonian opening of the extensional

basins on the Brunovistulian basement in Moravia, is an

enigma. We can propose three models for their origin. In

the first model, the Silurian facies were deposited in a

back-arc basin of a hypothetical, consumed Brunovistulian

magmatic arc. This may be supported by pebbles from the

andesite-dacite-rhyolite volcanic suite and granites with

assumed Brunovistulian affinity present in the Lower

Viséan Korenec conglomerate of the Protivanov unit

(Zachovalova 2003), the magmatic-arc suite of tholeitic arc

basalts, low-K calc-alkaline andesites and metakeratophy-

res present in the Devonian Vrbno facies domain (Patocka

and Hladil 1997; Janousek et al. 2006) and Silurian mag-

matic activity in the Brunovistulian terrane (Prichystal

1999). The presence of the Silurian volcanic back-arc has

also been discussed for the southern margin of the Rhe-

nohercynian Zone in Germany (Meisl 1990; 1995, Franke

et al. 1995) and in both cases, the arcs may record the

progressive closing of the Rheic Ocean.

In the second model situation, the Silurian facies were

thrust over the Brunovistulian terrane during an early

Variscan docking, by analogy with the Armorican units at

the base of the Giessen–Harz nappe (Fuchs 1976; Franke

and Oncken 1995; Dörr et al. 1992a, b; Dörr and Franke

2002), and the clastic lower Paleozoic material of the

Protivanov Fm. was derived from a colliding Lugodanu-

bian (Armorican) upper plate.

In the third situation, the synorogenic flysch of the

Protivanov Formation as well as Silurian rocks were

deposited at the margin of the Rheic Ocean (Letovice

Ocean of Höck et al. 1997) between the Brunovistulian and

the Lugodanubian terranes (Fig. 4). In this case the asso-

ciation with the Drahany facies domain may be a result of

the tectonic stacking.

Fig. 11 Tectonic map showing

the location of the Moesian

terrane and Istanbul Zone.

Before the opening of the Black

Sea the Istanbul zone was

situated originally along the

Odessa shelf of the East

European platform. Modified

after Okay and Tüzsüz (1999)
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The presence of the Ordovician, Silurian and early

Variscan (391–371 Ga) detrital micas in the synorogenic

siliciclastics of the allochthonous Protivanov, Andelska

Hora, Horni Benesov formations and the Mirov unit

(Schneider 2002) may indicate derivation from either the

Brunovistulian magmatic arc (now eroded or buried under

the Moldanubian nappes) or the upper plate of the Lugo-

danubian (Armorican) group of terranes or both. Similar

ages of the major episodes of granitoid magmatism have

been recognized in the Saxothuringian Zone (Dörr et al.

1992a, b) and in the eastern part of the Armorican Mid-

German Crystalline Rise (Anthes and Reischmann 2001).

Ordovician, Silurian and early Variscan ages of detrital

micas and zircons derived from the Tepla–Barrandian ter-

rane are also reported from the Saxothuringian flysch

(Schäfer et al. 1997).

There is growing evidence that the Brunovistulian ter-

rane was already accreted to Baltica in the Cambrian

(Fatka and Vavrdova 1998; Vavrdova 2006; Belka et al.

2000, 2002; Nawrocki et al. 2004a; Winchester et al.

2002). In this case the presumed early Paleozoic magmatic

activity in the Brunovistulian terrane cannot reflect rifting

and crustal thinning at the northern Gondwana margin as

was the case with the Armorican terranes. Together with

the presence of detrital spinels with a back-arc MORB

affinity, whose provenance Copjaková et al. (2005) attrib-

uted to the Letovice–Rehberg Ocean (part of the Rheic

Ocean), the white micas present in the Protivanov, And-

elska Hora and Horni Benesov formations testify to the

eroded levels of the Lugodanubian and/or Moravian–Sile-

sian nappes.

