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Preface to the Second Edition

The favorable reaction to the first edition of this book confirmed that the
publication of such an application-oriented text on bifurcation theory of
dynamical systems was well timed. The selected topics indeed cover ma-
jor practical issues of applying the bifurcation theory to finite-dimensional
problems. This new edition preserves the structure of the first edition while
updating the context to incorporate recent theoretical developments, in
particular, new and improved numerical methods for bifurcation analysis.
The treatment of some topics has been clarified.

Major additions can be summarized as follows: In Chapter 3, an ele-
mentary proof of the topological equivalence of the original and truncated
normal forms for the fold bifurcation is given. This makes the analysis of
codimension-one equilibrium bifurcations of ODEs in the book complete.
This chapter also includes an example of the Hopf bifurcation analysis in a
planar system using MAPLE, a symbolic manipulation software. Chapter
4 includes a detailed normal form analysis of the Neimark-Sacker bifur-
cation in the delayed logistic map. In Chapter 5, we derive explicit for-
mulas for the critical normal form coefficients of all codim 1 bifurcations
of n-dimensional iterated maps (i.e., fold, flip, and Neimark-Sacker bifur-
cations). The section on homoclinic bifurcations in n-dimensional ODEs
in Chapter 6 is completely rewritten and introduces the Melnikov inte-
gral that allows us to verify the regularity of the manifold splitting under
parameter variations. Recently proved results on the existence of center
manifolds near homoclinic bifurcations are also included. By their means
the study of generic codim 1 homoclinic bifurcations in n-dimensional sys-
tems is reduced to that in some two-, three-, or four-dimensional systems.
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Two- and three-dimensional cases are treated in the main text, while the
analysis of bifurcations in four-dimensional systems with a homoclinic orbit
to a focus-focus is outlined in the new appendix. In Chapter 7, an explicit
example of the “blue sky” bifurcation is discussed. Chapter 10, devoted to
the numerical analysis of bifurcations, has been changed most substantially.
We have introduced bordering methods to continue fold and Hopf bifur-
cations in two parameters. In this approach, the defining function for the
bifurcation used in the minimal augmented system is computed by solving
a bordered linear system. It allows for explicit computation of the gradi-
ent of this function, contrary to the approach when determinants are used
as the defining functions. The main text now includes BVP methods to
continue codim 1 homoclinic bifurcations in two parameters, as well as all
codim 1 limit cycle bifurcations. A new appendix to this chapter provides
test functions to detect all codim 2 homoclinic bifurcations involving a sin-
gle homoclinic orbit to an equilibrium. The software review in Appendix
3 to this chapter is updated to present recently developed programs, in-
cluding AUTO97 with HomCont, DsTool, and CONTENT providing the
information on their availability by ftp.

A number of misprints and minor errors have been corrected while prepar-
ing this edition. I would like to thank many colleagues who have sent
comments and suggestions, including E. Doedel (Concordia University,
Montreal), B. Krauskopf (VU, Amsterdam), S. van Gils (TU Twente, En-
schede), B. Sandstede (WIAS, Berlin), W.-J. Beyn (Bielefeld University),
F.S. Berezovskaya (Center for Ecological Problems and Forest Productivity,
Moscow), E. Nikolaev and E.E. Shnoll (IMPB, Pushchino, Moscow Region),
W. Langford (University of Guelph), O. Diekmann (Utrecht University),
and A. Champneys (University of Bristol).

I am thankful to my wife, Lioudmila, and to my daughters, Elena and
Ouliana, for their understanding, support, and patience, while I was work-
ing on this book and developing the bifurcation software CONTENT.

Finally, T would like to acknowledge the Research Institute for Applica-
tions of Computer Algebra (RIACA, Eindhoven) for the financial support
of my work at CWI (Amsterdam) in 1995-1997.

Yuri A. Kuznetsov
Amsterdam
September 1997



Preface to the First Edition

During the last few years, several good textbooks on nomnlinear dynam-
ics have appeared for graduate students in applied mathematics. It seems,
however, that the majority of such books are still too theoretically ori-
ented and leave many practical issues unclear for people intending to apply
the theory to particular research problems. This book is designed for ad-
vanced undergraduate or graduate students in mathematics who will par-
ticipate in applied research. It is also addressed to professional researchers
in physics, biology, engineering, and economics who use dynamical systems
as modeling tools in their studies. Therefore, only a moderate mathematical
background in geometry, linear algebra, analysis, and differential equations
is required. A brief summary of general mathematical terms and results,
which are assumed to be known in the main text, appears at the end of
the book. Whenever possible, only elementary mathematical tools are used.
For example, we do not try to present normal form theory in full general-
ity, instead developing only the portion of the technique sufficient for our
purposes.

The book aims to provide the student (or researcher) with both a solid
basis in dynamical systems theory and the necessary understanding of the
approaches, methods, results, and terminology used in the modern applied
mathematics literature. A key theme is that of topological equivalence and
codimension, or “what one may expect to occur in the dynamics with a
given number of parameters allowed to vary.” Actually, the material cov-
ered is sufficient to perform quite complex bifurcation analysis of dynam-
ical systems arising in applications. The book examines the basic topics
of bifurcation theory and could be used to compose a course on nonlin-
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ear dynamical systems or systems theory. Certain classical results, such
as Andronov-Hopf and homoclinic bifurcation in two-dimensional systems,
are presented in great detail, including self-contained proofs. For more com-
plex topics of the theory, such as homoclinic bifurcations in more than two
dimensions and two-parameter local bifurcations, we try to make clear the
relevant geometrical ideas behind the proofs but only sketch them or, some-
times, discuss and illustrate the results but give only references of where
to find the proofs. This approach, we hope, makes the book readable for a
wide audience and keeps it relatively short and able to be browsed. We also
present several recent theoretical results concerning, in particular, bifurca-
tions of homoclinic orbits to nonhyperbolic equilibria and one-parameter
bifurcations of limit cycles in systems with reflectional symmetry. These
results are hardly covered in standard graduate-level textbooks but seem
to be important in applications.

In this book we try to provide the reader with explicit procedures for
application of general mathematical theorems to particular research prob-
lems. Special attention is given to numerical implementation of the devel-
oped techniques. Several examples, mainly from mathematical biology, are
used as illustrations.

The present text originated in a graduate course on nonlinear systems
taught by the author at the Politecnico di Milano in the Spring of 1991. A
similar postgraduate course was given at the Centrum voor Wiskunde en
Informatica (CWI, Amsterdam) in February, 1993. Many of the examples
and approaches used in the book were first presented at the seminars held
at the Research Computing Centre! of the Russian Academy of Sciences
(Pushchino, Moscow Region).

Let us briefly characterize the content of each chapter.

Chapter 1. Introduction to dynamical systems. In this chapter we
introduce basic terminology. A dynamical system is defined geometrically
as a family of evolution operators ¢! acting in some state space X and
parametrized by continuous or discrete time ¢. Some examples, including
symbolic dynamics, are presented. Orbits, phase portraits, and invariant
sets appear before any differential equations, which are treated as one of
the ways to define a dynamical system. The Smale horseshoe is used to illus-
trate the existence of very complex invariant sets having fractal structure.
Stability criteria for the simplest invariant sets (equilibria and periodic or-
bits) are formulated. An example of infinite-dimensional continuous-time
dynamical systems is discussed, namely, reaction-diffusion systems.

Chapter 2. Topological equivalence, bifurcations, and structural
stability of dynamical systems. Two dynamical systems are called topo-
logically equivalent if their phase portraits are homeomorphic. This notion is

'Renamed in 1992 as the Institute of Mathematical Problems of Biology
(IMPB).



Preface to the First Edition xi

then used to define structurally stable systems and bifurcations. The topo-
logical classification of generic (hyperbolic) equilibria and fixed points of
dynamical systems defined by autonomous ordinary differential equations
(ODEs) and iterated maps is given, and the geometry of the phase portrait
near such points is studied. A bifurcation diagram of a parameter-dependent
system is introduced as a partitioning of its parameter space induced by
the topological equivalence of corresponding phase portraits. We introduce
the notion of codimension (codim for short) in a rather naive way as the
number of conditions defining the bifurcation. Topological normal forms
(universal unfoldings of nondegenerate parameter-dependent systems) for
bifurcations are defined, and an example of such a normal form is demon-
strated for the Hopf bifurcation.

Chapter 3. One-parameter bifurcations of equilibria in continu-
ous-time dynamical systems. Two generic codim 1 bifurcations — tan-
gent (fold) and Andronov-Hopf — are studied in detail following the same
general approach: (1) formulation of the corresponding topological normal
form and analysis of its bifurcations; (2) reduction of a generic parameter-
dependent system to the normal form up to terms of a certain order; and
(3) demonstration that higher-order terms do not affect the local bifur-
cation diagram. Step 2 (finite normalization) is performed by means of
polynomial changes of variables with unknown coefficients that are then
fixed at particular values to simplify the equations. Relevant normal form
and nondegeneracy (genericity) conditions for a bifurcation appear natu-
rally at this step. An example of the Hopf bifurcation in a predator-prey
system is analyzed.

Chapter 4. One-parameter bifurcations of fixed points in discre-
te-time dynamical systems. The approach formulated in Chapter 3 is
applied to study tangent (fold), flip (period-doubling), and Hopf (Neimark-
Sacker) bifurcations of discrete-time dynamical systems. For the Neimark-
Sacker bifurcation, as is known, a normal form so obtained captures only
the appearance of a closed invariant curve but does not describe the orbit
structure on this curve. Feigenbaum’s universality in the cascade of period
doublings is explained geometrically using saddle properties of the period-
doubling map in an appropriate function space.

Chapter 5. Bifurcations of equilibria and periodic orbits in n-
dimensional dynamical systems. This chapter explains how the results
on codim 1 bifurcations from the two previous chapters can be applied to
multidimensional systems. A geometrical construction is presented upon
which a proof of the Center Manifold Theorem is based. Explicit formulas
are derived for the quadratic coefficients of the Taylor approximations to
the center manifold for all codim 1 bifurcations in both continuous and
discrete time. An example is discussed where the linear approximation of
the center manifold leads to the wrong stability analysis of an equilibrium.
We present in detail a projection method for center manifold computation
that avoids the transformation of the system into its eigenbasis. Using this
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method, we derive a compact formula to determine the direction of a Hopf
bifurcation in multidimensional systems. Finally, we consider a reaction-
diffusion system on an interval to illustrate the necessary modifications of
the technique to handle the Hopf bifurcation in some infinite-dimensional
systems.

Chapter 6. Bifurcations of orbits homoclinic and heteroclinic
to hyperbolic equilibria. This chapter is devoted to the generation of
periodic orbits via homoclinic bifurcations. A theorem due to Andronov
and Leontovich describing homoclinic bifurcation in planar continuous-time
systems is formulated. A simple proof is given which uses a constructive
C'-linearization of a system near its saddle point. All codim 1 bifurcations
of homoclinic orbits to saddle and saddle-focus equilibrium points in three-
dimensional ODEs are then studied. The relevant theorems by Shil'nikov
are formulated together with the main geometrical constructions involved
in their proofs. The role of the orientability of invariant manifolds is em-
phasized. Generalizations to more dimensions are also discussed. An appli-
cation of Shil’'nikov’s results to nerve impulse modeling is given.

Chapter 7. Other one-parameter bifurcations in continuous-
time dynamical systems. This chapter treats some bifurcations of ho-
moclinic orbits to nonhyperbolic equilibrium points, including the case of
several homoclinic orbits to a saddle-saddle point, which provides one of
the simplest mechanisms for the generation of an infinite number of peri-
odic orbits. Bifurcations leading to a change in the rotation number on an
invariant torus and some other global bifurcations are also reviewed. All
codim 1 bifurcations of equilibria and limit cycles in Zo-symmetric systems
are described together with their normal forms.

Chapter 8. Two-parameter bifurcations of equilibria in conti-
nuous-time dynamical systems. One-dimensional manifolds in the di-
rect product of phase and parameter spaces corresponding to the tangent
and Hopf bifurcations are defined and used to specify all possible codim 2
bifurcations of equilibria in generic continuous-time systems. Topological
normal forms are presented and discussed in detail for the cusp, Bogdanov-
Takens, and generalized Andronov-Hopf (Bautin) bifurcations. An example
of a two-parameter analysis of Bazykin’s predator-prey model is considered
in detail. Approximating symmetric normal forms for zero-Hopf and Hopf-
Hopf bifurcations are derived and studied, and their relationship with the
original problems is discussed. Explicit formulas for the critical normal form
coefficients are given for the majority of the codim 2 cases.

Chapter 9. Two-parameter bifurcations of fixed points in discre-
te-time dynamical systems. A list of all possible codim 2 bifurcations
of fixed points in generic discrete-time systems is presented. Topologi-
cal normal forms are obtained for the cusp and degenerate flip bifurca-
tions with explicit formulas for their coefficients. An approximate normal
form is presented for the Neimark-Sacker bifurcation with cubic degener-
acy (Chenciner bifurcation). Approximating normal forms are expressed
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in terms of continuous-time planar dynamical systems for all strong reso-
nances (1:1, 1:2, 1:3, and 1:4). The Taylor coefficients of these continuous-
time systems are explicitly given in terms of those of the maps in question.
A periodically forced predator-prey model is used to illustrate resonant
phenomena.

Chapter 10. Numerical analysis of bifurcations. This final chapter
deals with numerical analysis of bifurcations, which in most cases is the only
tool to attack real problems. Numerical procedures are presented for the
location and stability analysis of equilibria and the local approximation
of their invariant manifolds as well as methods for the location of limit
cycles (including orthogonal collocation). Several methods are discussed
for equilibrium continuation and detection of codim 1 bifurcations based
on predictor-corrector schemes. Numerical methods for continuation and
analysis of homoclinic bifurcations are also formulated.

Each chapter contains exercises, and we have provided hints for the most
difficult of them. The references and comments to the literature are sum-
marized at the end of each chapter as separate bibliographical notes. The
aim of these notes is mainly to provide a reader with information on fur-
ther reading. The end of a theorem’s proof (or its absence) is marked by
the symbol O, while that of a remark (example) is denoted by ¢ (<),
respectively.

As is clear from this Preface, there are many important issues this book
does not touch. In fact, we study only the first bifurcations on a route to
chaos and try to avoid the detailed treatment of chaotic dynamics, which
requires more sophisticated mathematical tools. We do not consider im-
portant classes of dynamical systems such as Hamiltonian systems (e.g.,
KAM-theory and Melnikov methods are left outside the scope of this book).
Only introductory information is provided on bifurcations in systems with
symmetries. The list of omissions can easily be extended. Nevertheless, we
hope the reader will find the book useful, especially as an interface between
undergraduate and postgraduate studies.

This book would have never appeared without the encouragement and
help from many friends and colleagues to whom I am very much indebted.
The idea of such an application-oriented book on bifurcations emerged in
discussions and joint work with A.M. Molchanov, A.D. Bazykin, E.E. Shnol,
and A.L. Khibnik at the former Research Computing Centre of the USSR
Academy of Sciences (Pushchino). S. Rinaldi asked me to prepare and give a
course on nonlinear systems at the Politecnico di Milano that would be use-
ful for applied scientists and engineers. O. Diekmann (CWI, Amsterdam)
was the first to propose the conversion of these brief lecture notes into a
book. He also commented on some of the chapters and gave friendly sup-
port during the whole project. S. van Gils (TU Twente, Enschede) read the
manuscript and gave some very useful suggestions that allowed me to im-
prove the content and style. I am particularly thankful to A.R. Champneys
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of the University of Bristol, who reviewed the whole text and not only cor-
rected the language but also proposed many improvements in the selection
and presentation of the material. Certain topics have been discussed with J.
Sanders (VU/RIACA/CWI, Amsterdam), B. Werner (University of Ham-
burg), E. Nikolaev (IMPB, Pushchino), E. Doedel (Concordia University,
Montreal), B. Sandstede (IAAS, Berlin), M. Kirkilonis (CWI, Amsterdam),
J. de Vries (CWI, Amsterdam), and others, whom I would like to thank.
Of course, the responsibility for all remaining mistakes is mine. I would
also like to thank A. Heck (CAN, Amsterdam) and V.V. Levitin (IMPB,
Pushchino/CWI, Amsterdam) for computer assistance. Finally, I thank the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for pro-
viding financial support during my stay at CWI, Amsterdam.

Yuri A. Kuznetsov
Amsterdam
December 1994
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1

Introduction to Dynamical Systems

This chapter introduces some basic terminology. First, we define a dynam-
ical system and give several examples, including symbolic dynamics. Then
we introduce the notions of orbits, invariant sets, and their stability. As
we shall see while analyzing the Smale horseshoe, invariant sets can have
very complex structures. This is closely related to the fact discovered in
the 1960s that rather simple dynamical systems may behave “randomly,”
or “chaotically.” Finally, we discuss how differential equations can define
dynamical systems in both finite- and infinite-dimensional spaces.

1.1 Definition of a dynamical system

The notion of a dynamical system is the mathematical formalization of the
general scientific concept of a deterministic process. The future and past
states of many physical, chemical, biological, ecological, economical, and
even social systems can be predicted to a certain extent by knowing their
present state and the laws governing their evolution. Provided these laws
do not change in time, the behavior of such a system could be considered
as completely defined by its initial state. Thus, the notion of a dynamical
system includes a set of its possible states (state space) and a law of the
evolution of the state in time. Let us discuss these ingredients separately
and then give a formal definition of a dynamical system.
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m ! .
‘ ¢
FIGURE 1.1. Classical pendulum.

1.1.1 State space

All possible states of a system are characterized by the points of some set X .
This set is called the state space of the system. Actually, the specification of
a point x € X must be sufficient not only to describe the current “position”
of the system but also to determine its evolution. Different branches of
science provide us with appropriate state spaces. Often, the state space is
called a phase space, following a tradition from classical mechanics.

Example 1.1 (Pendulum) The state of an ideal pendulum is com-
pletely characterized by defining its angular displacement ¢ (mod 27) from
the vertical position and the corresponding angular velocity ¢ (see Figure
1.1). Notice that the angle ¢ alone is insufficient to determine the future
state of the pendulum. Therefore, for this simple mechanical system, the
state space is X = S! x R!, where S' is the unit circle parametrized by the
angle, and R! is the real axis corresponding to the set of all possible veloc-
ities. The set X can be considered as a smooth two-dimensional manifold
(cylinder) in R3. ©

Example 1.2 (General mechanical system) In classical mechanics,
the state of an isolated system with s degrees of freedom is characterized
by a 2s-dimensional real vector:

(qla q2y---5,4s,P1,P25 - - - aps)T

?

where g; are the generalized coordinates, while p; are the corresponding
generalized momenta. Therefore, in this case, X = R?%. If k coordinates are
cyclic, X = SF x R?*7F_ In the case of the pendulum, s = k=1, ¢, = ¢,
and we can take p; = ¢. &

Example 1.3 (Quantum system) In quantum mechanics, the state of
a system with two observable states is characterized by a vector

o= () e
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where a;,i = 1,2, are complex numbers called amplitudes, satisfying the
condition
a1 ]? + Jas|* = 1.

The probability of finding the system in the ith state is equal to p; =
la;|?,i=1,2. ¢

Example 1.4 (Chemical reactor) The state of a well-mixed isothermic
chemical reactor is defined by specifying the volume concentrations of the
n reacting chemical substances

c=(c1 ¢y, cn)t.
Clearly, the concentrations ¢; must be nonnegative. Thus,
X={c:c=(c1,c0,...,cn)T €R™, ¢; >0}.

If the concentrations change from point to point, the state of the reactor is
defined by the reagent distributions c;(x),i = 1,2,...,n. These functions
are defined in a bounded spatial domain €, the reactor interior, and charac-
terize the local concentrations of the substances near a point x. Therefore,
the state space X in this case is a function space composed of vector-valued
functions ¢(x), satisfying certain smoothness and boundary conditions. <

Example 1.5 (Ecological system) Similar to the previous example,
the state of an ecological community within a certain domain €2 can be
described by a vector with nonnegative components

N = (N17N2a"'7NTL)T € an
or by a vector function
N(Q?) = (Nl(x)7N2(m)a- .- aNn(‘T))Ta HAES Q>

depending on whether the spatial distribution is essential for an adequate
description of the dynamics. Here N; is the number (or density) of the ith
species or other group (e.g., predators or prey). <

Example 1.6 (Symbolic dynamics) To complete our list of state
spaces, consider a set {29 of all possible bi-infinite sequences of two symbols,
say {1,2}. A point w € X is the sequence

w={ .. ,w o,w 1,w,ws,wa,. ..},

where w; € {1,2}. Note that the zero position in a sequence must be pointed
out; for example, there are two distinct periodic sequences that can be
written as

w={...,1,2,1,2/1,2,...},
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one with wyg = 1, and the other with wg = 2. The space Q5 will play an
important role in the following.

Sometimes, it is useful to identify two sequences that differ only by a shift
of the origin. Such sequences are called equivalent. The classes of equivalent
sequences form a set denoted by §22. The two periodic sequences mentioned
above represent the same point in Q5. &

In all the above examples, the state space has a certain natural struc-
ture, allowing for comparison between different states. More specifically, a
distance p between two states is defined, making these sets metric spaces.

In the examples from mechanics and in the simplest examples from chem-
istry and ecology, the state space was a real vector space R" of some fi-
nite dimension n, or a (sub-)manifold (hypersurface) in this space. The
Euclidean norm can be used to measure the distance between two states
parametrized by the points x,y € R™, namely

play) = lle—yl = Ve —yo—y)= | D (@-w)? (L1
i=1

where (-, -) is the standard scalar product in R",
n

) = Ty = 3w
i=1

If necessary, the distance between two (close) points on a manifold can
be measured as the minimal length of a curve connecting these points
within the manifold. Similarly, the distance between two states 1, ¢ of the
quantum system from Example 1.3 can be defined using the standard scalar
product in C",

W,y =9 o= Zi/;i%,
i=1

with n = 2. Meanwhile, (¥, 1) = (p,p) = 1.

When the state space is a function space, there is a variety of possible
distances, depending on the smoothness (differentiability) of the functions
allowed. For example, we can introduce a distance between two continuous

vector-valued real functions w(z) and v(z) defined in a bounded closed
domain Q2 € R™ by

plu,v) = |Ju—v|| = ,ax 51618 |u;(x) — vi(z)].
=1,..m o

Finally, in Example 1.6 the distance between two sequences w,0 € s
can be measured by

—+o0
p(w,0) = D Gu0,27 ", (1.2)

k=—o0
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where

S _ 0 if wk:Hk,
Wil =) 1 if wy, # Og.

According to this formula, two sequences are considered to be close if they
have a long block of coinciding elements centered at position zero (check!).

Using the previously defined distances, the introduced state spaces X are
complete metric spaces. Loosely speaking, this means that any sequence of
states, all of whose sufficiently future elements are separated by an arbi-
trarily small distance, is convergent (the space has no “holes”).

According to the dimension of the underlying state space X, the dy-
namical system is called either finite- or infinite-dimensional. Usually, one
distinguishes finite-dimensional systems defined in X = R" from those de-
fined on manifolds.

1.1.2 Time

The evolution of a dynamical system means a change in the state of the
system with time ¢ € T, where T' is a number set. We will consider two
types of dynamical systems: those with continuous (real) time 7' = R!,
and those with discrete (integer) time T' = Z. Systems of the first type
are called continuous-time dynamical systems, while those of the second
are termed discrete-time dynamical systems. Discrete-time systems appear
naturally in ecology and economics when the state of a system at a certain
moment of time ¢ completely determines its state after a year, say at ¢ + 1.

1.1.3  FEwvolution operator

The main component of a dynamical system is an evolution law that de-
termines the state x; of the system at time ¢, provided the initial state xg
is known. The most general way to specify the evolution is to assume that
for given t € T' a map ¢! is defined in the state space X,

o X = X,
which transforms an initial state x¢g € X into some state z; € X at time ¢:
Ty = (ptl’o.

The map ¢! is often called the evolution operator of the dynamical system.
It might be known explicitly; however, in most cases, it is defined indirectly
and can be computed only approximately. In the continuous-time case, the
family {('}ier of evolution operators is called a flow.

Note that o'z may not be defined for all pairs (z,t) € X x T. Dynamical
systems with evolution operator ¢! defined for both ¢ > 0 and ¢ < 0 are
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called invertible. In such systems the initial state xoy completely defines not
only the future states of the system, but its past behavior as well. However,
it is useful to consider also dynamical systems whose future behavior for ¢ >
0 is completely determined by their initial state g at ¢ = 0, but the history
for t < 0 can not be unambigously reconstructed. Such (noninvertible)
dynamical systems are described by evolution operators defined only for
t >0 (ie., for t € RL or Z;). In the continuous-time case, they are called
semiflows.

It is also possible that ¢'zq is defined only locally in time, for example,
for 0 < t < tg, where tg depends on zo € X. An important example of
such a behavior is a “blow-up,” when a continuous-time system in X = R"
approaches infinity within a finite time, i.e.,

ll¢*zoll = +o0,

for t — tg.
The evolution operators have two natural properties that reflect the de-
terministic character of the behavior of dynamical systems. First of all,

(DS.0) ¥ =1d,

where id is the identity map on X, id x = z for all x € X. The property
(DS.0) implies that the system does not change its state “spontaneously.”
The second property of the evolution operators reads

(DS.1) O = o p°.

It means that
-+

¢ = ¢l (o)

for all x € X and t,s € T, such that both sides of the last equation are
defined.! Essentially, the property (DS.1) states that the result of the evo-
lution of the system in the course of ¢ + s units of time, starting at a point
x € X, is the same as if the system were first allowed to change from the
state = over only s units of time and then evolved over the next ¢ units
of time from the resulting state p°z (see Figure 1.2). This property means
that the law governing the behavior of the system does not change in time:
The system is “autonomous.”

For invertible systems, the evolution operator (! satisfies the property
(DS.1) for ¢ and s both negative and nonnegative. In such systems, the
operator ¢! is the inverse to ¢!, (p!)~! = o=t since

o topt =id.

"Whenever possible, we will avoid explicit statements on the domain of defi-
nition of 'z.
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FIGURE 1.2. Evolution operator.

A discrete-time dynamical system with integer ¢ is fully specified by
defining only one map f = !, called “time-one map.” Indeed, using (DS.1),
we obtain

P =plop' =fof=f>

where f? is the second iterate of the map f. Similarly,
S016 — fk

for all £ > 0. If the discrete-time system is invertible, the above equation
holds for k < 0, where f9 = id.

Finally, let us point out that, for many systems, @'z is a continuous
function of x € X, and if ¢ € R!, it is also continuous in time. Here,
the continuity is supposed to be defined with respect to the corresponding
metric or norm in X. Furthermore, many systems defined on R"™, or on
smooth manifolds in R”, are such that 'z is smooth as a function of
(z,t). Such systems are called smooth dynamical systems.

1.1.4 Definition of a dynamical system
Now we are able to give a formal definition of a dynamical system.

Definition 1.1 A dynamical system is a triple {T, X, ©'}, where T is a
time set, X is a state space, and ¢* : X — X is a family of evolution
operators parametrized by t € T and satisfying the properties (DS.0) and
(DS.1).

Let us illustrate the definition by two explicit examples.

Example 1.7 (A linear planar system) Consider the plane X = R?
and a family of linear nonsingular transformations on X given by the matrix
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¢ e)\t 0
Y = 0 eyt )

where A, i # 0 are real numbers. Obviously, it specifies a continuous-time
dynamical system on X. The system is invertible and is defined for all
(x,t). The map ' is continuous (and smooth) in z, as well as in t.

depending on t € R!:

Example 1.8 (Symbolic dynamics) Take the space X = Qg of all
bi-infinite sequences of two symbols {1, 2} introduced in Example 1.6. Con-
sider a map o : X — X, which transforms the sequence

w={.. ,w_o,w_1,wp,wi,ws,...} €X
into the sequence 6 = o(w),
6= { . '797270717907017927' . } € XJ

where
0, = Wk41, ke Z.

The map o merely shifts the sequence by one position to the left. It is
called a shift map. The shift map defines a discrete-time dynamical system
on X, ¢* = o, that is invertible (find p»~1). Notice that two sequences, 6
and w, are equivalent if and only if 6 = o*°(w) for some kg € Z. ©

Later on in the book, we will encounter many different examples of dy-
namical systems and will study them in detail.

1.2 Orbits and phase portraits

Throughout the book we use a geometrical point of view on dynamical
systems. We shall always try to present their properties in geometrical
images, since this facilitates their understanding. The basic geometrical
objects associated with a dynamical system {T, X, ¢t} are its orbits in the
state space and the phase portrait composed of these orbits.

Definition 1.2 An orbit starting at zo is an ordered subset of the state
space X,

Or(zo) = {x € X : @ = p'zg, for allt € T such that @'z is defined}.

Orbits of a continuous-time system with a continuous evolution operator
are curves in the state space X parametrized by the time ¢ and oriented by
its direction of increase (see Figure 1.3). Orbits of a discrete-time system are
sequences of points in the state space X enumerated by increasing integers.
Orbits are often also called trajectories. If yo = @'z for some tg, the
sets Or(zo) and Or(yg) coincide. For example, two equivalent sequences
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Yo

FIGURE 1.3. Orbits of a continuous-time system.

0,w € Qo generate the same orbit of the symbolic dynamics {Z, Qs,0"}.
Thus, all different orbits of the symbolic dynamics are represented by points
in the set Qg introduced in Example 1.6.

The simplest orbits are equilibria.

Definition 1.3 A point 2° € X is called an equilibrium (fixed point) if
otz =20 forallt €T.

The evolution operator maps an equilibrium onto itself. Equivalently,
a system placed at an equilibrium remains there forever. Thus, equilibria
represent the simplest mode of behavior of the system. We will reserve the
name “equilibrium” for continuous-time dynamical systems, while using
the term “fixed point” for corresponding objects of discrete-time systems.
The system from Example 1.7 obviously has a single equilibrium at the
origin, 2% = (0,0)T. If A\, u < 0, all orbits converge to z° as t — +oo (this
is the simplest mode of asymptotic behavior for large time). The symbolic
dynamics from Example 1.7 have only two fixed points, represented by the
sequences

and
wi=1{..,2,2,2,...}.

Clearly, the shift o does not change these sequences: o(w!?) = w!?2.

Another relatively simple type of orbit is a cycle.

Definition 1.4 A cycle is a periodic orbit, namely a nonequilibrium orbit
Lo, such that each point xy € Lo satisfies p!tToxy = @tay with some
To >0, forallt €T.

The minimal Ty with this property is called the period of the cycle Lg. If a
system starts its evolution at a point xp on the cycle, it will return exactly
to this point after every Tj units of time. The system exhibits periodic
oscillations. In the continuous-time case a cycle Lg is a closed curve (see
Figure 1.4(a)).
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Xf\f(xo)
. o
'K/'

@ (b)

FIGURE 1.4. Periodic orbits in (a) a continuous-time and (b) a discrete-time
system.

Definition 1.5 A cycle of a continuous-time dynamical system, in a neigh-
borhood of which there are no other cycles, is called a limit cycle.

In the discrete-time case a cycle is a (finite) set of points

0, f(x0), f*(x0), - -, F°(0) = wo,

where f = ¢! and the period Ty = Ny is obviously an integer (Figure
1.4(b)). Notice that each point of this set is a fized point of the Nyth
iterate fVo of the map f. The system from Example 1.7 has no cycles. In
contrast, the symbolic dynamics (Example 1.8) have an infinite number
of cycles. Indeed, any periodic sequence composed of repeating blocks of
length Ny > 1 represents a cycle of period Ny, since we need to apply the
shift o exactly Vg times to transform such a sequence into itself. Clearly,
there is an infinite (though countable) number of such periodic sequences.
Equivalent periodic sequences define the same periodic orbit.

We can roughly classify all possible orbits in dynamical systems into
fixed points, cycles, and “all others.”

Definition 1.6 The phase portrait of a dynamical system is a partitioning
of the state space into orbits.

The phase portrait contains a lot of information on the behavior of a
dynamical system. By looking at the phase portrait, we can determine
the number and types of asymptotic states to which the system tends as
t — +oo (and as t — —oo if the system is invertible). Of course, it is
impossible to draw all orbits in a figure. In practice, only several key orbits
are depicted in the diagrams to present phase portraits schematically (as
we did in Figure 1.3). A phase portrait of a continuous-time dynamical
system could be interpreted as an image of the flow of some fluid, where
the orbits show the paths of “liquid particles” as they follow the current.
This analogy explains the use of the term “flow” for the evolution operator
in the continuous-time case.
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1.3 Invariant sets

1.3.1 Definition and types

To further classify elements of a phase portrait — in particular, possible
asymptotic states of the system — the following definition is useful.

Definition 1.7 An invariant set of a dynamical system {T, X, '} is a
subset S C X such that xg € S implies ptaxg € S for allt € T.

The definition means that *S C S for all t € T. Clearly, an invariant set
S consists of orbits of the dynamical system. Any individual orbit Or(z)
is obviously an invariant set. We always can restrict the evolution operator
! of the system to its invariant set S and consider a dynamical system
{T, S,}, where ¥t : S — S is the map induced by ¢! in S. We will use
the symbol ! for the restriction, instead of 1?.

If the state space X is endowed with a metric p, we could consider closed
invariant sets in X. Equilibria (fixed points) and cycles are clearly the
simplest examples of closed invariant sets. There are other types of closed
invariant sets. The next more complex are invariant manifolds, that is,
finite-dimensional hypersurfaces in some space R¥. Figure 1.5 sketches an
invariant two-dimensional torus T? of a continuous-time dynamical system
in R? and a typical orbit on that manifold. One of the major discoveries in
dynamical systems theory was the recognition that very simple, invertible,
differentiable dynamical systems can have extremely complex closed invari-
ant sets containing an infinite number of periodic and nonperiodic orbits.
Smale constructed the most famous example of such a system. It provides
an invertible discrete-time dynamical system on the plane possessing an
invariant set A, whose points are in one-to-one correspondence with all the
bi-infinite sequences of two symbols. The invariant set A is not a manifold.
Moreover, the restriction of the system to this invariant set behaves, in a
certain sense, as the symbolic dynamics specified in Example 1.8. That is,
how we can verify that it has an infinite number of cycles. Let us explore
Smale’s example in some detail.

(T

FIGURE 1.5. Invariant torus.
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@ (b) (© (d)
FIGURE 1.6. Construction of the horseshoe map.

1.3.2  Ezample 1.9 (Smale horseshoe)

Consider the geometrical construction in Figure 1.6. Take a square S on the
plane (Figure 1.6(a)). Contract it in the horizontal direction and expand
it in the vertical direction (Figure 1.6(b)). Fold it in the middle (Figure
1.6(c)) and place it so that it intersects the original square S along two
vertical strips (Figure 1.6(d)). This procedure defines a map f : R? — R2.
The image f(S) of the square S under this transformation resembles a
horseshoe. That is why it is called a horseshoe map. The exact shape of the
image f(S) is irrelevant; however, let us assume for simplicity that both
the contraction and expansion are linear and that the vertical strips in the
intersection are rectangles. The map f can be made invertible and smooth
together with its inverse. The inverse map f~! transforms the horseshoe
f(S) back into the square S through stages (d)—(a). This inverse transfor-
mation maps the dotted square S shown in Figure 1.6(d) into the dotted
horizontal horseshoe in Figure 1.6(a), which we assume intersects the orig-
inal square S along two horizontal rectangles.
Denote the vertical strips in the intersection S N f(S) by V; and Vs,

SNf(S)=UuW

(see Figure 1.7(a)). Now make the most important step: Perform the second
iteration of the map f. Under this iteration, the vertical strips V; o will be
transformed into two “thin horseshoes” that intersect the square S along
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Vl V2 Vll V21 V22 V12
H2
Hl
sNf(s) sNf{(g Nixs) snf(s) sN{ (g N2y
@ (b) © (d)

FIGURE 1.7. Vertical and horizontal strips.

four narrow vertical strips: Vi1, Va1, Vaa, and Viy (see Figure 1.7(b)). We
write this as

Sﬁf(S)me(S)=V11UV21UV22UV12-

Similarly,
SN f1(S)=H,UH,,

where Hi o are the horizontal strips shown in Figure 1.7(c), and
SN fHS) N f73(S) = Hi1 U Hi2 U Hag U Hay,

with four narrow horizontal strips H;; (Figure 1.7(d)). Notice that f(H;) =
V;, i =1,2, as well as f2(H,;) = Vij, i,j = 1,2 (Figure 1.8).

(=N AN

H,, ]
w0 I
f(Hy) f(H,y)
1 |
f u u f Vll V21V22W
— N
(@ (b) ©

FIGURE 1.8. Transformation f2(H,;) = Vij, 4,5 = 1,2.

Iterating the map f further, we obtain 2% vertical strips in the intersec-
tion SN f*(S), k=1,2,.... Similarly, iteration of f~! gives 2¥ horizontal
strips in the intersection SN f=%(9), k=1,2,....

Most points leave the square S under iteration of f or f~1. Forget about
such points, and instead consider a set composed of all points in the plane

21

22

12

11




14 1. Introduction to Dynamical Systems

f () NsNi(s) f2(9 NS NsNi(s)Nixs)

(a (b)
FIGURE 1.9. Location of the invariant set.

that remain in the square S under all iterations of f and f~!:
A={zecS:ffx)es, forall k € Z}.

Clearly, if the set A is nonempty, it is an invariant set of the discrete-time
dynamical system defined by f. This set can be alternatively presented as
an infinite intersection,

A=-nf SN fRS)NFHS)NSNFS)NFA(S) N+ fH(S)N-

(any point z € A must belong to each of the involved sets). It is clear from
this representation that the set A has a peculiar shape. Indeed, it should
be located within

F7HS)N SN f(9),
which is formed by four small squares (see Figure 1.9(a)). Furthermore, it
should be located inside

FRE)NFHS) NSNS N FA(S),

which is the union of sizteen smaller squares (Figure 1.9(b)), and so forth.
In the limit, we obtain a Cantor (fractal) set.

Lemma 1.1 There is a one-to-one correspondence h : A — Qy, between
points of A and all bi-infinite sequences of two symbols.

Proof:
For any point « € A, define a sequence of two symbols {1, 2}

w = {...,w_g,w_l,wo,wl,wg,...}

by the formula

— 1 if fk (m) € Hlv

Wk _{ 2 if  fR(z) € Hy, (1.3)
for k =0,+1,+2,.... Here, f© = id, the identity map. Clearly, this formula
defines a map h : A — o, which assigns a sequence to each point of the
invariant set.
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To verify that this map is invertible, take a sequence w € Qs, fix m > 0,
and consider a set R,,(w) of all points z € S, not necessarily belonging to
A, such that

r* (z) € Hy,,

for —m < k < m — 1. For example, if m = 1, the set Ry is one of the
four intersections V; N Hy. In general, R,, belongs to the intersection of a
vertical and a horizontal strip. These strips are getting thinner and thinner
as m — +00, approaching in the limit a vertical and a horizontal segment,
respectively. Such segments obviously intersect at a single point x with
h(z) = w. Thus, h : A — Qs is a one-to-one map. It implies that A is
nonempty. O

Remark:

The map h : A — Qs is continuous together with its inverse (a homeo-
morphism) if we use the standard metric (1.1) in S C R? and the metric
given by (1.2) in Qy. &

Consider now a point € A and its corresponding sequence w = h(x),
where h is the map previously constructed. Next, consider a point y = f(x),
that is, the image of  under the horseshoe map f. Since y € A by definition,
there is a sequence that corresponds to y : § = h(y). Is there a relation
between these sequences w and 67 As one can easily see from (1.3), such a
relation exists and is very simple. Namely,

ek = Wk+1, ke Z7

since f¥(f(z)) = f**!(x). In other words, the sequence 6 can be obtained
from the sequence w by the shift map o, defined in Example 1.8:

0 =o(w).

Therefore, the restriction of f to its invariant set A C R? is equivalent to
the shift map o on the set of sequences 5. Let us formulate this result as
the following short lemma.

Lemma 1.2 h(f(z)) = o(h(x)), for all x € A.

We can write an even shorter one:
fly=h"toooh.

Combining Lemmas 1.1 and 1.2 with obvious properties of the shift dy-
namics on {29, we get a theorem giving a rather complete description of the
behavior of the horseshoe map.

Theorem 1.1 (Smale [1963]) The horseshoe map f has a closed invari-
ant set A that contains a countable set of periodic orbits of arbitrarily long
period, and an uncountable set of monperiodic orbits, among which there
are orbits passing arbitrarily close to any point of A. O
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The dynamics on A have certain features of “random motion.” Indeed,
for any sequence of two symbols we generate “randomly,” thus prescribing
the phase point to visit the horizontal strips H; and H» in a certain order,
there is an orbit showing this feature among those composing A.

