JAF04 Unit 8 Chaos

Task 1 Video – Introduction

Before you watch the video, study the vocabulary:

(http://www.youtube.com/watch?v=JnlkKdDXk-I)
predictable – unsolvable – faith – simplified – premise – initial – vast – curiosity - advent –
decimal – flap – garbage – consequently – by-product – pattern – inherent property –
pendulum – reverse – emerge – cluster – on the edge

Watch the footage and complete the sentences:

- 1. What is the main premise of Chaos theory?
- 2. What facilitated the development of Chaos theory?
- 3. Explain the butterfly effect.
- 4. What are fractals?
- 5. What is the promise of Chaos theory?

Task 2 Read an extract from the book Chaos and complete the gaps with clauses below. Can you guess the meaning of the underlined words?

1 How big is it? How long does it last? These are the most basic questions a scientist
can ask about a thing. They are so basic to the way people conceptualise the world that it is
not easy to see that they imply a certain bias. They suggest that size and duration, qualities
that depend on scale, are qualities with meaning,A When a biologist
describes a human being, or a physicist describes a quark, how big and how long are indeed
appropriate questions. In their gross physical structure, animals are very much tied to a
particular scale. Imagine a human being scaled up to twice its size, keeping all proportions the
same, and you imagine a structure whose bones will collapse under its weight. Scale is
important.
2 The physics of earthquake behaviour is mostly independent of scale. A large
earthquake isB That distinguishes earthquakes from animals, for example – a
ten-inch animal must be structured quite differently from a one-inch animal, and a hundred-
inch animal needs a different architecture still, if its bones are not to snap under the increased
mass. Clouds, on the other hand, are scaling phenomena like earthquakes. Their characteristic
irregularity – describable in terms of fractal dimension – changes not at all as they are
observed on different scales. That is why air travellers lose all perspective on how far away a
cloud is. Without help from cues such as haziness, a cloud twenty feet away can be
indistinguishable from two thousand feet away. Indeed, analysis of satellite pictures has
shown an invariant fractal dimension in clouds observed from hundreds of miles away.
3 It is hard to break the habit of thinking of thingsCBut the
claim of fractal geometry is that, for some elements of nature, looking for a characteristic
scale becomes a <u>distraction</u> . <i>Hurricane</i> . By definition, it is a storm of a certain size. But the
definition is imposed by people on nature. In reality, atmospheric scientists are realising that
tumult in the air forms a continuum, from the gusty swirling of litter on a street corner to the
vast cyclonic systems visible from space. Categories mislead. The ends of the continuum are
of a piece with the middle.
4 It happens that the equations of fluid flow are in many contexts dimensionless,
D <u>Scaled-down</u> airplane wings and ship propellers can be tested in wind
tunnels and laboratory basins. And, with some limitations, small storms act like large storms.

5 Blood vessels, from aorta to capillaries,	E	They branch and divide			
and branch again until they become so narrow that bl					
single file. The nature of their branching is fractal. Their structure resembles one of the					
monstrous imaginary objects conceived by Mandelbrot's turn-of-the-century mathematicians.					
As a matter of physiological necessity, blood vessels must perform a bit of dimensional					
magic. Just as the Koch curve, for example, squeezes					
the circulatory system must squeeze a huge surface a		_ ·			
body's resources, blood is expensive and space is at a					
has devised works so efficiently that, in most tissue,	-				
cells away from a blood vessel. Yet the vessels and b					
F()	nood take a	p intie space,			
6 How did nature manage to evolve such con	nnlicated ar	chitecture? Mandelbrot's			
point is that the complications exist only in the conte					
fractals, branching structures can be described with t					
Perhaps the simple transformations that gave rise to the	-				
Sierpinski have their analogue in the coded instruction					
cannot specify the vast number of bronchi, bronchiol					
structure of the resulting tree, but it can specify a rep	eating proce	ess of <u>offurcation</u> and			
development. Such processes suit nature's purposes.	Caiana	Danavin Da alsa 1000)			
(adapted from Gleick, J. Chaos. Making a Ne	w science.	religuili books, 1998)			
1. no more than about five percent of the boo	dv				
2. in terms of how big they are and how long	•				
3. qualities that can help describe an object of		t			
4. form another kind of continuum.	of Classify I	ι.			
5. with just a few bits of information.					
6. just a scaled-up version of a small one.					
7. meaning that they apply without regard to	scale.				
Task 3 Prepositions					
3.1 Complete the gaps with suitable prepo	sitions				
independent	sitions.				
different					
distinguish A B					
analysis					
habit					
a premium					
give rise					
<u> </u>					
3.2 What prepositions are most common a	fter these p	passive verbs?			
as at in into of on to with	•				
 be defined/ known/ regarded 					
2. be applied/ attributed/ related					
3. be associated/correlated					
4. be comprised/ made up					
5. be included/ involved					
6. be divided/ translated					
7. be based/ centred					
8. be aimed/ estimated					

3.3 Now complete the sentence	es with suitable v	erb forms.	
1. The total cost of the project	et was at nearly 2 billion dollars.		
2. This chapter is	into three secti	ons.	
3. Japan's high saving rate has	been	_ to several factors, including less	
access to consumer credit and	cultural factors.		
4. Since the late 1940s, France	as the leader of European		
integration.			
5. Policy debates in modern Britain are often		on the assumption that	
care for the elderly has been ta	ken over by the sta	te.	
6. This protein is	in the development of the growing brain.		
7. The book is	of 12 chapters.		
8. A straight line can be	as a curve	of infinite or very large radius.	
(3.2 and 3.3. adapted from Hev	vings, M; Thaine, O	C. Cambridge Academic English	
Advanced. CUP, 2012)			

More about Chaos:

http://www.youtube.com/watch?v=_njf8jwEGRo
Watch Robert Sapolsky (Stanford University) giving a lecture on Chaos and Reductionism.