Comments on the Variscan structure

of the Brunovistulian terrane

There are differences in the large-scale internal architecture

between different marginal parts of the Brunovistulian

terrane. In its southern part (Drahany Upland), the Variscan

continental subduction of the Brunovistulian terrane under

the Moldanubian terrane was relatively shallow, contrib-

uting to widespread thin-skinned tectonic style of the

Moldanubian nappes (Schulmann et al. 1991). A belt of

highly correlating gravity and magnetic anomalies in the

southeastern part of the Bohemian Massif (Gnojek and

Hubatka 2001; Bielik et al. 2006; Lenhardt et al. 2007)

indicates the possible continuation of the Brunovistulian

terrane up to the Pribyslav and Vitis zones, i.e. about 30–

60 km west from its boundary on the surface. In the

northern part (Jesenı́ky Mts.), the angle of continental

subduction was steeper and the bulldozing effect of the

Keprnı́k and Desná units (‘‘crustal boudins’’) contributed

to markedly greater shortening and propagation of the

Culm nappes much further to the east than in the southern

Drahany area (Kumpera and Martinec 1995; Schulmann

and Gayer 2000). Here, the subsurface limits of the Bru-

novistulian terrane are again indicated by a sharp step in

magnetic and gravity fields in the Cervenohorske sedlo

zone (Dudek 1980; Gnojek and Hubatka 2001; Bielik et al.

2006), even though on the surface the Brunovistulian ter-

rane can be traced even more to west in the Keprnik nappe

(Schulmann and Gayer 2000).

The collision between the Lugoanubian terrane and the

Brunovistulian Terrane, connected with the closure of the

Rheic Ocean (Fig. 4), is thought to have commenced dur-

ing the early Carboniferous (Schulmann and Gayer 2000).

This view may be supported by the age of the Letovice

ophiolite amphibolites ranging from 354 to 328 Ma

(MacIntyre et al. 1993) and tectonic incorporation of the

upper Devonian limestones in the nappes (Hladil et al.

1987). An alternative interpretation regarded the dia-

strophic late Devonian Mohelnice Formation (Mirov Culm)

located in hangingwall of the Moldanubian overthrust as

synorogenic sediments connected with the closure of the

Rheic Ocean in late Devonian (Kalvoda 1995, 1998; Hladil

et al. 1999). However, new data on early Carboniferous

cooling ages of detrital white micas ranging from 362.6 to

344.9 Ma (Schneider 2002) put the previously assumed

Devonian age of the Mohelnice Formation in question. To

sum up, the Rheic Ocean between the Lugodanubian and

the Brunovistulian terrane (Fig. 4) was presumably closed

in the early Carboniferous, but due to uncertain tectono-

stratigraphic and paleogeographic affinities of both the

Mı́rov Culm and the Letovice ophiolite this question re-

mains still open (Franke and Zelazniewicz 2002; Misar

et al. 1984; Mı́sar and Dudek 1993).

Devonian and Carboniferous record and the correlation

with the Rhenohercynian zone in Germany

As it was already discussed in detail by Kalvoda et al.

(2002, 2003), in the Devonian to the Permian, the Bruno-

vistulian terrane showed close ties both in terms of its

sedimentary and faunistic records to the East European

Craton, the Moesian terrane and terranes of the Istanbul

Zone (Fig. 11) where the continuation of the Rhenoh-

ercynian zone to the east can be anticipated.

The Devonian preorogenic and Carboniferous synoro-

genic sedimentation also bears close similarity to the

Rhenohercynian Zone of Germany. As both regions had a

different Late Proterozoic to Early Paleozoic history

(Franke 1989; Meissner et al. 1994; Franke 1995a; Kalvoda

1995; Finger and Steyrer 1995; Pharaoh 1999; Belka et al.