The next important feature of the horseshoe example is that we can
slightly perturb the constructed map f without qualitative changes to its
dynamics. Clearly, Smale’s construction is based on a sufficiently strong
contraction/expansion, combined with a folding. Thus, a (smooth) pertur-
bation f will have similar vertical and horizontal strips, which are no longer
rectangles but curvilinear regions. However, provided the perturbation is
sufficiently small (see the next chapter for precise definitions), these strips
will shrink to curves that deviate only slightly from vertical and horizon-
tal lines. Thus, the construction can be carried through verbatim, and the
perturbed map f will have an invariant set A on which the dynamics are
completely described by the shift map o on the sequence space Q5. As we
will discuss in Chapter 2, this is an example of structurally stable behavior.

Remark:

One can precisely specify the contraction/expansion properties required
by the horseshoe map in terms of erpanding and contracting cones of the
Jacobian matrix f, (see the literature cited in the bibliographical notes in
Appendix 2 to this chapter).

1.3.3 Stability of invariant sets

To represent an observable asymptotic state of a dynamical system, an
invariant set Sy must be stable; in other words, it should “attract” nearby
orbits. Suppose we have a dynamical system {T, X, '} with a complete
metric state space X. Let Sy be a closed invariant set.

Definition 1.8 An invariant set Sy is called stable if

(i) for any sufficiently small neighborhood U D Sy there exists a neigh-
borhood V O Sy such that p'x € U for allz € V and all t > 0;

(ii) there exists a meighborhood Uy D Sy such that o'z — So for all
z €Uy, ast — +oo.

If Sy is an equilibrium or a cycle, this definition turns into the standard
definition of stable equilibria or cycles. Property (i) of the definition is called
Lyapunov stability. If a set Sy is Lyapunov stable, nearby orbits do not leave
its neighborhood. Property (ii) is sometimes called asymptotic stability.
There are invariant sets that are Lyapunov stable but not asymptotically
stable (see Figure 1.10(a)). In contrast, there are invariant sets that are
attracting but not Lyapunov stable, since some orbits starting near Sy
eventually approach Sy, but only after an excursion outside a small but
fixed neighborhood of this set (see Figure 1.10(b)).
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FIGURE 1.10. (a) Lyapunov versus (b) asymptotic stability.

If 2V is a fixed point of a finite-dimensional, smooth, discrete-time dy-
namical system, then sufficient conditions for its stability can be formulated
in terms of the Jacobian matrix evaluated at z°.

Theorem 1.2 Consider a discrete-time dynamical system
x> f(x), zeR",

where f is a smooth map. Suppose it has a fized point 2°, namely f(z°) =
2%, and denote by A the Jacobian matriz of f(x) evaluated at 2%, A =
f(z°). Then the fived point is stable if all eigenvalues iy, pz, . .., pn of A
satisfy |u] < 1.0

The eigenvalues of a fixed point are usually called multipliers. In the
linear case the theorem is obvious from the Jordan normal form. Theorem
1.2, being applied to the Npth iterate fNo of the map f at any point of
the periodic orbit, also gives a sufficient condition for the stability of an
Ny-cycle.

Another important case where we can establish the stability of a fixed
point of a discrete-time dynamical system is provided by the following
theorem.

Theorem 1.3 (Contraction Mapping Principle) Let X be a complete
metric space with distance defined by p. Assume that there is a map f : X —
X that is continuous and that satisfies, for all z,y € X,

p(f(x), f(y)) < Ap(,y),

with some 0 < A\ < 1. Then the discrete-time dynamical system {Z, X, f*}
has a stable fized point x° € X . Moreover, f*(z) — x° as k — o0, starting
from any point x € X. O

The proof of this fundamental theorem can be found in any text on math-
ematical analysis or differential equations. Notice that there is no restric-
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tion on the dimension of the space X: It can be, for example, an infinite-
dimensional function space. Another important difference from Theorem
1.2 is that Theorem 1.3 guarantees the existence and uniqueness of the
fixed point 20, whereas this has to be assumed in Theorem 1.2. Actually,
the map f from Theorem 1.2 is a contraction near x°, provided an ap-
propriate metric (norm) in R™ is introduced. The Contraction Mapping
Principle is a powerful tool: Using this principle, we can prove the Implicit
Function Theorem, the Inverse Function Theorem, as well as Theorem 1.4
ahead. We will apply the Contraction Mapping Principle in Chapter 4 to
prove the existence, uniqueness, and stability of a closed invariant curve
that appears under parameter variation from a fixed point of a generic pla-
nar map. Notice also that Theorem 1.3 gives global asymptotic stability:
Any orbit of {Z,, X, f*} converges to x°.

Finally, let us point out that the invariant set A of the horseshoe map is
not stable. However, there are similar invariant fractal sets that are stable.
Such objects are called strange attractors.

1.4 Differential equations and dynamical systems

The most common way to define a continuous-time dynamical system is by
differential equations. Suppose that the state space of a system is X = R"”
with coordinates (x1,za,...,2,). If the system is defined on a manifold,
these can be considered as local coordinates on it. Very often the law of
evolution of the system is given implicitly, in terms of the velocities &; as
functions of the coordinates (x1,xa,...,x,):

;= fi(x1,@0,...,20), 1=1,2,...,n,

or in the vector form

i= (@), (1.4)
where the vector-valued function f : R™ — R” is supposed to be sufficiently
differentiable (smooth). The function in the right-hand side of (1.4) is re-
ferred to as a wvector field, since it assigns a vector f(z) to each point z.
Equation (1.4) represents a system of n autonomous ordinary differential
equations, ODEs for short. Let us revisit some of the examples introduced
earlier by presenting differential equations governing the evolution of the
corresponding systems.

Example 1.1 (revisited) The dynamics of an ideal pendulum are de-
scribed by Newton’s second law,

¢ = —k*sin g,

with

7

2=
l
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where [ is the pendulum length, and g is the gravity acceleration constant.
If we introduce 1 = ¢, so that (p, ) represents a point in the state space
X =S! x R', the above differential equation can be rewritten in the form
of equation (1.4):

¢ = ¥

v = —kZsinp. (1.5)

Here

while ’
Y\ _
f( P ) _( —k?singp )'<>

Example 1.2 (revisited) The behavior of an isolated energy-conserving
mechanical system with s degrees of freedom is determined by 2s Hamilto-
nian equations:

. _O0H . O0H
q; = o bi = 3¢,

for i = 1,2,...,s. Here the scalar function H = H(q,p) is the Hamilton
function. The equations of motion of the pendulum (1.5) are Hamiltonian
equations with (¢, p) = (¢, ) and

(1.6)

2

H(p, ) = %4—/{200890. <&

Example 1.3 (revisited) The behavior of a quantum system with two
states having different energies can be described between “observations”
by the Heisenberg equation,

dip

h— = H
i v,

_( M ) 1
1&—(@), a; € C.

The symmetric real matrix

([ B, -A
H_(—A Eo)’ E07A>0,

is the Hamiltonian matrix of the system, and & is Plank’s constant divided
by 27. The Heisenberg equation can be written as the following system of
two linear complex equations for the amplitudes

i1 = E(Eoar — Aay),

| (1.7)
(12 = ﬁ(—Aal —|—E0a2). &
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Example 1.4 (revisited) As an example of a chemical system, let us
consider the Brusselator [Lefever & Prigogine 1968]. This hypothetical sys-
tem is composed of substances that react through the following irreversible
stages:

A yox
B+X 2 v4+D
2X +Y 25 3x

x % E

Here capital letters denote reagents, while the constants k; over the arrows
indicate the corresponding reaction rates. The substances D and E do not
re-enter the reaction, while A and B are assumed to remain constant. Thus,
the law of mass action gives the following system of two nonlinear equations
for the concentrations [X] and [Y]:

d[X
T KAl = BB — ki) + ksl XY,
dly
W~ wBIX - kP
Linear scaling of the variables and time yields the Brusselator equations,
i = a—(b+ 1z + 2%y,
{ y o= bx—xzy. © (1.8)

Example 1.5 (revisited) One of the earliest models of ecosystems was
the system of two nonlinear differential equations proposed by Volterra
[1931]: .

{ Nl = aN; — N1 Ns, (1 9)
N2 = 7"}/N2 +5N1N2 ’

Here N7 and N> are the numbers of prey and predators, respectively, in an
ecological community, « is the prey growth rate, v is the predator mortality,
while 8 and § describe the predators’ efficiency of consumption of the prey.
<&

Under very general conditions, solutions of ODEs define smooth conti-
nuous-time dynamical systems. Few types of differential equations can be
solved analytically (in terms of elementary functions). However, for smooth
right-hand sides, the solutions are guaranteed to exist according to the
following theorem. This theorem can be found in any textbook on ordinary
differential equations. We formulate it without proof.

Theorem 1.4 (Existence, uniqueness, and smooth dependence)
Consider a system of ordinary differential equations

"k:f(x% r € R",
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where f: R™ — R™ is smooth in an open region U C R™. Then there is a
unique function ¥ = x(t,x0), ¥ : Rt x R* — R", that is smooth in (t,x),
and satisfies, for each xg € U, the following conditions:

(i) (0, z0) = wo;
(ii) there is an interval J = (—61,02), where 012 = 01,2(x0) > 0, such
that, for allt € 7,
y(t) = x(tva) € Uv

and
y(t) = f(y(t). O

The degree of smoothness of z(t, z¢) with respect to z in Theorem 1.4
is the same as that of f as a function of z. The function = = z(t, x¢),
considered as a function of time ¢, is called a solution starting at zg. It
defines, for each xg € U, two objects: a solution curve

Cr(zo) = {(t,x) : x = x(t,x0),t € J} C R x R"
and an orbit, which is the projection of Cr(xg) onto the state space,
Or(zo) ={z:z=a(t,x0),t €T} CR"

(see Figure 1.11). Both curves are parametrized by time ¢ and oriented by
the direction of time advance. A nonzero vector f(zg) is tangent to the
orbit Or(zg) at xg. There is a unique orbit passing through a point o € U.
Under the conditions of the theorem, the orbit either leaves U at t = —d;
(and/or ¢ = J3), or stays in U forever; in the latter case, we can take
J = (=00, +00).
Now we can define the evolution operator ¢ : R® — R™ by the formula

o'z = z(t, 20),

which assigns to xg a point on the orbit through z( that is passed ¢ time
units later. Obviously, {R!, R", ¢!} is a continuous-time dynamical system
(check!). This system is invertible. Each evolution operator ¢! is defined for
z €U and t € J, where J depends on x( and is smooth in z. In practice,
the evolution operator ¢! corresponding to a smooth system of ODEs can
be found numerically on fixed time intervals to within desired accuracy.
One of the standard ODE solvers can be used to accomplish this.

One of the major tasks of dynamical systems theory is to analyze the
behavior of a dynamical system defined by ODEs. Of course, one might
try to solve this problem by “brute force,” merely computing many orbits
numerically (by “simulations”). However, the most useful aspect of the
theory is that we can predict some features of the phase portrait of a system
defined by ODEs without actually solving the system. The simplest example
of such information is the number and positions of equilibria. Indeed, the
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FIGURE 1.11. Solution curve and orbit.

equilibria of a system defined by (1.4) are zeros of the vector field given by
its right-hand side:
f(z)=0. (1.10)

Clearly, if f(z") = 0, then ¢'zy = ¢ for all t € R. The stability of an
equilibrium can also be detected without solving the system. For example,
sufficient conditions for an equilibrium z° to be stable are provided by the
following classical theorem.

Theorem 1.5 (Lyapunov [1892]) Consider a dynamical system defined

by
&= f(z), zeR",

where f is smooth. Suppose that it has an equilibrium x° (i.e., f(x°) = 0),
and denote by A the Jacobian matriz of f(x) evaluated at the equilibrium,
A= f.(z%). Then 2 is stable if all eigenvalues A1, \a, ..., A\, of A satisfy
Re A< 0.0

Recall that the eigenvalues are roots of the characteristic equation
det(A — \I) =0,

where [ is the n X n identity matrix.
The theorem can easily be proved for a linear system

= Az, ve€R",

by its explicit solution in a basis where A has Jordan normal form, as well
as for a general nonlinear system by constructing a Lyapunov function L(x)
near the equilibrium. More precisely, by a shift of coordinates, one can place
the equilibrium at the origin, z° = 0, and find a certain quadratic form L(z)
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FIGURE 1.12. Lyapunov function.

whose level surfaces L(x) = Ly surround the origin and are such that the
vector field points strictly inside each level surface, sufficiently close to the
equilibrium 2° (see Figure 1.12). Actually, the Lyapunov function L(z) is
the same for both linear and nonlinear systems and is fully determined by
the Jacobian matrix A. The details can be found in any standard text on
differential equations (see the bibliographical notes in Appendix 2). Note
also that the theorem can also be derived from Theorem 1.2 (see Exercise
7).
Unfortunately, in general it is impossible to tell by looking at the right-
hand side of (1.4), whether this system has cycles (periodic solutions).
Later on in the book we will formulate some efficient methods to prove
the appearance of cycles under small perturbation of the system (e.g., by
variation of parameters on which the system depends).

If the system has a smooth invariant manifold M, then its defining vector
field f(x) is tangent to M at any point € M, where f(x) # 0. For an
(n — 1)-dimensional smooth manifold M C R™, which is locally defined by
g(z) = 0 for some scalar function g : R® — R!, the invariance means

(Vy(z), f(z)) = 0.

Here Vg(x) denotes the gradient

~ (9g(x) dg(x)  dg(x)\T
Vg(x)i < axl b ax2 9 8xn ) b

which is orthogonal to M at x.

1.5 Poincaré maps

There are many cases where discrete-time dynamical systems (maps) nat-
urally appear in the study of continuous-time dynamical systems defined
by differential equations. The introduction of such maps allows us to apply
the results concerning maps to differential equations. This is particularly
efficient if the resulting map is defined in a lower-dimensional space than
the original system. We will call maps arising from ODEs Poincaré maps.
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1.5.1 Time-shift maps

The simplest way to extract a discrete-time dynamical system from a conti-
nuous-time system {R!, X, o'} is to fix some Ty > 0 and consider a system
on X that is generated by iteration of the map f = ¢°. This map is called
a Ty-shift map along orbits of {R!, X, ¢'}. Any invariant set of {R!, X, o'}
is an invariant set of the map f. For example, isolated fixed points of f are
located at those positions where {R!, X, ¢!} has isolated equilibria.

In this context, the inverse problem is more interesting: Is it possible to
construct a system of ODEs whose Ty-shift map ¢”° reproduces a given
smooth and invertible map f7? If we require the discrete-time system to have
the same dimension as the continuous-time one, the answer is negative. The
simplest counterexample is provided by the linear scalar map

1
x> flx) = 5% TE R!. (1.11)
The map in (1.11) has a single fixed point z° = 0 that is stable. Clearly,
there is no scalar ODE

&= F(x), z€RY (1.12)

such that its evolution operator o’ = f. Indeed, 2° = 0 must be an
equilibrium of (1.12), thus none of its orbits can “jump” over the origin
like those of (1.11). We will return to this inverse problem in Chapter 9,
where we explicitly construct ODE systems approximating certain maps.

\\(TOr X) ‘\
l

(0, f(x))

|
|
|
|
|
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|
|
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I

\ \ )’/ v

FIGURE 1.13. Suspension flow.

Remark:
If we allow for ODEs on manifolds, the inverse problem can always be
solved. Specifically, consider a map f : R™ — R"™ that is assumed to be
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smooth, together with its inverse. Take a layer
{(t,z) e R x R™ : t € [0, Tp]}

(see Figure 1.13) and identify (“glue”) a point (Tp,x) on the “top” face
of X with the point (0, f(x)) on the “bottom” face. Thus, the constructed
space X is an (n+ 1)-dimensional manifold with coordinates (¢t mod Ty, ).
Specify now an autonomous system of ODEs on this manifold, called the

suspension, by the equations
{ t _ éj (1.13)

T

The orbits of (1.13) (viewed as subsets of R! x R™) are straight lines inside
the layer interrupted by “jumps” from its “top” face to the “bottom” face.
Obviously, the Tp-shift along orbits of (1.13) 0 coincides on its invariant
hyperplane {¢t = 0} with the map f.

Let k > 0 satisfy the equation e*”® = 2. The suspension system corre-
sponding to the map (1.11) has the same orbit structure as the system

t = 1,

r = —kux,
defined on an (infinitely wide) Mdbius strip obtained by identifying the
points (Tp, z) and (0, —z) (see Figure 1.14). In both systems, = 0 cor-
responds to a stable limit cycle of period T with the multiplier pu = —%.

¢

1.5.2  Poincaré map and stability of cycles

Consider a continuous-time dynamical system defined by

&= f(z), z€R", (1.14)

X

FIGURE 1.14. Stable limit cycle on the Mobius strip.
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with smooth f. Assume, that (1.14) has a periodic orbit Lg. Take a point
o € Lo and introduce a cross-section ¥ to the cycle at this point (see
Figure 1.15). The cross-section ¥ is a smooth hypersurface of dimension
n—1, intersecting Ly at a nonzero angle. Since the dimension of ¥ is one less
than the dimension of the state space, we say that the hypersurface ¥ is of
“codimension” one, codim ¥ = 1. Suppose that X is defined near the point
7o by the zero-level set of a smooth scalar function g : R® — R, g(z0) = 0,

Y={zreR":g(z) =0}
A nonzero intersection angle (“transversality”) means that the gradient

_ (9g(x) dg(x)  dg(x)\"
vg(z)(aitl ) 85132 sy 8$n>

is not orthogonal to Ly at xg, that is,

(Vg(z0), f(x0)) # 0,

where (-, -) is the standard scalar product in R™. The simplest choice of ¥

FIGURE 1.15. The Poincaré map associated with a cycle.

is a hyperplane orthogonal to the cycle Ly at xg. Such a cross-section is
obviously given by the zero-level set of the linear function

g(x) = {f(x0), 2 — w0).

Consider now orbits of (1.14) near the cycle Lg. The cycle itself is an
orbit that starts at a point on ¥ and returns to ¥ at the same point
(o € X). Since the solutions of (1.8) depend smoothly on their initial
points (Theorem 1.4), an orbit starting at a point € X sufficiently close
to zy also returns to X at some point £ € ¥ near xy. Moreover, nearby
orbits will also intersect 3 transversally. Thus, a map P : ¥ — X,

x+— & = P(x),

is constructed.
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Definition 1.9 The map P is called a Poincaré map associated with the
cycle Lg.

The Poincaré map P is locally defined, is as smooth as the right-hand
side of (1.14), and is invertible near zy. The invertibility follows from
the invertibility of the dynamical system defined by (1.14). The inverse
map P~!: ¥ — ¥ can be constructed by extending the orbits crossing ¥
backward in time until reaching their previous intersection with the cross-
section. The intersection point xq is a fized point of the Poincaré map:
P(,’L‘()) = 2.

Let us introduce local coordinates £ = (£1,&2,...,&n—1) on 3 such that
& = 0 corresponds to zg. Then the Poincaré map will be characterized by a
locally defined map P : R*~! — R”~! which transforms ¢ corresponding
to x into 5 corresponding to ,

P(&) =¢.

The origin & = 0 of R"~! is a fized point of the map P : P(0) = 0.
The stability of the cycle Lg is equivalent to the stability of the fixed point
& = 0 of the Poincaré map. Thus, the cycle is stable if all eigenvalues
(multipliers) p1, g2, ..., n—1 of the (n — 1) x (n — 1) Jacobian matrix of
P7
st

€ lezo

are located inside the unit circle |u] = 1 (see Theorem 1.2).

One may ask whether the multipliers depend on the choice of the point
o on Lg, the cross-section X, or the coordinates £ on it. If this were the
case, determining stability using multipliers would be confusing or even
impossible.

Lemma 1.3 The multipliers pi1, ti2, - - -, in—1 of the Jacobian matriz A of
the Poincaré map P associated with a cycle Loy are independent of the point
xo on Lg, the cross-section 32, and local coordinates on it.

Proof:

Let 31 and ¥, be two cross-sections to the same cycle Ly at points
x! and 22, respectively (see Figure 1.16, where the planar case is pre-
sented for simplicity). We allow the points z1? to coincide, and we let
the cross-sections 3; o represent identical surfaces in R™ that differ only in
parametrization. Denote by Py : X7 — 31 and P : 39 — X5 corresponding
Poincaré maps. Let £ = (£1,&2,...,&n—1) be coordinates on ¥;, and let
n = (M,M2,...,Mn—1) be coordinates on Yo, such that & = 0 corresponds
to x! while = 0 gives 2. Finally, denote by A; and A, the associated
Jacobian matrices of P; and P», respectively.

Due to the same arguments as those we used to construct the Poincaré
map, there exists a locally defined, smooth, and invertible correspondence
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map @ : X1 — Xy along orbits of (1.14):

n=Q(§).

Obviously, we have
PyoQ=Qo Py,

or, in coordinates,

P(Q(8)) = Q(P1(S)),

for all sufficiently small ||£|| (see Figure 1.15). Since @ is invertible, we
obtain the following relation between P, and Ps:

P=Q 'oP0Q.

Differentiating this equation with respect to £, and using the chain rule,

we find
APy _ dQ" 4Py dQ
¢ dn dn d¢’

Evaluating the result at £ = 0 gives the matrix equation

Ay = B~'A,B,
where J
p- %
dé |,

is nonsingular (i.e., det B # 0). Thus, the characteristic equations for A;
and A, coincide, as do the multipliers. Indeed,

det(A; — pl) = det(B~ ') det(Ay — pul) det(B) = det(Ay — pul),

since the determinant of the matrix product is equal to the product of the
the determinants of the matrices involved, and det(B~!)det(B) = 1. O

FIGURE 1.16. Two cross-sections to the cycle Lg.
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According to Lemma 1.3, we can use any cross-section X to compute the
multipliers of the cycle: The result will be the same.

The next problem to be addressed is the relationship between the multi-
pliers of a cycle and the differential equations (1.14) defining the dynamical
system that has this cycle. Let 2°(t) denote a periodic solution of (1.14),
20(t + Tp) = 2°(t), corresponding to a cycle Ly. Represent a solution of
(1.14) in the form

x(t) = 2°(t) + u(t),

where u(t) is a deviation from the periodic solution. Then,
a(t) = @(t) — i°(t) = f(2°(t) + u(t)) — f(2° (1) = At)u(t) + O([u(®)[*)-
Truncating O(||u||?) terms results in the linear Tp-periodic system

= At)u, ueR™ (1.15)

where A(t) = f.(2°(t)), A(t + To) = A(t).

Definition 1.10 System (1.15) is called the variational equation about the
cycle Lg.

The variational equation is the main (linear) part of the system governing
the evolution of perturbations near the cycle. Naturally, the stability of the
cycle depends on the properties of the variational equation.

Definition 1.11 The time-dependent matriz M (t) is called the fundamen-
tal matrix solution of (1.14) if it satisfies

M = A(t)M,
with the initial condition M(0) = I, the identity n X n matriz.
Any solution u(t) to (1.15) satisfies
u(To) = M(To)u(0)

(prove!). The matrix M(Tp) is called a monodromy matriz of the cycle
Lg. The following Liouwville formula expresses the determinant of the mon-
odromy matrix in terms of the matrix A(¢):

0

det M (Tp) = exp {/TO tr A(t) dt} . (1.16)

Theorem 1.6 The monodromy matriz M (Ty) has eigenvalues

13/“'1;,”’27"'3/“’71—17

where p; are the multipliers of the Poincaré map associated with the cycle
L.
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Sketch of the proof:
Let ¢! be the evolution operator (flow) defined by system (1.14) near the
cycle L. Consider the map

<pT° :R™ — R"™.

Clearly, ¢"0xy = g, where z is an initial point on the cycle, which we
assume to be located at the origin, g = 0. The map is smooth, and its
Jacobian matrix at xy coincides with the monodromy matrix:

OpTox
ox

= M(Tp).

T=xo

We claim that the matrix M (Tp) has an eigenvalue po = 1. Indeed, v(t) =
#0(t) is a solution to (1.15). Therefore, ¢ = v(0) = f(x) is transformed by
M (Tp) into itself:

M(To)q = q.

There are no generalized eigenvectors associated to g. Thus, the mon-
odromy matrix M (Tp) has a one-dimensional invariant subspace spanned
by ¢ and a complementary (n — 1)-dimensional subspace X : M (T;)X = .
Take the subspace ¥ as a cross-section to the cycle at zyp = 0. One can
see that the restriction of the linear transformation defined by M (Tp) to
this invariant subspace ¥ is the Jacobian matrix of the Poincaré map P
defined by system (1.14) on . Therefore, their eigenvalues 1, o, . . ., fin—1
coincide. O

According to (1.16), the product of all eigenvalues of M (Tp) can be ex-
pressed as

To
Hiph2 o1 = eXp {/0 (div £)(z"(t)) dt} ) (1.17)

where, by definition, the divergence of a vector field f(z) is given by

(@iv ) =3 200,

i=1

Thus, the product of all multipliers of any cycle is positive. Notice that
in the planar case (n = 2) formula (1.17) allows us to compute the only
multiplier u;, provided the periodic solution corresponding to the cycle is
known explicitly. However, this is mainly a theoretical tool, since periodic
solutions of nonlinear systems are rarely known analytically.

1.5.3  Poincaré map for periodically forced systems

In several applications the behavior of a system subjected to an external
periodic forcing is described by time-periodic differential equations

&= f(t,z), (t,x) eR' xR", (1.18)
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where f(t + To,z) = f(t,z). System (1.18) defines an autonomous system
on the cylindrical manifold X = S! x R", with coordinates (t(mod T), z),

namely

t = 1,
In this space X, take the n-dimensional cross-section ¥ = {(z,t) € X : t =
0}. We can use x7 = (21, 29, ...,2,) as coordinates on X. Clearly, all orbits

of (1.19) intersect ¥ transversally. Assuming that the solution z(¢,zo) of
(1.19) exists on the interval ¢ € [0, 7], we can introduce the Poincaré map

To P(l’o) = SL'(T(),ZL'()).

In other words, we have to take an initial point zy and integrate system
(1.18) over its period Tp to obtain P(xg). By this construction, the discrete-
time dynamical system {Z, R™, P¥} is defined. Fixed points of P obviously
correspond to Tp-periodic solutions of (1.18). An Ny-cycle of P represents
an NoTp-periodic solution (subharmonic) of (1.18). The stability of these
periodic solutions is clearly determined by that of the corresponding fixed
points and cycles. More complicated solutions of (1.18) can also be studied
via the Poincaré map. In Chapter 9 we will analyze in detail a model of
a periodically (seasonally) forced predator-prey system exhibiting various
subharmonic and chaotic solutions.

1.6 Exercises

(1) (Symbolic dynamics and the Smale horseshoe revisited)

(a) Compute the number N (k) of period-k cycles in the symbolic dy-
namics {Z, Q, 0"}

(b) Explain how to find the coordinates of the two fixed points of the
horseshoe map f in S. Prove that each point has one multiplier inside and
one multiplier outside the unit circle |u| = 1.

(2) (Hamiltonian systems)

(a) Prove that the Hamilton function is constant along orbits of a Hamil-
tonian system: H=0.

(b) Prove that the equilibrium (¢, 1) = (0,0) of a pendulum described
by (1.5) is Lyapunov stable. (Hint: System (1.5) is Hamiltonian with closed
level curves H(p, ) = const near (0,0).) Is this equilibrium asymptotically
stable?

(3) (Quantum oscillations)

(a) Integrate the linear system (1.7), describing the simplest quantum
system with two states, and show that the probability p; = |a;|? of finding
the system in a given state oscillates periodically in time.
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(b) How does p; + p2 behave?

(4) (Brusselator revisited)

(a) Derive the Brusselator system (1.8) from the system written in terms
of the concentrations [X], [Y].

(b) Compute an equilibrium position (zg, yo) and find a sufficient condi-
tion on the parameters (a,b) for it to be stable.

(5) (Volterra system revisited)
(a) Show that (1.9) can be reduced by a linear scaling of variables and
time to the following system with only one parameter :

{ T = T —uzv,
y = —ytuay.
(b) Find all equilibria of the scaled system.

c¢) Verify that the orbits of the scaled system in the positive quadrant
{(z,y) : x,y > 0} coincide with those of the Hamiltonian system

j o= -

(Hint: Vector fields defining these two systems differ by the factor p(z,y) =
a2y, which is positive in the first quadrant.) Find the Hamilton function.
(d) Taking into account steps (a) to (c), prove that all nonequilibrium
orbits of the Volterra system in the positive quadrant are closed, thus de-
scribing periodic oscillations of the numbers of prey and predators.

(6) (Explicit Poincaré map)
(a) Show that for o > 0 the planar system in polar coordinates

p = p(a_p2)7
¢ = 1

has the explicit solution

1 11 —1/2
t)=|(— — —— ) e t) = t.
p(t) <a+<pg a)@ > , p(t) = 9o +

(b) Draw the phase portrait of the system and prove that it has a unique
limit cycle for each a > 0.
(c¢) Compute the multiplier p; of the limit cycle:
(i) by explicit construction of the Poincaré map p — P(p) using the
solution above and evaluating its derivative with respect to p at the fixed
point py = v/a (Hint: See Wiggins [1990, pp. 66-67].);
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(ii) using formula (1.17), expressing 1 in terms of the integral of the
divergence over the cycle. (Hint: Use polar coordinates; the divergence is
invariant.)

(7) (Lyapunov’s theorem) Prove Theorem 1.5 using Theorem 1.2.
(a) Write the system near the equilibrium as

& = Ax + F(x),

where F(z) = O(]|x||?) is a smooth nonlinear function.
(b) Using the variation-of-constants formula for the evolution operator
¢, .
ole = etta + / AT R(pT2) dr,
0

show that the unit-time shift along the orbits has the expansion

¢'e = B+ O(||z|*),
where B = e?.
(c) Conclude the proof, taking into account that u; = e**, where uy and
A, are the eigenvalues of the matrices B and A, respectively.

1.7 Appendix 1: Infinite-dimensional dynamical
systems defined by reaction-diffusion
equations

As we have seen in Examples 1.4 and 1.5, the state of a spatially distributed
system is characterized by a function from a function space X. The dimen-
sion of such spaces is infinite. A function u € X satisfies certain boundary
and smoothness conditions, while its evolution is usually determined by a
system of equations with partial derivatives (PDEs). In this appendix we
briefly discuss how a particular type of such equations, namely reaction-
diffusion systems, defines infinite-dimensional dynamical systems.

The state of a chemical reactor at time ¢ can be specified by defining
a vector function c(z,t) = (c1(z,t),ca(,t),...,ca(z,t))T, where the ¢;
are concentrations of reacting substances near the point x in the reactor
domain @ C R™. Here m = 1,2,3, depending on the geometry of the
reactor, and €2 is assumed to be closed and bounded by a smooth boundary
0. The concentrations ¢;(x, t) satisfy certain problem-dependent boundary
conditions. For example, if the concentrations of all the reagents are kept
constant at the boundary, we have

c(z,t) =co, x € ONN.
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Defining a deviation from the boundary value, s(z,t) = ¢(z,t) — ¢o, we can
reduce to the case of zero Dirichlet boundary conditions:

s(z,t) =0, =€ nN.

If the reagents cannot penetrate the reactor boundary, zero Neumann (zero
flux) conditions are applicable:

Oc(x,t)

=0 o
on , T E s

where the left-hand side is the inward-pointing normal derivative at the
boundary.

The evolution of a chemical system can be modeled by a system of
reaction-diffusion equations written in the vector form for u(z,t) (u = s or
c):

du(x,t)
ot

where f : R™ — R™ is smooth and D is a diagonal diffusion matriz with
positive coefficients, and A is known as the Laplacian,

= D(Au)(z,t) + f(u(z,t)), (A.1)

m
0%u

=1

The first term of the right-hand side of (A.1) describes diffusion of the
reagents, while the second term specifies their local interaction. The func-
tion u(z,t) satisfies one of the boundary conditions listed above, for exam-
ple, the Dirichlet conditions:

u(z,t) =0, z €. (A.2)

Definition 1.12 A function u = u(x,t), u: QxR — R", is called a clas-
sical solution to the problem (A.1),(A.2) if it is continuously differentiable,
at least once with respect to t and twice with respect to x, and satisfies
(A.1),(A.2) in the domain of its definition.

For any twice continuously differentiable initial function ug(z),
up(xz) =0, x € 09, (A.3)

the problem (A.1),(A.2) has a unique classical solution u(z,t), defined for
x € Qand t € [0,00), where 9 depends on ug, and such that u(x,0) =
uo(z). Moreover, this classical solution is actually infinitely many times
differentiable in (z,t) for 0 < ¢ < dyp. The same properties are valid if one
replaces (A.2) by Neumann boundary conditions.

Introduce the space X = CZ(2,R") of all twice continuously differen-
tiable vector functions in 2 satisfying the Dirichlet condition (A.3) at the



1.7 Appendix 1: Reaction—diffusion systems 35

boundary 9€2. The preceeding results mean that the reaction-diffusion sys-
tem (A.1),(A.2) defines a continuous-time dynamical system {R}, X, o'},
with the evolution operator

((ptuo)<:1;) = u(x’t)v (A4)

where u(z,t) is the classical solution to (A.1),(A.2) satisfying w(z,0) =
uo(x). It also defines a dynamical system on X; = C§°(£2,R™) composed
of all infinitely continuously differentiable vector functions in {2 satisfying
the Dirichlet condition (A.3) at the boundary 0€.

The notions of equilibria and cycles are, therefore, applicable to the
reaction-diffusion system (A.1). Clearly, equilibria of the system are de-
scribed by time-independent vector functions satisfying

D(Au)(z) + f(u(x)) = 0 (A.5)

and the corresponding boundary conditions. A trivial, spatially homoge-
neous solutions to (A.5) satisfying (A.2), for example, is an equilibrium of
the local system

= f(u), uweR" (A.6)

Nontrivial, spatially nonhomogeneous solutions to (A.5) are often called
dissipative structures. Spatially homogeneous and nonhomogeneous equi-
libria can be stable or unstable. In the stable case, all (smooth) small
perturbations v(z) of an equilibrium solution decay in time. Cycles (i.e.,
time-periodic solutions of (A.1) satisfying the appropriate boundary con-
ditions) are also possible; they can be stable or unstable. Standing and
rotating waves in reaction-diffusion systems in planar circular domains 2
are examples of such periodic solutions.

Up to now, the situation seems to be rather simple and is parallel to the
finite-dimensional case. However, one runs into certain difficulties when
trying to introduce a distance in X = CZ2(£2,R"). For example, this space
is incomplete in the “integral norm”

2

Al (z)
ul? :/ ‘ — | dQ, A7
j=12,....n
li|<2

where |i| = i1 + 43 + ... + 4. In other words, a Cauchy sequence in this
norm can approach a function that is not twice continuously differentiable
(it may have no derivatives at all) and thus does not belong to X. Since
this property is important in many respects, a method called completion
has been developed that allows us to construct a complete space, given any
normed one. Loosely speaking, we add the limits of all Cauchy sequences to
X. More precisely, we call two Cauchy sequences equivalent if the distance
between their corresponding elements tends to zero. Classes of equivalent
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Cauchy sequences are considered as points of a new space H. The original
norm can be extended to H, thus making it a complete normed space. Such
spaces are called Banach spaces. The space X can then be interpreted as
a subset of H. It is also useful if the obtained space is a Hilbert space,
meaning that the norm in it is generated by a certain scalar product.

Therefore, we can try to use one of the completed spaces H as a new state
space for our reaction-diffusion system. However, since H includes functions
on which the diffusion part of (A.1) is undefined, extra work is required.
One should also take care that the reaction part f(u) of the system defines
a smooth map on H. Without going into details, we merely state that it
is possible to prove the existence of a dynamical system {R., H,!} such
that ' is defined and continuous in u for all w € H and t € [0,5(u)),
and, if ug € X C H, then 9ug = ¢tug, where plug is a classical solution
to (A.1),(A.2).

The stability of equilibria and other solutions can be studied in the
space H. If an equilibrium is stable in H, it will also be stable with re-
spect to smooth perturbations. One can derive sufficient conditions for an
equilibrium to be stable in H (or X) in terms of the linear part of the
reaction-diffusion system (A.1l). For example, let us formulate sufficient
stability conditions (an analogue of Theorem 1.5) for a trivial (homoge-
neous) equilibrium of a reaction-diffusion system on the interval = [0, 7]
with Dirichlet boundary conditions.

Theorem 1.7 Consider a reaction-diffusion system

ou 0%u
=~ _p= A.
where f is smooth, x € [0, 7], with the boundary conditions
u(0) = u(mr) = 0. (A.9)

Assume that u® = 0 is a homogeneous equilibrium, f(0) = 0, and A is
the Jacobian matrix of the corresponding equilibrium of the local system,
A = f,(0). Suppose that the eigenvalues of the n X n matrix

M, =A—-k*D
have negative real parts for all k =0,1,2,....
Then u® = 0 is a stable equilibrium of the dynamical system {R}F, H, b}
generated by the system (A.8), (A.9) in the completion H of the space
C2([0, 7], R™) in the norm (A.7). O

A similar theorem can be proved for the system in @ C R™, m = 2,3,
with Dirichlet boundary conditions. The only modification is that k2 should
be replaced by kj, where {x;} are all positive numbers for which

(Avg)(z) = —kpog(z),

with vy = vg(x) satisfying Dirichlet boundary conditions. The modification
to the Neumann boundary condition case is rather straightforward.
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1.8 Appendix 2: Bibliographical notes

Originally, the term “dynamical system” meant only mechanical systems
whose motion is described by differential equations derived in classical me-
chanics. Basic results on such dynamical systems were obtained by Lya-
punov and Poincaré at the end of the nineteenth century. Their studies
have been continued by Dulac [1923] and Birkhoff [1927], among others.
The books by Nemytskii & Stepanov [1949] and Coddington & Levinson
[1955] contain detailed treatments of the then-known properties of dynam-
ical systems defined by differential equations. Later on it became clear that
this notion is useful for the analysis of various evolutionary processes stud-
ied in different branches of science and described by ODEs, PDEs, or explic-
itly defined iterated maps. The modern period in dynamical system theory
started from the work of Kolmogorov [1957], Smale [1963, 1966, 1967] and
Anosov [1967]. Today, the literature on dynamical systems is huge. We do
not attempt to survey it here, giving only a few remarks in the bibliograph-
ical notes to each chapter.

The horseshoe diffeomorphism proposed by Smale [1963, 1967] is treated
in many books, for example, in Nitecki [1971], Guckenheimer & Holmes
[1983], Wiggins [1990], Arrowsmith & Place [1990]. However, the best pre-
sentation of this and related topics is still due to Moser [1973].

General properties of ordinary differential equations and their relation
to dynamical systems are presented in the cited book by Nemytskii and
Stepanov, and notably in the texts by Pontryagin [1962], Arnold [1973],
and Hirsch & Smale [1974]. The latter three books contain a compre-
hensive analysis of linear differential equations with constant and time-
dependent coefficients. The book by Hartman [1964] treats the relation
between Poincaré maps, multipliers, and stability of limit cycles.

The study of infinite-dimensional dynamical systems has been stimu-
lated by hydro- and aerodynamics and by chemical and nuclear engineering.
Linear infinite-dimensional dynamical systems, known as “continuous (an-
alytical) semigroups” are studied in functional analysis (see, e.g., Hille &
Phillips [1957], Balakrishnan [1976], or the more physically oriented texts
by Richtmyer [1978, 1981]). The theory of nonlinear infinite-dimensional
systems is a rapidly developing field. The reader is addressed to the rele-
vant chapters of the books by Marsden & McCracken [1976], Carr [1981],
and Henry [1981]. Infinite-dimensional dynamical systems also arise natu-
rally in studying differential equations with delays (see Hale [1971], Hale &
Verduyn Lunel [1993], and Diekmann, van Gils, Verduyn Lunel & Walther
[1995]).
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2

Topological Equivalence,
Bifurcations, and Structural
Stability of Dynamical Systems

In this chapter we introduce and discuss the following fundamental notions
that will be used throughout the book: topological equivalence of dynamical
systems and their classification, bifurcations and bifurcation diagrams, and
topological normal forms for bifurcations. The last section is devoted to
the more abstract notion of structural stability. In this chapter we will be
dealing only with dynamical systems in the state space X = R".

