Bringing Light to Dark Reactions: Acid- and Base Catalysis in Keto–Enol Chemistry Adv. Phys. Org. Chem., 44, 2010, 325 Many reactions of ketones proceed via their enol tautomers. -> Rates of reaction? Equilibria? Some Preliminaries We use water as a solvent: Why? • over 90% of photochemistry on earth occurs in aqueous solution • well-defined pH-scale • heterolytic reactions preferred; no H-abstraction from solvent • biochemistry is mostly “aqueous” The definition of pH (IUPAC Gold Book) Note: pH involves the activity of a single ion, which cannot be measured! The standard activity of a 1 m solution of H+(aq) at infinite dilution (!!!) is, therefore, defined as ao = 1. This looks terribly complicated, but … In practice: be happy, don’t worry! Avoid CO2 in air! Cross-check for buffer solutions 1) H. Sigel, A. D. Zuberbühler, O. Yamauchi, Anal. Chim. Acta, 1991, 255, 63. Prepare buffer solution as described in the literature (I = 0.1 M) Measure pH with a glass electrode. The glass electrode must be calibrated! (See provider instructions, e.g., Metrohm) Remarkably, glass electrode readings (pH)meas are closer to pcH+ than to paH+! 1) Your results should hold within: (pH)meas – (pcH+)calc = 0.03 ± 0.02 Interpretation of pH–rate profiles: log(1kobs) = f(pH) G. M. Loudon, J. Chem. Ed. 1991, 68, 973 (a) 1kobs = kH+cH+ (b) 1kobs = k0 (c) 1kobs = const/cH+ (d) 1kobs = const cH+/(const’ + cH+) for cH+ << const’: 1kobs = (const/const’) cH+ for cH+ >> const’: 1kobs = const (e) 1kobs = const/(const’ + cH+) Downward bends indicate a) the loss or gain of a proton by the substrate or b) a change in the ratelimiting step with pH. The same mechanism operates to the left and right of negative curvature. Upward bends indicate a change of mechanism. Spectrophotometric determination of acidity constants pKa,c Choose a well-known (preferably monoacid) buffer with known pKa,c near (±1 unit) to that pKa,c which you want to determine. Titrate with 0.1 M strong base starting with 0.1 M HA plus dye or with 0.1 M strong acid starting with buffer salt plus dye. Record spectra and get pH readings between small additions of titrant. Global analysis (Specfit or Matlab) of the spectral series (number of components) and fit of an appropriate titration function: Ka,c = (cA–cH+/cHA). The thermodynamic acidity constant Ka o can then be estimated using known activity coefficients. pKa,c(3+) = 4.18 ± 0.02, pKa,c(3) = 11.78 ± 0.03; I = 0.1 M Titration of 2-phenyl-1H-benzimidazole (3) HOAc/NaOAc No buffer The mechanisms of keto–enol tautomerization Enolization and ketonization reactions always observe a first-order rate law, but the observed rate constants depend on pH. Assumption: Protonation equilibria on oxygen are established at all times during keto–enol tautomerization. e.g., pKa K = pKE + pKa E The primed symbols of rate constants, k‘E and k’K, refer to reactions forming or depleting The enol anion E–, respectively. Based on this proposed mechanism we write down the (one-way!) differential rate laws for ketonization of the enol, vK, and enolization of the ketone, vE, separately: Acid cat.: Base cat.: “Uncat.”: Three independent rate constants of ketonization, kH+K, k0’K, and kuc K = k0 K + kH+’KKa E, fully determine the kinetic properties of the Scheme, because the rate constants ki E for the reverse enolization reactions are related to the former by the principle of microscopic reversibility: At equilibrium each reaction path is at equilibrium. Kw = 1.59 x 10–14 M2 at ionic strength I = 0.1 M Hence, the total enol concentration obeys the first-order rate law for reversible reactions: pKa E Can we measure kE and kK separately? If KK = cK/cE >> 1, then kobs ~ kK. The reverse rate constant can be measured by, e.g., acid‐ catalyzed bromination: The rate law is independent of bromine conc.  (Lapworth 1906) Acetophenone obs The bromine titration method Acetylacetone: 13 % Acetone: 2.5 x 10–4 %, i.e., pKE = 5.6 In fact (flash photolysis): pKE = 8.3 ± 0.1 Buffer catalysis The determination of rate constants for a pH‐rate profile in solutions with buffers (pH = 3 –11)  requires extrapolation to zero buffer concentration. The determination of the coefficients of general acid catalysis, kHA, and of general base  catalysis, kA–, requires measurements in buffer solutions with different mole ratios of  general acid, xHA, and extrapolation to xHA = 0 and 1, respectively.     k Photochemical generation of unstable enols and ketones = –12.7 = 9.8 pKa K = pKE + pKa E = –2.9 !!! Isotopic exchange pH–rate profile for 9‐Anthrole –>10H‐Anthr‐9‐one pKE Helv. Chim. Acta 2001, 84, 1441 pH-rate profile: o-nitrotoluene aci-decay o-Nitrobenzyl methyl ether: pH-profile hemi decay cyclo decay JACS, 2004, 126, 4581 2‐(2,4‐Dinitrobenzyl)pyridine: A light activated proton shuttle Helv. Chim. Acta, 2009, 92, 1909 pKa,c = 4.18 ± 0.02 Intercepts of buffer dilution plots pH–Rate profile for the ketonization of phenylynol pKa(phenylynol) ≤ 2.8 ! Bronsted equation Bronsted  variation with ∆Go Marcus theory Solid line: Marcus eq. What is the mechanism of the “uncatalyzed” reaction? Flat portion of pH–rate profile near pH 7 (catalyzed neither by acid nor by base)  Several mechanisms may be considered: • Intramolecular 1,5‐H shift in the ketonization of 1,3‐dienols: • a) water as a general acid • b) water as a general base • c) concerted transfer of two protons    Bronsted eqn: b) The rate constant of the “uncatalyzed” reaction dominates around pH 7, if ∆rGo >> 0 Is carbon protonation of enols always rate‐determining? Photochem. Photobiol. Sci. 2012, 11, 967 k0’K = 2x107 s–1 pKa E = 11.3? The pKa E is about 9.6 (from spectrographic flash photolysis in conc. buffer solutions. Buffer dilution plot Exercises 1. From the data shown in the pH–rate profile of cyclohexa‐2,4‐dienone, calculate the (CH) acidity  constant of cyclohexa‐2,4‐dienone. 2. Explain the curvature in the buffer dilution plot of the observed rate constant of ketonization of 2‐ methylacetophenone‐E‐enol. 3. How can you tell that phenylynol ionizes to phenylynolate at all pH‐values ≥ 2.8?  Why is phenynol at  least 7 orders more acidic than the corresponding enol, PhCH=CHOH, pKa = 9.5? 4. Show that the four proposed mechanisms for the “uncatalyzed ketonization reaction correspond to a  rate law vK = kuccenol that is independent of acid or base. 5. Discuss the pH–rate profile for the decay of 1‐indene‐2‐carboxylic acid enol.      Conclusions • When will YOU do flash photolysis? • beware of artefacts • buffer catalysis • experts in reading pH–rate profiles • equilibrium constants KE spanning 30 orders magnitude • assignments of elementary reactions • LFER