2000, 2002; Winchester et al. 2002; Kalvoda et al. 2002,

2003), the parallelism reflects the similar geotectonic re-

gime of the passive continental margin of Laurussia (the

lower plate with respect to the active margins of the
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Armorican Terrane Assemblage; Oncken and Weber 1995;

Oncken et al. 1999; Tait et al. 1997; Babek et al. 2006). In

both areas, crustal extension and differential subsidence

were accompanied by felsic and basic within-plate volca-

nism (Floyd 1995), contributed to the development of

structural lows and rise in a system of halfgrabens (Engel

et al. 1983; Franke 1989; Lütke 1990; Franke 1995b;

Oncken and Weber 1995; McCann 1999; Kalvoda 1998;

Kalvoda and Melichar 1999) and eventually led to pelagic

sedimentation (‘‘Herzynische Fazies’’). Nevertheless, there

are also some differences. While the northern highs of the

Caledonian Old-Red continent furnished most of the Rhe-

nohercynian basin with siliciclastic input throughout the

Devonian (Engel et al. 1983; Franke 1995b), in the Mor-

avo–Silesian basin the coarse siliclastic input was much

lower, related to recycling of materials from the Brunovi-

stulian basement during rifting (Kalvoda 1995; Nehyba

et al. 2001) and limited thus only to the basal parts of the

Devonian sequences.

The Devonian reefoid limestones and Famennian to

Viséan hemipelagic limestones and calciturbidites of the

western part of the Moravian Karst facies domain, located

on a more mobile basement, can be correlated with the

Velbert and Stavelot–Venn anticlines (Franke et al. 1975;

Dreesen et al. 1985) while the eastern part of the Moravian

Karst Facies with the northern part of the Rhenohercynian

autochthon of Germany (McCann 1999).

The facies of the preflysch phase of the Rhenohercynian

autochthon in Germany, characterized by the middle–late

Devonian reef growth and the Famennian to early Car-

boniferous hemipelagic limestones, pelites and cherts

(Engel et al. 1983; Bender et al. 1993; Franke 1995b)

resemble the Ludmirov transitional facies. In particular, the

absence of volcanites suggests resemblance with the sedi-

mentary record W of the river Rhine (Franke 1995b).

Most of the lithostratigraphic units of the Brunovistulian

cover correspond to the parauthochtonous units of the

Rhenish Massif (Fig. 12). To find analogies to the allo-

chthonous Giessen–Harz nappe and other units (Dörr and

Preiss 1982; Dörr 1986, 1990, 1998; Stibane et al. 1984;

Franke 1995b; Dörr and Franke 2002) is very difficult, as

the history of the southern margin of the Rhenohercynian

Zone in Moravia is not as well known as it is in Germany.

In Germany, the existence of the Rhenohercynian (Lizard–

Giessen–Harz) Ocean is well documented by the MOR-

type basalts at the base of the Giessen–Harz nappe (Grösser

and Dörr 1986; Platen et al. 1989; Dörr 1990) and the

presence of the enigmatic Mid German Crystalline Rise

(MGCR), which formed its southern active margin (Franke

and Oncken 1990; Oncken and Weber 1995; Franke 2000).

While the Rheic Ocean between the Laurussia and the

Armorican terrane assemblage closed in Germany in late

Silurian–early Devonian (Franke et al. 1995; Tait et al

1997), this closure most probably did not occur before the

earliest Carboniferous at the eastern margin of the Bohe-

mian massif (Schulmann et al. 1991; Mazur et al. 2006).

In Moravia, the attenuated continental crust with narrow

segments of oceanic crust of the Vrbno and Drahany facies

(Prichystal 1993), analogous to the crust of the Rhehoh-

ercynian Ocean in Germany, seems to be connected with

bac-arc rifting at the margins of the Brunovistulian terrane

(Patocka and Valenta 1996; Janousek et al. 2006) related to

the subduction of the Rheic Ocean beneath the Brunovi-

stulian terrane (see Fig. 4). This is in accord with the

conclusions of Konopasek et al. (2002) who argued for a

bivergent subduction of the Rheic Ocean (Matte et al.

1990) at the eastern margin of the Bohemian massif. A

similar scenario is also assumed in the Sudetes by Mazur

et al. (2006).