2.1 Equivalence of dynamical systems

We would like to study general (qualitative) features of the behavior of
dynamical systems, in particular, to classify possible types of their behavior
and compare the behavior of different dynamical systems. The comparison
of any objects is based on an equivalence relation,' allowing us to define
classes of equivalent objects and to study transitions between these classes.
Thus, we have to specify when we define two dynamical systems as being
“qualitatively similar” or equivalent. Such a definition must meet some
general intuitive criteria. For instance, it is natural to expect that two
equivalent systems have the same number of equilibria and cycles of the
same stability types. The “relative position” of these invariant sets and the

'Recall that a relation between two objects (a ~ b) is called equivalence if it
is reflexive (a ~ a), symmetric (a ~ b implies b ~ a), and transitive (a ~ b and
b ~ ¢ imply a ~ ¢).
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shape of their regions of attraction should also be similar for equivalent
systems. In other words, we consider two dynamical systems as equivalent
if their phase portraits are “qualitatively similar,” namely, if one portrait
can be obtained from another by a continuous transformation (see Figure
2.1).

X2 Yo

X1 Y1

FIGURE 2.1. Topological equivalence.

Definition 2.1 A dynamical system {T,R", o'} is called topologically equ-
ivalent to a dynamical system {T,R™ '} if there is a homeomorphism
h : R™ — R™ mapping orbits of the first system onto orbits of the second
system, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and
its inverse are continuous. The definition of the topological equivalence
can be generalized to cover more general cases when the state space is a
complete metric or, in particular, is a Banach space. The definition also
remains meaningful when the state space is a smooth finite-dimensional
manifold in R™, for example, a two-dimensional torus T2 or sphere S?. The
phase portraits of topologically equivalent systems are often also called
topologically equivalent.

The above definition applies to both continuous- and discrete-time sys-
tems. However, in the discrete-time case we can obtain an explicit relation
between the corresponding maps of the equivalent systems. Indeed, let

z+— f(x), ze€R", (2.1)

and
y—gy), yeR", (2.2)

be two topologically equivalent, discrete-time invertible dynamical systems
(f = ¢', g = 9! are smooth invertible maps). Consider an orbit of system
(2.1) starting at some point z:

o @), s f2), P2,
and an orbit of system (2.2) starting at a point y:

B €7) N TR T€7) I (1) R
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Topological equivalence implies that if x and y are related by the homeo-
morphism A, y = h(x), then the first orbit is mapped onto the second one
by this map h. Symbolically,

(O
hd h
y -5 g(y).

Therefore, g(y) = h(f(x)) or g(h(x)) = h(f(x)) for all z € R™, which can
be written as

f(x) =h" (g(h(x)))

since h is invertible. We can write the last equation in a more compact
form using the symbol of map superposition:

f=h"togoh. (2.3)

Definition 2.2 Two maps f and g satisfying (2.3) for some homeomor-
phism h are called conjugate.

Consequently, topologically equivalent, discrete-time systems are often
called conjugate systems. If both h and h~! are C* maps, the maps f and
g are called C*-conjugate. For k > 1, C*-conjugate maps (and the corre-
sponding systems) are called smoothly conjugate or diffeomorphic. Two dif-
feomorphic maps (2.1) and (2.2) can be considered as the same map written
in two different coordinate systems with coordinates x and y, while y = h(x)
can be treated as a smooth change of coordinates. Consequently, diffeomor-
phic discrete-time dynamical systems are practically indistinguishable.

Now consider two continuous-time topologically equivalent systems:

&= f(z), z€R", (2.4)

and
y=9(y), yeR" (2.5)

with smooth right-hand sides. Let ¢! and v’ denote the corresponding
flows. In this case, there is no simple relation between f and g analogous
to formula (2.3). Nevertheless, there are two particular cases of topological
equivalence between (2.4) and (2.5) that can be expressed analytically, as
we now explain.

Suppose that y = h(z) is an invertible map h : R® — R”, which is
smooth together with its inverse (h is a diffeomorphism) and such that, for
all x € R?,

flw) = M~ (2)g(h(x)), (2.6)

where
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is the Jacobian matrix of h(z) evaluated at the point . Then, system (2.4)
is topologically equivalent to system (2.5). Indeed, system (2.5) is obtained
from system (2.4) by the smooth change of coordinates y = h(z). Thus, h
maps solutions of (2.4) into solutions of (2.5),

h(¢') = ¢"h(z),

and can play the role of the homeomorphism in Definition 2.1.

Definition 2.3 Two systems (2.4) and (2.5) satisfying (2.6) for some dif-
feomorphism h are called smoothly equivalent (or diffeomorphic).

Remark:
If the degree of smoothness of h is of interest, one writes: C*-equivalent
or C*-diffeomorphic in Definition 2.3. <

Two diffeomorphic systems are practically identical and can be viewed
as the same system written using different coordinates. For example, the
eigenvalues of corresponding equilibria are the same. Let 2 and yo = h(xo)
be such equilibria and let A(xo) and B(yo) denote corresponding Jacobian
matrices. Then, differentiation of (2.6) yields

A(zo) = M~ (0)B(yo) M (20).

Therefore, the characteristic polynomials for the matrices A(zg) and B(yo)
coincide. In addition, diffeomorphic limit cycles have the same multipliers
and period (see Exercise 4). This last property calls for more careful analysis
of different time parametrizations.

Suppose that g = p(x) > 0 is a smooth scalar positive function and that
the right-hand sides of (2.4) and (2.5) are related by

f(@) = p(x)g(x) (2.7)

for all z € R™. Then, obviously, systems (2.4) and (2.5) are topologically
equivalent since their orbits are identical and it is the velocity of the motion
that makes them different. (The ratio of the velocities at a point z is exactly
u(x).) Thus, the homeomorphism A in Definition 2.1 is the identity map
h(x) = z. In other words, the systems are distinguished only by the time
parametrization along the orbits.

Definition 2.4 Two systems (2.4) and (2.5) satisfying (2.7) for a smooth
positive function p are called orbitally equivalent.

Clearly, two orbitally equivalent systems can be nondiffeomorphic, having
cycles that look like the same closed curve in the phase space but have
different periods.

Very often we study system dynamics locally, e.g., not in the whole state
space R™ but in some region U C R”™. Such a region may be, for example, a
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neighborhood of an equilibrium (fixed point) or a cycle. The above defini-
tions of topological, smooth, and orbital equivalences can be easily “local-
ized” by introducing appropriate regions. For example, in the topological
classification of the phase portraits near equilibrium points, the following
modification of Definition 2.1 is useful.

Definition 2.5 A dynamical system {T,R™, o'} is called locally topologi-
cally equivalent near an equilibrium xo to a dynamical system {T,R™ 1t}
near an equilibrium yo if there exists a homeomorphism h : R® — R"™ that
is

(i) defined in a small neighborhood U C R™ of x;

(ii) satisfies yo = h(xo);

(iii) maps orbits of the first system in U onto orbits of the second system
in V= f(U) C R", preserving the direction of time.

If U is an open neighborhood of zg, then V is an open neighborhood
of yo. Let us also remark that equilibrium positions zg and yg, as well as
regions U and V, might coincide.

Let us compare the above introduced equivalences in the following ex-
ample.

Example 2.1 (Node-focus equivalence) Consider two linear planar
dynamical systems:

jjl = —,
{ hoom (2.8)
and _
1 = —X1 — T2, (2 9)
.1'32 = I1 — X2. ’

In the polar coordinates (p, 6) these systems can be written as

p: P
0 0,
and _
[_) P
0 1,
respectively. Thus,
p(t) - poe_t’
6(t) = 0o,
for the first system, while
p(t) = poeita
0(t) = 6o+t

for the second. Clearly, the origin is a stable equilibrium in both systems,
since p(t) — 0 as t — oo. All other orbits of (2.8) are straight lines, while
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@ (b)
FIGURE 2.2. Node-focus equivalence.

those of (2.9) are spirals. The phase portraits of the systems are presented
in Figure 2.2. The equilibrium of the first system is a node (Figure 2.2(a)),
while in the second system it is a focus (Figure 2.2(b)). The difference in
behavior of the systems can also be perceived by saying that perturbations
decay near the origin monotonously in the first case and oscillatorily in the
second case.

The systems are neither orbitally nor smoothly equivalent. The first fact
is obvious, while the second follows from the observation that the eigen-
values of the equilibrium in the first system (A; = Ay = —1) differ from
those of the second (A1 2 = —1 +14). Nevertheless, systems (2.8) and (2.9)
are topologically equivalent, for example, in a closed unit disc

U= {(z1,22) 23 +23 <1} = {(p,0) : p < 1},
centered at the origin. Let us prove this explicitly by constructing a homeo-
morphism h : U — U as follows (see Figure 2.3). Take a point x # 0 in U

with polar coordinates (pg,6o) and consider the time 7 required to move,
along an orbit of system (2.8), from the point (1,6p) on the boundary to

(1, 60)

U

FIGURE 2.3. The construction of the homeomorphism.
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the point . This time depends only on py and can easily be computed:

7(po) = —1In po.

Now consider an orbit of system (2.9) starting at the boundary point (1, 6,),
and let y = (p1,61) be the point at which this orbit arrives after 7(po)
units of time. Thus, a map y = h(x) that transforms x = (pg, o) # 0 into
y = (p1,61) is obtained and is explicitly given by

.) PL = Po,
h{ 0, = 0o—Inpo. (2.10)
For x = 0, set y = 0, that is, 2(0) = 0. Thus the constructed map transforms
U into itself by rotating each circle pg = const by a pp-dependent angle.
This angle equals zero at pg = 1 and increases as py — 0. The map is
obviously continuous and invertible and maps orbits of (2.8) onto orbits of
(2.9), preserving time direction. Thus, the two systems are topologically
equivalent within U.

However, the homeomorphism A is not differentiable in U. More precisely,
it is smooth away from the origin but not differentiable at = 0. To see
this, one should evaluate the Jacobian matrix g—g in (z1, z2)-coordinates.
For example, the difference quotient corresponding to the derivative

oy
8.731 xr1=x9=0

is given for z; > 0 by

xzycos(lnzy) — 0

-~ v @ = ]
P cos(Inzy),

which has no limit as z; — 0. <

Therefore, considering continuous-time systems modulo topological equi-
valence, we preserve information on the number, stability, and topology
of invariant sets, while losing information relating transient and time-
dependent behavior. Such information may be important in some appli-
cations. In these cases, stronger equivalences (such as orbital or smooth)
have to be applied.

A combination of smooth and orbital equivalences gives a useful equiva-
lence relation, which will be used frequently in this book.

Definition 2.6 Two systems (2.4) and (2.5) are called smoothly orbitally
equivalent if (2.5) is smoothly equivalent to a system that is orbitally equiv-
alent to (2.4).

According to this definition, two systems are equivalent (in R™ or in some
region U C R™) if we can transform one of them into the other by a smooth
invertible change of coordinates and multiplication by a positive smooth
function of the coordinates. Clearly, two smoothly orbitally equivalent sys-
tems are topologically equivalent, while the inverse is not true.
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2.2 Topological classification of generic equilibria
and fixed points

In this section we study the geometry of the phase portrait near generic,
namely hyperbolic, equilibrium points in continuous- and discrete-time dy-
namical systems and present their topological classification.

2.2.1 Hyperbolic equilibria in continuous-time systems

Consider a continuous-time dynamical system defined by
= f(z), z=eR™ (2.11)

where f is smooth. Let 2y = 0 be an equilibrium of the system (i.e., f(z) =
0) and let A denote the Jacobian matrix % evaluated at xq. Let n_,ng,
and n4 be the numbers of eigenvalues of A (counting multiplicities) with

negative, zero, and positive real part, respectively.

Definition 2.7 An equilibrium is called hyperbolic if ng = 0, that is, if
there are no eigenvalues on the imaginary axis. A hyperbolic equilibrium is
called a hyperbolic saddle if n_n4 # 0.

Since a generic matrix has no eigenvalues on the imaginary axis (ng = 0),
hyperbolicity is a typical property and an equilibrium in a generic system
(i.e., one not satisfying certain special conditions) is hyperbolic. We will not
try to formalize these intuitively obvious properties, though it is possible
using measure theory and transversality arguments (see the bibliographi-
cal notes). Instead, let us study the geometry of the phase portrait near
a hyperbolic equilibrium in detail. For an equilibrium (not necessarily a
hyperbolic one), we introduce two invariant sets:

W (zo) = {x: p'x = 20, = +o0}, W"(z0) = {x: o'z — x0,t = —00},
where ¢! is the flow associated with (2.11).

Definition 2.8 W*#(x) is called the stable set of xo, while W"(xzq) is
called the unstable set of zg.

Theorem 2.1 (Local Stable Manifold) Let xg be a hyperbolic equilib-
rium (i.e., ng = 0, n_ +ny = n ). Then the intersections of W*(xo)
and W (xo) with a sufficiently small neighborhood of xy contain smooth
submanifolds W (zo) and W (x0) of dimension n_ and n4, respectively.

Moreover, W2 (zo)(W.(z0)) is tangent at xo to T°(T"), where T°(T")
s the generalized eigenspace corresponding to the union of all eigenvalues
of A with Re A <0 (Re A >0). O

The proof of the theorem, which we are not going to present here, can be
carried out along the following lines (Hadamard-Perron). For the unstable
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manifold, take the linear manifold T* passing through the equilibrium and
apply the map ¢! to this manifold, where ¢! is the flow corresponding
to the system. The image of T* under ¢! is some (nonlinear) manifold
of dimension ni tangent to T at xg. Restrict attention to a sufficiently
small neighborhood of the equilibrium where the linear part is “dominant”
and repeat the procedure. It can be shown that the iterations converge
to a smooth invariant submanifold defined in this neighborhood of xy and
tangent to T at x. The limit is the local unstable manifold W} (zo). The
local stable manifold W _(zo) can be constructed by applying ¢~! to T°.

Remark:

Globally, the invariant sets W*® and W* are immersed manifolds of di-
mensions n_ and n4, respectively, and have the same smoothness proper-
ties as f. Having these properties in mind, we will call the sets W* and
W the stable and unstable invariant manifolds of xg, respectively.

Example 2.2 (Saddles and saddle-foci in R?®) Figure 2.4 illustrates

A3 A2 A
@
. }‘2
H }\‘l
‘i
ReV,
(b)

FIGURE 2.4. (a) Saddle and (b) saddle-focus: The vectors vy, are the eigenvectors
corresponding to the eigenvalues .

the theorem for the case where n = 3, n_ = 2, and ny = 1. In this
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case, there are two invariant manifolds passing through the equilibrium,
namely, the two-dimensional manifold W#(z() formed by all incoming or-
bits, and the one-dimensional manifold W*(x) formed by two outgoing
orbits Wi (zg) and W3 (xg). All orbits not belonging to these manifolds
pass near the equilibrium and eventually leave its neighborhood in both
time directions.

In case (a) of real simple eigenvalues (A3 < A2 < 0 < A1), orbits on
W# form a node, while in case (b) of complex eigenvalues (Re Mg 3 < 0 <
A1, A3 = Ag), W* carries a focus. Thus, in the first case, the equilibrium is
called a saddle, while in the second one it is referred to as a saddle-focus.
The equilibria in these two cases are topologically equivalent. Nevertheless,
it is useful to distinguish them, as we shall see in our study of homoclinic
orbit bifurcations (Chapter 6). <

The following theorem gives the topological classification of hyperbolic
equilibria.

Theorem 2.2 The phase portraits of system (2.11) near two hyperbolic
equilibria, xo and ygo, are locally topologically equivalent if and only if these
equilibria have the same number n_ and ny of eigenvalues with Re A < 0
and with Re X\ > 0, respectively. O

Often, the equilibria zg and y are then also called topologically equiv-
alent. The proof of the theorem is based on two ideas. First, it is possible
to show that near a hyperbolic equilibrium the system is locally topologi-
cally equivalent to its linearization: f = A¢ (Grobman-Hartman Theorem).
This result should be applied both near the equilibrium xy and near the
equilibrium yg. Second, the topological equivalence of two linear systems
having the same numbers of eigenvalues with Re A < 0 and Re A > 0 and
no eigenvalues on the imaginary axis has to be proved. Example 2.1 is a
particular case of such a proof. Nevertheless, the general proof is based on
the same idea. See the Appendix at the end of this chapter for references.

Example 2.3 (Generic equilibria of planar systems) Consider a
two-dimensional system

z = f(l'), €= (‘rth)T € RZa
with smooth f. Suppose that = 0 is an equilibrium, f(0) = 0, and let

df (x)

dr |,_,

be its Jacobian matrix. Matrix A has two eigenvalues A1, Ao, which are the
roots of the characteristic equation

N —oA+A=0,
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FIGURE 2.5. Topological classification of hyperbolic equilibria on the plane.

where o = tr A, A = det A.

Figure 2.5 displays well-known classical results. There are three topo-
logical classes of hyperbolic equilibria on the plane: stable nodes (foci),
saddles, and unstable nodes (foci). As we have discussed, nodes and foci (of
corresponding stability) are topologically equivalent but can be identified
looking at the eigenvalues.

Definition 2.9 Nodes and foci are both called antisaddles.

Stable points have two-dimensional stable manifolds and no unstable
manifolds. For unstable equilibria the situation is reversed. Saddles have
one-dimensional stable and unstable manifolds, sometimes called separatri-
ces. &

2.2.2  Hyperbolic fized points in discrete-time systems

Now consider a discrete-time dynamical system
x— f(x), xe€R", (2.12)

where the map f is smooth along with its inverse f~! (diffeomorphism). Let
xo = 0 be a fixed point of the system (i.e., f(xo) = x¢) and let A denote
the Jacobian matrix % evaluated at xg. The eigenvalues pq, pto, ..., tin
of A are called multipliers of the fixed point. Notice that there are no
zero multipliers, due to the invertibility of f. Let n_, ng, and n4 be the
numbers of multipliers of zy lying inside, on, and outside the unit circle

{u € C' : |u| = 1}, respectively.
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Definition 2.10 A fized point is called hyperbolic if ng = 0, that is, if
there are no multipliers on the unit circle. A hyperbolic fized point is called
a hyperbolic saddle if n_n4 # 0.

Notice that hyperbolicity is a typical property also in discrete time. As
in the continuous-time case, we can introduce stable and unstable invariant
sets for a fixed point g (not necessarily a hyperbolic one):

Wo(xg) = {z:fk(x)%xo,kﬁJroo},
Wh(xg) = {x:fk(x)%xo,k%—oo},

where k is integer “time” and f*(z) denotes the kth iterate of x under f.
An analogue of Theorem 2.1 can be formulated.

Theorem 2.3 (Local Stable Manifold) Let xy be a hyperbolic fized po-
int, namely, ng = 0, n_ + ny = n. Then the intersections of W*(x¢)
and W (xo) with a sufficiently small neighborhood of xy contain smooth
submanifolds W (zo) and W (x0) of dimension n_ and n4, respectively.

Moreover, W2 (zo)(W.(z0)) is tangent at xo to T°(T"), where T°(T")
is the generalized eigenspace corresponding to the union of all eigenvalues
of A with |u| < 1(Jju| > 1). O

The proof of the theorem is completely analogous to that in the con-
tinuous-time case, if one substitutes ¢! by f. Globally, the invariant sets
W# and W* are again immersed manifolds of dimension n_ and n, re-
spectively, and have the same smoothness properties as the map f. The
manifolds cannot intersect themselves, but their global topology may be
very complex, as we shall see later.

The topological classification of hyperbolic fixed points follows from a
theorem that is similar to Theorem 2.2 for equilibria in the continuous-
time systems.

Theorem 2.4 The phase portraits of (2.12) near two hyperbolic fized points,
o and Yo, are locally topologically equivalent if and only if these fized points
have the same number n_ and ny of multipliers with |p| < 1 and |u| > 1,
respectively, and the signs of the products of all the multipliers with |u| < 1
and with || > 1 are the same for both fized points. O

As in the continuous-time case, the proof is based upon the fact that
near a hyperbolic fixed point the system is locally topologically equiva-
lent to its linearization: © — Ax (discrete-time version of the Grobman-
Hartman Theorem). The additional conditions on the products are due
to the fact that the dynamical system can define either an orientation-
preserving or orientation-reversing map on the stable or unstable manifold
near the fixed point. Recall that a diffeomorphism on R’ preserves orien-
tation in R! if det J > 0, where .J is its Jacobian matrix, and reverses it
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otherwise. Two topologically equivalent maps must have the same orienta-
tion properties. The products in Theorem 2.4 are exactly the determinants
of the Jacobian matrices of the map (2.12) restricted to its stable and un-
stable local invariant manifolds. It should be clear that one needs only
account for real multipliers to compute these signs, since the product of a
complex-conjugate pair of multipliers is always positive.

Let us consider two examples of fixed points.

Example 2.4 (Stable fixed points in R') Suppose zq = 0 is a fixed
point of a one-dimensional discrete-time system (n = 1). Let n_ = 1, mean-
ing that the unique multiplier p satisfies |u| < 1. In this case, according
to Theorem 2.3, all orbits starting in some neighborhood of xy converge
to xp. Depending on the sign of the multiplier, we have the two possi-

VR

l /\
\ /X.O\
7

(b)

FIGURE 2.6. Stable fixed points of one-dimensional systems: (a) 0 < p < 1; (b)
—1<pu<O.

en

bilities presented in Figure 2.6. If 0 < p < 1, the iterations converge to
xo monotonously (Figure 2.6(a)). If —1 < p < 0, the convergence is non-
monotonous and the phase point “jumps” around xg while converging to xg
(Figure 2.6(b)). In the first case the map preserves orientation in R! while
reversing it in the second. It should be clear that “jumping” orbits can-
not be transformed into monotonous ones by a continuous map. Figure 2.7
presents orbits near the two types of fixed points using staircase diagrams.
&

Example 2.5 (Saddle fixed points in R?) Suppose zo = 0 is a fixed
point of a two-dimensional discrete-time system (now n = 2). Assume
that n_ = ny = 1, so that there is one (real) multiplier u; outside the
unit circle (Jui| > 1) and one (real) multiplier ps inside the unit circle
(Ju2] < 1). In our case, there are two invariant manifolds passing through
the fixed point, namely the one-dimensional manifold W#*(z() formed by
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f(x) X f(x)

@ (b)

FIGURE 2.7. Staircase diagrams for stable fixed points.

orbits converging to xo under iterations of f, and the one-dimensional man-
ifold W*(z¢) formed by orbits tending to ¢ under iterations of f~1. Recall
that the orbits of a discrete-time system are sequences of points. All orbits
not belonging to the aforementioned manifolds pass near the fixed point
and eventually leave its neighborhood in both “time” directions.

Figure 2.8 shows two types of saddles in R2. In the case (a) of positive
multipliers, 0 < p2 < 1 < p1, an orbit starting at a point on W#(x)
converges to xo monotonously. Thus, the stable manifold W*(zg) is formed
by two invariant branches, Wf,z(xo), separated by xy. The same can be
said about the unstable manifold W*(xo) upon replacing f by its inverse.
The restriction of the map onto both manifolds preserves orientation.

If the multipliers are negative (case (b)), 1 < —1 < p2 < 0, the orbits
on the manifolds “jump” between the two components Wy separated by
xo. The map reverses orientation in both manifolds. The branches W'
are invariant with respect to the second iterate f2 of the map. <

Remarks:

(1) The stable and unstable manifolds W*"(zg) of a two-dimensional
saddle are examples of invariant curves: If x belongs to the curve, so does
any iterate f*(x). The invariant curve is not an orbit. Actually, it consists
of an infinite number of orbits. Figure 2.9 shows invariant curves and an
orbit near a saddle fixed point with positive multipliers.

(2) The global behavior of the stable and unstable manifolds W*%(xq)
of a hyperbolic fixed point can be very complex, thus making the word
“contain” absolutely necessary in Theorem 2.3.

Return, for example, to the planar case and suppose that z( is a saddle
with positive multipliers. First of all, unlike the stable and unstable sets
of an equilibrium in a continuous-time system, the manifolds W#(z() and
W(xg) of a generic discrete-time system can intersect at nonzero angle
(transversally) (see Figure 2.10(a)).
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FIGURE 2.8. Invariant manifolds of saddle fixed points on the plane: (a) positive
multipliers; (b) negative multipliers.

Moreover, one transversal intersection, if it occurs, implies an infinite
number of such intersections. Indeed, let z° be a point of the intersection.
By definition, it belongs to both invariant manifolds. Therefore, the orbit
starting at this point converges to the saddle point xy under repeated it-
eration of either f or f~!: f¥(2°) — x¢ as k — 4oo. Each point of this
orbit is a point of intersection of W¥(zy) and W (zo). This infinite num-
ber of intersections forces the manifolds to “oscillate” in a complex manner
near zp, as sketched in Figure 2.10(b). The resulting “web” is called the
Poincaré homoclinic structure. The orbit starting at z° is said to be homo-
clinic to xg. It is the presence of the homoclinic structure that can make
the intersection of W*"(z() with any neighborhood of the saddle x highly
nontrivial.

The dynamical consequences of the existence of the homoclinic structure
are also dramatic: It results in the appearance of an infinite number of
periodic points with arbitrary high periods near the homoclinic orbit. This
follows from the presence of Smale horseshoes (see Chapter 1). Figure 2.11
illustrates how the horseshoes are formed. Take a (curvilinear) rectangle
S near the stable manifold W#(zo) and consider its iterations f*S. If the
homoclinic structure is present, for a sufficiently high number of iterations
N, NS will look like the folded and expanded band @ shown in the figure.
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WU

FIGURE 2.9. Invariant curves and an orbit near a saddle fixed point.

@ (b)

FIGURE 2.10. Poincaré homoclinic structure.

The intersection of S with @ forms several horseshoes, where each of them
implies an infinite number of cycles with arbitrary high periods.

2.2.83 Hyperbolic limit cycles

Using the results of the previous section and the Poincaré map construction
(see Chapter 1), we can define hyperbolic limit cycles in continuous-time
systems and describe the topology of phase orbits near such cycles. Consider
a continuous-time dynamical system

= f(z), zeR", (2.13)

with smooth f, and assume that there is an isolated periodic orbit (limit cy-
cle) Lo of (2.13). As in Chapter 1, let ¥ be a local cross-section to the cycle
of dimension (n — 1) (codim ¥ = 1) with coordinates & = (&1,...,&-1)7.
System (2.13) locally defines a smooth invertible map P (a Poincaré map)
from ¥ to ¥ along the orbits of (2.13). The point &, of intersection of Ly
with ¥ is a fixed point of the map P, P(&) = &o.

Generically, the fixed point &j is hyperbolic, so there exist invariant man-
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FIGURE 2.11. Smale horseshoes embedded into the Poincaré homoclinic struc-
ture.

ifolds
W (&) ={£ €S : P*(&) — &, k— +oo}

and
W (&) ={6eX: P7*E) — &, k— 400},

of the dimensions n_ and n., respectively, where n+ are the numbers of
eigenvalues of the Jacobian matrix of P at &, located inside and outside
the unit circle. Recall that n_ +n; = n — 1 and that the eigenvalues are
called multipliers of the cycle. The invariant manifolds W**(&y) are the
intersections with X of the stable and unstable manifolds of the cycle:

W*(Lo) = {z : ¢’z — Ly, t = +oc},
W"(Lo) = {z : @'z — Ly, t = —oc},

where ¢! is the flow corresponding to (2.13).

We can now use the results on the topological classification of fixed points
of discrete-time dynamical systems to classify limit cycles. A limit cycle is
called hyperbolic if &y is a hyperbolic fixed point of the Poincaré map.
Similarly, a hyperbolic cycle is called a saddle cycle if it has multipliers
both inside and outside the unit circle (i.e., n_ny # 0). Recall that the
product of the multipliers is always positive (see Chapter 1); therefore the
Poincaré map preserves orientation in 3. This imposes some restrictions on
the location of the multipliers in the complex plane.

Example 2.6 (Hyperbolic cycles in planar systems) Consider a
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smooth planar system

{561 = filz1,z2),

2 = fa(w1,22),

T = (Jcl,xg)T € R2. Let xo(t) be a solution corresponding to a limit cycle
Lyg of the system, and let Ty be the (minimal) period of this solution. There
is only one multiplier of the cycle, u1, which is positive and is given by

To
fi1 = exp {/O (div f)(zo(t)) dt} >0,

where div stands for the divergence of the vector field:

(div f)(x) = aéf) + aéﬁ:).

If 0 < p1 < 1, we have a stable hyperbolic cycle and all nearby orbits con-
verge exponentially to it, while for y; > 1 we have an unstable hyperbolic
cycle with exponentially diverging neighboring orbits. &

@ (b)

FIGURE 2.12. Saddle cycles in three-dimensional systems: (a) positive multipliers
and (b) negative multipliers.

Example 2.7 (Saddle cycles in three-dimensional systems) Ex-
ample 2.5 provides two types of saddle limit cycles existing in R? (see Figure
2.12). If the multipliers of the Poincaré map satisfy

0<pe <1<,
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both invariant manifolds W#(Ly) and W"(Lg) of the cycle Lo are simple
bands (Figure 2.12(a)), while in the case when the multipliers satisfy

pn < —1<pe <0,

the manifolds W#(Lg) and W*(Lg) are twisted bands (called Mébius strips)
(see Figure 2.12(b)). Other types of saddle cycles in R? are impossible, since
the product of the multipliers of any Poincaré map is positive. Thus, the
manifolds W#*(Lg) and W*(Ly) must both be simple or twisted.

Finally, remark that W*(L) and W*(L) can intersect along orbits ho-
moclinic to the cycle L, giving rise to Poincaré homoclinic structure and
Smale horseshoes on the cross-section 3. &

2.3 Bifurcations and bifurcation diagrams

Now consider a dynamical system that depends on parameters. In the
continuous-time case we will write it as

z = f(xaa)a (214)
while in the discrete-time case it is written as
x— fx,q), (2.15)

where x € R™ and o € R™ represent phase variables and parameters,
respectively. Consider the phase portrait of the system.? As the parameters
vary, the phase portrait also varies. There are two possibilities: either the
system remains topologically equivalent to the original one, or its topology
changes.

Definition 2.11 The appearance of a topologically nonequivalent phase
portrait under variation of parameters is called a bifurcation.

Thus, a bifurcation is a change of the topological type of the system as its
parameters pass through a bifurcation (critical) value. Actually, the central
topic of this book is the classification and analysis of various bifurcations.

Example 2.8 (Andronov-Hopf bifurcation) Consider the following
planar system that depends on one parameter:

(2.16)

i = aw] — oy — o (2? + 22),
iy = @1+ awy — wa(2? + 23).

2If necessary, one may consider the phase portrait in a parameter-dependent
region U, C R™.
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In polar coordinates (p,6) it takes the form

po= pla—p?),
{0’ _ (2.17)

and can be integrated explicitly (see Exercise 6). Since the equations for

Ce@E

a<0

FIGURE 2.13. Hopf bifurcation.

p and 6 are independent in (2.17), we can easily draw phase portraits of
the system in a fixed neighborhood of the origin, which is obviously the
only equilibrium point (see Figure 2.13). For o < 0, the equilibrium is a
stable focus, since p < 0 and p(t) — 0, if we start from any initial point. On
the other hand, if @ > 0, we have p > 0 for small p > 0 (the equilibrium
becomes an unstable focus), and p < 0 for sufficiently large p. It is easy to
see from (2.17) that the system has a periodic orbit for any « > 0 of radius
po = va (at p = pg we have p = 0). Moreover, this periodic orbit is stable,
since p > 0 inside and p < 0 outside the cycle.

Therefore, « = 0 is a bifurcation parameter value. Indeed, a phase por-
trait with a limit cycle cannot be deformed by a one-to-one transformation
into a phase portrait with only an equilibrium. The presence of a limit cy-
cle is said to be a topological invariant. As « increases and crosses zero, we
have a bifurcation in system (2.16) called the Andronov-Hopf bifurcation.
It leads to the appearance, from the equilibrium state, of small-amplitude
periodic oscillations. We will use this bifurcation as an example later in
this chapter and analyze it in detail in Chapters 3 and 5. &

As should be clear, an Andronov-Hopf bifurcation can be detected if
we fix any small neighborhood of the equilibrium. Such bifurcations are
called local. One can also define local bifurcations in discrete-time systems
as those detectable in any small neighborhood of a fixed point. We will
often refer to local bifurcations as bifurcations of equilibria or fized points,
although we will analyze not just these points but the whole phase portraits
near the equilibria. Those bifurcations of limit cycles which correspond to
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local bifurcations of associated Poincaré maps are called local bifurcations
of cycles.

There are also bifurcations that cannot be detected by looking at small
neighborhoods of equilibrium (fixed) points or cycles. Such bifurcations are
called global.

Example 2.9 (Heteroclinic bifurcation) Consider the following pla-
nar system that depends on one parameter:

T, = 1—1‘%—0&1‘11}2,
{ To = 1‘1.2?24-0((1—.’1,‘%). (218)

The system has two saddle equilibria
z1) = (=1,0),2(2) = (1,0),

for all values of a (see Figure 2.14). At o« = 0 the horizontal axis is invariant
and, therefore, the saddles are connected by an orbit that is asymptotic to
one of them for ¢ — 400 and to the other for t — —oo. Such orbits are called
heteroclinic. Similarly, an orbit that is asymptotic to the same equilibrium
as t — 400 and t — —oo is called homoclinic. For a # 0, the x;-axis is no
longer invariant, and the connection disappears. This is obviously a global
bifurcation. To detect this bifurcation we must fix a region U covering both
saddles. We will study hetero- and homoclinic orbit bifurcations in Chapter
6. &

There are global bifurcations in which certain local bifurcations are in-
volved. In such cases, looking at the local bifurcation provides only partial
information on the behavior of the system. The following example illus-
trates this possibility.

Example 2.10 (Saddle-node homoclinic bifurcation) Let us ana-
lyze the following system on the plane:

oy
To
where « is a parameter. In polar coordinates (p, #) system (2.19) takes the

form ( 2)
p = pl—=p7),
{ 0 = 1+ a+ pcosh. (2.20)

r1(l—2% —22) — 22(1+a+a21),

2.1
ri(l+a+mz) + 22(1 — 23 — 23), (219)

Fix a thin annulus U around the unit circle {(p,0) : p = 1}. At a = 0,
there is a nonhyperbolic equilibrium point of system (2.20) in the annulus:

xo = (po,bo) = (1, )

(see Figure 2.15). It has eigenvalues A\; = 0, A2 = —2 (check!). For small
positive values of a the equilibrium disappears, while for small negative
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FIGURE 2.14. Heteroclinic bifurcation.
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FIGURE 2.15. Saddle-node homoclinic bifurcation.

a it splits into a saddle and a node (this bifurcation is called a saddle-
node or fold bifurcation; see Chapter 3). This is a local event. However,
for @ > 0 a stable limit cycle appears in the system coinciding with the
unit circle. This circle is always an invariant set in the system, but for
a < 0 it contains equilibria. Looking at only a small neighborhood of the
nonhyperbolic equilibrium, we miss the global appearance of the cycle.
Notice that at o = 0 there is exactly one orbit that is homoclinic to the
nonhyperbolic equilibrium zy. We will discuss such global bifurcations in
Chapter 7. &

We return now to a general discussion of bifurcations in a parameter-de-
pendent system (2.14) (or (2.15)). Take some value @ = o and consider
a maximal connected parameter set (called a stratum) containing o and
composed by those points for which the system has a phase portrait that is
topologically equivalent to that at ag. Taking all such strata in the parame-
ter space R™, we obtain the parametric portrait of the system. For example,
system (2.16) exhibiting the Andronov-Hopf bifurcation has a parametric
portrait with two strata: {a < 0} and {« > 0}. In system (2.18) there are
three strata: {a < 0}, {a = 0}, and {& > 0}. Notice, however, that the
phase portrait of (2.18) for a < 0 is topologically equivalent to that for
a> 0.

The parametric portrait together with its characteristic phase portraits
constitute a bifurcation diagram.

Definition 2.12 A bifurcation diagram of the dynamical system is a strat-
ification of its parameter space induced by the topological equivalence, to-
gether with representative phase portraits for each stratum.

It is desirable to obtain the bifurcation diagram as a result of the qualita-
tive analysis of a given dynamical system. It classifies in a very condensed
way all possible modes of behavior of the system and transitions between
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them (bifurcations) under parameter variations.® Note that the bifurcation
diagram depends, in general, on the region of phase space considered.

Remark:

If a dynamical system has a one- or two-dimensional phase space and
depends on only one parameter, its bifurcation diagram can be visualized
in the direct product of the phase and parameter spaces, R? x R! with the
phase portraits represented by one- or two-dimensional slices a = const.

Consider, for example, a scalar system

t=ar—23 zeR,aeR.

This system has an equilibrium zy = 0 for all . This equilibrium is stable
for v < 0 and unstable for o > 0 (e is the eigenvalue of this equilibrium).
For a > 0, there are two extra equilibria branching from the origin (namely,
Ti2 = +4/a) which are stable. This bifurcation is often called a pitchfork
bifurcation, the reason for which becomes immediately clear if one has a
look at the bifurcation diagram of the system presented in (z,«)-space
(see Figure 2.16). Notice that the system demonstrating the pitchfork bi-

X

/X1

T~

X2

FIGURE 2.16. Pitchfork bifurcation.

furcation is invariant under the transformation x — —z. We will study
bifurcations in such symmetric systems in Chapter 7.

In the simplest cases, the parametric portrait is composed by a finite
number of regions in R™. Inside each region the phase portrait is topo-
logically equivalent. These regions are separated by bifurcation boundaries,
which are smooth submanifolds in R™ (i.e., curves, surfaces). The bound-
aries can intersect, or meet. These intersections subdivide the boundaries
into subregions, and so forth. A bifurcation boundary is defined by specify-
ing a phase object (equilibrium, cycle, etc.) and some bifurcation conditions

3Recall that some time-related information on the behavior of the system is
lost due to topological equivalence.
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determining the type of its bifurcation (Hopf, fold, etc.). For example, the
Andronov-Hopf bifurcation of an equilibrium is characterized by one bifur-
cation condition, namely, the presence of a purely imaginary pair of eigen-
values of the Jacobian matrix evaluated at this equilibrium (cf. Example
2.7):

Re )\172 =0.

When a boundary is crossed, the bifurcation occurs.

Definition 2.13 The codimension of a bifurcation in system (2.14) or
(2.15) is the difference between the dimension of the parameter space and
the dimension of the corresponding bifurcation boundary.

Equivalently, the codimension (codim for short) is the number of inde-
pendent conditions determining the bifurcation. This is the most practical
definition of the codimension. It makes it clear that the codimension of
a certain bifurcation is the same in all generic systems depending on a
sufficient number of parameters.

Remark:

The bifurcation diagram of even a simple continuous-time system in
a bounded region on the plane can be composed by an infinite num-
ber of strata. The situation becomes more involved for multidimensional
continuous-time systems (with n > 3). In such systems the bifurcation val-
ues can be dense in some parameter regions and the parametric portrait
can have a Cantor (fractal) structure with certain patterns repeated on
smaller and smaller scales to infinity. Clearly, the task of fully investigating
such a bifurcation diagram is practically impossible. Nevertheless, even par-
tial knowledge of the bifurcation diagram provides important information
about the behavior of the system being studied.

2.4 Topological normal forms for bifurcations

Fortunately, bifurcation diagrams are not entirely “chaotic.” Different strata
of bifurcation diagrams in generic systems interact with each other follow-
ing certain rules. This makes bifurcation diagrams of systems arising in
many different applications look similar. To discuss this topic, we have to
decide when two dynamical systems have “qualitatively similar” or equiv-
alent bifurcation diagrams. Consider two (for definitiveness, continuous-
time) dynamical systems:

= f(z,a), z€R" aecR™ (2.21)

and
y:g(y76)7 yean ﬂERm, (222)
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with smooth right-hand sides and the same number of variables and param-
eters. The following definition is parallel to Definition 2.1, with necessary
modifications due to parameter dependence.

Definition 2.14 Dynamical system (2.21) is called topologically equiva-
lent to a dynamical system (2.22) if

(i) there exists a homeomorphism of the parameter space p : R™ —
R™, B = p(a);

(ii) there is a parameter-dependent homeomorphism of the phase space
he : R™ = R™ y = ho(x), mapping orbits of the system (2.21) at parameter
values v onto orbits of the system (2.22) at parameter values § = p(a),
preserving the direction of time.

Clearly, the homeomorphism p transforms the parametric portrait of sys-
tem (2.21) into the parametric portrait of system (2.22), while the homeo-
morphism h, maps corresponding phase portraits. By definition, topolog-
ically equivalent parameter-dependent systems have (topologically) equiv-
alent bifurcation diagrams.

Remark:

Notice that we do not require the homeomorphism h,, to depend contin-
uously on «, which would imply that the map (z,a) — (hp(2), p(a)) be
a homeomorphism of the direct product R™ x R™. For this reason, some
authors call the above-defined topological equivalence weak (or fiber) topo-
logical equivalence. {

As in the constant-parameter case, Definition 2.14 can be modified if one
is interested in comparing local behavior of the systems, for example, in
a small neighborhood of the origin of the state space, for small parameter
values.

Definition 2.15 Two systems (2.21) and (2.22) are called locally topologi-
cally equivalent near the origin, if there exists a map (z, ) — (ho(z), p(@)),

defined in a small neighborhood of (x,a) = (0,0) in the direct product
R™ x R™ and such that

(i) p: R™ — R™ 4s a homeomorphism defined in a small neighborhood
of =0, p(0) = 0;

(ii) he : R™ — R™ is a parameter-dependent homeomorphism defined in
a small neighborhood U, of x = 0, ho(0) = 0, and mapping orbits of (2.21)
in Uy onto orbits of (2.22) in ho(Uy), preserving the direction of time.

This definition means that one can introduce two small neighborhoods
of the origin U, and Vj, whose diameters are bounded away from zero
uniformly for «, 8 varying in some fixed small neighborhoods of the ori-
gin of the corresponding parameter spaces. Then, the homeomorphism #h,,
maps orbits of (2.21) in U, onto orbits of (2.22) in V}4), preserving their
orientation.
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We now consider the problem of the classification of all possible bifur-
cation diagrams of generic systems, at least, locally (i.e. near bifurcation
boundaries in the parameter space and corresponding critical orbits in the
phase space) and up to and including certain codimension. These local
diagrams could then serve as “building blocks” to construct the “global”
bifurcation diagram of any system. This problem has been solved for equi-
librium bifurcations in two-dimensional continuous-time systems up to and
including codim 3. In some sense, it has also been solved for bifurcations
of equilibria and fixed points in multidimensional continuous- and discrete-
time systems up to and including codim 2, although the relevant results are
necessarily incomplete (see Chapters 3, 4, 8, and 9). There are also several
outstanding results concerning higher-codimension local bifurcations and
some global bifurcations of codim 1 and 2.

The classification problem formulated above is simplified due to the fol-
lowing obvious but important observation. The minimal number of free pa-
rameters required to meet a codim k bifurcation in a parameter-dependent
system is exactly equal to k. Indeed, to satisfy a single bifurcation condition,
we need, in general, to “tune” a (single) parameter of the system. If there
are two conditions to be satisfied, two parameters have to be varied, and so
forth. In other words, we have to control k parameters to reach a codim k
bifurcation boundary in the parametric portrait of a generic system. On
the other hand, it is enough to study a bifurcation of codim £ in generic
k-parameter systems. General m-parameter (m > k) diagrams near the
bifurcation boundary can then be obtained by “shifting” the k-parameter
diagram in the complementary directions. For example, the Andronov-Hopf
bifurcation is a codim 1 (local) bifurcation. Thus, it occurs at isolated pa-
rameter values in systems depending on one parameter. In two-parameter
systems, it generally occurs on specific curves (one-dimensional manifolds).
If we cross this curve at a nonzero angle (transversally), the resulting one-
parameter bifurcation diagrams (where the parameter, e.g., is the arclength
along a transversal curve) will be topologically equivalent to the original
one-parameter diagram. The same will be true if we cross a two-dimensional
surface corresponding to the Hopf bifurcation in a system depending on
three parameters.

For local bifurcations of equilibria and fixed points, universal bifurcation
diagrams are provided by topological normal forms.* This is one of the
central notions in bifurcation theory. Let us discuss it in the continuous-
time setting, although it also applies to discrete-time systems. Sometimes
it is possible to construct a simple (polynomial in &;) system

£=g(¢ B;0), E€R", BeR* s €R, (2.23)

1t is possible to construct a kind of topological normal form for certain global
bifurcations involving homoclinic orbits.
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which has at § = 0 an equilibrium £ = 0 satisfying k bifurcation conditions
determining a codim k& bifurcation of this equilibrium. Here o is a vector
of the coefficients o;, i = 1,2,...,1, of the polynomials involved in (2.23).
In all the cases we will consider, there is a finite number of regions in the
coefficient space corresponding to topologically nonequivalent bifurcation
diagrams of (2.23). In the simplest situations, the o; take only a finite
number of integer values. For example, all the coefficients o; = 1 except a
single 0;, = £1. In more complex situations, some components of ¢ may
take real values (modulae).
Together with system (2.23), let us consider a system

i=f(z,a), r€R" acRF (2.24)

having at a = 0 an equilibrium z = 0.

Definition 2.16 (Topological normal form) System (2.23) is called a
topological normal form for the bifurcation if any generic system (2.24)
with the equilibrium x = 0 satisfying the same bifurcation conditions at
a = 0 is locally topologically equivalent near the origin to (2.23) for some
values of the coefficients o;.

Of course, we have to explain what a generic system means. In all the
cases we will consider, “generic” means that the system satisfies a finite
number of genericity conditions. These conditions will have the form of
nonequalities:

Ni[f] #£0, i=1,2,...,s,

where each N; is some (algebraic) function of certain partial derivatives
of f(z,«) with respect to x and « evaluated at (z,«) = (0,0). Thus, a
“typical” parameter-dependent system satisfies these conditions. Actually,
the value of o is then determined by values of N;, i =1,2,...,s.

It is useful to distinguish those genericity conditions which are deter-
mined by the system at the critical parameter values o = 0. These condi-
tions can be expressed in terms of partial derivatives of f(z,0) with respect
to = evaluated at x = 0, and are called nondegeneracy conditions. All the
other conditions, in which the derivatives of f(z,a) with respect to the
parameters « are involved, are called transversality conditions. The role of
these two types of conditions is different. The nondegeneracy conditions
guarantee that the critical equilibrium (singularity) is not too degenerate
(i.e., typical in a class of equiliubria satisfying given bifurcation conditions),
while the transversality conditions assure that the parameters “unfold” this
singularity in a generic way.

If a topological normal form is constructed, its bifurcation diagram clearly
has a universal meaning, since it immanently appears as a part of bifurca-
tion diagrams of generic systems exhibiting the relevant bifurcation. System
(2.16) from Example 2.7, by which we have illustrated the Andronov-Hopf
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bifurcation, corresponds to the case o = —1 in the two-dimensional topo-
logical normal form for this bifurcation:

{@ = Bt — & +obi(E+63),
&2 &1+ P& + 08 (8] +£3).

The conditions specifying generic systems that demonstrate this bifurcation
are the following:

(H].) %Re )\1’2(0[) o 7& 0
and
(H.2) 1,(0) # 0.

The first condition (transversality) means that the pair of complex-conjuga-
te eigenvalues A\j 2(«v) crosses the imaginary axis with nonzero speed. The
second condition (nondegeneracy) implies that a certain combination of
Taylor coefficients of the right-hand sides of the system (up to and including
third-order coefficients) does not vanish. An explicit formula for /;(0) will
be derived in Chapter 3, where we also prove that the above system is really
a topological normal form for the Hopf bifurcation. We will also show that
o = sign 11(0).

Remark:

There is a closely related notion of versal deformation (or universal un-
folding) for a bifurcation. First, we need to define what we mean by an
induced system.

Definition 2.17 (Induced system) The system
y=9.B), yeR", BeR™,

is said to be induced by the system
&= f(z,a), ze€R" aeR™,
if g(y, 8) = f(y,p(B)), where p : R™ — R™ is a continuous map.

Notice that the map p is not necessarily a homeomorphism, so it can be
noninvertible.

Definition 2.18 (Versal deformation) System (2.23) is a versal defor-
mation for the corresponding local bifurcation if any system (2.24), with the
equilibrium x = 0 satisfying the same bifurcation conditions and nondegen-
eracy conditions at o = 0, is locally topologically equivalent near the origin
to a system induced by (2.23) for some values of the coefficients o;.

It can be proved, in many cases, that the topological normal forms we
derive are actually versal deformations for the corresponding bifurcations
(see also Exercise 7). &
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2.5 Structural stability

There are dynamical systems whose phase portrait (in some domain) does
not change qualitatively under all sufficiently small perturbations.

Example 2.11 (Persistence of a hyperbolic equilibrium) Suppose
that xg is a hyperbolic equilibrium of a continuous-time system

t=f(x), z€R", (2.25)

where f is smooth, f(xo) = 0. Consider, together with system (2.25), its
one-parameter perturbation

&= f(x) +eg(z), =eR", (2.26)

where g is also smooth and ¢ is a small parameter; setting ¢ = 0 brings
(2.26) back to (2.25). System (2.26) has an equilibrium z(e) for all suffi-
ciently small || such that 2(0) = x¢. Indeed, the equation defining equi-
libria of (2.26) can be written as

F(z,e) = f(x) +eg(x) =0,

with F(z9,0) = 0. We also have F,(xg,0) = Ag, where A is the Jacobian
matrix of (2.25) at the equilibrium xy. Since det Ay # 0, because z is
hyperbolic, the Implicit Function Theorem guarantees the existence of a
smooth function = = z(e), z(0) = xo, satisfying

F(z(e),e) =0

for small values of |¢]. The Jacobian matrix of z(¢) in (2.26),

Ae = (dfd(? +€dgd(;3)>

z=z(e)

depends smoothly on e and coincides with Ag in (2.25) at € = 0. As already
known, the eigenvalues of a matrix that depends smoothly on a parameter
change continuously with the variation of this parameter.’ Therefore, z(¢)
will have no eigenvalues on the imaginary axis for all sufficiently small
le], since it has no such eigenvalues at ¢ = 0. In other words, z(¢) is a
hyperbolic equilibrium of (2.26) for all || small enough. Moreover, the
numbers n_ and n4 of the stable and unstable eigenvalues of A, are fixed
for these values of . Applying Theorem 2.2, we find that systems (2.25)
and (2.26) are locally topologically equivalent near the equilibria. Actually,
for every |e| small, there is a neighborhood U, C R™ of the equilibrium .
in which system (2.26) is topologically equivalent to (2.25) in Up. In short,

>The eigenvalues vary smoothly as long as they remain simple.
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all these facts are summarized by saying that “a hyperbolic equilibrium is
structurally stable under smooth perturbations.”

Similar arguments provide the persistence of a hyperbolic equilibrium
for all sufficiently small |¢| in a smooth system

i =G(x,e), r€R", R,

where G(z,0) = f(z). ¢

The parameter ¢ from Example 2.11 somehow measures the distance
between system (2.25) and its perturbation (2.26); if € = 0 the systems
coincide. There is a general definition of the distance between two smooth
dynamical systems. Consider two continuous-time systems

i=f(z), xeR", (2.27)

and
& =g(z), zeR", (2.28)
with smooth f and g.

Definition 2.19 The distance between (2.27) and (2.28) in a closed region
U C R" s a positive number di given by

df () _ dg(x)
dy = - — — .
1= sup {(2) - gto)l + | L2 -
The systems are e-close in U if di < e.
Here || - || means a vector and a matrix norm in R", for example:
lel = | > o l4ll=
1=1,...,n

Thus, two systems are close if their right-hand sides are close to each other,
together with their first partial derivatives. In this case one usually calls the
systems C'-close. Clearly, the distance between systems (2.25) and (2.26)
is proportional to |e|: d; = Ce| for some constant C' > 0 depending on

dg
dx

verbatim to discrete-time systems.

in U. Definition 2.19 can be applied

the upper bounds for ||g|| and H

Remark:

The appearance of the first derivatives in the definition of the distance
is natural if one wants to ensure that close systems have nearby equilibria
of the same topological type (see Example 2.11). It is easy to construct a
smooth system (2.28) that is e-close to (2.27) in the C-distance:

do = sup {[|f(z) — g(x)|I},
xeU
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y f(x)

g

FIGURE 2.17. Two C°-close functions with different numbers of zeros.

and that has a totally different number of equilibria in any neighborhood
of an equilibrium of (2.27) (see Figure 2.17 for n = 1).

Now we would like to define a structurally stable system, which means
that any sufficiently close system is topologically equivalent to the struc-
turally stable one. The following definition seems rather natural.

Definition 2.20 (Strict structural stability) System (2.27) is strictly
structurally stable in the region U if any system (2.28) that is sufficiently
Cl-close in U is topologically equivalent in U to (2.27).

U U
Xo
FIGURE 2.18. Structurally unstable orbits according to Definition 2.20.

Notice, however, that systems having hyperbolic equilibria on the bound-
ary of U, or hyperbolic cycles touching the boundary (see Figure 2.18),
are structurally unstable in accordance with this definition, since there are
small system perturbations moving such equilibria out of U, or pushing
such cycles to lie (partially) outside of U. There are two ways to handle
this difficulty.

The first is to consider dynamical systems “in the whole phase space”
and to forget about any regions. This way is perfect for dynamical systems
defined on a compact smooth manifold X. In such a case, the “region U”
in Definition 2.20 (as well as in the definition of the distance) should be
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substituted by the “compact manifold X.” Unfortunately, for systems in
R™ this easily leads to complications. For example, the distance between
many innocently looking systems may be infinite if the supremum in dy is
taken over the whole of R™. Therefore, the second way out is to continue to
work with bounded regions but to introduce another definition of structural
stability.

Definition 2.21 (Andronov’s structural stability) A system (2.27) de-
fined in a region D C R"™ is called structurally stable in a region Dy C D
if for any sufficiently C'-close in D system (2.28) there are regions U,V C
D, Dy C U such that (2.27) is topologically equivalent in U to (2.28) in V
(see Figure 2.19).

D

FIGURE 2.19. Andronov’s structural stability.

A parallel definition can be given for discrete-time systems. If (2.27) is
structurally stable in Dy C D, then it is structurally stable in any region
Dy C Dgy. There are cases when Definitions 2.20 and 2.21 actually coincide.

Lemma 2.1 If a system is structurally stable in a region Do with the
boundary Bgy and all its orbits point strictly inside By, then it is strictly
structurally stable in U = Dy. O

The following classical theorem gives necessary and sufficient conditions
for a continuous-time system in the plane to be structurally stable.

X O )X

FIGURE 2.20. Structurally unstable connecting orbits in planar systems.
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Theorem 2.5 (Andronov & Pontryagin [1937]) A smooth dynamical
system

i = f(x), ©eR?
is structurally stable in a region Dy C R? if and only if

(i) it has a finite number of equilibria and limit cycles in Dy, and all of
them are hyperbolic;

(ii) there are no saddle separatrices returning to the same saddle or con-
necting two different saddles in Dy (see Figure 2.20). O

Remark:

Actually, in their original paper of 1937, Andronov and Pontryagin con-
sidered systems with analytic right-hand sides in a region Dy C R? bounded
by a (piecewise) smooth curve. They also assumed that all orbits point
strictly inside the region, so they were able to use Definition 2.20. Later,
Definition 2.21 was introduced and this restriction on the behavior on the
boundary was left out. Moreover, they proved that the homeomorphism h
transforming the phase portrait of a perturbed system in Dy into that of
the original system can be selected C°-close to the identity map id(x) = .

¢

This theorem gives the complete description of structurally stable sys-
tems on the plane. It is rather obvious, although it has to be proved, that
a typical (generic) system on the plane satisfies Andronov-Pontryagin con-
ditions and is, thus, structurally stable. If one considers the bifurcation
diagram of a generic planar system depending on k parameters, these are
structurally stable systems that occupy k-dimensional open regions in the
parameter space.

One can ask if a similar theorem exists for n-dimensional systems. The
answer is “no.” More precisely, one can establish sufficient conditions (called
Morse-Smale conditions, similar to those in Theorem 2.5) for a continuous-
time system to be structurally stable. Nevertheless, there are systems,
which do not satisfy these conditions, that are structurally stable. In par-
ticular, structurally stable systems can have an infinite number of peri-
odic orbits in compact regions. To understand this phenomenon, consider a
continuous-time system R3. Suppose that there is a two-dimensional cross-
section ¥ on which the system defines a Poincaré map generating a Smale
horseshoe (see Chapter 1 and Example 2.7 in this chapter). Then, the sys-
tem has an infinite number of saddle cycles in some region of the phase
space. A C'-close system will define a C'-close Poincaré map on X. The
horseshoe will be slightly deformed, but the geometrical construction we
have carried out in Chapter 1 remains valid. Thus, a complex invariant
set including an infinite number of saddle cycles will persist under all suf-
ficiently small perturbations. A homeomorphism transforming the corre-
sponding phase portraits can also be constructed.
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Moreover, it is possible to construct a system that has no close struc-
turally stable systems. We direct the reader to the literature cited in this
chapter’s appendix.

2.6 HExercises

(1) Determine which of the following linear systems has a structurally
stable equilibrium at the origin, and sketch its phase portrait:

(a) {82

y = —2x+4y;
T = 2zx+vy,
(v {322
Yy - Z;

T = x4 2y,
(© {212
y = —z-—y.

(2) The following system of partial differential equations is the FitzHugh-
Nagumo caricature of the Hodgkin-Huxley equations modeling the nerve
impulse propagation along an axon:

ou 0%u
B = o
v
e A
ot "
where u = wu(z,t) represents the membrane potential, v = v(z,t) is a

“recovery” variable, fo(u) = u(u —a)(u —1),1>a>0,b>0,—00 <z <
400, and t > 0.
Traveling waves are solutions to these equations of the form

u(z,t) = U(E), v(x,t) =V(E), = +ct,

where ¢ is an a priori unknown wave propagation speed. The functions U ()
and V() are the wave profiles.

(a) Derive a system of three ordinary differential equations for the profiles
with “time” ¢. (Hint: Introduce an extra variable: W = U.)

(b) Check that for all ¢ > 0 the system for the profiles (the wave system)
has a unique equilibrium with one positive eigenvalue and two eigenvalues
with negative real parts. (Hint: First, verify this assuming that eigenvalues
are real. Then, show that the characteristic equation cannot have roots
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on the imaginary axis, and finally, use the continuous dependence of the
eigenvalues on the parameters.)

(c) Conclude that the equilibrium can be either a saddle or a saddle-
focus with a one-dimensional unstable and a two-dimensional stable in-
variant manifold, and find a condition on the system parameters that de-
fines a boundary between these two cases. Plot several boundaries in the
(a, ¢)-plane for different values of b and specify the region corresponding to
saddle-foci. (Hint: At the boundary the characteristic polynomial A()) has
a double root Ag : h(Ag) = h'(Ag) =0.)

(d) Sketch possible profiles of traveling impulses in both regions. (Hint:
An impulse corresponds to a solution of the wave system with

(U(€),V(£),W()) — (0,0,0)
as & — too. See Chapter 6 for further details.)

(3) Prove that the system

jjl = —T1,
i‘Q = —T2,
is locally topologically equivalent near the origin to the system
‘/'tl = —I1,
(tQ = —2‘%2.

(Hint: Mimic the proof of Example 2.1 without introducing polar coordi-
nates.) Are the systems diffeomorphic?

(4) (Diffeomorphic limit cycles) Show that for diffeomorphic continu-
ous-time systems, corresponding limit cycles have coinciding periods and
multipliers. (Hint: Use the fact that variational equations around corre-
sponding cycles (considered as autonomous systems with an extra cyclic
variable) are diffeomorphic.)

(5) (Orbital equivalence and global flows)
(a) Prove that the scalar system

d
d—f:xz, r €RY,

having solutions approaching infinity within finite time, and thus defining
only local flow ¢! : R — R!, is orbitally equivalent to the scalar system

dx x?

2o T zeR,

dar 1422 °
having no such solutions and therefore defining a global flow ¥7 : Rt — R!.
How are ¢t and 7 related?
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(b) Prove that any smooth system & = f(z), = € R, is orbitally equiva-
lent in R™ to a smooth system defining a global flow 1™ on R™. (Hint: The

system
1

= T’ @

where || - || is the norm associated with the standard scalar product in R™,
does the job.)

(6) (One-point parametric portrait) Construct an autonomous system
of differential equations in R® depending on two parameters (o, 3) and
having topologically equivalent phase portraits for all parameter values
except (o, 3) = (0,0). (Hint: Use the idea of Example 2.9. At a« = 5 = 0,
the system should have two saddle points with one-dimensional unstable
and one-dimensional stable manifolds with coinciding branches (see Figure
2.21).)

A A
] ]

/ /
L L

FIGURE 2.21. Exercise 6.

(7) (Induced systems) Show that the scalar system
y = 62‘/ - y2a
which exhibits the ¢ranscritical bifurcation, is topologically equivalent (in

fact, diffeomorphic) to a system induced by the system

i=a—a?
which undergoes the fold bifurcation. (Hint: See Arrowsmith & Place [1990,
p.193].)

(8) (Proof of Lemma 2.1)

(a) Prove that a smooth planar system i = f(x), z € R?, is topologically
equivalent (in fact, diffeomorphic) in a region U, that is, free of equilibria
and periodic orbits and is bounded by two orbits and two smooth curves
transversal to orbits, to the system

nho=
102 = 07

|
—_
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FIGURE 2.22. Phase portraits in regions U and V are equivalent.

-

FIGURE 2.23. Saddles are topologically equivalent.

in the unit square V = {(y1,y2) : |y1| < 1, |y2| < 1} (see Figure 2.22).

(b) Generalize this result to n-dimensional systems and prove Lemma
2.1.

(c) Prove, using part (a), that two hyperbolic saddle points on the plane
have locally topologically equivalent phase portraits. ( Hint: See Figure 2.23;
an explicit map providing the equivalence is constructed in Chapter 6.)
Where is the differentiability lost?

2.7 Appendix: Bibliographical notes

The notion of topological equivalence of dynamical systems appeared in
the paper by Andronov & Pontryagin [1937] devoted to structurally stable
systems on the plane. It is extensively used (among other equivalences) in
singularity theory to classify singularities of maps and their deformations
(Thom [1972], Arnold, Varchenko & Guseyn-Zade [1985], Golubitsky &
Schaeffer [1985]).

The local topological equivalence of a nonlinear dynamical system to its
linearization at a hyperbolic equilibrium was proved by Grobman [1959] and
Hartman [1963]. See Hartman [1964] for details. Local topological equiva-
lence of a map near a hyperbolic fixed point to its linearization has been
established by Grobman and Hartman as a by-product of their proofs of
the corresponding theorem in the continuous-time case (see also Nitecki
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[1971]). A constructive proof of the topological equivalence of two linear
systems with ng = 0 and the same n_ and n4 can be found in Arnold
[1973] and Hale & Kogak [1991].

The Local Stable Manifold Theorem for differential equations originated
in works by Hadamard [1901] and Perron [1930]. Complete proofs and gen-
eralizations are given by Kelley [1967]; Hirsch, Pugh & Shub [1977] (see also
Irwin [1980]). The Local Stable Manifold Theorem for maps is actually the
main technical tool used to prove the relevant theorem for differential equa-
tions. Therefore, its proof can be found in the cited literature, for example,
in Hartman [1964] or Nitecki [1971]. The latter reference also contains a
proof that the stable and unstable sets of a hyperbolic fixed point are im-
ages of R” and R’ under immersion.

The complex structure generated by the transversal intersection of the
stable and unstable manifolds of a hyperbolic fixed point was discovered
by Poincaré [1892,1893,1899] while analyzing area-preserving (conserva-
tive) maps appearing in celestial mechanics. Further analysis of this phe-
nomenon in the conservative case was undertaken by Birkhoff [1935], with
particular emphasis to the statistical properties of corresponding orbits.
The nonconservative case was studied by Smale [1963], Neimark [1967],
and Shil’'nikov [1967b]. A nice exposition of this topic is given by Moser
[1973].

There are two main approaches to studying bifurcations in dynamical
systems. The first one, originating in the works by Poincaré, is to analyze
the appearance (branching) of new phase objects of a certain type (equi-
libria or cycles, for example) from some known ones when parameters of
the system vary. This approach led to the development of branching theory
for equilibrium solutions of finite- and infinite-dimensional nonlinear equa-
tions (see, e.g, Vainberg & Trenogin [1974], and Chow & Hale [1982]). The
approach also proved to be a powerful tool to study some global bifurca-
tions (see the bibliographical notes in Chapter 6). The second approach,
going back to Andronov [1933] and reintroduced by Thom [1972] in order
to classify gradient systems @ = —grad V(z, ), is to study rearrangements
(bifurcations) of the whole phase portrait under variations of parameters.
In principle, the branching analysis should precede more complete phase
portrait study, but there are many cases where complete phase portraits
are unavailable and studying certain solutions is the only way to get some
information on the bifurcation.

Bifurcations of phase portraits of two-dimensional dynamical systems
have been studied in great detail by Andronov and his co-workers in 1930-
1950 and summarized in the classical book whose English translation is
available as Andronov, Leontovich, Gordon & Maier [1973]. In his fa-
mous lectures, Arnold [1972] first applied many ideas from singularity the-
ory of differentiable maps to dynamical systems (a similar approach was
developed by Takens [1974a]). The notions of topological equivalence of
parameter-dependent systems (families), versal deformations for local bi-
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furcations, as well as many original results, were first presented in Arnold’s
lectures and then in the book by Arnold [1983]. Notice that in the literature
in English versal deformations are often called universal unfoldings follow-
ing terminology from singularity theory. A fundamental survey of bifurca-
tion theory, including results on global bifurcations, is given by Arnol’d,
Afraimovich, Il’yashenko & Shil’nikov [1994].

Structurally stable two-dimensional ODE systems were studied by An-
dronov & Pontryagin [1937] under the name coarse (or rough) systems.
Actually, they included the requirement that the homeomorphism trans-
forming the phase portraits be close to the identity. Peixoto [1962] proved
that a typical system on a two-dimensional manifold is structurally stable.
To discuss “typicality” one has to specify a space D of considered dynami-
cal systems. Then, a property is called typical (or generic) if systems from
the intersection of a countable number of open and dense subsets of D
possess this property (see Wiggins [1990] for an introductory discussion).
A class of structurally stable, multidimensional dynamical systems (called
Morse-Smale systems) has been identified Smale [1961, 1967]. Such systems
have only a finite number of equilibria and cycles, all of which are hyper-
bolic and have their stable and unstable invariant manifolds intersecting at
nonzero angles (transversally). There are structurally stable systems that
do not satisfy Morse-Smale criteria, in particular, having an infinite num-
ber of hyperbolic cycles [Smale 1963]. Moreover, structural stability is not a
typical property for multidimensional dynamical systems, and structurally
stable systems are not dense in a space D of smooth dynamical systems
[Smale 1966]. The interested reader is referred to Nitecki [1971] and Arnold
[1983] for more information.
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One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

In this chapter we formulate conditions defining the simplest bifurcations
of equilibria in n-dimensional continuous-time systems: the fold and the
Hopf bifurcations. Then we study these bifurcations in the lowest possible
dimensions: the fold bifurcation for scalar systems and the Hopf bifurca-
tion for planar systems. Chapter 5 shows how to “lift” these results to
n-dimensional situations.

3.1 Simplest bifurcation conditions

Consider a continuous-time system depending on a parameter
&= f(z,a), z€R" acR

where f is smooth with respect to both x and «. Let £ = zo be a hyper-
bolic equilibrium in the system for a = 9. As we have seen in Chapter 2,
under a small parameter variation the equilibrium moves slightly but re-
mains hyperbolic. Therefore, we can vary the parameter further and mon-
itor the equilibrium. It is clear that there are, generically, only two ways
in which the hyperbolicity condition can be violated. Either a simple real
eigenvalue approaches zero and we have A\; = 0 (see Figure 3.1(a)), or a
pair of simple complex eigenvalues reaches the imaginary axis and we have
A1,2 = Fiwg, wo > 0 (see Figure 3.1(b)) for some value of the parameter. It
is obvious (and can be rigorously formalized) that we need more parameters
to allocate extra eigenvalues on the imaginary axis. Notice that this might
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M

A2

(@ (b)
FIGURE 3.1. Codim 1 critical cases.

not be true if the system has some special properties, such as a symmetry
(see Chapter 7).

The rest of the chapter will essentially be devoted to the proof that a
nonhyperbolic equilibrium satisfying one of the above conditions is struc-
turally unstable and to the analysis of the corresponding bifurcations of
the local phase portrait under variation of the parameter. We have already
seen several examples of these bifurcations in Chapter 2. Let us finish this
section with the following two definitions.

Definition 3.1 The bifurcation associated with the appearance of Ay = 0
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation has a lot of other names, including limit point, saddle-
node bifurcation, and turning point.

Definition 3.2 The bifurcation corresponding to the presence of A2 =
+iwp, wo > 0, is called a Hopf (or Andronov-Hopf) bifurcation.

Notice that the tangent bifurcation is possible if n > 1, but for the Hopf
bifurcation we need n > 2.

3.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:
i=a+2? = f(z,0). (3.1)

At a = 0 this system has a nonhyperbolic equilibrium xg = 0 with A =
f2(0,0) = 0. The behavior of the system for all the other values of «
is also clear (see Figure 3.2). For a@ < 0 there are two equilibria in the
system: z1 2(a) = ++v/—a, the left one of which is stable, while the right
one is unstable. For o > 0 there are no equilibria in the system. While
a crosses zero from negative to positive values, the two equilibria (stable
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y y y y=f(Xx, o)
y=f(X, o)
y="1(x o)

xz\/'x1 X Xo X X

a<0 a=0 oa>0

FIGURE 3.2. Fold bifurcation.

and unstable) “collide,” forming at a = 0 an equilibrium with A = 0, and
disappear. This is a fold bifurcation. The term “collision” is appropriate,
since the speed of approach (-Lx;2(a)) of the equilibria tends to infinity
as a — 0.

There is another way of presenting this bifurcation: plotting a bifurcation
diagram in the direct product of the phase and parameter spaces (simply,
the (z, «)-plane). The equation

flz,a) =0
defines an equilibrium manifold, which is simply the parabola o = —x

(see Figure 3.3). This presentation displays the bifurcation picture at once.
Fixing some «, we can easily determine the number of equilibria in the

2

X

X1 (0r)

Xz (0r)

o=-X?

FIGURE 3.3. Fold bifurcation in the phase-parameter space.

system for this parameter value. The projection of the equilibrium manifold
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into the parameter axis has a singularity of the fold type at (z,a) = (0,0).
Remark:

The system & = o — x* can be considered in the same way. The analysis
reveals two equilibria appearing for a > 0. {

2

Now add to system (3.1) higher-order terms that can depend smoothly
on the parameter. It happens that these terms do not change qualitatively
the behavior of the system near the origin = 0 for parameter values close
to a = 0. Actually, the following lemma holds:

Lemma 3.1 The system
i =a+2?+0(z?)
is locally topologically equivalent near the origin to the system

i =a+ 2

Proof:

The proof goes through two steps. It is based on the fact that for scalar
systems a homeomorphism mapping equilibria into equilibria will also map
their connecting orbits.

Step 1 (Analysis of equilibria). Introduce a scalar variable y and write the
first system as

:l'/:F(y,Oé) :O‘+y2+w(yaa)7 (32)

where 1) = O(y?) is a smooth functions of (y, ) near (0,0). Consider the
equilibrium manifold of (3.2) near the origin (0,0) of the (y, «)-plane:

M ={(y,a): F(y,a) = a+y* +¢(y,a) = 0}.

The curve M passes through the origin (F(0,0) = 0). By the Implicit
Function Theorem (since F,(0,0) = 1), it can be locally parametrized by

Y:
M= {(y,a) : a=g(y)},

where g is smooth and defined for small |y|. Moreover,

9(y) = —y* + O(y°)

(check!). Thus, for any sufficiently small & < 0, there are two equilibria
of (3.2) near the origin in (3.2), y1(a) and ya(«), which are close to the
equilibria of (3.1), i.e., 71(a) = +v/—a and x3(a) = —/—q, for the same
parameter value (see Figure 3.4).



3.3 Generic fold bifurcation 83

y
F(y,a)=0 Xy(00)
yi(o)
0 o
yAo)
X 00)
f(y,0)=0

FIGURE 3.4. Fold bifurcation for the perturbed system.

Step 2 (Homeomorphism construction). For small |«|, construct a parame-
ter-dependent map y = h,(z) as following. For o« > 0 take the identity
map
ha(z) = .
For a < 0 take a linear transformation
ho(z) = ala) + b(a)z,

where the coefficients a, b are uniquely determined by the conditions

ho(zj(a)) = yj(a), j=1,2,

(find them!). The constructed map h, : R? — R! is a homeomorphism
mapping orbits of (3.1) near the origin into the corresponding orbits of
(3.2), preserving the direction of time. Chapter 2 identified this property
as the local topological equivalence of parameter-dependent systems.

Although it is not required in the book for the homeomorphism h, to
depend continuously on « (see Remark after Definition 2.14), this property
holds here, since h,, tends to the identity map as negative o — 0. O

3.3 Generic fold bifurcation

We shall show that system (3.1) (with a possible sign change of the z2-

term) is a topological normal form of a generic one-dimensional system

having a fold bifurcation. In Chapter 5 we will also see that in some strong

sense it describes the fold bifurcation in a generic n-dimensional system.
Suppose the system

= f(z,a), zeR! acR (3.3)
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with a smooth f has at o = 0 the equilibrium x = 0 with A = f,(0,0) = 0.
Expand f(z,a) as a Taylor series with respect to x at = 0:

flw,0) = fola) + fi(a)z + fa(a)z® + O(z?).

Two conditions are satisfied: fo(0) = f(0,0) = 0 (equilibrium condition)
and f1(0) = f(0,0) = 0 (fold bifurcation condition).

The main idea of the following simple calculations is this: By smooth
invertible changes of the coordinate and the parameter, transform system
(3.3) into the form (3.1) up to and including the second-order terms. Then,
Lemma 3.1 can be applied, thus making it possible to drop the higher-order
terms. While proceeding, we will see that some extra nondegeneracy and
transversality conditions must be imposed to make these transformations
possible. These conditions will actually specify which one-parameter system
having a fold bifurcation can be considered as generic. This idea works
for all local bifurcation problems. We will proceed in exactly this way in
analyzing the Hopf bifurcation later in this chapter.

Step 1 (Shift of the coordinate). Perform a linear coordinate shift by intro-
ducing a new variable &:
E=x+9, (3.4)

where 6 = §(«) is an a priori unknown function that will be defined later.
The inverse coordinate transformation is

r=£&—6.
Substituting (3.4) into (3.3) yields
§=a = fola) + fi(e)(§ = 0) + fala) (€ —0)* +

Therefore,
£ = [fola) = fr(a)d + fa()d® + O(6%)]
+ [fi(a) = 2fo( )5+0(52)]£

[(a) 0(9)] €
0(&?).

Assume that

(A1) F2(0) = 5 2(0,0) £ 0.

Then there is a smooth function §(«) that annihilates the linear term in
the above equation for all sufficiently small |a|. This can be justified with
the Implicit Function Theorem. Indeed, the condition for the linear term
to vanish can be written as

F(a,0) = fi(a) —2fa(a)d + 521/1(a, 0) =
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with some smooth function . We have

OF OF )
% 0.0) = —2f2(0) 7’5 0, 704 = f1(0)a

F(0,0) =0,
da {40

which implies (local) existence and uniqueness of a smooth function § =
d(a) such that 6(0) =0 and F(a, d(a)) = 0. It also follows that

_ f1(0)

2
§(a) = 2f2(0)a + O(a”).
The equation for £ now contains no linear terms:
&= [f5(0)a+ O(a®)] + [£2(0) + O()]€* + O(£). (3.5)

Step 2 (Introduce a new parameter). Consider as a new parameter u = ()
the constant (¢-independent) term of (3.5):

p= fo(0)a+a’e(a),

where ¢ is some smooth function. We have:

(a) u(0) =0;
(b) #(0) = f5(0) = fa(0,0).

If we assume that
(A.2) fa(0,0) #0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function @ = a(u) with a(0) = 0. Therefore, equation
(3.5) now reads

£=p+a(p)E® +0(E),

where a(p) is a smooth function with a(0) = f2(0) # 0 due to the first
assumption (A.1).

Step 3 (Final scaling). Let n = |a(u)|€ and 8 = |a(u)|px. Then we get
=0+ sn°+00’),
where s = sign a(0) = +1.

Therefore, the following theorem is proved.

Theorem 3.1 Suppose that a one-dimensional system
i = f(z,a), zeR', aecR

with smooth f, has at « = 0 the equilibrium x = 0, and let A = f,(0,0) = 0.
Assume that the following conditions are satisfied:
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(A.2) 14(0,0) £ 0.

Then there are invertible coordinate and parameter changes transforming
the system into
n=pB+n*+0®%). 0

Using Lemma 3.1, we can eliminate O(n®) terms and finally arrive at the
following general result.

Theorem 3.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

= f(z,a),

having at o = 0 the equilibrium x = 0 with A = f,(0,0) = 0, is locally
topologically equivalent near the origin to one of the following normal forms:

=g+’ O

Remark:
The genericity conditions in Theorem 3.2 are the nondegeneracy condi-
tion (A.1) and the transversality condition (A.2) from Theorem 3.1. {

3.4 The normal form of the Hopf bifurcation

Consider the following system of two differential equations depending on
one parameter:

{ L1 = QT — To — 331(33% + x§)7 (3.6)

iy = a1+ axs — zo(2? + 23).
This system has the equilibrium z; = zo = 0 for all @ with the Jacobian

matrix
a —1
=5 )

having eigenvalues Ai 2 = o % 4. Introduce the complex variable z = x; +
iT9,Z = 21 —ix9, |2|? = 2Z = 22 + 3. This variable satisfies the differential
equation

5 =@y +idy = a(zy +izg) + (21 +ixe) — (1 + iz (22 + 23),
and we can therefore rewrite system (3.6) in the following complex form:

i=(a+i)z— 2|22 (3.7)
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Finally, using the representation z = pe?, we obtain
3 = pe'? + pipe'?,
or
(o +i—p)
which gives the polar form of system (3.6):

(52 g o

pe'’ + ippc'? =

Bifurcations of the phase portrait of the system as « passes through zero
can easily be analyzed using the polar form, since the equations for p and
¢ in (3.8) are uncoupled. The first equation (which should obviously be
considered only for p > 0) has the equilibrium point p = 0 for all values of
a. The equilibrium is linearly stable if & < 0; it remains stable at a = 0
but nonlinearly (so the rate of solution convergence to zero is no longer ex-
ponential); for & > 0 the equilibrium becomes linearly unstable. Moreover,
there is an additional stable equilibrium point pg(a) = \/a for a > 0. The
second equation describes a rotation with constant speed. Thus, by super-
position of the motions defined by the two equations of (3.8), we obtain the
following bifurcation diagram for the original two-dimensional system (3.6)
(see Figure 3.5). The system always has an equilibrium at the origin. This
equilibrium is a stable focus for & < 0 and an unstable focus for o > 0.
At the critical parameter value @ = 0 the equilibrium is nonlinearly stable
and topologically equivalent to the focus. Sometimes it is called a weakly
attracting focus. This equilibrium is surrounded for > 0 by an isolated
closed orbit (limit cycle) that is unique and stable. The cycle is a circle of
radius pg(a) = y/a. All orbits starting outside or inside the cycle except
at the origin tend to the cycle as t — +oo. This is an Andronov-Hopf
bifurcation.

This bifurcation can also be presented in (x,y, «)-space (see Figure 3.6).
The appearing a-family of limit cycles forms a paraboloid surface.

Xz Xz Xz

@\

K) X, X, & " X,

[ —
—

a<0 oa=0 o>0

FIGURE 3.5. Supercritical Hopf bifurcation.
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X1

Xz

FIGURE 3.6. Supercritical Hopf bifurcation in the phase-parameter space.

A system having nonlinear terms with the opposite sign,

(3.9)

i = aw) — o+ 3 (2 +23),
iy = @1+ awy + mo(a? + 23),

which has the following complex form:
3= (a+i)z+ 2|2

can be analyzed in the same way (see Figures 3.7 and 3.8). The system
undergoes the Andronov-Hopf bifurcation at o = 0. Contrary to system
(3.6), there is an unstable limit cycle in (3.9), which disappears when «
crosses zero from negative to positive values. The equilibrium at the origin
has the same stability for o # 0 as in system (3.6): It is stable for « < 0 and
unstable for « > 0. Its stability at the critical parameter value is opposite
to that in (3.6): It is (nonlinearly) unstable at a = 0.

X2 X2 X2

\

X1

J X1 &\/ X1

A

(¢
"/

a<0 a=0 a>0

FIGURE 3.7. Subcritical Hopf bifurcation.



3.4 The normal form of the Hopf bifurcation 89

Xz

X1

FIGURE 3.8. Subcritical Hopf bifurcation in the phase-parameter space.