In the Drahany facies, the tectonic slices of the lower

Devonian to Tournaisian fossiliferous shales (often with

Bohemian affinity, Chlupac et al. 2002), crinoidal and

hemipelagic limestones and shales with radiolarian cherts,

all alternating with submarine volcanics associated with the

allochthonous flysch nappes, correlate with the tectonically

displaced slices of the Rhenohercynian allochthon (Franke

1995b) rather than with the more distal autochthonous se-

quences of the Dill and Lahn synclines (Fig. 12). In our

assumption, the Drahany facies was deposited on a thinned

passive southern margin of the Brunovistulian terrane

(Figs. 4, 5), where narrow segments of oceanic crust are

anticipated (Prichystal 1993). The structural position of the

Fig. 12 Diagrammatic

representation of tectonic

relationships at the contact of

the Armorican terrane

assemblage and Laurussia in

Germany and Czech Republic.

German part modified after

Franke (2002)
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Silurian exotic sediments and the incomplete, base- and

top-cut-off successions of the Devonian Drahany facies is

best documented in the central part of the Drahany Upland

where tectonic shavings carried along the base of Proti-

vanov nappes are interpreted, based on detailed mapping

and structural studies of the Drahany Upland (Chadima and

Melichar 1998; Babek et al 2006; Figs. 3, 9).

The record of the Vrbno facies represents a part of the

thickened, underplated parautochthonous Keprnı́k and

Desná domes of the Silesicum (Schulmann and Gayer

2000). In many respects it may be similar to the data from

the Northern Phyllite Zone of the southernmost part of the

Rhenohercynian belt (Klügel et al. 1994) where both WPB

and MORB are indicated with possible Late Silurian–Early

Devonian volcanic arc (Meisl 1990; Meisl 1995; Floyd

1995) interpreted by Franke (2000) as a part of the

Armorican Terrane Assemblage. The oldest member of the

Vrbno facies, the metamorphosed shallow marine Drakov

quartzite represents the ‘‘Rheinische Fazies’’ (Langenstr-

assen 1983) and shows close ties to the Taunus quartzite or

the Herdorf group of the Ardenno–Rhenish area (Chlupac

1975, 1981, 1989). Other parallels to the Northern Phyllite

Zone may be seen in the metamorphosed Velke Vrbno

upper allochthon at the margin of the Silesicum (Schul-

mann and Gayer 2000) which contains limestones of pre-

sumably early Devonian age (Hladil and Cejchan 1994;

Hladil et al. 1999) and the possible presence of Silurian

shales and Ordovician quartzites accreted to a volcanic arc

during the Devonian is anticipated (Hladil et al. 1999).

Such a sequence may suggest a Bohemian and Armorican

rather than Brunovistulian provenance (Hladil et al. 1999);

however, Kröner et al. (2000) include at least a part of

Velke Vrbno high-grade rocks in the Brunovistulian ter-

rane. Consequently, the faunistic, lithologic and tectonic

record of the Silesicum may resemble the situation in the

Northern Phyllite Zone where the slices of both Avalonian

and Arnorican units are juxtaposed (Franke 2002).

The onset of a compressional tectonic regime and the

transition to synorogenic sedimentation shows a distinct

heterochroneity and polarity from the middle Tournaisian

in the W (Drahany facies domain) to the late Viséan in the

E (eastern part of the Moravian Karst facies domain). It

coincided with the beginning of the tectonic emplacement

of the Lugodanubian nappes in the W about 350–340 Ma

(Schulmann et al. 1991; Hartley and Otava 2001; Schul-

mann et al. 2005). The progradation of the synorogenic

sediments was controlled by the advancing active margin,

in a manner similar to the Rhenohercynian belt.

The MORB-type volcanics, the Bohemian-type Silurian

and Devonian fossils, the Hercynian facies and the Ordo-

vician, Silurian and early Variscan white micas (Schneider

2002) associated with the structurally highest flysch Pro-

tivanov, Andelska Hora and Horni Benesov nappes speak

in favour of their correlation with the Rhenohercynian al-

lochthon (Fig. 12; Franke 1995b; Dörr et al. 1999). This

interpretation is reinforced also by the overthrust of the

Andelska Hora nappe over the Vrbno unit of the Silesicum

(Chab 1990; Schulmann and Gayer 2000); however, there

are some differences. Other evidence such as the later onset

of synorogenic clastic sedimentation (and higher repre-

sentation of calciturbidites may favour a correlation with

the Rhenohercynian autochthon of Lahn and Dill area

(Birkelbach et al. 1988; Bender et al. 1993; Dörr and

Franke 2002). In our opinion, however, the arguments for

the correlation with Rhenohercynian allochthon are stron-

ger and the age differences can be explained by the sepa-

rate evolution of the Brunovistulian and the Avalonian

terrane during the Variscan plate convergence (Kalvoda

et al. 2002, 2003).