Remarks:

(1) We have seen that there are two types of Andronov-Hopf bifurca-
tion. The bifurcation in system (3.6) is often called supercritical because
the cycle exists for positive values of the parameter a (“after” the bifurca-
tion). The bifurcation in system (3.9) is called subcritical since the cycle is
present “before” the bifurcation. It is clear that this terminology is some-
how misleading since “after” and “before” depend on the chosen direction
of parameter variation.

(2) In both cases we have a loss of stability of the equilibrium at o = 0
under increase of the parameter. In the first case (with “—” in front of
the cubic terms), the stable equilibrium is replaced by a stable limit cycle
of small amplitude. Therefore, the system “remains” in a neigborhood of
the equilibrium and we have a soft or noncatastrophic stability loss. In the
second case (with “+” in front of the cubic terms), the region of attraction
of the equilibrium point is bounded by the unstable cycle, which “shrinks”
as the parameter approaches its critical value and disappears. Thus, the
system is “pushed out” from a neigborhood of the equilibrium, giving us a
sharp or catastrophic loss of stability. If the system loses stability softly, it
is well “controllable”: If we make the parameter negative again, the system
returns to the stable equilibrium. On the contrary, if the system loses its
stability sharply, resetting to a negative value of the parameter may not
return the system back to the stable equilibrium since it may have left its
region of attraction. Notice that the type of Andronov-Hopf bifurcation
is determined by the stability of the equilibrium at the critical parameter
value.

(3) The above interpretation of super- and subcritical Hopf bifurcations
should be considered with care. If we consider « as a slow variable and add
to system (3.6) the third equation

a=c¢,
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with € small but positive, then the resulting time series (x(t), y(t), a(t))
will demonstrate some degree of “sharpness.” If the solution starts at some
initial point (xg, Yo, @) with ag < 0, it then converges to the origin and
remains very close to it even if a becomes positive, thus demonstrating no
oscillations. Only when « reaches some finite positive value will the solution
leave the equilibrium “sharply” and start to oscillate with a relatively large
amplitude.
(4) Finally, consider a system without nonlinear terms:

z2=(a+1)z.

This system also has a family of periodic orbits of increasing amplitude, but
all of them are present at & = 0 when the system has a center at the origin
(see Figure 3.9). It can be said that the limit cycle paraboloid “degenerates”

X1

G;&
[~

X2

FIGURE 3.9. “Hopf bifurcation” in a linear system.

into the plane a = 0 in (x,y, «)-space in this case. This observation makes
natural the appearance of small limit cycles in the nonlinear case. $

Let us now add some higher-order terms to system (3.6) and write it in
the vector form

( o ) = ( T ) ( - ) — (a +43) ( - ) +0(Jl2]%), (3.10)

where z = (z1,22)7,||z]|? = 2? + 23, and O(||z||*) terms can smoothly
depend on «. The following lemma will be proved in Appendix 1 to this
chapter.

Lemma 3.2 System (3.10) is locally topologically equivalent near the ori-
gin to system (3.6). O

Therefore, the higher-order terms do not affect the bifurcation behavior
of the system.



3.5 Generic Hopf bifurcation 91
3.5 Generic Hopf bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Hopf bifurcation can be transformed into the form (3.10) with a possible
difference in the sign of the cubic terms.

Consider a system

i = f(z,a), == (x1,22)T €R? aeR!,

with a smooth function f, which has at a = 0 the equilibrium = = 0 with
eigenvalues A1 o = +iwp, wo > 0. By the Implicit Function Theorem, the
system has a unique equilibrium zo(«) in some neigborhood of the origin
for all sufficiently small |, since A = 0 is not an eigenvalue of the Jacobian
matrix. We can perform a coordinate shift, placing this equilibrium at the
origin. Therefore, we may assume without loss of generality that z = 0
is the equilibrium point of the system for |«| sufficiently small. Thus, the
system can be written as

i =A(a)z + F(z,a), (3.11)

where F' is a smooth vector function whose components F; o have Taylor
expansions in z starting with at least quadratic terms, F' = O(||z||?). The
Jacobian matrix A(«) can be written as

_ [ ale) bla)
= (5o o)
with smooth functions of « as its elements. Its eigenvalues are the roots of
the characteristic equation
N —oA+A=0,
where 0 = o(a) = a(a) + d(a) = tr A(a), and A = A(a) = a(a)d(a) —
b(a)c(a) = det A(a). So,

Mafa) = % (o(0) = Vo(a) ~ 1A())

The Hopf bifurcation condition implies

a(0) =0, A(0) = wi > 0.
For small |a| we can introduce

1 1

ple) = 5o(a), w(a) = 5v/AA() — o2(a)
and therefore obtain the following representation for the eigenvalues:
A(@) = Ma), Az(a) = Aa),

where
Aa) = pla) +iw(a), u(0) =0, w(0) =w > 0.
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Lemma 3.3 By introducing a complex variable z, system (3.11) can be
written for sufficiently small |a| as a single equation:

2=Ma)z+g(z,z,a), (3.12)
where g = O(|2|?) is a smooth function of (z, z, ).

Proof:
Let g(a) € C? be an eigenvector of A(«a) corresponding to the eigenvalue
Aa):
Ala)q(a) = Ma)q(a),

and let p(a) € C? be an eigenvector of the transposed matrix AT (a) cor-
responding to its eigenvalue \(«):

AT (a)p(a) = Ma)p(@).
It is always possible to normalize p with respect to q:
(p(a), q(e)) =1,

where (-, -) means the standard scalar product in C2: (p,q) = p1q1 + P2go.
Any vector 2 € R? can be uniquely represented for any small o as

x = zq(a) 4+ Zg(a) (3.13)

for some complex z, provided the eigenvectors are specified. Indeed, we
have an ezplicit formula to determine z:

z = (p(a), ).
To verify this formula (which results from taking the scalar product with
p of both sides of (3.13)), we have to prove that (p(a),g(c«)) = 0. This is
the case, since

(ATp,q) = <(p,q)

> =
> >

(0.0) = (b, 3 A7) =

(1-3) o =0

But A # \ because for all sufficiently small || we have w(a) > 0. Thus,
the only possibility is (p,g) = 0.
The complex variable z obviously satisfies the equation

and therefore

z2=Ma)z+ (p(a), F(zq(a) + z4(a), a)),
having the required! form (3.12) with

9(2,%,a) = (p(a), F(zq(e) + zq(a), )). B

!The vectors ¢(c) and p(c), corresponding to the simple eigenvalues, can be
selected to depend on « as smooth as A(«).
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There is no reason to expect g to be an analytic function of z (i.e., z-
independent). Write g as a formal Taylor series in two complex variables
(z and 2):

- 1 k5l
9(2,2’70[) = Z mgkl(a)z z,

k+1>2

where
akJrl

gri(a) = W(P(a),F(ZQ(Q) +zq(a), @) ;
fork+1>2, k,1=0,1,....

Remarks:

(1) There are several (equivalent) ways to prove Lemma 3.3. The selected
one fits well into the framework of Chapter 5, where we will consider the
Hopf bifurcation in n-dimensional systems.

(2) Equation (3.13) imposes a linear relation between (z1,z2) and the
real and imaginary parts of z. Thus, the introduction of z can be viewed as
a linear invertible change of variables, y = T'(a)x, and taking z = y1 + iys.
As it can be seen from (3.13), the components (y1,y2) are the coordinates
of z in the real eigenbasis of A(a) composed by {2 Re ¢, —2 Im ¢}. In this
basis, the matrix A(«) has its canonical real (Jordan) form:

J(e) = T(a)A()T ' (a) = ( ZEZ; —z(gg )

(
(3) Suppose that at & = 0 the function F'(x, ) from (3.11) is represented
as

1 1
P(2,0) = 5 B(w.2) + £ Cla,a.2) + O] "),

where B(z,y) and C(z,y,u) are symmetric multilinear vector functions of
x,y,u € R2. In coordinates, we have

2

LiYk, 1= 1a27
Z fjafk L—o !

J,k=
and
: i =1,2.
LD asjaskasl o T
J,k,l=1
Then,

B(zq + 24, 2q + 2q) = 2*B(q, q) + 222B(q,q) + 2°B(q,q),

where ¢ = ¢(0),p = p(0), so the Taylor coefficients gx;, k + 1 = 2, of the
quadratic terms in g(z, z,0) can be expressed by the formulas

g20 = <paB(an)>7 g11 = <paB(q’(j)>a Jo2 = <paB((j7 (i»a
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and similar calculations with C' give

g21 = (p,C(q,4,9))-

(4) The normalization of ¢ is irrelevant in the following. Indeed, suppose
that ¢ is normalized by (gq,q) = 1. A vector § = ~yq is also the eigenvector
for any nonzero v € C! but with the normalization (g, §) = |y|>. Taking
p= %p will keep the relative normalization untouched: (p, §) = 1. It is clear
that Taylor coefficients gx; computed using ¢, p will be different from the
original gg;. For example, we can check via the multilinear representation

that
~2

~ ~ _ ~ Y ~
920 = 7920, 911 = V911, o2 = 79027 921 = |’Y|2921.
However, this change can easily be neutralized by the linear scaling of the
variable: z = %w, which results in the same equation for w as before.
For example, setting (g,q) = % corresponds to the standard relation
= (p,x) = x1 + izy for a system that already has the real canonical form

= J(a)x, where J is given above. In this case,
1 1 1
q—2( _i), p—<_i >.<>

Let us start to make nonlinear (complex) coordinate changes that will
simplify (3.12). First of all, remove all quadratic terms.

Lemma 3.4 The equation
Z=Az+ g%zﬂ + 911272 + 92222 +0(|z]%), (3.14)

where A = M a) = p(a) +iw(a), p(0) = 0,w(0) = wo > 0, and gi; = gi;j(a),
can be transformed by an invertible parameter-dependent change of complex
coordinate

hao h
z=w+ 5 202 + hiiww + ;2 *2,

for all sufficiently small ||, into an equation without quadratic terms:

w = w + O(Jwl).

Proof:
The inverse change of variable is given by the expression
h hoa
w=z— =222 — hyy2z — —22% 4+ O(|2)?).
2 2
Therefore,

w=2z— hgozé — h11(22+22) — h022§+
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= \z + (g% — Ahgo) 22 + (gn — Mg — /_\hn) 2z + (g% — 5\h02> 72 4+ ..

1 - 1 -
= )\w+§(920—)\h20)w2+(g11 —/\h11)ww+§(902—(2>\—>\)h02)w2+0(|w|3)-

Thus, by setting

920 911 9o2
h - - h = — h = —
20 2\ s 111 b y 1002 2\ — \ )
we “kill” all the quadratic terms in (3.14). These substitutions are correct

because the denominators are nonzero for all sufficiently small || since
A(0) = dwg with wg > 0. O

Remarks:

(1) The resulting coordinate transformation is polynomial with coeffi-
cients that are smoothly dependent on «. The inverse transformation has
the same property but it is not polynomial. Its form can be obtained by
the method of unknown coefficients. In some neighborhood of the origin
the transformation is near-identical because of its linear part.

(2) Notice that the transformation changes the coefficients of the cubic
(as well as higher-order) terms of (3.14). {

Assuming that we have removed all quadratic terms, let us try to elim-
inate the cubic terms as well. This is “almost” possible: There is only one
“resistant” term, as the following lemma shows.

Lemma 3.5 The equation

s=da4 B84 920 12 00 I8 1 (|2,
6 2 2 6

where A = M a) = p(a) +iw(a), p(0) = 0,w(0) = wo > 0, and g;; = gi;(a),

can be transformed by an invertible parameter-dependent change of complex

coordinate

h h h h

for all sufficiently small ||, into an equation with only one cubic term:
W = Aw + cyw?w + O(|w|*),
where ¢1 = ¢1(a).

Proof:
The inverse transformation is

hso « h h hos -
w=z— 0,3 22y T2 22 %25 + O(|z\4).

6 2 2
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Therefore,
. o hzo 9. har,, _. 0 9. hiz,. o o hos 5.
o= i ek 2(2222—1—2 Z) 2(22 :1—2222) 22 zZ+
_ gso  Ahso\ 5 (921 Aot o
= Az+ ( 6 2 ) 27+ ( B )\hgl 5 zZ°z
g2 Az 5\ o (ges Ahos)
+ < D) D) )\h12> z2Z° + < 6 9 zZ°+

1 _
5(921 - (>\ + )\)hgl)’wz’a}

1 - 1
+§(912 — 202 )ww? + 6(903 + (A = 3N ho3)w® + O(Jw|h).

1
= \w+ 6(930 - 2)\}130)’[1)3 +

Thus, by setting

930 hio 912 __Yos

h = — = — = —
30 2\’ 1 2 03 3\

we can annihilate all cubic terms in the resulting equation except the w?w

-term, which we have to treat separately. The substitutions are valid since

all the involved denominators are nonzero for all sufficiently small |«|.
One can also try to eliminate the w?w-term by formally setting

g21

ho1 = =.
2= 5%

This is possible for small a # 0, but the denominator vanishes at a = 0:
A(0) + A(0) = iwp — iwp = 0. To obtain a transformation that is smoothly
dependent on «, set hyy = 0, which results in

o= %o

2

Remark:

The remaining cubic w?w-term is called a resonant term. Note that its
coefficient is the same as the coefficient of the cubic term 22Z in the original
equation in Lemma 3.5. $

We now combine the two previous lemmas.

Lemma 3.6 (Poincaré normal form for the Hopf bifurcation) The
equation

P=Az+ Z ‘gklzkzl +0(z]%), (3.15)
2<k+l<3
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where A = Ma) = p(a) +iw(a), 1(0) = 0,w(0) = wo > 0, and g;; = g;;(a),
can be transformed by an invertible parameter-dependent change of complex
coordinate, smoothly depending on the parameter,

h h
z=w -+ %w2+h11ww+ %’(1_}2

h h
20 4+ ww? +

h
03 ’lI)S,

for all sufficiently small |a|, into an equation with only the resonant cubic
term:
W = w4 cyw?w + O(|w|*), (3.16)

where ¢1 = ¢1(a).

Proof:
Obviously, a superposition of the transformations defined in Lemmas 3.4
and 3.5 does the job. First, perform the transformation

h h
z=w+ %wQ—l—huww—&- %E)Q, (3.17)
with p p p
hoo = 22 hyy = L hgy = 22
20 2\ ) 11 b ) 02 2\ — /\7

defined in Lemma 3.4. This annihilates all the quadratic terms but also
changes the coefficients of the cubic terms. The coefficient of w?w will be
% go1, say, instead of % g21- Then make the transformation from Lemma 3.5
that eliminates all the cubic terms but the resonant one. The coefficient of
this term remains % go1. Since terms of order four and higher appearing in
the superposition affect only O(|w[*) terms in (3.16), they can be truncated.
O

Thus, all we need to compute to get the coefficient ¢; in terms of the
given equation (3.15) is a new coefficient %ggl of the w?w-term after the
quadratic transformation (3.17). We can do this computation in the same
manner as in Lemmas 3.4 and 3.5, namely, inverting (3.17). Unfortunately,
now we have to know the inverse map up to and including cubic terms.?
However, there is a possibility to avoid explicit inverting of (3.17).

Indeed, we can express Z in terms of w,w in two ways. One way is to
substitute (3.17) into the original equation (3.15). Alternatively, since we

2 Actually, only the “resonant” cubic term of the inverse is required:

h h, 1
w=z-—- %22 — h112Z — %52 =+ 5(3h11h20 -+ 2|h11‘2 + |h02|2)222+ ceey

where the dots now mean all undisplayed terms.
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know the resulting form (3.16) to which (3.15) can be transformed, Z can
be computed by differentiating (3.17),

2 =W+ hogww + hn(wiv + YIJ’LU) + hog’lb,

and then by substituting w and its complex conjugate, using (3.16). Com-
paring the coefficients of the quadratic terms in the obtained expressions
for Zz gives the above formulas for hsyg, hi11, and hge, while equating the
coefficients in front of the w|w|?-term leads to

_ 920911 2A+X)  |g11[? |goz|? go1

2|\[2 A 22X —2A) 2

This formula gives us the dependence of ¢; on « if we recall that A and g;;
are smooth functions of the parameter. At the bifurcation parameter value
a = 0, the previous equation reduces to

921

7 1
c1(0) = — (920911 —2[gn|* - 3|902|2) T

1
S (3.18)

Now we want to transform the Poincaré normal form into the normal
form studied in the previous section.

Lemma 3.7 Consider the equation

dw ,
= (@) + iw(a)w + e (@uwlwl + 0w,
where p(0) = 0, and w(0) = wg > 0.

Suppose 1/ (0) # 0 and Re ¢1(0) # 0. Then, the equation can be trans-
formed by a parameter-dependent linear coordinate transformation, a time
rescaling, and a nonlinear time reparametrization into an equation of the

form
du ; 2 4
=5 = B+ du+sulul” + O(|ul"),

where u is a new complex coordinate, and 0,3 are the new time and pa-
rameter, respectively, and s = sign Re ¢1(0) = £1.

Proof:
Step 1 (Linear time scaling). Introduce the new time 7 = w(a)t. The time
direction is preserved since w(a) > 0 for all sufficiently small |a|. Then,

%U = (B+Dw + di(B)w|wl* + O(jw[*),
where (@) (a(B))
_ Bla) = M) g5 = @@
B=0e) =Sy 4O =55m)
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We can consider (3 as a new parameter because

—0 o~ 0

and therefore the Inverse Function Theorem guarantees local existence and
smoothness of a as a function of 3. Notice that d; is complexz.

70,

Step 2 (Nonlinear time reparametrization). Change the time parametriza-
tion along the orbits by introducing a new time 6 = 0(7, 3), where

df = (1 + e (B)|w]?) dr

with e1(8) = Im d1 (). The time change is a near-identity transformation
in a small neighborhood of the origin. Using the new definition of the time
we obtain

o = (8 + i+ h(B)ulul + O(lul"),
where 11 (8) = Re d1(8) — Be1(B) is real and
_ Re¢(0)
11(0) = 0 (3.19)

Step 3 (Linear coordinate scaling). Finally, introduce a new complex vari-

able u:
U

VIAGIk
which is possible due to Re ¢1(0) # 0 and, thus, [1(0) # 0. The equation
then takes the required form:

du_ L)
a5 = PO )

with s = sign 13 (0) = sign Re ¢1(0). O

ulul® + O(lul*) = (8 + D)u + sulul* + O(|ul*),

Definition 3.3 The real function 11(8) is called the first Lyapunov coeffi-
cient.

It follows from (3.19) that the first Lyapunov coefficient at 5 = 0 can be
computed by the formula

1 )
11(0) = =—5 Re(ig20911 + wog21)- (3.20)

2wg

Thus, we need only certain second- and third-order derivatives of the right-
hand sides at the bifurcation point to compute {1 (0). Recall that the value
of 1 (0) does depend on the normalization of the eigenvectors ¢ and p, while
its sign (which is what only matters in the bifurcation analysis) is invariant
under scaling of ¢,p obeying the relative normalization (p,q) = 1. Notice
that the equation of u with s = —1 written in real form coincides with
system (3.10) from the previous section. We now summarize the obtained
results in the following theorem.
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Theorem 3.3 Suppose a two-dimensional system

d
dit” = f(z,a), z€R% a€cR, (3.21)

with smooth f, has for all sufficiently small |«| the equilibrium x = 0 with
etgenvalues

A 2(a) = pla) £iw(a),
where p1(0) =0, w(0) =wg > 0.
Let the following conditions be satisfied:
(B.1) 11(0) # 0, where 1y is the first Lyapunov coefficient;
(B.2) (0) #0.
Then, there are invertible coordinate and parameter changes and a time
reparameterization transforming (3.21) into

ji(i;):(f ‘; )(zg )i(y%ﬂ/%)(z; >+O(|y||4).D

Using Lemma 3.2, we can drop the O(||y||*) terms and finally arrive at
the following general result.

Theorem 3.4 (Topological normal form for the Hopf bifurcation)
Any generic two-dimensional, one-parameter system

T = f(xa O‘)v
having at o = 0 the equilibrium x = 0 with eigenvalues
)\1’2(0) = :l:iu)o, wo > 0,

is locally topologically equivalent near the origin to one of the following
normal forms:

(5 ) =01 %) () eten () 0

Remark:

The genericity conditions assumed in Theorem 3.4 are the nondegeneracy
condition (B.1) and the transversality condition (B.2) from Theorem 3.3.
¢

The preceding two theorems together with the normal form analysis of
the previous section and formula (3.20) for /1 (0) provide us with all the nec-
essary tools for analysis of the Hopf bifurcation in generic two-dimensional
systems. In Chapter 5 we will see how to deal with n-dimensional systems
where n > 2.
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Example 3.1 (Hopf bifurcation in a predator-prey model) Con-
sider the following system of two differential equations:

. CT1T2
1 = rx(l—zp) —
1 1( 1) otz
(3.22)
To = —dzo+ erits
o+ I

The system describes the dynamics of a simple predator-prey ecosystem
(see, e.g., Holling [1965]). Here z1 and x4 are (scaled) population numbers,
and r,c,d, and « are parameters characterizing the behavior of isolated
populations and their interaction. Let us consider « as a control parameter
and assume ¢ > d.

To simplify calculations further, let us consider a polynomial system that
has for x; > —a the same orbits as the original one (i.e., orbitally equiva-
lent, see Chapter 2):

21 = rey(a+x)(l—x1) — cxiao,
{ To = —adry+ (¢ —d)xime (3.23)
(this system is obtained by multiplying both sides of the original system
by the function (o + z1) and introducing a new time variable T by dt =
(a+ z1) dr).

System (3.23) has a nontrivial equilibrium

ad ra ad
Eo = (cd7 c—d {1_cd}>'

The Jacobian matrix evaluated at this equilibrium is

ard(c+ d) [C_d a} _ oacd

_ c—d)? le+d c—d
Aler) = (ar(c)—d(l+a)) 0 ’
c—d

and thus

_o(a)  ard(c+d) [c—d
W) === = S _ae [c+d_a}

Moreover,

> 0. (3.24)
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Therefore, at & = g the equilibrium Ej has eigenvalues A\ 2(ag) = fiw(ap)
and a Hopf bifurcation takes place.> The equilibrium is stable for o > ayq
and unstable for o < «g. Notice that the critical value of «a corresponds
to the passing of the line defined by @5 = 0 through the maximum of the
curve defined by #; = 0 (see Figure 3.10). Thus, if the line &2 = 0 is to the

Xz
X,=0

X9

/ 0 X 1\ X

FIGURE 3.10. Zero-isoclines at the Hopf bifurcation.

right of the maximum, the point is stable, while if this line is to the left,
the point is unstable. To apply the normal form theorem to the analysis of
this Hopf bifurcation, we have to check whether the genericity conditions
of Theorem 3.3 are satisfied. The transversality condition (B.2) is easy to
verify:

agrd(c+ d)

(o) = e—dp <0.

To compute the first Lyapunov coefficient, fix the parameter « at its
critical value ag. At a = «, the nontrivial equilibrium Fy at o = ag has
the coordinates

©o_ _d © re

T T T etra?

Translate the origin of the coordinates to this equilibrium by the change of

variables
T - .’I3§O) + gla
Ty = 9650) + &a.

This transforms system (3.23) into

. d d
S _ciid@—c:idff—cfl&—”f? = (6, &),

3Since (3.23) is only orbitally equivalent to (3.22), the value of w(ao) given by
(3.24) cannot be used directly to evaluate the period of small oscillations around
FE) in the original system.
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& = C{c(i_d)c?{l—i—(c—d)flfz = Fy(&1, &)

This system can be represented as
. 1 1

where A = A(agp), and the multilinear functions B and C take on the
planar vectors & = (£1,&)T, n = (91, m72)7, and ¢ = (¢1, )T the values

2rd

— =& — e(§1ma + §am)

B(&,n) = (c+d)
©n ( (c—d)(&m + &m) )

and

cleno = Tgm ).

Write the matrix A(ag) in the form

0 _ cd
A: C+d
w?(c+d) )
_— 0
cd

where w? is given by formula (3.24). Now it is easy to check that complex

vectors
N cd | wle+d)
q —iw(c+d) )’ P —icd ’

are proper eigenvectors:
Aq =iwq, ATp= —iwp.

To achieve the necessary normalization (p, ¢) = 1, we can take, for example,

- ( —z’w(ccd+d) ) pzmd(lHd)<W(—C;dd) )

The hardest part of the job is done, and now we can simply calculate®

cd(c? — d? — rd) + iwc(c + d)?
(c+d) ’

g20 = (p, B(¢,9)) =

4Tt is always useful to express the Jacobian matrix using w, since this simplifies
expressions for the eigenvectors.

5 Another way to compute g20, 911, and ga1 (which may be simpler if we use a
symbolic manipulation software) is to define the complex-valued function

G(z,w) = p1Fi1(zq1 + wai, 2q2 + wG2) + P2 Fa(zq1 + wqi, zq2 + w32),

where p,q are given above, and to evaluate its formal partial derivatives with
respect to z,w at z = w = 0, obtaining g20 = Gz, 911 = G, and go1 = G-
In this way no multilinear functions are necessary. See Exercise 4.
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_ red? _ 9 9
g1 = <p7B(Q7Q)> =757 Y921 = <p70(Q7an)> = —3rcd )

(c+d)
and compute the first Lyapunov coefficient by formula (3.20),

Xz Xz

a<0Og o> 0o
FIGURE 3.11. Hopf bifurcation in the predator-prey model.

rc2d?

Li(ag) = < 0.

1
202 Re(iga0g11 + wga1) = —

It is clear that I3(cp) < O for all combinations of the fixed parameters.
Thus, the nondegeneracy condition (B.1) of Theorem 3.3 holds as well.
Therefore, a unique and stable limit cycle bifurcates from the equilibrium
via the Hopf bifurcation for oo < g (see Figure 3.11). &

3.6 Exercises

(1) (Fold bifurcation in ecology) Consider the following differential
equation, which models a single population under a constant harvest:

. x

x—rz(l—E) - a,
where z is the population number; r and K are the intrinsic growth rate and
the carrying capacity of the population, respectively, and « is the harvest
rate, which is a control parameter. Find a parameter value oy at which
the system has a fold bifurcation, and check the genericity conditions of
Theorem 3.1. Based on the analysis, explain what might be a result of
overharvesting on the ecosystem dynamics. Is the bifurcation catastrophic
in this example?

(2) (Complex notation) Verify that

F=iz+ (i +1)22 + 22z + (i — 1)z
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is a complex form of the system
(5)-(a ) (5)500)
To -1 -1 To V3 \ T1r2 )7
provided that the eigenvectors are selected in the form

“aval ) ()
=om\-1+i ) P\ 2 )

How will the complex form change if one instead adopts a different setting
of ¢, p satisfying (p,q) = 17

(3) (Nonlinear stability) Write the system
o= —y—ay+ 27
y = x—a%y,

in terms of the complex coordinate z = = + iy, and compute the normal
form coeflicient ¢1(0) by formula (3.18). Is the origin stable?

(4) (Hopf bifurcation in the Brusselator) Consider the Brusselator
system (1.8) from Chapter 1:

i’l = A—(B+1)£L'1 +£L’%LE2 = F1(£E17£L'2,A,B),
iy = Bxy— 2y = Fy(x1,79, A, B).

Fix A > 0 and take B as a bifurcation parameter. Using one of the available
computer algebra systems, prove that at B = 1+ A2 the system exhibits a
supercritical Hopf bifurcation.

(Hint: The following sequence of MAPLE commands solves the problem:

> with(linalg);
> readlib(mtaylor);
> readlib(coeftayl);

The first command above allows us to use the MAPLE linear alge-
bra package. The other two commands load the procedures mtaylor and
coeftayl, which compute the truncated multivariate Taylor series expan-
sion and its individual coefficients, respectively, from the MAPLE library.

F[1] :=A-(B+1)*X[1]1+X[1]~2*X[2];

F[2] :=BxX[1]-X[1]"2*X[2];
J:=jacobian([F[1],F[2]1], [X[1],X[2]1);
K:=transpose(J) ;

V V V V

By these commands we input the right-hand sides of the system into
MAPLE and compute the Jacobian matrix and its transpose.
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sol:=solve({F[1]=0,F[2]=0,trace(J)=0},{X[1],X[2],B});
assign(sol);

assume (A>0) ;

omega:=sqrt(det(J));

V V V V

These commands solve the following system of equations

F(xlax%A,B) :07
tr Fp(x1,29,A,B) =0,

for (z1,22, B) and allow us to check that det F,, = A2 > 0 at the found
solution. Thus, at B = 1 + A? the Brusselator has the equilibrium

14+ 42\7
X=(A
(455%)

with purely imaginary eigenvalues A\j 2 = +iw, w = A > 0.

ev:=eigenvects(J,’radical’);
q:=ev[1][3][1];
et:=eigenvects (K, ’radical’);
P:=et[2] [3] [1];

vV V V V

These commands show that

_(iAv A N A A? N
q - 1 + A2 ) ) p - A2 ) )
are the critical eigenvectors® of the Jacobian matrix J = F, and its trans-

pose,
Jq=iwq, J'p=—iwp.

c:=simplify(evalc(l/conjugate(s1)));
pl1]:=simplify(evalc(c*P[1]);

pl2] :=simplify(evalc(c*P[2]);
simplify(evalc(conjugate(p[1])*q[1]+conjugate(p[2])*q[2]));

V V. V V V

By the commands above, we achieve the normalization (p, ¢) = 1, finally
taking

_(_iAs A N i A% 1-iA)t
q= 1+A2’ , P= 2A ) 2 .

5Some implementations of MAPLE may produce the eigenvectors in a different
form.

sl:=simplify(evalc(conjugate(P[1])*q[1]+conjugate(P[2]*q[2]));
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F[1]:=A-(B+1)*x[1]+x[1]"2*x[2];
F[2]:=B*x[1]-x[1]"2*x[2];

x[1] :=evalc(X[1]+z*q[1]+z1*conjugate(q[1]));
x[2] :=evalc(X[2]+z*q[2] +z1*conjugate(q[2]));
H:=simplify(evalc(conjugate(p[1])*F[1]+conjugate(p[2]1)*F[2]));

V V V V V

By means of these commands, we compose x = X 4 zq+ Zg and evaluate
the function

H(z,2) = (p, F(X + 2q + 2¢, A, 1 + A?)).
(In the MAPLE commands, z1 stands for z.)

> g[2,0] :=simplify(2*evalc(coeftayl(H, [z,2z1]=[0,0],[2,0]1)));
> g[1,1] :=simplify(evalc(coeftayl(H, [z,z1]=[0,0],[1,11)));

> gl[2,1] :=simplify(2*evalc(coeftayl(H, [z,z1]=[0,0],[2,1]1)));
> x[2] :=evalc(X[2]+z*q[2] +z1xconjugate(q[2]));

The above commands compute the needed Taylor expansion of H(z, z)
at (z,z) = (0,0),

H(z,2) =iwz + Z !gjkzkz’C + O(|zY),
2<jh<s’
giving
(A—1i)(A2-1) A(BA —1)

go=A—1, gn= go1 = —

1+ A2 ’ 1+ A?
> 1[1] :=factor(1/(2*omega~2)*Re (I*g[2,0]*g[1,1] +omegax*g{2,1]));
This final command computes the first Lyapunov coefficient

24+ A2

1
1= 53 e(iga0911 + wg2,1) 2A(1 + A2) <0,

and allows us to check that it is negative.)

(5) Check that each of the following systems has an equilibrium that ex-
hibits the Hopf bifurcation at some value of «, and compute the first Lya-
punov coefficient:

(a) Rayleigh’s equation:

4 @3 — 20d + x = 0;

(Hint: Introduce y = & and rewrite the equation as a system of two differ-
ential equations.)
(b) Van der Pol’s oscillator:

j—(a—y?)y+y=0;
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(¢c) Bautin’s example:
r =Y,
y = —xtay+a®+ay+y’
(d) Advertising diffusion model [Feichtinger 1992]:

i = af[l —z123+ Az — 1)),
i‘g = .1311)%—1‘2.

(6) Suppose that a system at the critical parameter values corresponding
to the Hopf bifurcation has the form

. 1 1
r = —wy+ ifa:xx2 + facyxy + ifyny

1 1 1 1
+ éf“"mx?) + gfmnyy + §fxyy$y2 + gfyyyy?) +e
1 1

Yy = wr+ 2995:1:332 + GzyTy + 29yyy2
1 3 1 2 1 2 1 3
+ ggza:zx + §gwmyw Y+ §gwyyxy + Egyyyy + e

Compute Re ¢1(0) in terms of the f’s and g¢’s. (Hint: See Guckenheimer
& Holmes [1983, p. 156]. To apply the resulting formula, one needs to
transform the system explicitly into its eigenbasis, which can always be
avoided by using eigenvectors and complex notation, as described in this
chapter.)

3.7 Appendix 1: Proof of Lemma 3.2

The following statement, which is Lemma 3.2 rewritten in complex form,
will be proved in this appendix.

Lemma 3.8 The system
5= (a+i)z—z]z]2 + O(|z") (A1)
is locally topologically equivalent near the origin to the system
= (a+1)z — z|z]? (A.2)

Proof:
Step 1 (Existence and uniqueness of the cycle). Write system (A.1) in polar
coordinates (p, ¢):

p= pla—p°)+e(p,p),
{cb = 14+¥(p, ), (&-3)
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Py Po p

FIGURE 3.12. Poincaré map for the Hopf bifurcation.

where ® = O(|p|*), ¥ = O(|p|?), and the a-dependence of these functions
is not indicated to simplify notations. An orbit of (A.3) starting at (p, ¢) =
(po, 0) has the following representation (see Figure 3.12): p = p(; po), po =
p(0; po) with p satisfying the equation

— p? P
PR b= )+ R(p), (A4)
where R = O(|p|*). Notice that the transition from (A.3) to (A.4) is equiv-
alent to the introduction of a new time parametrization in which ¢ = 1,
which implies that the return time to the half-axis ¢ = 0 is the same for
all orbits starting on this axis with py > 0. Since p(p;0) = 0, we can write
the Taylor expansion for p(¢; po),

p = u1(®)po + u2()p + us(e)pf + O|pol*). (A.5)

Substituting (A.5) into (A.4) and solving the resulting linear differential
equations at corresponding powers of py with initial conditions uq(0) =
1,u2(0) = u3(0) = 0, we get

_ p2ap
rwl e

ul(@) = ea@? ’U/Q((p) = 07 U3(§0) =e€ 2

Notice that these expressions are independent of the term R(p, ). There-
fore, the return map pg — p1 = p(27, po) has the form

pr = €2 py — 2™ 21 + O(a)]o + O(pl) (A.6)

for all R = O(p*). The map (A.6) can easily be analyzed for sufficiently
small pg and |a|. There is a neighborhood of the origin in which the map
has only a trivial fixed point for small @ < 0 and an extra fixed point,
péo) = ya+ -, for small @« > 0 (see Figure 3.13). The stability of the
fixed points is also easily obtained from (A.6). Taking into account that a
positive fixed point of the map corresponds to a limit cycle of the system,
we can conclude that system (A.3) (or (A.1)) with any O(|z|*) terms has
a unique (stable) limit cycle bifurcating from the origin and existing for
a > 0 as in system (A.2). Therefore, in other words, higher-order terms do
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Py

P’ (o) Po

FIGURE 3.13. Fixed point of the return map.

not affect the limit cycle bifurcation in some neighborhood of z = 0 for |«|
sufficiently small.

Step 2 (Construction of a homeomorphism). The established existence and
uniqueness of the limit cycle is enough for all applications. Nevertheless,
extra work must be done to prove the topological equivalence of the phase
portraits.

(X1, X2) (X1, X2)

Po Po

FIGURE 3.14. Construction of the homeomorphism near the Hopf bifurcation.

Fix « small but positive. Both systems (A.1) and (A.2) have a limit cycle
in some neighborhood of the origin. Assume that the time reparametriza-
tion resulting in the constant return time 27 is performed in system (A.1)
(see the previous step). Also, apply a linear scaling of the coordinates in
system (A.1) such that the point of intersection of the cycle and the hori-
zontal half-axis is at z1 = /a.

Define a map z — Z by the following construction. Take a point z =
21 + izo and find values (pg, 70), where 7y is the minimal time required
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for an orbit of system (A.2) to approach the point z starting from the
horizontal half-axis with p = pg. Now, take the point on this axis with
p = po and construct an orbit of system (A.1) on the time interval [0, 7o)
starting at this point. Denote the resulting point by 2 = &1 +iZs (see Figure
3.14). Set Z =0 for z = 0.

The map constructed is a homeomorphism that, for o > 0, maps orbits
of system (A.2) in some neighborhood of the origin into orbits of (A.1)
preserving time direction. The case a < 0 can be considered in the same
way without rescaling the coordinates. O

3.8 Appendix 2: Bibliographical notes

The fold bifurcation of equilibria has essentially been known for centuries.
Since any scalar system can be written as & = —,(z, @), for some func-
tion 9, results on the classification of generic parameter-dependent gradient
systems from catastrophe theory are relevant. Thus, the topological nor-
mal form for the fold bifurcation appeared in the list of seven elementary
catastrophes by Thom [1972]. Actually, there are many interconnections
between bifurcation theory of dynamical systems and singularity theory
of smooth functions. The books by Poston & Stewart [1978] and Arnold
[1984] are recommended as an introduction to this latter subject. It should
be noticed, however, that most results from singularity theory are directly
applicable to the analysis of equilibria but not to the analysis of phase
portraits.

The normalization technique used in the analysis of limit cycle bifur-
cations was developed by Poincaré [1879]. A general presentation of the
theory of normal forms can be found in Arnold [1983], Guckenheimer &
Holmes [1983], and Vanderbauwhede [1989], where it is also explained how
to apply this theory to local bifurcation problems. Actually, for the limit
cycle bifurcation analysis only a small part of this theory is really required.
Theorem 3.4 was stated and briefly proved by Arnold [1972, 1983]. We
follow his approach.

Phase-portrait bifurcations in a generic one-parameter system on the
plane near an equilibrium with purely imaginary eigenvalues was studied
first by Andronov & Leontovich [1939]. They used a succession function
(return map) technique originally due to Lyapunov [1892] without benefit-
ing from the normalization. An explicit expression for the first Lyapunov
coefficient in terms of Taylor coefficients of a general planar system was
obtained by Bautin [1949]. An exposition of the results by Andronov and
his co-workers on this bifurcation can be found in Andronov et al. [1973].

Hopf [1942] proved the appearance of a family of periodic solutions of
increasing amplitude in n-dimensional systems having an equilibrium with
a pair of purely imaginary eigenvalues at some critical parameter value.
He did not consider bifurcations of the whole phase portrait. An English-
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language translation of Hopf’s paper is included in Marsden & McCracken
[1976]. This very useful book also contains a derivation of the first Lyapunov
coefficient and a proof of Hopf’s result based on the Implicit Function
Theorem.

A much simpler derivation of the Lyapunov coefficient (actually, ¢1) is
given by Hassard, Kazarinoff & Wan [1981] using the complex form of
the Poincaré normalization. We essentially use their technique, although
we do not assume that the Poincaré normal form is known a priori. For-
mulas to compute Taylor coefficients of the complex equation without an
intermediate transformation of the system into its eigenbasis can also be ex-
tracted from their book (applying the center manifold reduction technique
to the trivial planar case; see Chapter 5). We also extensively use time
reparametrization to obtain a simpler normal form, which is then used to
prove existence and uniqueness of the cycle and in the analysis of the whole
phase-portrait bifurcations (see Appendix 1).

There exist other approaches to prove the generation of periodic solutions
under the Hopf conditions. An elegant one is to reformulate the problem as
that of finding a family of solutions of an abstract equation in a functional
space of periodic functions and to apply the Lyapunov-Schmidt reduction.
This approach, allowing a generalization to infinite-dimensional dynamical
systems, is far beyond the scope of this book (see, e.g., Chow & Hale [1982]
or Tooss & Joseph [1980]).
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One-Parameter Bifurcations of
Fixed Points in Discrete-Time
Dynamical Systems

In this chapter, which is organized very much like Chapter 3, we present
bifurcation conditions defining the simplest bifurcations of fixed points in
n-dimensional discrete-time dynamical systems: the fold, the flip, and the
Neimark-Sacker bifurcations. Then we study these bifurcations in the low-
est possible dimension in which they can occur: the fold and flip bifurcations
for scalar systems and the Neimark-Sacker bifurcation for planar systems.
In Chapter 5 it will be shown how to apply these results to n-dimensional
systems when n is larger than one or two, respectively.

4.1 Simplest bifurcation conditions

Consider a discrete-time dynamical system depending on a parameter
r f(r,a), z€R" acR!

where the map f is smooth with respect to both z and «. Sometimes we
will write this system as

= f(zr,a), z,#€R", acR!

where Z denotes the image of x under the action of the map. Let x = xg be
a hyperbolic fixed point of the system for o = . Let us monitor this fixed
point and its multipliers while the parameter varies. It is clear that there
are, generically, only three ways in which the hyperbolicity condition can
be violated. Either a simple positive multiplier approaches the unit circle
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U2
@ (b) (©
FIGURE 4.1. Codim 1 critical cases.

and we have u; = 1 (see Figure 4.1(a)), or a simple negative multiplier
approaches the unit circle and we have u; = —1 (Figure 4.1(b)), or a pair
of simple complex multipliers reaches the unit circle and we have p; » =
et 0 < §y < 7 (Figure 4.1(c)), for some value of the parameter. It is
obvious that one needs more parameters to allocate extra eigenvalues on
the unit circle.

The rest of the chapter is devoted to the proof that a nonhyperbolic
fixed point satisfying one of the above conditions is structurally unstable,
and to the analysis of the corresponding bifurcations of the local phase
portrait under variation of the parameter. Let us finish this section with
the following definitions, the reasoning for which will become clear later.

Definition 4.1 The bifurcation associated with the appearance of 1 = 1
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation is also referred to as a limit point, saddle-node bifurca-
tion, turning point, among others. $

Definition 4.2 The bifurcation associated with the appearance of pp = —1
is called a flip (or period-doubling) bifurcation.

Definition 4.3 The bifurcation corresponding to the presence of p12 =
et 0 < 0y < 7, is called a Neimark-Sacker (or torus) bifurcation.

Notice that the fold and flip bifurcations are possible if n > 1, but for
the Neimark-Sacker bifurcation we need n > 2.

4.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:
T atr+a® = fr,a) = fo(z). (4.1)

The map f, is invertible for || small in a neighborhood of the origin. The
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X
fo (%) fo (%)

x1
x

a<0 a=0 a>0

FIGURE 4.2. Fold bifurcation.

system has at o = 0 a nonhyperbolic fixed point o = 0 with u = f,(0,0) =
1. The behavior of the system near z = 0 for small |a is shown in Figure
4.2. For a < 0 there are two fixed points in the system: z1 2(a) = +v/—q,
the left of which is stable, while the right one is unstable. For a > 0 there
are no fixed points in the system. While « crosses zero from negative to
positive values, the two fixed points (stable and unstable) “collide,” forming
at a = 0 a fixed point with p = 1, and disappear. This is a fold (tangent)
bifurcation in the discrete-time dynamical system.

There is, as usual, another way of presenting this bifurcation: plotting
a bifurcation diagram in the direct product of the phase and parameter
spaces, namely, in the (z, «)-plane. The fixed-point manifold x— f(x,a) = 0
is simply the parabola a = —z? (see Figure 4.3). Fixing some a, we can
easily determine the number of fixed points in the system for this parameter
value. At (z,a) = (0,0) a map projecting the fixed-point manifold onto the
a-axis has a singularity of the fold type.

o +Xx2= 0 X

X = f(x,oc)‘

FIGURE 4.3. Fixed point manifold.
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Remark:
The system = — a 4+ x — x° can be considered in the same way. The
analysis reveals two fixed points appearing for a > 0. {

2

Now add higher-order terms to system (4.1), i.e., consider the system
r a+x+2®+ 23z, a) = Fu(z), (4.2)

where ¢ = 9(z, @) depends smoothly on (x, ). It is easy to check that in
a sufficiently small neighborhood of x = 0 the number and the stability
of the fixed points are the same for system (4.2) as for system (4.1) at
corresponding parameter values, provided |a| is small enough. Moreover, a
homeomorphism h,, of a neighborhood of the origin mapping orbits of (4.1)
into the corresponding orbits of (4.2) can be constructed for each small
|a|. This property was called local topological equivalence of parameter-
dependent systems in Chapter 2. It should be noted that construction of
he is not as simple as in the continuous-time case (cf. Lemma 3.1). In the
present case, a homeomorphism mapping the fixed points of (4.1) into the
corresponding fixed points of (4.2) will not necessarily map other orbits of
(4.1) into orbits of (4.2). Nevertheless, a homeomorphism h,, satisfying the
condition
fal@) = hy' (Falha())

for all (z, «) in a neighbourghood of (0,0) (cf. Chapter 2) exists. Thus, the
following lemma holds.

Lemma 4.1 The system
T a+z+ 2?4+ 0(z?)
18 locally topologically equivalent near the origin to the system

z— a+x+22 0

4.3 Generic fold bifurcation

We shall show that system (4.1) (with a possible sign change of the term
2?) is a topological normal form of a generic one-dimensional discrete-time
system having a fold bifurcation. In Chapter 5 we will also see that in some
strong sense it describes the fold bifurcation in a generic n-dimensional
system.

Theorem 4.1 Suppose that a one-dimensional system
r— f(r,a), r€R, aecR (4.3)

with smooth f, has at a« = 0 the fized point xo = 0, and let p = f,(0,0) = 1.
Assume that the following conditions are satisfied:
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(A.2) fa(0,0) # 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

ne B+nEn’+00?).
Proof:
Expand f(z,«) in a Taylor series with respect to x at « = 0:
f(z,0) = fola) + fi(@)z + fola)z? + O(z?).

Two conditions are satisfied: fo(0) = f(0,0) = 0 (fized-point condition)
and f1(0) = f2(0,0) = 1 (fold bifurcation condition). Since f1(0) = 1, we
may write

[z, 0) = fole) + [1+ g(@))z + fa(a)z® + O(z?),

where g(«) is smooth and g(0) = 0.
As in the proof of Theorem 3.1 in Chapter 3, perform a coordinate shift
by introducing a new variable &:

E=x+0, (4.4)

where § = 6(«) is to be defined suitably. The transformation (4.4) yields

E=T4+0=f(z,a)+d=f(§—6,a)+4.
Therefore,

£ = [fola) = g(a)d + fo()8® + O(6%)]
+ &+ [g(@) = 2f2(a)d + O(6%)]¢
+ [f2(a) + 0(0)]€? + O(&).

Assume that

Then there is a smooth function d(«), which annihilates the parameter-
dependent linear term in the above map for all sufficiently small |«|. Indeed,
the condition for that term to vanish can be written as

F(a,6) = g(a) — 2fa()d + 6*p(a,6) = 0
for some smooth function ¢. We have

oF oF

= _2f2(0) 7é 07

F(0,0)=0, =
06 (0,0) Oa

=4'(0),
(0,0)
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which implies (local) existence and uniqueness of a smooth function § =
d(a) such that 6(0) =0 and F(«,d(a)) = 0. It follows that
g'(0)
o(a) =
(@) 2/2(0)

The map written in terms of £ is given by

£ = [f(0)a+a®P(a)] + & + [f2(0)+0(@)]€ + O, (4.5)

where 1 is some smooth function.
Consider as a new parameter p = pu(«) the constant (§-independent)
term of (4.5):

a+ 0(a?).

5= f3(0)a+ a%u(a).
We have
(a) p(0) = 0;
(b) w'(0) = f3(0) = fa(0,0).

If we assume

(A.2) £a(0,0) £ 0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function o = a(u) with a(0) = 0. Therefore, equation
(4.5) now reads R
E=pn+E+a(ue’ +0(E),
where a(p) is a smooth function with a(0) = f2(0) # 0 due to the first
assumption (A.1).
Let n = |a(p)|€ and 8 = |a(p)|p. Then we get

=B +n+sn*+ 00,
where s = sign a(0) = £1. O
Using Lemma 4.1, we can also eliminate O(n?) terms and finally arrive
at the following general result.

Theorem 4.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

z = fla, @),

having at o = 0 the fized point xo = 0 with p = f,(0,0) = 1, is locally
topologically equivalent near the origin to one of the following normal forms:

n—pB+nt 772. O
Remark:

The genericity conditions in Theorem 4.2 are the nondegeneracy condi-
tion (A.1) and the transversality condition (A.2) from Theorem 4.1. {
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4.4 The normal form of the flip bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

z —(1+a)z+ 23 = f(z,0) = fol). (4.6)

The map f, is invertible for small |a| in a neighborhood of the origin.
System (4.6) has the fixed point xg = 0 for all o with multiplier u =
—(1 + «). The point is linearly stable for small @« < 0 and is linearly
unstable for a > 0. At a = 0 the point is not hyperbolic, since the multiplier
u = f(0,0) = —1, but is nevertheless (nonlinearly) stable. There are no
other fixed points near the origin for small .

Consider now the second iterate f2(x) of the map (4.6). If y = f. (),
then

fA@) = faly)=-(1+a)y+y°
= —(l+a)-0+a)z+2+[-(1+a)z+2°P
(1+a)’z —[(14 a)(2 + 2a + a?)]2® + O(2®).

The map f2 obviously has the trivial fixed point o = 0. It also has two
nontrivial fixed points for small o > 0:

T12 = f§($1,2)7

where 21 2 = (/o + O()) (see Figure 4.4). These two points are stable

X
X
X

f209 R

X X X1 X

a<0 a=0 a>0
FIGURE 4.4. Second iterate map near a flip bifurcation.

and constitute a cycle of period two for the original map f,. This means
that

To = foz(xl)7 Ty = fa(xQ)a

with 1 # x5. Figure 4.5 shows the complete bifurcation diagram of system
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x1

X X
fo(X)
s X 0] X X
(%) | f,(X)
=1 X1,
a<0 a=0 a>0
FIGURE 4.5. Flip bifurcation.
X
Xl
0 o
2
X, X = 1200

FIGURE 4.6. A flip corresponds to a pitchfork bifurcation of the second iterate.

(4.6) with the help of a staircase diagram. As « approaches zero from above,

the period-two cycle “shrinks” and disappears. This is a flip bifurcation.

The other way to present this bifurcation is to use the (x, «)-plane (see
Figure 4.6). In this figure, the horizontal axis corresponds to the fixed point
of (4.6) (stable for & < 0 and unstable for o > 0), while the “parabola”

represents the stable cycle of period two {z1, 22} existing for a > 0.

As usual, let us consider the effect of higher-order terms on system (4.6).

Lemma 4.2 The system

z = —(1+a)z +2® + O(z*)

18 locally topologically equivalent near the origin to the system

e —(1+a)z+23. O

The analysis of the fixed point and the period-two cycle is a simple
exercise. The rest of the proof is not easy and is omitted here.
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The case
= —(1+a)r — 3 (4.7)

can be treated in the same way. For a # 0, the fixed point o = 0 has
the same stability as in (4.6). At the critical parameter value oo = 0 the
fixed point is unstable. The analysis of the second iterate of (4.7) reveals
an unstable cycle of period two for a < 0 which disappears at o = 0. The
higher-order terms do not affect the bifurcation diagram.

Remark:

By analogy with the Andronov-Hopf bifurcation, the flip bifurcation in
system (4.6) is called supercritical or “soft,” while the flip bifurcation in
system (4.7) is referred to as subcritical or “sharp.” The bifurcation type
is determined by the stability of the fixed point at the critical parameter
value. &

4.5 Generic flip bifurcation

Theorem 4.3 Suppose that a one-dimensional system
z— f(z,a), R, acR!
with smooth f, has at « = 0 the fized point xg = 0, and let p = f,(0,0) =

—1. Assume that the following nondegeneracy conditions are satisfied:

(B.1) %(fmm(o 0)) %fmz((),()) #0;
(B-2) f2a(0,0) # 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

n— —(14B)n+n®+ 0.

Proof:

By the Implicit Function Theorem, the system has a unique fixed point
zo(a) in some neighborhood of the origin for all sufficiently small |a], since
f=(0,0) # 1. We can perform a coordinate shift, placing this fixed point at
the origin. Therefore, we can assume without loss of generality that x =0
is the fixed point of the system for |«| sufficiently small. Thus, the map f
can be written as follows:

f(z,a) = fi(a)z + fala)z® + f3(a)x® + O(z?), (4.8)

where f1(a) = —[1+ g(«)] for some smooth function g. Since g(0) = 0 and
g'(0) = £2a(0,0) # 0,
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according to assumption (B.2), the function g is locally invertible and can
be used to introduce a new parameter:

B =g(a)
Our map (4.8) now takes the form
&= p(B)x + a(B)z? +b(B)x + O(z*),

where p(8) = —(1 + ), and the functions a(8) and b(5) are smooth. We
have

1 1
Let us perform a smooth change of coordinate:
=y +0y>, (4.9)

where § = §(0) is a smooth function to be defined. The transformation
(4.9) is invertible in some neighborhood of the origin, and its inverse can
be found by the method of unknown coefficients:

y = — 2% +26%2% + O(a*). (4.10)
Using (4.9) and (4.10), we get
§=py+ (a+opn—6u?)y? + (b+ 20a — 20p(Sp + a) + 26213y + O(y?).

Thus, the quadratic term can be “killed” for all sufficiently small |3| by
setting
a(B)

0f) = .
D=0 - o)
This can be done since p?(0) — p(0) = 2 # 0, giving

2
§=py+ (b + ufa_ u) v +0(y") = —(1+ By + c(B)y” + O(y*)

for some smooth function ¢(f), such that

(0) = a%(0) +5(0) =  (foa(0,0) + £ e (0,0).  (4.11)

Notice that ¢(0) # 0 by assumption (B.1).

Apply the rescaling
n

[c(B)]
In the new coordinate 7 the system takes the desired form:
==+ 8)n+sn’+00"),

where s = sign ¢(0) = +£1. O

y:

Using Lemma 4.2, we arrive at the following general result.
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Theorem 4.4 (Topological normal form for the flip bifurcation)
Any generic, scalar, one-parameter system

z = flz, @),

having at o = 0 the fized point xo = 0 with p = f,(0,0) = —1, is locally
topologically equivalent near the origin to one of the following normal forms:

n— —(1+p)m+n O

Remark:

Of course, the genericity conditions in Theorem 4.4 are the nondegener-
acy condition (B.1) and the transversality condition (B.2) from Theorem
43. $

Example 4.1 (Ricker’s equation) Consider the following simple pop-
ulation model [Ricker 1954]:

Tpy1 = awpe” ",
where xj is the population density in year k, and o > 0 is the growth
rate. The function on the right-hand side takes into account the negative
role of interpopulation competition at high population densities. The above
recurrence relation corresponds to the discrete-time dynamical system

x = aze * = f(x, ). (4.12)

System (4.12) has a trivial fixed point zy = 0 for all values of the parameter
a. At ag = 1, however, a nontrivial positive fixed point appears:

z1(a) =lna.
The multiplier of this point is given by the expression
wla)=1—-Ina.

Thus, x; is stable for 1 < a < a3 and unstable for & > a7, where oy =
e? = 7.38907.... At the critical parameter value o = a1, the fixed point
has multiplier u(a;) = —1. Therefore, a flip bifurcation takes place. To
apply Theorem 4.4, we need to verify the corresponding nondegeneracy
conditions in which all the derivatives must be computed at the fixed point
21(a1) = 2 and at the critical parameter value «.

One can check that

1

1
c(0) =5 >0, fra=—=#0.

Therefore, a unique and stable period-two cycle bifurcates from x; for o >
aq.



124 4. One-Parameter Bifurcations of Fixed Points

6

FIGURE 4.7. Cascade of period-doubling (flip) bifurcations in Ricker’s equation.

The fate of this period-two cycle can be traced further. It can be ver-
ified numerically (see Exercise 4) that this cycle loses stability at oy =
12.50925 ... via the flip bifurcation, giving rise to a stable period-four cy-
cle. It bifurcates again at oy = 14.24425 . . ., generating a stable period-eight
cycle that loses its stability at ag = 14.65267 . ... The next period doubling
takes place at a1 = 14.74212. .. (see Figure 4.7, where several doublings
are presented).

It is natural to assume that there is an infinite sequence of bifurcation
values: k), m(k) = 2%k = 1,2,... (m(k) is the period of the cycle
before the kth doubling). Moreover, one can check that at least the first
few elements of this sequence closely resemble a geometric progression. In
fact, the quotient

Um(k) — Cm(k—1)

A (k+1) — Om(k)

tends to up = 4.6692. .. as k increases. This phenomenon is called Feigen-
baum’s cascade of period doublings, and the constant up is referred to as
the Feigenbaum constant. The most surprising fact is that this constant is
the same for many different systems exhibiting a cascade of flip bifurca-
tions. This universality has a deep reasoning, which will be discussed in
Appendix 1 to this chapter. &
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4.6 The “normal form” of the Neimark-Sacker
bifurcation

Consider the following two-dimensional discrete-time system depending on
one parameter:

T1 cosf) —sinf T1
<x2)'_> (1+a)<sin0 cos&)(a@)
9 9 cos —sind a —b 1
+(x1+x2)(sin0 cos@)(b a)(@)’

(4.13)
where « is the parameter; § = 6(«),a = a(«), and b = b(a) are smooth
functions; and 0 < 0(0) < 7, a(0) # 0.

This system has the fixed point z; = zo = 0 for all @ with Jacobian
matrix

A:(1+a)( cos) —siné )

sin 0 cos

The matrix has eigenvalues 11 o = (1+a)e*®, which makes the map (4.13)
invertible near the origin for all small |«|. As can be seen, the fixed point at
the origin is nonhyperbolic at & = 0 due to a complex-conjugate pair of the
eigenvalues on the unit circle. To analyze the corresponding bifurcation,
introduce the complex variable 2z = z1 + ix9,2 = x1 — ima, |2 = 22 =
22 + 22, and set d = a + ib. The equation for z reads

2z €921+ a+d|z?) = pz + cz|z|%,
where 1 = p(a) = (14 a)e?® and ¢ = c(a) = €?d(a) are complex
functions of the parameter a.
Using the representation z = pe?, we obtain for p = ||

p = pll+a+d(a)p?.

Since

ala o)l? 1/2
1+ a+d)p? = (1+a)<1+i_~(_ip2+(|fg_()l|)2 4>

= 1+a+a(a)p’ +0(p’),

we obtain the following polar form of system (4.13):

p = p(l+a+a(@)p®) + p*Ra(p),
{so = o+ 0(a) + p*Qalp), (4.14)

for functions R and @, which are smooth functions of (p, ). Bifurcations of
the systems’s phase portrait as a passes through zero can easily be analyzed
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using the latter form, since the mapping for p is independent of . The first
equation in (4.14) defines a one-dimensional dynamical system that has the
fixed point p = 0 for all values of a. The point is linearly stable if o < 0;
for @ > 0 the point becomes linearly unstable. The stability of the fixed
point at « = 0 is determined by the sign of the coefficient a(0). Suppose
that a(0) < 0; then the origin is (nonlinearly) stable at o = 0. Moreover,
the p-map of (4.14) has an additional stable fixed point

for @ > 0. The p-map of (4.14) describes a rotation by an angle depending
on p and «; it is approximately equal to 6(«). Thus, by superposition of
the mappings defined by (4.14), we obtain the bifurcation diagram for the
original two-dimensional system (4.13) (see Figure 4.8).

a<0 a=0 a>0

FIGURE 4.8. Supercritical Neimark-Sacker bifurcation.

The system always has a fixed point at the origin. This point is stable
for @ < 0 and unstable for o > 0. The invariant curves of the system near
the origin look like the orbits near the stable focus of a continuous-time
system for a < 0 and like orbits near the unstable focus for a > 0. At the
critical parameter value @ = 0 the point is nonlinearly stable. The fixed
point is surrounded for a > 0 by an isolated closed invariant curve that is
unique and stable. The curve is a circle of radius pg(«). All orbits starting
outside or inside the closed invariant curve, except at the origin, tend to
the curve under iterations of (4.14). This is a Neimark-Sacker bifurcation.

This bifurcation can also be presented in (z1, 2, @)-space. The appearing
family of closed invariant curves, parametrized by «, forms a paraboloid
surface.

The case a(0) > 0 can be analyzed in the same way. The system under-
goes the Neimark-Sacker bifurcation at o = 0. Contrary to the considered
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X X5

a<0 a=0 a>0

FIGURE 4.9. Subcritical Neimark-Sacker bifurcation.

case, there is an unstable closed invariant curve that disappears when «
crosses zero from negative to positive values (see Figure 4.9).

Remarks:

(1) As in the cases of the Andronov-Hopf and the flip bifurcations, these
two cases are often called supercritical and subcritical (or, better, “soft” and
“sharp”) Neimark-Sacker bifurcations. As usual, the type of the bifurcation
is determined by the stability of the fixed point at the bifurcation parameter
value.

(2) The structure of orbits of (4.14) on the invariant circle depends on
whether the ratio between the rotation angle Ap = 0(a) + p?Qa(p) and 27
is rational or irrational on the circle. If it is rational, all the orbits on the
curve are periodic. More precisely, if

Ap _p

27 q

with integers p and ¢, all the points on the curve are cycles of period ¢ of
the pth iterate of the map. If the ratio is irrational, there are no periodic
orbits and all the orbits are dense in the circle.

Let us now add higher-order terms to system (4.13); for instance, consider
the system

T cos —sinf T
<x2)'_>(1+a)<sin9 cos@)(xg)
cosf) —sin@ a —b T
ratead (S TR (0 o) (2) + ot
(4.15)

Here, the O(||z||*) terms can depend smoothly on «. Unfortunately, it can-
not be said that system (4.15) is locally topologically equivalent to system
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(4.13). In this case, the higher-order terms do affect the bifurcation behav-
ior of the system. If one writes (4.15) in the polar form, the mapping for p
will depend on ¢. The system can be represented in a form similar to (4.14)
but with 27-periodic functions R and (). Nevertheless, the phase portraits
of systems (4.13) and (4.15) have some important features in common.
Namely, the following lemma holds.

Lemma 4.3 O(||z||*) terms do not affect the bifurcation of the closed in-
variant curve in (4.15). That is, a locally unique invariant curve bifurcates
from the origin in the same direction and with the same stability as in
system (4.13). O

The proof of the lemma is rather involved and is given in Appendix 2.
The geometrical idea behind the proof is simple. We expect that map (4.15)
has an invariant curve near the invariant circle of the map (4.13). Fix «
and consider the circle

So = {(p,w):p a},

ala)

which is located near the invariant circle of the “unperturbed” map without
O(||z||*) terms. It can be shown that iterations F*Sy,k = 1,2, ..., where
F' is the map defined by (4.15), converge to a closed invariant curve

Soo ={(p,¢) : p=¥(p)},

which is not a circle but is close to Sy. Here, ¥ is a 27-periodic function
of ¢ describing S, in polar coordinates. To establish the convergence, we
have to introduce a new “radial” variable u in a band around Sy (both the
band diameter and its width “shrink” as a« — 0) and show that the map
F' defines a contraction map F on a proper function space of 27-periodic
functions u = u(y). Then the Contraction Mapping Principle (see Chapter
1) gives the existence of a fixed point u(>) of F : F(ul>)) = u(*®). The
periodic function u(>) () represents the closed invariant curve S, we are
looking for at « fixed. Uniqueness and stability of S, in the band follow,
essentially, from the contraction. It can be verified that outside the band
there are no nontrivial invariant sets of (4.15).

Remarks:

(1) The orbit structure on the closed invariant curve and the variation
of this structure when the parameter changes are generically different in
systems (4.13) and (4.15). We will return to the analysis of bifurcations on
the invariant curve in Chapter 7. Here we just notice that, generically, there
is only a finite number of periodic orbits on the closed invariant curve. Let
a(0) < 0. Then, some iterate p of map (4.15) can have two g-periodic orbits:
a totally stable “node” cycle of period ¢ and a saddle cycle of period ¢ (see
Figure 4.10). The cycles exist in some “parameter window” and disappear
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FIGURE 4.10. Saddle {x1,x2, ..., x6} and stable {y1, y2, . . ., ys } period-six orbits
on the invariant circle.

on its borders through the fold bifurcation. A generic system exhibits an
infinite number of such bifurcations corresponding to different windows.

(2) The bifurcating invariant closed curve in (4.15) has finite smoothness:
The function ¥(y) representing it in polar coordinates generically has only
a finite number of continuous derivatives with respect to ¢, even if the
map (4.15) is differentiable infinitely many times. The number increases as
|a] = 0. The nonsmoothness appears when the saddle’s unstable (stable)
manifolds meet at the “node” points.

4.7 Generic Neimark-Sacker bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Neimark-Sacker bifurcation can be transformed into the form (4.15).
Consider a system

z— f(z,0), = (x1,22)T €R?* acR!

with a smooth function f, which has at o = 0 the fixed point x = 0 with
simple eigenvalues j; 2 = e*% 0 < 5 < 7. By the Implicit Function
Theorem, the system has a unique fixed point z(«) in some neighborhood
of the origin for all sufficiently small |a/, since g = 1 is not an eigenvalue of
the Jacobian matrix.! We can perform a parameter-dependent coordinate
shift, placing this fixed point at the origin. Therefore, we may assume

1Since p = 0 is not an eigenvalue, the system is invertible in some neighbor-
hood of the origin for sufficiently small |a].
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without loss of generality that = 0 is the fixed point of the system for |«|
sufficiently small. Thus, the system can be written as

z— Ala)z + F(z,a), (4.16)

where F' is a smooth vector function whose components F; o have Taylor
expansions in x starting with at least quadratic terms, F'(0,a) = 0 for all
sufficiently small |a|. The Jacobian matrix A(a) has two multipliers

p2(@) = r(a)e ™,

where r(0) = 1, ¢(0) = 6y. Thus, r(a) = 1+ 3(«) for some smooth function
B(a), 8(0) = 0. Suppose that 5/(0) # 0. Then, we can use  as a new
parameter and express the multipliers in terms of 8 : u1(8) = u(8), u2(8) =
ii(8), where

p(B) = (1+ B)e?

with a smooth function () such that 6(0) = 6,.

Lemma 4.4 By the introduction of a complex variable and a new param-
eter, system (4.16) can be transformed for all sufficiently small |a| into the
following form:

2o wl(B)z + 9(2, 5, B), (4.17)

where f € RY,z € C',u(B) = (1 + B)e? P, and g is a complez-valued
smooth function of z, z, and 8 whose Taylor expansion with respect to (z, Z)
contains quadratic and higher-order terms:

9220 = 3 cmon()e,

k+1>2
with k,1=0,1,....0

The proof of the lemma is completely analogous to that from the And-
ronov-Hopf bifurcation analysis in Chapter 3 and is left as an exercise for
the reader.

As in the Andronov-Hopf case, we start by making nonlinear (complex)
coordinate changes that will simplify the map (4.17). First, we remove all
the quadratic terms.

Lemma 4.5 The map

920

;_>
z nz + 2

224 g2z + 92222+O(|z|3)7 (4.18)
where 1 = p(B) = (1 + 3)e?P), gi; = gi;(B), can be transformed by an
invertible parameter-dependent change of complex coordinate
h h
zZ=w+ %wz + hjjww + %@2

)



4.7 Generic Neimark-Sacker bifurcation 131

for all sufficiently small ||, into a map without quadratic terms:
w — pw + O(Jw]?),
provided that _ '
e £1 and ¥% +£1.

Proof:
The inverse change of variables is given by

h ho2
w:z—%zQ—hnzé— g 22 4+ 0(|2%).

Therefore, in the new coordinate w, the map (4.18) takes the form

W= pw + %(920 + (= ) hao)w?
+ (g1 + (= | hi)we
+ %(902 + (= a?)hog)w?
+ O(wl?).
Thus, by setting
hzoifi, hni%, 02 = ,2902 ,
p?—p ul? —p [ —p

we “kill” all the quadratic terms in (4.18). These substitutions are valid if
the denominators are nonzero for all sufficiently small |3| including 8 = 0.
Indeed, this is the case, since

BR0) — p(0) = (et —1) £0,
WOF ) = 1- % 4o
RO —p(0) = et —1) 20,

due to our restrictions on 6. O

Remarks:
(1) Let o = (0). Then, the conditions on 6y used in the lemma can be
written as

po # 1, g # 1.

Notice that the first condition holds automatically due to our initial as-
sumptions on 6.

(2) The resulting coordinate transformation is polynomial with coeffi-
cients that are smoothly dependent on (. In some neighborhood of the
origin the transformation is near-identical.

(3) Notice the transformation changes the coefficients of the cubic terms

of (4.18). &

Assuming that we have removed all quadratic terms, let us try to elimi-
nate the cubic terms as well.
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Lemma 4.6 The map

s prt B8 P22 I12 00 S08 a8y O(|zh), (4.19)
6 2 2 6
where p = p(B) = (14 8)e D), gi; = gi5(8), can be transformed by an
invertible parameter-dependent change of coordinates
h
30,3

S

h h
ﬂw%ﬂ + %wwz +

h,
ﬁw?”
for all sufficiently small |3, into a map with only one cubic term:

w = pw + crw?o 4+ O(|lw[*),

provided that . 4
e?%0 £ 1 and e*% +£1,

Proof:

The inverse transformation is

h h h hos -
w=z— 0,3 22y T2 22 %25 + O(|z\4).

6 2 2
Therefore,
. 1 1 _
W o= A\w-+ 6(930 + (1 — M3)h30)w3 + 5(921 + (1 — M|,u|2)h21)w2w
1 _ _ 1 _ _
+ 5(912 + (= plpl?)hz)wa® + 6(903 + (1 — 1°)hos)w® + O(Jw|*).
Thus, by setting
h3o = 3g¢7 hio = #, 03 = ,3903 ;
B3 — Blpl? = p i —p

we can annihilate all cubic terms in the resulting map except the w?w-term,
which must be treated separately. The substitutions are valid since all the
involved denominators are nonzero for all sufficiently small |3| due to the
assumptions concerning 6.

One can also try to eliminate the w?w-term by formally setting

hyy = g21
(1= |pf?)
This is possible for small § # 0, but the denominator vanishes at § = 0
for all 8. Thus, no extra conditions on #y would help. To obtain a trans-
formation that is smoothly dependent on 3, set ho; = 0, that results in
g21

cp=—7—.0
D)
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Remarks:
(1) The conditions imposed on y in the lemma mean

po #1, g # 1,

and therefore, in particular, pg # —1 and pg # i. The first condition holds
automatically due to our initial assumptions on 6.

(2) The remaining cubic w?w-term is called a resonant term. Note that
its coefficient is the same as the coefficient of the cubic term 22% in the
original map (4.19). <

We now combine the two previous lemmas.

Lemma 4.7 (Normal form for the Neimark-Sacker bifurcation)
The map

Zr uz  + g;Oz2+g zz+7z2
930 .3 921 2. 912 -2 9033
+ 6 25+ /= 9 Z+ =/ 2 St z
+O(|z),

where p = p(B) = (1 + B)e?® B gi; = gi;(3), and 8y = 0(0) is such that
etkbo £ 1 for k =1,2,3,4, can be transformed by an invertible parameter-
dependent change of complex coordinate, which is smoothly dependent on
the parameter,

ho
z=w + 2w + hyw + —2@?
h h h
+ %w3+$ww2+%w3,

for all sufficiently small | 3|, into a map with only the resonant cubic term:
w = pw + crw?w + O(Jw|?),
where ¢; = ¢1(F). O

The truncated superposition of the transformations defined in the two
previous lemmas gives the required coordinate change. First, annihilate
all the quadratic terms. This will also change the coefficients of the cubic
terms. The coefficient of w?w will be %§21, say, instead of %ggl. Then,
eliminate all the cubic terms except the resonant one. The coefficient of
this term remains % go1- Thus, all we need to compute to get the coefficient
of ¢; in terms of the given equation is a new coefficient % g21 of the w?w-
term after the quadratic transformation. The computations result in the
following expression for ¢ («):

i — 342 2 2
2920911(M ©) gl + |go2| +9£

2 —pw)(p—1)  1—p 2p*—-p) 27

(4.20)
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which gives, for the critical value of ¢y,

— 920000911 (0)(1 = 2p0) | 912 (0)] l902(0)]* | g21(0)
a(0) = B e ey (42D

0o

where pg = ¢!

We now summarize the obtained results in the following theorem.

Theorem 4.5 Suppose a two-dimensional discrete-time system
s f(z,a), =cR?* acR!

with smooth f, has, for all sufficiently small |al, the fized point x = 0 with
multipliers

p2(a) = r(a)e*#(),
where 7(0) = 1, p(0) = y.
Let the following conditions be satisfied:

(C.1) /(0) # 0;
(C.2) e £ 1 fork=1,2,3,4.

Then, there are smooth invertible coordinate and parameter changes trans-
forming the system into

(B)r e (06 255 ) () -
et (S5 ) (6 5) (32) + o
(4.22)

with 0(0) = 6y and a(0) = Re(e™%¢1(0)), where c1(0) is given by the
formula (4.21).

Proof:

The only thing left to verify is the formula for a(0). Indeed, by Lemmas
4.4, 4.5, and 4.6, the system can be transformed to the complex Poincaré
normal form,

w = p(B)w + e (B)wlw]* + O(|w[*),

for () = (1 + B)e*® . This map can be written as
w = P (14 8+ d(B)|[w]*)w + O(jwl*),

where d(8) = a(B8) + ib(8) for some real functions a(3), b(5). A return to
the real coordinates (y1,y2), w = y1 + iy, gives system (4.22). Finally,

a(B) = Re d(8) = Re(e P ¢y (B)).
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Thus,
a(0) = Re(e™"¢,(0)). O

Using Lemma 4.3, we can state the following general result.

Theorem 4.6 (Generic Neimark-Sacker bifurcation) For any gene-
ric two-dimensional one-parameter system

z = f(z, ),
having at o = 0 the fized point xg = 0 with complex multipliers p1 2 = etito,
there is a neighborhood of xg in which a unique closed invariant curve
bifurcates from xy as o passes through zero. O

Remark:

The genericity conditions assumed in the theorem are the transversality
condition (C.1) and the nondegeneracy condition (C.2) from Theorem 4.5
and the additional nondegeneracy condition

(C.3) a(0) # 0.

It should be stressed that the conditions e**% £ 1 for k = 1,2, 3,4 are not
merely technical. If they are not satisfied, the closed invariant curve may
not appear at all, or there might be several invariant curves bifurcating
from the fixed point (see Chapter 9). &

The coefficient a(0), which determines the direction of the appearance
of the invariant curve in a generic system exhibiting the Neimark-Sacker
bifurcation, can be computed via

—ifo 60\ —2i60
e "0gmn (1—2e"0)e Lo 1 o
0) = —= | —-Re|———"7"°"7— - = -= ,

a(0) = Re ( 5 ) e ( 2(1 = cifo) 920911 2|911| 4|902|
(4.23)

In Chapter 5 we will see how to deal with n-dimensional discrete-time
systems where n > 2 and how to apply the results to limit cycle bifurcations
in continuous-time systems.

Example 4.2 (Neimark-Sacker bifurcation in the delayed logistic
equation) Consider the following recurrence equation:

Ugt1 = Tuk(l — ugp—1).

This is a simple population dynamics model, where uj stands for the density
of a population at time k, and r is the growth rate. It is assumed that the
growth is determined not only by the current population density but also
by its density in the past.
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FIGURE 4.11. Stable invariant curve in the delayed logistic equation.

If we introduce v, = ug_1, the equation can be rewritten as

ug+1 = rug(l—ovg),

Uk+1 Vi,

which, in turn, defines the two-dimensional discrete-time dynamical system,

1 ray(l —x2) _ Fi(z,r)
(o) (0 ) = (R0 ). aa
where z = (z1,72)T. The map (4.24) has the fixed point (0,0)7 for all

values of 7. For > 1, a nontrivial positive fixed point 20 appears, with
the coordinates

() =a%(r) =1 - %

The Jacobian matrix of the map (4.24) evaluated at the nontrivial fixed

point is given by
1 1—7r
1 0

1 5
p12(r) = §:th—r.

Ifr > %, the eigenvalues are complex and |1 2|* = p1po = r—1. Therefore,
at r = rg = 2 the nontrivial fixed point loses stability and we have a

A(r)

and has eigenvalues
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Neimark-Sacker bifurcation: The critical multipliers are
, 71'
prp = e, b = 5 = 60%,

It is clear that conditions (C.1) and (C.2) are satisfied.
To verify the nondegeneracy condition (C.3), we have to compute a(0).
The critical Jacobian matrix Ay = A(rg) have the eigenvectors

Agg = e'™q, Ajp=e""p,

T T
Lovsy Ve
q 2 2 b b p 2 2 )

To achieve the normalization (p,q) = 1, we can take, for example,

13 Vi 1o v\
q—<2“2’ 1) P (3’216>

Now we compose

where

r=2a0+ zq+zZq
and evaluate the function
H(z, %) = (p, F(2° + 2q + 2q,r¢) — 2°).

Computing its Taylor expansion at (z,z) = (0,0),

H(z,2) = ez + Z T 'gjkz]z +0(|2|%),
a<jrh<3’

gives

2V/3 2V3 23

g20=—2+ i73 g =i oz = 2+ I 9 = 0,
that allows us to find the critical real part
—1i6g 09 —2i6g
& g21 (1 — 2e )6 1 2 1 2
0) = Re(— L) —Re(—" 2 - -
a(0) € < 5 ) € ( 2(1 — i) 920911 2|g11| 4|902|

= -2<0.

Therefore, a unique and stable closed invariant curve bifurcates from the
nontrivial fixed point for r > 2 (see Figure 4.11). ¢
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4.8 FExercises

(1) Prove that in a small neighborhood of # = 0 the number and stability of
fixed points and periodic orbits of the maps (4.1) and (4.8) are independent
of higher-order terms, provided |«| is sufficiently small. (Hint: To prove the
absence of long-period cycles, use asymptotic stability arguments.)

(2) Show that the normal form coefficient ¢(0) for the flip bifurcation (4.11)
can be computed in terms of the second iterate of the map:

1 03
0)=—— — f2
o(0) 12 923 o) (@0)=(0,0)

where fo(z) = f(x, ). (Hint: Take into account that f,(0,0) = —1.)
(3) (Logistic map) Consider the following map (May [1976]):

falz) = azx(l — ),

depending on a single parameter «.

(a) Show that at @1 = 3 the map exhibits the flip bifurcation, namely, a
stable fixed point of f, becomes unstable, while a stable period-two cycle
bifurcates from this point for o > 3. (Hint: Use the formula from Exercise
2 above.)

(b) Prove that at ag = 1 + /8 the logistic map has a fold bifurcation
generating a stable and an unstable cycle of period three as o increases.

(4) (Second period doubling in Ricker’s model) Verify that the sec-
ond period doubling takes place in Ricker’s map (4.12) at ap = 12.50925. . ..
(Hint: Introduce y = aze™ and write a system of three equations for the
three unknowns (z,y, &) defining a period-two cycle {z, y} with multiplier
1 = —1. Use one of the standard routines implementing Newton’s method
(see Chapter 10) to solve the system numerically starting from some suit-
able initial data.)

(5) (Henon map) Consider the following invertible planar map

(Z)H(—ewryu—yg)

depending on two parameters. Find a curve in the (e, p)-plane correspond-
ing to the flip bifurcation of a fixed point.

(6) Derive formula (4.21) for ¢;(0) for the Neimark-Sacker bifurcation.
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(7) (Discrete-time predator-prey model)
Consider the following discrete-time system (Maynard Smith [1968]):

Ty = oxg(l —2p) — TR,
1
Yet1 = Bwkym

which is a discrete-time version of a standard predator-prey model. Here xy,
and yy, are the prey and predator numbers, respectively, in year (generation)
k, and it is assumed that in the absence of prey the predators become
extinct in one generation.

(a) Prove that a nontrivial fixed point of the map undergoes a Neimark-
Sacker bifurcation on a curve in the (o, §)-plane, and compute the direction
of the closed invariant-curve bifurcation.

(b) Guess what happens to the emergent closed invariant curve for pa-
rameter values far from the bifurcation curve.

4.9 Appendix 1: Feigenbaum’s universality

As mentioned previously, many one-dimensional, parameter-dependent dy-
namical systems

> fo(x), xR, (A1.1)

exhibit infinite cascades of period doublings. Moreover, the corresponding
flip bifurcation parameter values, ay, g, ..., q;, ..., form (asymptotically)
a geometric progression:

A — Qi1
—— — UF,
Qi1 — Q4
as ¢ — oo, where up = 4.6692... is a system-independent (universal)

constant. The sequence {a;} has a limit o At o the dynamics of the
system become “chaotic,” since its orbits become irregular, nonperiodic
sequences.

The phenomenon was first explained for special noninvertible dynami-
cal systems (Al.1), that belong for all parameter values to some class ).
Namely, a system

x = f(x) (A1.2)

from this class satisfies the following conditions:

(1) f(x) is an even smooth function, f :[-1,1] = [-1,1];

(2) f'(0) =0, = 0 is the only maximum, f(0) = 1;
(3) f(1) = —a <0;

(4) b= f(a) > q;

(5) f(b) = f*(a) < a;
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X1

B
2
/ —_
B = f.(x
1 X
//A/ -a D/ 777777777
% X = f,(x)
A 1 D

FIGURE 4.12. A map satisfying conditions (1) through (5) and its second iterate.
where a and b are positive (see Figure 4.12). The function f,(z) = 1 — ax?
is in this class for a > 1.