Conclusions

1. The affinity of the late Proterozoic Brunovistulian

terrane is difficult to assess. The Cambrian lithological

and paleontological data show possible close ties to the

Malopolska Terrane and East European Craton.

2. The middle to late Paleozoic evolution shows close ties

to the East European Craton, especially to the terranes

located at its eastern margin, e.g. the Moesian and

terranes of the Istanbul zone (Fig. 11).

3. So far, there is no evidence for the extension of the

Mid-German Crystalline rise as far as the eastern

margin of the Bohemian Massif. The outermost part of

the Brunovistulian terrane is distunguished in the units

of the Silesicum, the Desna nappe with the Vrbno fa-

cies domain, the Keprnik nappe with its Devonian

sedimentary cover and, partly, the Velke Vrbno unit,

which presumably contains tectonic slices of both the

Brunovistulian and Armorican provenance. Conse-

quently, the Silesicum is correlated with the Northern

Phyllite Zone at the sourthern tip of the Avalonian

terrane (Fig. 12).

4. The early Carboniferous closure of the Rheic Ocean by

bivergent subduction seems to offer a simpler scenario

for the tectonic evolution at the margin of the Bruno-

vistulian terrane than at the margin of Avalonia

(Fig. 4).

5. In the Devonian, we can distiguish a period of exten-

sion/transtension, which was connected with basin

differentiation into horsts and grabens. It was the result

of the Devonian rifting, which led to the development of

attenuated continental crust with narrow segments of

oceanic crust in the marginal parts of the Brunovistulian

terrane (Rhenohercynian basin; Figs. 4, 5). A signifi-

cant role of back-arc rifting related to the closure of the
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Rheic Ocean is supposed especially in early and middle

Devonian. The proposed presence of an early Paleozoic

active Brunovistulian margin, now destroyed or cov-

ered by the Lugodanubian nappes, and the presence of a

Silurian back-arc basin needs further investigation.

6. The extension phase was followed by a compression/

transpression phase and the deposition of Viséan to

lowermost Namurian synorogenic flysch (Culm facies)

and Namurian to Westphalian paralic and limnic mo-

lasse in remnant and foreland basins.

7. The oldest allochthonous flysch nappes (Andelska

Hora, Protivanov, Horni Benesov formations) associ-

ated with the Drahany preorogenic facies were derived

from the Rheic/Rhenohercynian remnant basin (Fig. 4)

while the younger parautochthonous formations

(Myslejovice, Moravice, Hradec–Kyjovice) associated

with the Ludmirov and Moravian Karst preorogenic

facies were deposited in the Variscan foreland basin.

8. The latest Paleozoic record can be traced in the up-

permost Carboniferous to lower Permian postorogenic

sediments of the extensional/transtensional Boskovice

Graben.

9. The similar geotectonic position of the Brunovistulian

and the Avalonian terranes at the southern margin of

Laurussia contributed to similar tectonostratigraphic

development of the Devonian and Carboniferous of the

‘‘Rhenohercynian Zone’’ whose extension is antici-

pated in the Istanbul terrane of NW Turkey.

10. Most of the paraautochthonous units of the Bruno-

vistulian Devonian and Carboniferous cover correlate

with the paraautochthonous units of the Rhenish

Massif. Correlation of the allochthonous Andelska

Hora, Horni Benesov and Protivanov nappes with the

Rhenohercynian allochthon of Germany is proposed

(Fig. 12).
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Dörr W (1990) Stratigraphie, Stoffbestand und Fazies der Giessener
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