Consider the second iterate f2 of a map satisfying conditions (1) through
(5). In the square A’B’C'D’ (see Figure 4.12), the graph of f2, after a
coordinate dilatation and a sign change, looks similar to the graph of f,
in the unit square ABCD. For example, if f,(z) =1 — ax?, then f2(z) =
(1 — @) + 20222 + - - -. This observation leads to the introduction of a map
defined on functions in ),

(TF)(w) =~ f(f(~az), (A1)

where a = — f(1). Notice that a depends on f.
Definition 4.4 The map T is called the doubling operator.

It can be checked that map (A1.3) transforms a function f € Y into some
function T'f € Y. Therefore, we can consider a discrete-time dynamical sys-
tem {Z,Y, T*}. This is a dynamical system with the infinite-dimensional
state space ), which is a function space. Moreover, the doubling operator is
not invertible in general. Thus, we have to consider only positive iterations
of T.

We shall state the following theorems without proof. They have been
proved with the help of a computer and delicate error estimates.

Theorem 4.7 (Fixed-point existence) The map T : Y — Y defined by
(A1.3) has a fized point p € Y : Ty = . O

It has been found that

o(r) =1—1.52763... 22 +0.104815... 2% +0.0267057...2% 4+ ....
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In Exercise 1 of Chapter 10 we discuss how to obtain some approximations
to ¢(x).

Theorem 4.8 (Saddle properties of the fixed point) The linear part
L of the doubling operator T at its fized point ¢ has only one eigenvalue
up = 4.6692... with |up| > 1. The rest of the spectrum of L is located
strictly inside the unit circle. O

The terms “linear part” and “spectrum” of L are generalizations to the
infinite-dimensional case of the notions of the Jacobian matrix and its eigen-
values. An interested reader can find exact definitions in standard textbooks
on functional analysis.

Theorems 4.7 and 4.8 mean that the system {Z,,Y,T*} has a saddle
fixed point. This fixed point ¢ (a function that is transformed by the dou-
bling operator into itself) has a codim 1 stable invariant manifold W*(y)
and a one-dimensional unstable invariant manifold W*(¢). The stable man-
ifold is composed by functions f € ), which become increasingly similar to
o under iteration of T'. The unstable manifold is composed of functions for
which all their preimages under the action of T remain close to . This is a
curve in the function space Y (Figure 4.13 sketches the manifold structure).

FIGURE 4.13. Stable and unstable manifolds of the fixed point ¢.

Notice that maps T'f and f? are topologically equivalent (the relevant
homeomorphism is a simple scaling; see (A1.3)). Hence, if T'f has a periodic
orbit of period N, f2 has a periodic orbit of the same period and f therefore
has a periodic orbit of period 2N. This simple observation plays the central
role in the following. Consider all maps from ) having a fixed point with
multiplier p = —1. Such maps form a codim 1 manifold ¥ C ). The
following result has also been established with the help of a computer.

Theorem 4.9 (Manifold intersection) The manifold ¥ intersects the
unstable manifold W* () transversally. O
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FIGURE 4.14. Preimages of a surface ¥ intersecting the unstable manifold
W* ().

By analogy with a finite-dimensional saddle, it is clear that the preimages
T~*% will accumulate on W#(p) as k — oo (see Figure 4.14). Taking into
account the previous observation, we can conclude that 7713 is composed
of maps having a cycle of period two with a multiplier —1, that 72X
is formed by maps having a cycle of period four with a multiplier —1,
and so forth. Any generic one-parameter dynamical system f, from the
considered class corresponds to a curve A in ). If this curve is sufficiently
close to W¥(y), it will intersect all the preimages T~*¥. The points of
intersection define a sequence of bifurcation parameter values aq,as,...
corresponding to a cascade of period doublings. Asymptotic properties of
this sequence are clearly determined by the unstable eigenvalue pr. Indeed,
let € be a coordinate along W (¢), and let & denote the coordinate of the
intersection of W% () with T~*%. The doubling operator restricted to the
unstable manifold has the form

& ppé+ 0(&%)

and is invertible, with the inverse given by

e Ler o).
BUFr

Since )
G = —& + O(&2),
Ur
we have ¢ ¢
k — Sk—1
e
Eh+1 — &k e

as k — 00, as does the sequence of the bifurcation parameter values on the
curve A.
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4.10 Appendix 2: Proof of Lemma 4.3

In this appendix we prove the following lemma, which is the complex analog
of Lemma 4.3.

Lemma 4.8 The map
z2 =214+ a+d(e)]z]?) + g(z, 2, ), (A2.1)

where d(a) = a(a) + ib(a); a(a), b(a), and () are smooth real-valued
functions; a(0) < 0,0 < 6(0) < 7,9 = O(|z|*) is a smooth complez-valued
function of z,Z, a, has a stable closed invariant curve for sufficiently small
a > 0.

Proof:
Step 1 (Rescaling and shifting). First, introduce new variables (s, ¢) by the
formula

a(a)ew(l + 5). (A2.2)

Substitution of (A2.2) into (A2.1) gives

z=,/—

€P(1+35) = WHo@)(q 4 [1—a(2s+s%) +iov(a)(1+s)?]
+a?h(s, 0, 0),

where

and h is a smooth complex-valued function of (s, ¢, a'/?). Thus, the map
(A2.1) in (s, ¢)-coordinates reads

{

where p, ¢ are smooth real-valued functions of (s, ¢, al/ 2). Now apply the
scaling

= (1-2a)s—a(3s®+s%) + 043/217(87 P, a),

© + 0(a) + av(a)(1 + 5)2 + &/ 2¢(s, p, @), (A2.3)

ATV
\

s =+/ak. (A2.4)
After rescaling accounting to (A2.4), the map (A2.3) takes the form

{

where

(1= 20)& — a®/2(3¢% + a/283) + ap D (€, ¢, @),
= o+ [0(e) + av(a)] + a3 2v(a) (26 + a/2€2) + a3/2¢D (€, ¢, ),
(A2.5)

AT

P (& p,0) = p(a'/?€,0,a), ¢V (€ ¢, a) = q(a'/?¢,p,a),
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are smooth with respect to (£, ¢, a'/?). Denote w(a) = () + av(a), and
notice that p(*) can be written as

P& p,a) = rD(p,a) + a?rW (g ¢, q).

Now (A2.5) can be represented by

(€2 Uomerablea e e g
¢ = otw(a)+a2qP(E g ), '
with

rA(E p,a) = —(32+ a2 +rM(€, p,a),

dP(E p,a) = v(@)(2+a?) + 4P (€ g, a).

The functions 7 and ¢(® have the same smoothness as p) and ¢,
Finally, perform a coordinate shift, eliminating the term ar(o)(cp, «) from
the first equation in (A2.6):

E=u+ %7’(0) (p, @). (A2.7)
This gives a map F', which we will work with from now on,

F{ i = (1=20)u+a*?Hy(u,¢),

A2.8
¢ = ptw(a)+ad2Ks(u, ), (A2.8)

Ho(u,9) = 1@ (U+§T(°)(%a),<p,a),
Ko(u,9) = q@ (u+ir®(p,a),¢,q),

are smooth functions of (u, ¢, a'/?) that are 27-periodic in ¢.
Notice that the band {(u, ) : |Ju| < 1,¢ € [0,27]} corresponds to a band
of O(«) width around the circle

in (A2.1), which has an O(a!/?) radius in the original coordinate z. In what
follows, it is conveinient to introduce a number

0H,
ou

0K,
ou

OH,,
dp

) )

A= sup {|Ha|,|Ka|,
lu|<1,0€[0,27]

0K,
) 8%0

} . (A2.9)
So defined, A depends on « but remains bounded as a — 0.
Step 2 (Definition of the function space). We will characterize the closed

curves by elements of a function space U. By definition, u € U is a 27-
periodic function u = u(p) satisfying the following two conditions:
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(U.1) |u(p)] < 1 for all ¢;
(U.2) [u(p1) = ulp2)] < |p1 — @af for all g1, @s.

The first property means that u(y) is absolutely bounded by unity, while
the second means that u(p) is Lipschitz continuous with Lipschitz constant
equal to one. Space U is a complete metric space with respect to the norm

lul = sup |u(p)].
pe(0,27]

Recall from Chapter 1 that a map F : U — U (transforming a function
u(p) € U into some other function a(p) = (Fu)(p) € U) is a contraction
if there is a number ¢, 0 < € < 1, such that

[F(u1) = Fluz)ll < ellur — uzll

for all u3 2 € U. A contraction map in a complete normed space has a
unique fixed point u(>) € U:

F(ul>®) =),

Moreover, the fixed point u(°) is a globally stable equilibrium of the
infinite-dimensional dynamical system {U, F}, that is,

lim || F*(u) —u™| =0,

k——+o00

for all u € U (see Figure 4.15). The above two facts are often referred to
as the Contraction Mapping Principle.

FIGURE 4.15. Accumulating closed curves.

Step 8 (Construction of the map F). We will consider a map F induced by
F on U. This means that if u represents a closed curve, then @ = F(u)
represents its image under the map F' defined by (A2.8).
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Suppose that a function v = u(p) from U is given. To construct the map
F, we have to specify a procedure for each given ¢ that allows us to find
the corresponding () = (Fu)(p). Notice, however, that F is nearly a
rotation by the angle w(«) in ¢. Thus, a point (a(y),¢) in the resulting
curve is the image of a point (u(p), ) in the original curve with a different
angle coordinate ¢ (see Figure 4.16).

(U(9),9)

(u(®),9)

FIGURE 4.16. Definition of the map.

To show that ¢ is uniquely defined, we have to prove that the equation
¢ =¢+w(a)+a®?Ka(u(@),®) (A2.10)

has a unique solution ¢ = ¢(p) for any given u € U. This is the case, since
the right-hand side of (A2.10) is a strictly increasing function of ¢. Indeed,
let @9 > ¢1; then, according to (A2.8),

P2 — P1 @2 — o1 + 32 [Ko(u(p2), 02) — Kal((1), )]|

= P2) = Ka((p1), 01
> o — 1 — 0 [Ko(u(p2), 92) = Ka((91), 1)
Taking into account that K, is a smooth function with (A2.9) and (U.2),
we get

[Ka(u(#2), p2) — Ka(u(p1), 1) Allu(pz) = ul(er) + 02 = ¢al]

<
< 2Mp2 — 1] = 2M(p2 — ¢1).

This last estimate can also be written as

—[Ka(u(p2), p2) — Ka((p1), 01)| = —2A(p2 — ¢1),

which implies

G2 — ¢1 > (1—20?)(p2 — 1)
Thus, the right-hand side of (A2.10) is a strictly increasing function, pro-
vided « is small enough, and its solution ¢ is uniquely defined.? From the

2Meanwhile, ¢ ~ ¢ — w(a).
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above estimates, it also follows that ¢(p) — that is, the inverse function to
the function given by (A2.10) — is Lipschitz continuous:

(1) = $(2)] < (1= 20a?) "Y1 — a. (A2.11)

Now we can define the map @ = F(u) by the formula
a(p) = (1= 2a)u(@) + a** Ko (u(p), $), (A2.12)

where ¢ is the solution of (A2.10). The mere definition, of course, is not
enough and we have to verify that F(u) € U, if u € U, namely, to check
(U.1) and (U.2) for u = F(u).

Condition (U.1) for @ follows from the estimate

la(p)] < (1 - 2a)[u(@)| + a®/*|Ha(u(), §)] < 1 - 20+ Aa®?,

where we have used (U.1) for u and the definition (A2.9) of A. Thus, |4 <1
if o is small enough and positive. Condition (U.2) for @ is obtained by the
sequence of estimates:

[a(pr) —alp2)] < (1= 20)|u(Pr) — u(P2)]
1

< (1 =20)|u(¢r) — u(P2)

|
+ 032 [i(e) = lea)| + |1 — 2al]
< (1= 20+ 200%7)|p1 — ¢al,

where the final inequality holds due to the Lipschitz continuity of u. In-
serting the estimate (A2.11), we get

|i(p1) — G(p2)] < (1 — 200+ 22/ %) (1 — 20a®/2) " o1 — o]

Thus, (U.2) also holds for @ for all sufficiently small positive .. Therefore,
the map @ = F(u) is well defined.

Step 4 (Verification of the contraction property). Now suppose two functions
uy,ug € U are given. What we need to obtain is the estimation of ||ty — ||
in terms of ||u; — uz||. By the definition (A2.12) of @ = F(u),

[a1(p) —a2(e)l < (1= 2a)|ur(p1) — ua(pa)l
+ 32| Ho(ur(¢1), @1) — Hal(uz(92), $2)|
< (1 —=2a)|ui(Pf1) — ua(pa)]

+ a®2A[Jur (¢1) — ua(@2)| + 11 — o],
(A2.13)

where ¢1 and ¢, are the unique solutions of

© = @1 +wla) + Ko (ui (1), 1) (A2.14)
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and
¢ = @2+ w(a) + a® 2Ky (uz($2), $2), (A2.15)

respectively. The estimates (A2.13) have not solved the problem yet, since
we have to use only ||u; —usz|| in the right-hand side. First, express |u1($1)—
uz(P2)| in terms of ||uy — usl|| and |G — Hal:

lur(P1) — u2(P1) + ua(P1) — uz(P2)|
[u1($1) — ua(P1)] + lua(P1) —ua(p2)|  (A2.16)
[l — usz|| + |41 — B2l

[u1 (1) — u2(P2)|

INIA I

The last inequality has been obtained using the definition of the norm
and the Lipschitz continuity of us. To complete the estimates, we need to
express |¢1 — @z in terms of ||u; — ug||. Subtracting (A2.15) from (A2.14),
transposing, and taking absolute values yield

(o1 — @2| < @2 Ka(ui(@1), 41) — Kalua(@2), ¢2)|
< PPN Jur (p1) — ua(@a)| + 11 — Gal).

Inserting (A2.16) into this inequality and collecting all the terms involving
|$1 — P2| on the left, result in

|¢1 — @o] < (1 —2a%20) 71 2\ |Juy — gl (A2.17)

Using the estimates (A2.16) and (A2.17), we can complete (A2.13) as fol-
lows:

[a1(p) — ta(@))]| < ellur — uall,

where
e = (1-20) [1 a1 — 2043/2)\)_1}4—043/2)\ {1 +2a3/20(1 — 2a3/2A)—1} .

Since
e=1-2a+0(a*?),

the map F is a contraction in U for small positive a. Therfore, it has a
unique stable fixed point u(*) € U.

Step 5 (Stability of the invariant curve). Now take a point (ug, ¢o) within
the band {(u, ) : |u| < 1,¢ € [0,27]}. If the point belongs to the curve
given by u(°), it remains on this curve under iterations of F, since the
map F maps this curve into itself. If the point does not lie on the invariant
curve, take some (noninvariant) closed curve passing through it represented
by u(9) € U, say. Such a curve always exists. Let us apply the iterations of
the map F' defined by (A2.8) to this point. We get a sequence of points

{(ur, ox) } e -
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It is clear that each point from this sequence belongs to the correspond-
ing iterate of the curve u(®) under the map F. We have just shown that
the iterations of the curve converge to the invariant curve given by u(>).
Therefore, the point sequence must also converge to the curve. This proves
the stability of the closed invariant curve as the invariant set of the map
and completes the proof. O

4.11 Appendix 3: Bibliographical notes

The dynamics generated by one-dimensional maps is a classical mathemat-
ical subject, studied in detail (see Whitley [1983] and van Strien [1991] for
surveys). Properties of the fixed points and period-two cycles involved in
the fold and flip bifurcations were known long ago. Explicit formulation
of the topological normal form theorems for these bifurcations is due to
Arnold [1983]. A complete proof, that the truncation of the higher-order
terms in the normal forms results in locally topologically equivalent sys-
tems, happens to be unexpectedly difficult (see Newhouse, Palis & Takens
[1983], Arnol’d et al. [1994]) and remains unpublished.

The appearance of a closed invariant curve surrounding a fixed point
while a pair of complex multipliers crosses the unit circle was known to
Andronov and studied by Neimark [1959] (without explicit statement of all
the genericity conditions). A complete proof was given by Sacker [1965],
who discovered the bifurcation independently. It became widely known as
“Hopf bifurcation for maps” after Ruelle & Takens [1971] and Marsden &
McCracken [1976]. A modern treatment of the Neimark-Sacker bifurcation
for planar maps can be found in Iooss [1979], where the normal form co-
efficient a(0) is computed (see also Wan [1978b]). In our Appendix 2 we
follow, essentially, the proof given in Marsden & McCracken [1976].

The normal form theory for maps is presented by Arnold [1983]. In our
analysis of the codimension-one bifurcations of fixed points we need only a
small portion of this theory which we develop “on-line.”

Cascades of period doubling bifurcations were observed by mathemati-
cal ecologists in one-dimensional discrete-time population models (Shapiro
[1974] analyzed a model by Ricker [1954], while May [1974] used the logistic
map). Feigenbaum [1978] discovered the universality in such cascades and
explained its mechanism based on the properties of the doubling operator.
The relevant theorems were proved by Lanford [1980] with the help of a
computer and delicate error estimates (see also Collet & Eckmann [1980],
Babenko & Petrovich [1983]). Feigenbaum-type universality is also proved
for some classes of multidimensional discrete-time dynamical systems.

Both the delayed logistic and discrete-time predator-prey models origi-
nate in a book by Maynard Smith [1968]. The fate of the closed invariant
curve while a parameter “moves” away from the Neimark-Sacker bifurca-
tion was analyzed for the delayed logistic map by Aronson, Chory, Hall &
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McGehee [1982].



D

Bifurcations of Equilibria and
Periodic Orbits in n-Dimensional
Dynamical Systems

In the previous two chapters we studied bifurcations of equilibria and fixed
points in generic one-parameter dynamical systems having the minimum
possible phase dimensions. Indeed, the systems we analyzed were either
one- or two-dimensional. This chapter shows that the corresponding bi-
furcations occur in “essentially” the same way for generic n-dimensional
systems. As we shall see, there are certain parameter-dependent one- or
two-dimensional invariant manifolds on which the system exhibits the cor-
responding bifurcations, while the behavior off the manifolds is somehow
“trivial,” for example, the manifolds may be exponentially attractive. More-
over, such manifolds (called center manifolds) exist for many dissipative
infinite-dimensional dynamical systems. Below we derive explicit formulas
for the approximation of center manifolds in finite dimensions and for sys-
tems restricted to them at bifurcation parameter values. In Appendix 1 we
consider a reaction-diffusion system on an interval to illustrate the neces-
sary modifications of the technique to handle infinite-dimensional systems.

5.1 Center manifold theorems

We are going to formulate without proof the main theorems that allow us
to reduce the dimension of a given system near a local bifurcation. Let us
start with the critical case; we assume in this section that the parameters
of the system are fixed at their bifurcation values, which are those values
for which there is a nonhyperbolic equilibrium (fixed point). We will treat
continuous- and discrete-time cases separately.
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5.1.1 Center manifolds in continuous-time systems

Consider a continuous-time dynamical system defined by
&= f(z), z€R", (5.1)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jacobian
matrix A evaluated at the equilibrium point o = 0 be A1, Aa, ..., A\,. Sup-
pose the equilibrium is not hyperbolic and that there are thus eigenvalues
with zero real part. Assume that there are ny eigenvalues (counting multi-
plicities) with Re A > 0, ng eigenvalues with Re A = 0, and n_ eigenvalues
with Re A < 0 (see Figure 5.1). Let T denote the linear (generalized)

ImA

Re\

n ny

FIGURE 5.1. Critical eigenvalues of an equilibrium.

eigenspace of A corresponding to the union of the ng eigenvalues on the
imaginary axis. The eigenvalues with Re A = 0 are often called critical, as
is the eigenspace T°. Let ¢! denote the flow associated with (5.1). Under
the assumptions stated above, the following theorem holds.

Theorem 5.1 (Center Manifold Theorem) There is a locally defined
smooth ng-dimensional invariant manifold WS _(0) of (5.1) that is tangent
toTC at x = 0.

Moreover, there is a neighborhood U of xg = 0, such that if o'z € U for
all t > 0(t < 0), then 'z — WE(0) for t = +oo (t — —o0). O

Definition 5.1 The manifold W . is called the center manifold.

We are not going to present the proof here. If n, = 0, the mani-
fold W. can be constructed as a local limit of iterations of 7T under
o', From now on, we drop the subscript “loc” in order to simplify no-
tation. Figures 5.2 and 5.3 illustrate the theorem for the fold bifurcation
on the plane (n = 2,n9 = 1,n_ = 1) and for the Hopf bifurcation in
R? (n = 3,n9 = 2,n_ = 1). In the first case, the center manifold W¢ is
tangent to the eigenvector corresponding to A; = 0, while in the second
case, it is tangent to a plane spanned by the real and imaginary parts of
the complex eigenvector corresponding to A; = iwgy, wg > 0.
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W
i

FIGURE 5.2. One-dimensional center manifold at the fold bifurcation.

Y

3

FIGURE 5.3. Two-dimensional center manifold at the Hopf bifurcation.

Remarks:

(1) The second statement of the theorem means that orbits staying near
the equilibrium for ¢ > 0 or ¢t < 0 tend to W€ in the corresponding time
direction. If we know a priori that all orbits starting in U remain in this
region forever (a necessary condition for this is n4 = 0), then the theorem
implies that these orbits approach W¢(0) as ¢t — +oco. In this case the
manifold is “attracting.”

(2) W€ need not be unique. The system

{ & = 22,

y = Y,

has an equilibrium (z,y) = (0,0) with Ay = 0, A2 = —1 (a fold case). It
possesses a family of one-dimensional center manifolds:

W5(0) ={(z,y) : y=vs(x)},
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where

| Bexp (%) for x < 0,
1/)5(1‘)—{ 0 for x > 0,

(see Figure 5.4(a)). The system

& = —y—=z(@®+y?),
y = z—y®+y?),
z = -z

has an equilibrium (z,y, z) = (0,0,0) with Ay 2 = £4, A3 = —1 (Hopf case).
There is a family of two-dimensional center manifolds in the system given

JU
7

@ (b)

FIGURE 5.4. Nonuniqueness of the center manifold at (a) fold and (b) Hopf
bifurcations.

z

0 p

Wﬁc

by
W500) = {(z,y,2) : z=dp(x,y)},

where

ooty = | Ao (Co) for a4 >0
’ 0 forx =y =0,

(see Figure 5.4(b)). As we shall see, this nonuniqueness is actually irrelevant
for applications.

(3) A center manifold W€ has the same finite smoothness as f (if f € C*
with finite k, W¢ is also a C* manifold) in some neighborhood U of .
However, as k — oo the neighborhood U may shrink, thus resulting in the
nonexistence of a C'*° manifold W€ for some C* systems (see Exercise 1).

¢
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In its eigenbasis,! system (5.1) can be written as

Bu + g(u,v),

{ Z = Cv+ h(u,v), (5.2)

where u € R™, v € R™ 1" B is an ng x ng matrix with all its ng eigen-
values on the imaginary axis, while C'is an (n4 +n_) X (n4 +n_) matrix
with no eigenvalue on the imaginary axis. Functions g and h have Taylor
expansions starting with at least quadratic terms. The center manifold W ¢
of system (5.2) can be locally represented as a graph of a smooth function:

W ={(u,v) : v=V(u)}

(see Figure 5.5). Here V : R™ — R™"+7"- and due to the tangent property
of W¢, V(u) = O(||ul]?).

/ TC={v=0}

u;

FIGURE 5.5. Center manifold as the graph of a function v = V' (u).

Theorem 5.2 (Reduction Principle) System (5.2) is locally topologi-
cally equivalent near the origin to the system

w = Bu+ g(uﬂ V(u))7

{52 o 53
Notice that the equations for u and v are uncoupled in (5.3). The first

equation is the restriction of (5.2) to its center manifold. Thus, the dy-

namics of the structurally unstable system (5.2) are essentially determined

'Recall that the eigenbasis is a basis formed by all (generalized) eigenvectors
of A (or their linear combinations if the corresponding eigenvalues are complex).
Actually, the basis used in the following may not be the true eigenbasis: Any
basis in the noncritical eigenspace is allowed. In other words, the matrix C' may
not be in real canonical (Jordan) form.
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by this restriction, since the second equation in (5.3) is linear and has
exponentially decaying/growing solutions. For example, if u = 0 is the
asymptotically stable equilibrium of the restriction and all eigenvalues of
C have negative real part, then (u,v) = (0,0) is the asymptotically stable
equilibrium of (5.2). Clearly, the dynamics on the center manifold are de-
termined not only by the linear but also by the nonlinear terms of (5.2). If
there is more than one center manifold, then all the resulting systems (5.3)
with different V' are locally topologically equivalent.

The second equation in (5.3) can be replaced by the equations of a stan-

dard saddle: _
{ vy (5.4)

w w,

with (v,w) € R"= x R™+. Therefore, the Reduction Principle can be ex-
pressed neatly in the following way: Near a nonhyperbolic equilibrium the
system is locally topologically equivalent to the suspension of its restriction
to the center manifold by the standard saddle.

5.1.2  Center manifolds in discrete-time systems

Consider now a discrete-time dynamical system defined by
x— f(x), zeR", (5.5)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jaco-
bian matrix A evaluated at the fixed point g = 0 be u1, 2, - - ., n. Recall,
that we call them multipliers. Suppose that the equilibrium is not hyper-
bolic and there are therefore multipliers on the unit circle (with absolute
value one). Assume that there are ny multipliers outside the unit circle, ng
multipliers on the unit circle, and n_ multipliers inside the unit circle (see
Figure 5.6). Let T denote the linear invariant (generalized) eigenspace of

Im p

-

Re

&

-
2

FIGURE 5.6. Critical multipliers of a fixed point.
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A corresponding to the union of ng multipliers on the unit circle. Then,
Theorem 5.1 holds verbatim for system (5.5), if we consider only integer
time values and set ©* = f*, the kth iterate of f. Using an eigenbasis, we
can rewrite the system as

u Bu + g(u,v)
( v ) ~ ( Cv + h(u,v) (5.6)
with the same notation as before, but the matrix B now has eigenvalues
on the unit circle, while all the eigenvalues of C' are inside and/or outside

it. The center manifold possesses the local representation v = V'(u), and
the Reduction Principle remains valid.

Theorem 5.3 System (5.6) is locally topologically equivalent near the ori-

gin to the system
( u ) R ( ngrg(u,V(U)) ) . (5.7)

v

The construction of the standard saddle is more involved for the discrete-
time case, since we have to take into account the orientation properties
of the map in the expanding and contracting directions. First, suppose for
simplicity that there are no multipliers outside the unit circle, (i.e., ny = 0).
Then, if det C > 0, the map v — Cwv in (5.7) can be replaced by

1
v = §’U,

which is a standard orientation-preserving stable node. However, if det C' <
0, the map v + Cwv in (5.7) must be substituted by

{ v %Ul,
Vo > — 3502,
where v, € R™- 1 vy € R!, which is a standard orientation-reversing stable
node. If there are now ny multipliers outside the unit circle, the standard
unstable node w — W, w,w € R™, should be added to (5.7). The standard
unstable node is defined similarly to the standard stable node but with

multiplier 2 instead of % Standard stable and unstable nodes together
define the standard saddle map on R™-+7+.

5.2 Center manifolds in parameter-dependent
systems

Consider now a smooth continuous-time system that depends smoothly on
a parameter:
i=f(z,a), v€R", acR. (5.8)
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Suppose that at o = 0 the system has a nonhyperbolic equilibrium x = 0
with ng eigenvalues on the imaginary axis and (n — ng) eigenvalues with
nonzero real parts. Let n_ of them have negative real parts, while ny have
positive real parts. Consider the extended system:

{Z - (J)f’(x,a). (5.9)

Notice that the extended system (5.9) may be nonlinear, even if the original
system (5.8) is linear. The Jacobian of (5.9) at the equilibrium (o, z) =
(0,0) is the (n 4+ 1) x (n 4 1) matrix

7= ( 0.0 £0,0 )

having (ng + 1) eigenvalues on the imaginary axis and (n — ng) eigenvalues
with nonzero real part. Thus, we can apply the Center Manifold Theorem
to system (5.9). The theorem guarantees the existence of a center manifold
We C RY x R, dim W¢ = ng + 1. This manifold is tangent at the origin to
the (generalized) eigenspace of J corresponding to (ng+1) eigenvalues with
zero real part. Since & = 0, the hyperplanes II,, = {(a,z) : @ = g} are
also invariant with respect to (5.9). Therefore, the manifold W*¢ is foliated
by ng-dimensional invariant manifolds

We =WenIl,

(see Figure 5.7). Thus, we have the following lemma.

\'

(0
FIGURE 5.7. Center manifold of the extended system.

Lemma 5.1 System (5.8) has a parameter-dependent local invariant man-
ifold WS. If ny. = 0, this manifold is attracting. O

Notice that WW§ is a center manifold of (5.9) at a = 0 as defined in the
previous section. Often, the manifold W¢ is called a center manifold for all



5.2 Center manifolds in parameter-dependent systems 159

a. For each small |a] we can restrict system (5.8) to W¢. If we introduce
a (parameter-dependent) coordinate system on W¢S with u € R™ as the
coordinate,? this restriction will be represented by a smooth system:

= ®(u, ). (5.10)

At o = 0, system (5.10) is equivalent to the restriction of (5.8) to its center
manifold Wy and will be explicitly computed up to the third-order terms
in Section 5.4 for all codim 1 bifurcations.

Theorem 5.4 (Shoshitaishvili [1975]) System (5.8) is locally topologi-
cally equivalent to the suspension of (5.10) by the standard saddle (5.4).
Moreover, (5.10) can be replaced by any locally topologically equivalent sys-
tem. O

This theorem means that all “essential” events near the bifurcation pa-
rameter value occur on the invariant manifold WS and are captured by
the no-dimensional system (5.10). A similar theorem can be formulated
for discrete-time dynamical systems and for systems with more than one
parameter. Let us apply this theorem to the fold and Hopf bifurcations.

Example 5.1 (Generic fold bifurcation in R?) Consider a planar
system
i = f(r,a), z€R? aecR (5.11)

Assume that at @ = 0 it has the equilibrium zq = 0 with one eigenvalue
A1 = 0 and one eigenvalue Ay < 0. Lemma 5.1 gives the existence of a
smooth, locally defined, one-dimensional attracting invariant manifold W ¢
for (5.11) for small |a]. At a = 0 the restricted equation (5.10) has the
form

0 = au® + O(u?).
If @ # 0 and the restricted equation depends generically on the parameter,
then, as proved in Chapter 3, it is locally topologically equivalent to the
normal form

U =a+ou?,

where ¢ = sign a = +1. Under these genericity conditions, Theorem 5.4
implies that (5.11) is locally topologically equivalent to the system

U = a4+ ou?, (5.12)
v o= —u. ’
Equations (5.12) are decoupled. The resulting phase portraits are presented
in Figure 5.8 for the case 0 > 0. For a < 0, there are two hyperbolic

2Since W is tangent to T, we can parametrize W< for small |a| by coordinates
on T using a (local) projection from WS onto T°.
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A
rir

oa<0 o=0 oa>0

N
=

FIGURE 5.8. Fold bifurcation in the standard system (5.12) for o = 1.

equilibria: a stable node and a saddle. They collide at @ = 0, forming a
nonhyperbolic saddle-node point, and disappear. There are no equilibria
for @ > 0. The manifolds W¢ in (5.12) can be considered as parameter-
independent and as given by v = 0. Obviously, it is one of the infinite
number of choices (see the Remark following Example 5.2). The same events
happen in (5.11) on some one-dimensional, parameter-dependent, invariant
manifold, that is locally attracting (see Figure 5.9). All the equilibria belong

\
-

a<0 oa=0 oa>0

\>

FIGURE 5.9. Fold bifurcation in a generic planar system.

to this manifold. Figures 5.8 and 5.9 explain why the fold bifurcation is
often called the saddle-node bifurcation. It should be clear how to generalize
these considerations to cover the case Ay > 0, as well as the n-dimensional
case. &

Example 5.2 (Generic Hopf bifurcation in R?) Consider a system
i = f(r,a), z€R® aecR (5.13)

Assume that at @ = 0 it has the equilibrium zy = 0 with eigenvalues
A1,2 = Fiwp, wp > 0 and one negative eigenvalue A3 < 0. Lemma 5.1 gives
the existence of a parameter-dependent, smooth, local two-dimensional at-
tracting invariant manifold W¢ of (5.15) for small |a|. At @ = 0 the re-
stricted equation (5.10) can be written in complex form as

5 =iwoz +g(2,2), z€C.
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%/9 = =
Oy A<
= T 2

a<0 a=0 oa>0

FIGURE 5.10. Hopf bifurcation in the standard system (5.14) for o = —1.

If the Lyapunov coefficient [3(0) of this equation is nonzero and the re-
stricted equation depends generically on the parameter, then, as proved in
Chapter 3, it is locally topologically equivalent to the normal form

2= (a+1i)z+ 0227,

where o = sign [;(0) = 1. Under these genericity conditions, Theorem
5.4 implies that (5.13) is locally topologically equivalent to the system

(5.14)

2 = (a+i)z+ o022z,
v o= —u.

The phase portrait of (5.14) is shown in Figure 5.8 for 0 = —1. The su-
percritical Hopf bifurcation takes place in the invariant plane v = 0, which
is attracting. The same events happen for (5.13) on some two-dimensional
attracting manifold (see Figure 5.11). The construction allows a general-
ization to arbitrary dimension n > 3. &

a<0 a=0 a>0

FIGURE 5.11. Supercritical Hopf bifurcation in a generic three-dimensional sys-
tem.

Remark:
It should be noted that the manifold W is not unique in either the
fold or Hopf cases, but the bifurcating equilibria or cycle belong to any of
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the center manifolds (cf. Remark (2) after the Center Manifold Theorem
in Section 5.1.1). In the fold bifurcation case, the manifold is unique near
the saddle and coincides with its unstable manifold as far as it exists. The
uniqueness is lost at the stable node. Similarly, in the Hopf bifurcation
case, the manifold is unique and coincides with the unstable manifold of
the saddle-focus until the stable limit cycle L, where the uniqueness breaks
down. Figure 5.12 shows the possible freedom in selecting W in the Hopf
case for a > 0 in (p,v)-coordinates in system (5.14) with o = —1.

\Y

N
T

FIGURE 5.12. Nonuniqueness of the parameter-dependent center manifold near
the Hopf bifurcation.

.
TS

5.3 Bifurcations of limit cycles

A combination of the Poincaré map (see Chapter 1) and the center mani-
fold approaches allows us to apply the results of Chapter 4 to limit cycle
bifurcations in n-dimensional continuous-time systems.

Let Lo be a limit cycle (isolated periodic orbit) of system (5.8) at o = 0.
Let P, denote the associated Poincaré map for nearby «; P, : ¥ — 3, where
Y is a local cross-section to Lg. If some coordinates & = (£1,&2,...,&n—1)
are introduced on ¥, then é = P,(§) can be defined to be the point of
the next intersection with ¥ of the orbit of (5.8) having initial point with
coordinates £ on X. The intersection of ¥ and Ly gives a fixed point &y for
Py: Py(&o) = &. The map P, is smooth and locally invertible.

Suppose that the cycle Ly is nonhyperbolic, having ng multipliers on the
unit circle. The center manifold theorems then give a parameter-dependent
invariant manifold W§ C X of P, on which the “essential” events take place.
The Poincaré map P, is locally topologically equivalent to the suspension
of its restriction to this manifold by the standard saddle map. Fix n = 3,
for simplicity, and consider the implications of this theorem for the limit
cycle bifurcations.
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L1 L, I-o

A
>

\
(el ) LA

a<0 a=0 a>0

FIGURE 5.13. Fold bifurcation of limit cycles.

Fold bifurcation of cycles

Assume that at @ = 0 the cycle has a simple multiplier 1 = 1 and its
other multiplier satisfies 0 < pg < 1. The restriction of P, to the invariant
manifold W is a one-dimensional map, having a fixed point with y; =1 at
a = 0. As has been shown in Chapter 4, this generically implies the collision
and disappearance of two fixed points of P, as « passes through zero.
Under our assumption on us, this happens on a one-dimensional attracting
invariant manifold of P,; thus, a stable and a saddle fixed point are involved
in the bifurcation (see Figure 5.13). Each fixed point of the Poincaré map
corresponds to a limit cycle of the continuous-time system. Therefore, two
limit cycles (stable and saddle) collide and disappear in system (5.8) at
this bifurcation (see the figure).

Flip bifurcation of cycles

Suppose that at & = 0 the cycle has a simple multiplier u; = —1, while
—1 < po < 0. Then, the restriction of P, to the invariant manifold will
demonstrate generically the period-doubling (flip) bifurcation: A cycle of
period two appears for the map, while the fixed point changes its stability
(see Figure 5.14). Since the manifold is attracting, the stable fixed point,
for example, loses stability and becomes a saddle point, while a stable cycle
of period two appears. The fixed points correspond to limit cycles of the
relevant stability. The cycle of period-two points for the map corresponds
to a unique stable limit cycle in (5.8) with approzimately twice the period of
the “basic” cycle Lg. The double-period cycle makes two big “excursions”
near L before the closure. The exact bifurcation scenario is determined
by the normal form coefficient of the restricted Poincaré map evaluated at
a=0.
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L, L, L, Lo

A / [/
Nyyas an'

a>0 a=0 a<0

FIGURE 5.14. Flip bifurcation of limit cycles.

Neimark-Sacker bifurcation of cycles

The last codim 1 bifurcation corresponds to the case when the multipli-
ers are complex and simple and lie on the unit circle: p; 2 = e*i%  The
Poincaré map then has a parameter-dependent, two-dimensional, invari-
ant manifold on which a closed invariant curve generically bifurcates from
the fixed point (see Figure 5.15). This closed curve corresponds to a two-
dimensional invariant torus T? in (5.8). The bifurcation is determined by
the normal form coefficient of the restricted Poincaré map at the critical
parameter value. The orbit structure on the torus T2 is determined by the
restriction of the Poincaré map to this closed invariant curve. Thus, generi-
cally, there are long-period cycles of different stability types located on the
torus (see Chapter 7).

Lo Lo

Lo

a>0 a=0 a<0

FIGURE 5.15. Neimark-Sacker bifurcation of a limit cycle.
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5.4 Computation of center manifolds

As pointed out in the previous sections, the analysis of bifurcations of equi-
libria and fixed points (and, therefore, limit cycles) in multidimensional sys-
tems reduces to that for the equations (maps) restricted to the invariant
manifold W§. Since these bifurcations are determined by the normal form
coefficients of the restricted systems at the critical parameter value a = 0,
we have to be able to compute the center manifold W¢ = W§ and the equa-
tions or maps restricted to this manifold up to sufficiently high-order terms.
Coefficients of the Taylor expansion of the function v = V(u) representing
the center manifold W€ can be computed via a recursive procedure, each
step of which involves solving a linear system of algebraic equations. The
coeflicients so obtained are the same for all nonunique center manifolds of
the system. In the C'*° case this means that these manifolds can only differ
by “flat” functions. Ahead, we derive explicit formulas for the quadratic
Taylor coefficients of the center manifolds for all codim 1 bifurcations of
equilibria and fixed points. As should now be clear, for these cases W¢
is either one- or two-dimensional, ng = 1, 2. Note that in order to analyze
these bifurcations it is sufficient, in the generic case, to obtain the restricted
equations up to (and including) third-order terms only.

5.4.1 Quadratic approzimation to center manifolds in
eigenbasis

In this section we assume that the system at the bifurcation parameter
value is transformed into its eigenbasis and has the form (5.2) or (5.6). In
the next section we will show how to avoid this transformation while leaving
the obtained formulas virtually unchanged. Thus, in practice, this latter
method should be used in the analysis of systems arising in applications,
since they are almost never written in the eigenform (5.2) or (5.6).

Let us start with the continuous-time systems.

Fold bifurcation (A\; = 0)

In this case, ng = 1 and system (5.2) can be written as
: 1.2 15,3

o = gou®+ulbv)+ goud 4 -,

{ v = Cv+gau’+--, (5.15)

whereu € R, v ¢ R"1 5,6 € R!, a,b € R"! and Cisan (n—1)x(n—1)
matrix without eigenvalues on the imaginary axis. Here (b,v) = Z?:_ll biv;
is the standard scalar product in R~ !, and the dots mean all undisplayed
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terms.® Using the functions h and g from (5.2), we obtain

2
o= —g(u,0) ) (5.16)
ou? w=0
83
8’&3 u=0
32
a= —=h(u,0) ) (5.18)
Ou? “—0
and the components (by,ba,...,b,_1) of the vector b are given by
82
b; = g(ua U) ) (519)
aviau u=0,v=0
where i =1,2,...,n— 1.

We seek the second-order term in the Taylor expansion for v = V(u)
representing the center manifold:

v="V(u) = swau? + O(u?), (5.20)

where wy € R"™! is an unknown vector. Substituting expansion (5.20) into
the second equation of (5.15), and using the first equation, we get

wau(ou? + (b, weu?)) + O(u?) = Cwou? + au® + O(u?),
which results in the following linear equation for w, at u?-terms:
Cwy +a=0.

This linear system has a unique solution, since C' is invertible (because
A =0 is not an eigenvalue of C'). Thus,

wo = —C™ "a,

and the restriction of (5.15) to the center manifold (5.22) up to (and in-
cluding) the third-order term is given by

= Ltou? + % (5 — 3(b, C’1a>) ud + O(u?). (5.21)

Notice that, in fact, the quadratic term in (5.21) is exactly the same as in
the first equation of (5.15). Thus, to analyze the fold (tangent) bifurcation,
the linear approximation to the center manifold is sufficient, provided o #

3For example, O(||v]|?) terms in both equations of (5.15), and O(|u]||v||) terms
in the second equation of (5.15) are irrelevant in the following, because they do
not affect the quadratic terms of the restricted equations.
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0. It is enough, therefore, to substitute v = 0 into the first equation of
(5.15). This way of approximating W€ by the eigenspace T obviously fails
to determine even stability of the equilibrium if ¢ = 0.

Example 5.3 (Failure of the tangent approximation) Consider the
following planar system:

& = xy+ 23,
{g _ _yy_%? (5.22)

There is an equilibrium at (z,y) = (0,0). Is it stable or unstable? The

Jacobian matrix
0 0
= 1)

has eigenvalues A\; = 0, Ao = —1. Thus, system (5.22) is written in the
form (5.2) and has a one-dimensional center manifold W€ represented by
the scalar function

y=V(z)=Ltwz®+. ..

=

Then,
y':wx:b+~-~:wx2y+wx4+-~~:w(%w+l)x4+-'-,
or alternatively,
y:—y—2x2:—(%w+2)x2+-~-.

Therefore, w + 4 = 0 and
w = —4.

Thus, the center manifold has the following quadratic approximation:
V(z) = =222 + O(2?),
and the restriction of (5.22) to its center manifold is given by
b=aV(z)+ 23 =-22%+ 2%+ 0(z*) = —2% + O(2?).

Therefore, the origin is stable and the phase portrait of the system near
the equilibrium is as sketched in Figure 5.16. By restriction of (5.22) onto
its critical eigenspace y = 0, one gets

T =zx°.

This equation has an unstable point at the origin and thus gives the wrong
answer to the stability question. Figure 5.17 compares the equations re-
stricted to W€ and T°. &
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y

o

FIGURE 5.16. Phase portrait of (5.22): The origin is stable.

y y
y=-x 3 y=x3
+ +
0 - X _ 0 X
@ (b)

FIGURE 5.17. Restricted equations: (a) to the center manifold W¢; (b) to the
tangent line T°°.

Hopf bifurcation (A1 2 = £iwg)

Now ng = 2 and system (5.1) in its eigenbasis takes the form

(i) = (o o)) (amed) om

Cv + Hi(u1,us2,v),

0

where u = (ug,uz)? € R?, v € R"2. It is convenient to rewrite (5.23) into
complez form by introducing z = uy + iuso:

L

Here G and H are smooth complex-valued functions of z,Z € C!, and
v € R"2, Actually, 2z can be viewed as a new “coordinate” on the critical

iwoz + G(z,Z,v),

Cv+ H(z,z,v). (5.24)
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eigenspace T¢ = {v = 0} of (5.23). The center manifold W€ therefore has
the representation

v = V(Z, 2) = %wgozz + w122 + %wogzz + O(|Z|3), (525)

with unknown w;; € C™~2. Since V must be real, w11 is real and wag = Woa.
Let us write system (5.24) in more detail using the Taylor expansions in
z,Z, and v:

zZ = iwpz+ %Gzozz + G112z + %GOQZQ + %021222
+ (Gro,v)2 + (Gor, )z + -+, (5.26)
Vo= CU+%HQOZ2+H1122+%H0222+"',

where Gzo,Gll,Goz,Ggl S (Cl; GOlaGlo,Hij € (Cn72; Hqq is real; and
Hso = Hgs. The scalar product now means that (G,v) = Z?;lz G,v;. In
terms of the functions G and H from (5.24), we get

G O iz 2 5.27
.. — - - ~ ; N > .
* 0207 (2,2,0) ) 1ty =2 (5.27)
_ o2

i = z =1,2,...,n—2 2
GlO,l a’l)iaz G(Zy 2, U) 000 ) U ) & y ’ (5 8)
_ 52

[ - 7_7 ) ':1,2,..., —2’ 2
GOL 8’Ui62G(Z z 7}) . 7 n (5 9)

o+ _ o
H;; = 8zi82jH(z’ z,0) L i+j=2. (5.30)

Substitution of (5.25) into (5.26) gives, at the quadratic level,

(2iwgE — C)wag = Hao,
—Cw11 = H11, (531)
(—Zion — C)wa = Hog.
Thus,
Woo = (2iWQE — C)_ngo,
wyy = —C 'Hy,
Wo2 = (727;WOE - C)ilHOQ.

Here E is the identity matrix and the matrices (2iwoE — C'), C, (—2iwoE —
C) are invertible, since 0 and +2iw, are not eigenvalues of C. Now, the
restriction of (5.24) to its center manifold, up to cubic terms, can be written
as follows:

zZ = iwgz + %G202’2 + GllzZ + %GOQZZ

+ %(Gzl — 2<G10, C_1H11> + <G01, (QiWOE — C)_1H20>)Z25 + ey
(5.32)
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where only the cubic term needed for the Hopf bifurcation analysis is dis-
played.
Now consider the discrete-time case.

Fold bifurcation of maps (p1 = 1)

In this case, system (5.6) can be written as

{

where u, @ € R', v,5 € R*!; 0,6 € R!, a,b € R" ! are given by equations
(5.16) through (5.19); and C is an (n — 1) X (n — 1) matrix without eigen-
values on the unit circle. Here (-, -) denotes the scalar product in R"~1, and
only the terms needed in what follows are presented. The center manifold

of (5.33) is given by

= u+ j30u +ubv) + goud 4 - -,

= Cu+tau®+- -, (5.33)

S

v="V(u) = twyu? + O(u?),

where wy € R”™! is unknown. Substituting this expansion into the second
equation of (5.33), using the first equation and the invariance of the center
manifold (if v = V(u), then © = V(@)), we get the following linear equation
for wy, collecting u?-terms:

(C—E)wy +a=0. (5.34)

This linear system has a unique solution, since (C'— E) is invertible because
© =1 1is not an eigenvalue of C'. Thus,

wo = (E — ) la,

and the restriction of (5.33) to the center manifold, up to (and including)
the third-order term, is given by

Ub—>u+%au2—|—% (5—|—3<b, (E—C’)’ch)) ud + O(u?). (5.35)

The quadratic term in (5.35) is exactly the same as in the first equation of
(5.33). Thus, to analyze the fold (tangent) bifurcation of maps we need no
nonlinear approximations to the center manifold, provided o # 0. Substi-
tution of v = 0 into the first equation of (5.33) gives the correct restriction
up to second-order terms.

Flip bifurcation (u; = —1)

Now system (5.6) can be written as

{

<

—u+ sou? 4+ u(b,v) + 6ud + - -+,

5.36
Cv+ fau? + -, (5.36)

<
I
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with the same notation as in the previous case, and o, J, a, and b are given
by equations (5.16)—(5.19). The center manifold is again represented by
v =V(u) = Jwou? + O(u?), where wy € R"~! is a vector satisfying the
same linear equation (5.34). Therefore, the restriction of (5.36) to the center
manifold is

u— —u+ zou® + & (6 +3(b, (E — C)ta)) u® + O(u?).
Neimark-Sacker bifurcation (1 2 = e*%%)

In the eigenbasis and written with complex notation, system (5.6) can be
denoted as

z = ewoz + %G202’2 + anz + %00222 + %021222
+ (G10,v)z + (Go1,v)Z + - -+, (5.37)
— C’U+ %H2022+H1122+ %H0222+"',

where the notation is the same as in the Hopf case, and G;; and H;; are
given by the expressions (5.27)—(5.30). The center manifold of (5.37) has
the representation

v ="V(z,2) = swy02® + w112Z + 3we2z> + O(|2[*),

with w;; € C"~2. The Taylor coefficients satisfy the linear equations

(62i60E — C)’LUQO = Hgo,
(E-Clwn = Hu, (5.38)
(672160E — C)’LUOQ = HOQ.

Thus, _
Wwoo = (62160E — C)ingo,
wyy, = (E—C)'Hy,

Wo2 = (6721‘00E — C)ilHOQ.

The matrices in (5.38) are invertible since e*2% and 1 are not eigenvalues
of C. The restriction of (5.37) to the center manifold therefore has the form

2 o @24 §Gop2® + Grizz + 5G0e?® + 5Go12°2
+ 3 (2(Gro, (E = C) " Hy1) 4 (Gor, (¥ E — C) "' Hyg)) 2%2 + -+ -,

where the only cubic terms retained are those that are necessary for ana-
lyzing a generic Neimark-Sacker bifurcation.

5.4.2  Projection method for center manifold computation

There is a useful method for center manifold computation which avoids
the transformation of the system into its eigenbasis (to the form (5.2) or
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(5.6)). Instead, only eigenvectors corresponding to the critical eigenvalues
of A and its transpose AT are used to “project” the system into the crit-
ical eigenspace and its complement. This method can be applied to both
continuous- and discrete-time finite-dimensional systems, as well as to some
infinite-dimensional systems (see Appendix 1) with few modifications.

As usual, we start with the continuous-time case. Suppose system (5.1)
is written as
it =Az+ F(x), z€R", (5.39)

where F(x) = O(||z||?) is a smooth function.

Fold bifurcation

In this case, A has a simple zero eigenvalue A\; = 0, and the corresponding
critical eigenspace T is one-dimensional and spanned by an eigenvector g €
R™ such that Ag = 0. Let p € R™ be the adjoint eigenvector, that is, ATp =
0, where AT is the transposed matrix.# It is possible and convenient to
normalize p with respect to ¢ : (p,q) = 1, where (-, -) is the standard scalar
product in R™. The following lemma follows from the Fredholm Alternative
Theorem.

Lemma 5.2 Let T*“ denote an (n — 1)-dimensional linear eigenspace of
A corresponding to all eigenvalues other than 0. Then y € T*" if and only

if (p,y) =0. 0

Using the lemma, we can “decompose” any vector x € R” as
T =uq+y,

where uq € T¢, y € T**. If ¢ and p are normalized as above, we get explicit
expressions for u and y:

u (p, ),
{y = z—(p,7)q (5.40)

Two operators can thus be defined:
P.x = (p,x)q, Psyx =1z — (p,x)q.
These operators are projections onto T° and T*", respectively, and
P?=PpP, P’ =P, P.P,, = P,,P.=0.

The scalar u and the vector y can be considered as new “coordinates”
on R™. Although y € R", its components always satisfy the orthogonality

‘Recall that (z, Ay) = (ATx,y) for any z,y € R".
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condition (p,y) = 0. In these new coordinates, system (5.39) can be written
as
{ W= (p,Flug+y)), (5.41)
§ = Ay+F(ug+y)—(p, Flug+y))g

To obtain these equations, one has to take into account (5.40) and the
eigenvector definitions and normalizations. Equivalently, one can apply the
above projection operators to system (5.39). Using Taylor expansions, we
can write (5.41) in a form similar to (5.15):

oo 1.2 Lsud +---
{u = sou’ +ulb,y) + gou’ +---, (5.42)

y = Ay+%au2+’
where u € R', y € R", 0,6 € R, a,b € R™, and (b,y) = Y./, b;y; is now

the standard scalar product in R™. For 0,6, a, and b we get the following
expressions:

82

o = 55 F(ug) L (5.43)
93
0 = 55 F(ug) Ly (5.44)
92
o = sEFm)| oo (5.45)
and the components of the vector b are given by
2
b= 5,00 (p, F(ugq +y)) . (5.46)
where i = 1,2,...,n.

We can now proceed ezactly in the same way as in Section 5.4.1. The
center manifold has the representation

y=V(u) = %w2u2 +O(u?),

where now wy € T°* C R"™, which means (p, ws) = 0. The vector ws satisfies
an equation in R™ that formally resembles the corresponding equation in
Section 5.4.1,

Aws +a = 0. (5.47)

Here, however, we have a slight complication, since A is obviously nonin-
vertible in R™ (A = 0 is its eigenvalue). This difficulty is easy to overcome.
Notice that a € T*", since (p,a) = 0. The restriction of the linear trans-
formation corresponding to A to its invariant subspace T*" is invertible.
Thus, equation (5.47) has a unique solution we € T**. If we denote this
solution by

— _pINV,,

w2 )
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the restriction of (5.42) to the center manifold takes the form
u=3ou®+ % (0—3(b,ATNVa)) ud + Out). (5.48)

To check that a fold bifurcation is nondegenerate, we need only to compute
o. For this, the linear approximation of W€ is enough, and o is given by
(5.43), where f from (5.1) can be used instead of F'. If ¢ = 0, the third-order
term must be computed.

Actually, explicit computation of the vector b using (5.46) is not neces-
sary for finding the restricted equation. Indeed, let the function F(z) be
written as

F(z) = 1B(w,2) + 10(,2,2) + O(|z]|%),

where B(z,y) and C(z,y, z) are multilinear functions. In coordinates, we

have .
TiYk,
; gj afk
and .
Z‘ s LYKz,
ol kZ afka& i
where i = 1,2,...,n. Then the scalar product (b,y) can be expressed as

(b,y) = (p, B(q,v)),

and the restricted equation (5.48) takes the form

i = 3ou® + % (6 — 3(p, B(g, A"V a))) v + O(u?), (5.49)

where

o =(p,B(q,q)), 6 =(p,C(q,9,9)), a= B(q,q) — (p, B(q,9))q. (5.50)

Remarks:
(1) One can compute w = A™Va by solving the following (n + 1)-
dimensional bordered system

(4 a)(0)-(8) -

for w € R™ and u € R!. Here ¢ and p are the above-defined and normalized
eigenvectors of A and AT, respectively. The (n+1) x (n+ 1) matrix of this
system is nonsingular. Indeed,

(o 8) ()= ()
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implies w = 0 and u = 0, so the null-space of the bordered matrix is trivial.
Suppose now that (w,u)? is the solution to (5.51). Equivalently,

{Aw + ug = a,
(p,wy = 0.

Thus, according to the second equation, w € T*". Taking the scalar product
of the first equation with p, we obtain

(p, Aw) +u(p,q) = (p, a).

However, (p,q) = 1,(p,a) = 0, and (p, Aw) = (ATp,w) = 0. Therefore,
u = 0 and
Aw = a.

Thus, by definition, w = ANV a.

(2) The choice of normalization for g is irrelevant. Indeed, if the vector ¢ is
substituted by vq with some nonzero v € R! but the relative normalization
(p, q) = 1is preserved, the coefficients of the restricted equation will change,
although the equation can easily be scaled back to the original form by the
substitution u %u. For the quadratic and cubic terms this can easily be

seen from (5.49) and (5.50). &

Hopf bifurcation

In this case, A has a simple pair of complex eigenvalues on the imaginary
axis: A2 = Fiwp, wo > 0, and these eigenvalues are the only eigenvalues
with Re A = 0. Let ¢ € C™ be a complex eigenvector corresponding to Ap:

Aq = iwoq, AG= —iwoq

(as in the fold case, its particular normalization is not important). Introduce
also the adjoint eigenvector p € C™ having the properties
ATp = _iwopa AT? = inﬁ?

and satisfying the normalization

(p.q) =1, (5.52)

where (p,q) = Y., Pi¢; is the standard scalar product in C™ (linear with
respect to the second argument). The critical real eigenspace T corre-
sponding to +iwg is now two-dimensional and is spanned by {Re ¢,Im ¢}.
The real eigenspace T** corresponding to all eigenvalues of A other than
+iwp is (n — 2)-dimensional. The following lemma is valid.

Lemma 5.3 y € T*" if and only if (p,y) = 0. O
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Here y € R™ is real, while p € C" is complex. Therefore, the condition in
the lemma implies two real constraints on y (the real and imaginary parts
of (p,y) must vanish). As in the previous case, this lemma allows us to
decompose any z € R" as

T =2zq+2q + Y,

where z € C!, and zq + 2q € T°, y € T°*. The complex variable z is a
coordinate on T°. We have

z (p, ),
o 5.53
{ y = x—(p,x)q— (P, 7)q. (5:53)
(Notice that (p, ) = 0, see Lemma 3.3.) In the coordinates of (5.53), system
(5.39) has the form

i = iwoz + (p,F(z2q+273+y)),
y = Ay + F(zq+2zq+vy)
(0, F(2q + Z2q +y))

. (5.54)
— (D, F(2q + 23 +Y))q.

System (5.54) is (n+2)-dimensional, but one has to remember the two real
constraints imposed on y. The system can now be written in a form similar
to (5.26):

z = iwoz + %G2022 + Guzé + %Gozzz + %GleQZ
+ (G10,y)2 + (Gor, y) 2 + -+, (5.55)
Yy = Ay+%H2022+H1122+%H0222+~--,

where Gag, G11, Goa, Go1 € Cl; Go1,Gho, Hij € C™; and the scalar prod-
uct in C™ is used. Complex number and vectors involved in (5.55) can be
computed by the following formulas:

oiti

Gl] = W<p7F(zQ+EQ)> Z:07 1+ 227
_ o2
GlO,i = <p7F<Zq+EQ+y> ’ i:1727"'7n7
aylaz ) z=0,y=0
—_ o2
GOl,i = 7<pa F(Zq + z2q+ y)> , U= 17 27 » 1,
0y;0% 2=0.4=0
H O ) Giig—Gnd, i+j=2
ij = b (zat2q = Gijq — Gjiq, 1+ =2
02'0%7 =0

The center manifold now has the representation

y=V(z,2) = twy2® + w112Z + Jweez? + O(|2[%),
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where (p,w;;) = 0. The vectors w;; € C™ can be found from the linear
equations

(2iwoE — A)wag = Hag,
—Awy; = Hp,
(—ZinE - A)U/OQ = H02

(cf. (5.31)). These equations have unique solutions since the matrices in
their left-hand sides are invertible in the ordinary sense because 0, +2iwq
are not eigenvalues of A. Thus, this case is even simpler than that of the
fold, and the restricted equation can be written in the same way as (5.32):

. . 1 _ 1 _
zZ = 1wpz+ §G202’2 + G112’Z + §G0222

+  3(Ga1 — 2(Gr0, A7 H1) + (Gor, (2iwoE — A) "t Hyo))2%2 + -+,
(5.56)
where the scalar product in C" is used. A nice feature of the above algo-
rithm is that it gives the restricted system (5.56) directly in the complex
form suitable for the Lyapunov coefficient computations as described in
Chapter 3.
As in the fold case, write F(z) in terms of multilinear functions B(z,y)
and C(z,y, 2):
F(z) = 3B(z,2) + :C(z,z,2) + O([|z|*). (5.57)

Then we can express
(Gro,9) = (p, B(¢,9)), (Gov,y) = (p, B(Tv)),
and write the restricted equation (5.56) in the form
Z = dwpz+ %Ggozz + G112z + %Gwz?

+ %(GQI - 2<p7 B(QvA_1H11)> + <p7 B(Qa (2“‘)0E - A)_1H20)>)222

+ -y

(5.58)

where
GQO = <po(an)>7 Gll = <paB(Q7q_)>v G02 = <p7B(qv (?)>7 (559)
Ga1 = <p> C(Qv q, CD>7 (560)

and
{ Hao = B(q,q) — {p, B(¢,;9))q — (P, B(¢,9))7, (5.61)
Hll :B(q7(j) - <po(Qa(D>q_ <p7B(q7Q)>q .

Substituting of (5.59)—(5.61) into (5.58), taking into account the identities

_ 1 L 1 ) B 1
Alg=—q, A7'g=——q, (2iwgE—A)"'qg=-—q,
o wWo 1Wo
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1

2iwgE — A)7lg= —q

(2iwo ) a TG
transforms (5.58) into the equation

o= iwoz + 592027 + 9112Z + 59027 + 3921272 + -+,
where
920 = (p, B(¢:9)), 911 = (p, B(¢, 7)),
and
g21 = <p7C(Q7qa Q)>

— 2(p, B(q,A""B(q,7)))) + (p, B(q, (2iwo E — A)~'B(q,q)))

i i@,B(q,q))(p,B(q,d»

— 2 p. Bg. D)

~ B(3,9)*.
o 3Z.w0|<p, (7,9)]

Notice that the terms in the last line are purely imaginary while the term
in the third line contains the same scalar products as in the product gs9g11-
Thus, the application of formula (3.20) from Chapter 3,

1 ,
-5 Re(iga0911 + wog21),

11(0) = W
0

gives the following invariant expression for the first Lyapunov coefficient:

L(0) = -~ Re[(n,C(g,0.0)) - 2(p. Bla. A*B(q.9)))

2(4)0
+ (p, B(q, (2iwoE — A) "' B(q,9)))] - (5.62)

This formula seems to be the most convenient for analytical treatment of
the Hopf bifurcation in n-dimensional systems with n > 2. It does not
require a preliminary transformation of the system into its eigenbasis, and
it expresses l1(0) using original linear, quadratic, and cubic terms, assuming
that only the critical (ordinary and adjoint) eigenvectors of the Jacobian
matrix are known. In Chapter 10 it will be shown how to implement this
formula for the numerical evaluation of 1 (0).

Example 5.4 (Hopf bifurcation in a feedback-control system)
Consider the following nonlinear differential equation depending on positive
parameters (a, 3):

By Ay dy
2 Y i —y) =0
dt3+adt2+ﬁdt+y( y) =0,
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which describes a simple feedback control system of Lur’e type. By intro-
ducing 1 =y, x2 = &1, and x3 = &2, we can rewrite the equation as the
equivalent third-order system

i'l = o,
i’g = I3, (563)
i‘3 = —Qxr3— 61'2 — T+ l’%

For all values of (a, 3), system (5.63) has two equilibria 2(*) = (0,0, 0) and
(M) = (1,0,0). We will analyze the equilibrium at the origin. The Jacobian
matrix of (5.63) evaluated at 2(°) has the form

0 1 0
0o 0 1
-1 -8 -a

with the characteristic equation
N+aN+8A+1=0.

To find a relation between « and 3 corresponding to the Hopf bifurcation of
2 substitute A = iw into the last equation. This shows that the charac-
teristic polynomial has a pair of purely imaginary roots A1 2 = +iw, w > 0,
if
1
a=aw(f8) = ik 8> 0. (5.64)

It is easy to check that the origin is stable if & > g and unstable if a < «y.
The transition is caused by a simple pair of complex-conjugate eigenvalues
crossing the imaginary axis at A = +iw, where

w? = 6.

The velocity of the crossing is nonzero and the third eigenvalue A3 remains
negative for nearby parameter values.? Thus, a Hopf bifurcation takes place.
In order to analyze the bifurcation (i.e., to determine the direction of the
limit cycle bifurcation), we have to compute the first Lyapunov coefficient
11(0) of the restricted system on the center manifold at the critical param-
eter values. If 11 (0) < 0, the bifurcation is supercritical and a unique stable
limit cycle bifurcates from the origin for o < ag(5). As we shall see, this
is indeed the case in system (5.63).

Therefore, fix a at its critical value ag given by (5.64) and leave [ free to
vary. Notice that the elements of the Jacobian matrix are rational functions
of w?:

0 1 0
A= 0 0 1
-1 —w? —1/w?

® At the critical parameter value (5.64), A3 = —1 < 0.

1
B
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Since the matrix A is not in real canonical form, we will proceed by the
projection method.
It is easy to check that the vectors

1 iw
q~ w , p~ | w1
—w? —w?

are eigenvectors of A and AT, respectively, corresponding to the eigenvalues
iw and —iw, respectively:

Aq =iwq, ATp= —iwp.

In order to achieve the normalization (5.52) properly, we should scale these
vectors. The following scaling, for example, suffices:

1 W
. 1 . 3 1
q= w , p=——— | wd —
2 2w(w3 4 1) 2

The linear part of the analysis is now complete.

There is only one nonlinear (quadratic) term in (5.63). Therefore, the
bilinear function B(xz,y), defined for two vectors z = (z1,z2,23)7 € R3
and y = (y1,y2,y3)T € R3 (see (5.57)), can be expressed as

0
B(z,y) = 0 :
2z11
while C(z,y, z) = 0. Therefore,
0 0
Blg,q)=B(¢,q)=| 0 |=1| 0],
2¢% 2

and solving the corresponding linear systems yields

-2
s=A"'B(q,q) = 0
0
and
9 1
= (2iwE — A)"'B = 21
r ( W ) (QaQ) 3(1+2iw3) _i:)}?

Finally, formula (5.62) gives the first Lyapunov coefficient

w3(1 + 8uw®)
(1+4w8)(1 4 w)’

1
11(0) = o Re(—4p3qis1 + 2p3qiry) = —
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We can now return to the parameter 3 by making the substitution w? = /3:

ho) — 08BV

(1+46%)(1+5°)

The Lyapunov coefficient is clearly negative for all positive 8. Thus, the
Hopf bifurcation is nondegenerate and always supercritical. <

Now we develop the projection technique for the discrete-time case. In
this case, we can write system (5.5) as

Z=Azx+ F(z), z€R", (5.65)

where F(z) = O(||z||?) is a smooth function. As before, represent its Taylor
expansion in the form

F(z) = 3B(z,2) + §C(z,z,2) + O(||z]|*),

where B(z,y) and C(z,y, z) are multilinear functions. The following cal-
culations will closely resemble those of the previous sections.

Fold and flip bifurcations

Consider the fold and flip cases together. In each case, A has a simple
critical eigenvalue (multiplier) p; = 41, and the corresponding critical
eigenspace T is one-dimensional and spanned by an eigenvector ¢ € R"
such that Aq = p1q. Let p € R™ be the adjoint eigenvector, that is, ATp =
p1p, where AT is the transposed matrix. Normalize p with respect to ¢ such
that (p,¢) = 1. As in the previous section, let T** denote an (n — 1)-dimen-
sional linear eigenspace of A corresponding to all eigenvalues other than
11 Appying Lemma 5.2 to the matrix (A — p; E) and taking into account
that it has common invariant spaces with the matrix A, we conclude that
y € T* if and only if (p,y) = 0.
Now we can “decompose” any vector x € R™ as

T =uq+Yy,
where ug € T¢, y € T*", and

{u = (p,x),

y = x—(px)q.

In the coordinates (u,y), the map (5.65) can be written as

{

v+ (p, F(ug +y)),
Ay + F(ug +y) — (p, F(ug + y))q. (5.66)

<
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Using Taylor expansions, we can write (5.66) in a form similar to (5.33)

and (5.36):
{

where u € R, y € R"”, 0,0 € R!, a,b € R", and (b,y) = Y., b;y; is the
standard scalar product in R™. Here o, d, and a are given by (5.50), while
the scalar product (b,y) can be expressed as

(b,y) = (p, B(q,y))-

The center manifold of (5.67) has the representation

pau+ Sou? + ulb,y) + soud 4 - -,

Ay+tau? + -, (5.67)

< &
|

y=V(u) = %w2u2 +O(u?),

where we € T C R"™, so that (p,ws) = 0. The vector wo satisfies in
both the fold and flip cases an equation in R™ that formally resembles the
corresponding equation (5.34),

(A— E)wa +a=0. (5.68)

In the fold case, the matrix (A — E) is noninvertible in R™, since pu; =1
is the eigenvalue of A. As in the previous section, a € T** since (p,a) = 0.
The restriction of the linear transformation corresponding to (A — E) to
its invariant subspace T°* is invertible, so equation (5.68) has a unique
solution wy € T*". If we denote this solution by

wy = —(A— E)NVq,
the restriction of (5.67) to the center manifold takes the form
i=u+ gou?+ £ (6 —3(p, B(q, (A — E)"Va))) u® + O(u?),

where 0,4, and a are defined by (5.50). As in the continuous-time case, we
can compute w = (A— E)!NVq by solving the following (n41)-dimensional

bordered system
A-FE ¢ w\ [ a
pT 0 v ) \0

for w € R™ and u € R

In the flip case, the matrix (A — E) is invertible in R™ because A =1 is
not an eigenvalue of A. Thus, equation (5.68) can be solved directly giving
we = —(A — E)~!a, and the restriction of (5.67) to the center manifold
takes the form

i =—u+ sou’+ % (6 —3(p,B(q,(A— E)'a))) u® + O(u?),
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where 0,d, and a are again given by (5.50). This restricted map can be
simplified further. Using (5.50) and the identity

1
(A - E)_lq = _§Qa

we can write the restricted map as

i = —u + a(0)u® + b(0)u® + O(u?), (5.69)
with 1
a(0) = 5{p, B¢, 9))
and

§0) = £ {9 Cla.0.0)) — (0. Bla:0)))? — 5 {p. Bla, (A~ B) " Blg. )

It has been shown in Section 4.5 of Chapter 4 that the map (5.69) can be
transformed to the normal form

£=—E+c(0)€ +0(gh),

where

c(0) = a*(0) + b(0)

(see formula (4.11)). Thus, the critical normal form coefficient ¢(0), that
determines the nondegeneracy of the flip bifurcation and allows us to pre-
dict the direction of bifurcation of the period-two cycle, is given by the
following invariant formula:

c(0) = é(n C(q,q,9)) — %(n B(q,(A— E)"'B(q,q))).

Neimark-Sacker bifurcation

In this case, A has a simple pair of complex eigenvalues (multipliers) on
the unit circle: py 2 = et 0 < 6y < 7, and these multipliers are the
only eigenvalues of A with |u| = 1. Let ¢ € C™ be a complex eigenvector
corresponding to fi:

Ag = e'%q, Ag=e g
Introduce also the adjoint eigenvector p € C™ having the properties
ATp = e~ #op  ATp = eifop,
and satisfying the normalization

(p,q) =1,
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where (p,q) = >, Piq; is the standard scalar product in C". The critical
real eigenspace T corresponding to (i1 2 is two-dimensional and is spanned
by {Re ¢,Im ¢}. The real eigenspace T*" corresponding to all eigenvalues
of A other than p; 2 is (n — 2)-dimensional. Lemma 5.3 remains valid, i.e.,
y € T5% if and only if (p,y) = 0. Notice that y € R™ is real, while p € C"
is complex. Therefore, the condition (p,y) = 0 implies two real constraints
on y. As in the previous sections, decompose = € R™ as

rT=2z2q+z2q+Y,

where z € C!, and zq + 2q € T°, y € T°*. The complex variable z is a
coordinate on T°. We have

{Z = (p.x),

In these coordinates, the map (5.65) takes the form
= %z + (pF(aq+Z27+y)),
= Ay + F(xq+z2G+y)

- (p, F(2q+2G+y))q
— (D, F(zq + 24 +v))q.

NSRS

(5.70)

System (5.70) is (n+ 2)-dimensional, but we have to remember the two real
constraints imposed on y. The system can be written in a form similar to
(5.36), namely

z = ety + %Ggozz + G112z + %GQQEQ + %G21222
+ (G0, )z + (Gor, y)z + -+, (5.71)
?j = Ay+%H2022+H1125+%H0222+"',

where Gaog, G11, Go2, Go1 € (Cl; Go1, Gho, Hij € C™; and the scalar product
in C™ is used. The complex numbers and vectors, involved in (5.71) can be
computed by the formulas (5.59)—(5.61), while

(Gro.9) = (p, B(¢,9)), (Gor,y) = (p, B(q,y))-
The center manifold in (5.71) has the representation
Yy = ‘/(Z7 2) = %U]202’2 + wnzé + %w0222 + O(|Z‘3),

where (p,w;;) = 0. The vectors w;; € C™ can be found from the linear
equations

(e*E — Aywsy = Hao,

(E—-Awn = Hu,
(7% E — A)wos Hoo
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(cf. (5.38)). These equations have unique solutions. The matrix (E — A) is
invertible because 1 is not an eigenvalue of A (e # 1). If

63i90 3& 1’

the matrices (e*2% F — A) are also invertible in C" because e¥2¥% are not
eigenvalues of A. Thus, generically,® the restricted map can be written as

Z = iwgz+ %GQOZz + G112z + %Gogzz
+ 3(Ga1 +2(p, B(q,(E — A)~ Hu)) (5.72)
+ <p,B(q7 (€2i00E—A)_1H20)>)222 + -

In this generic situation, substituting (5.59)—(5.61) into (5.72), and tak-
ing into account the identities

(E—A)ylq= " (20— A)y1g— S

q_lfeiOOQ7 q_6i0071q7
and

(E — A)*l‘ = 1 q (eQwDE A)*l_ = e

1= 17— =w 1= 3igo 17
transforms (5.72) into the map
2 = eifoyy %92022 + 91122 + %90222 + %921222 + -y (5.73)

where

g20 = <paB(Q7q)>a gi1 = <paB(q7q)>a go2 = <p7B(Qa Q)>7
and
g1 = (9,C(¢q,4,9)

+2(p, B(q, (E — A)7'B(q,7)))) + (p, B(q, (¥ E — A) "' B(q,q)))

e—i&o 1— 261’00 B
%@» B(q,9))(p, B(q,7))
eiao

2 —\\ 2
_ m“paB((LQ)H _631.007_1

+

_ W2
[(p. B(q.9))" -
As shown in Chapter 4, in the absence of strong resonances, i.e.,

e*% £ 1, for k=1,2,3,4,

61f 3700 — 1, i.e., g%t — 67160, then wog = (eion — A)INVHzo, Wo2 = W20,
where INV means the inverse in T°%.
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the restricted map (5.73) can be transformed into the form
2= c"2(1+d(0)|2*) + O(l2]"),

where the real number a(0) = Re d(0), that determines the direction of
bifurcation of a closed invariant curve, can be computed by formula (4.23),

e—iﬂogzl ) " Re ((1 _ 26i90)6—2i90

1 1
0) = R . — =lg1* = ~lgoz2|*-
a(0) e ( 5 2(1 — cifo) 920911> 5 g11] 4|902|

Using this formula with the above-defined coefficients, we obtain the fol-
lowing invariant expression

a(0) = %Re {e=" [(p,C(q,9,9)) +2{(p, B(q,(E — A) "' B(q,q)))
+ {p, B, (¥ E — A) "' B(q,q))] } (5.74)

This compact formula allows us to verify the nondegeneracy of the nonlinear
terms at a nonresonant Neimark-Sacker bifurcation of n-dimensional maps
with n > 2. Note that all the computations can be performed in the original
basis.

5.5 Exercises

(1) (Finite smoothness of the center manifold) Consider the system
[Arrowsmith & Place 1990]

3

T = xz—x°,
y = y+at
z = 0.

Show that the system has a center manifold given by y = V(z, z), where V'
is a C° function in z if 2 < % but only a C* function in z for z < 1. (Hint:
Obtain the coefficients a;(2) of the expansion V(z,z) = >, a;(2)2’ and
analyze their denominators.)

(2) (Neimark-Sacker bifurcation in the Lorenz system) Prove that
the Neimark-Sacker bifurcation of a limit cycle never occurs in the Lorenz
[1963] system:

T = —ox+ oy,
y = —zz+4rzr—y, (E.1)
zZ = wzy-— bz,

where the parameters (o, r,b) are positive. (Hint: Use the formula for the
multiplier product and the fact that div f = —(c +b+ 1) < 0, where f is
the vector field given by the right-hand side of (E.1).)
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(3) Prove Lemma 5.2.
(4) Verify that
P?=P,., P}, = Py, P.Psy = Py,P. =0,

where P, and Py, are the projection operators defined after Lemma 5.2 in
Section 5.4.2.

(5) (Feedback-control model of Moon & Rand [1985]) Show that
the origin (z,y, z) = (0,0,0) of the system

r =Y,
Yy = —Tr—20,
v o= —v+ oaz?,

is asymptotically stable if o < 0 and unstable if o > 0.

(6) (Center manifolds in the Lorenz system)

(a) Compute the second-order approximation to the family of one-dimen-
sional center manifolds of the Lorenz system (E.1) near the origin (z,y, 2) =
(0,0,0) for fixed (o,b) and r close to rog = 1. Then, calculate the restricted
system up to third-order terms in &. (Hint: See Chapter 7.)

(b) Show that for fixed b, ¢ > b+ 1, and

_o(oc+b+3)
- o—-b—-1"

a nontrivial equilibrium of (E.1) exhibits the Hopf bifurcation, giving rise
to a unique saddle limit cycle for > r; [Roschin 1978]. (Hint: Translate
the origin of the coordinate system to the equilibrium; find the eigenvector
and the adjoint eigenvector of the Jacobian; use a bilinear representation
of the right-hand sides and apply the projection method for the computa-
tion of the restricted equation on the center manifold; finally, compute the
Lyapunov coefficient. Symbolic manipulation software is useful here, but
not necessary.)

(7) Prove that the origin (z,y) = (0,0) is a stable fixed point of the planar

(D)),

using: (a) transformation to its eigenbasis (Hint: See Wiggins [1990, pp.
207-209].); (b) the projection technique from Section 5.4.2 in this chapter
(Hint: Do not forget that the matrix (A — F) is noninvertible in this case.)
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(8) (Adaptive control system of Golden & Ydstie [1988])
(a) Demonstrate that the fixed point (xg, o, 20) = (1,1,1 — b — k) of the
discrete-time dynamical system

CL‘ y
y s kbx+k’+yz
2z zfc+yy2(bx+k+zy71)

exhibits the flip bifurcation at
1 1
bp=1-— [Jr)] k,

and the Neimark-Sacker bifurcation at

c+1
c+2

bns = —

(b) Determine the direction of the period-doubling bifurcation that oc-
curs as b increases and passes through bp.

(c) Compute the normal form coefficient and show that the Neimark-
Sacker bifurcation in the system under variation of the parameter b can be
either sub- or supercritical depending on the values of (¢, k).

(9) (Hopf bifurcation in Brusselator; read Appendix 1 first) The
Brusselator on the unit interval is a reaction-diffusion system with two
components

X 92X )
o = dg3 tC-(B+NX + X%,
oY Y )
o = 0d 55 +BX - X%,

where X = X(r,t), Y = Y(r,t); r € [0,1]; t > 0; A,B,d,0 > 0 (see
Chapter 1 and Lefever & Prigogine [1968]). Consider the case when X and
Y are kept constant at their equilibrium values at the end points:

B

X(0,0) = X(1,1) = C, Y(0.0) = V(L) = &
Fix 1
00:1; 50:27 90:55

and show that at
By=1+C24+6(1+6))=5

the system exhibits a supercritical Hopf bifurcation giving rise to a stable
limit cycle (periodic standing wave). (Hint: See Auchmuty & Nicolis [1976]
and Hassard et al. [1981].)
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(10) (Hopf transversality condition) Let A(«) be a parameter-depen-
dent real (n x n)-matrix which has a simple pair of complex eigenvalues
A2(a) = pla) £iw(a), w(0) =0, w(0) > 0. Prove that

#'(0) = Re (p, A'(0)q),

where q,p € C" satisfy
A(0)g = iw(0)g, AT(0)p = —iw(0)p, (p,q) = 1.

(Hint: Differentiate the equation A(a)g(a) = A1(a)g(«) with respect to «
at « = 0, and then compute the scalar product of both sides of the resulting
equation with p.)

5.6 Appendix 1: Hopf bifurcation in
reaction-diffusion systems on the interval with
Dirichlet boundary conditions

Consider a reaction-diffusion system

u 2u
% :D%+A(Q)U+F(U,OL>, (A1)
where u = u(§, t) is a vector-valued function describing the distribution of n
reacting components over a one-dimensional space, £ € [0, 7], at time ¢ > 0.
D is a positive diagonal matrix, A(«) is a parameter-dependent matrix, and
F = O(||lu|?) is a smooth function depending on a single parameter . Let
us assume that u satisfies Dirichlet boundary conditions:

w(0,t) = u(m,t) =0 (A.2)

for all t > 0. As we have seen in Chapter 1, system (A.1), (A.2) defines
an infinite-dimensional dynamical system {R}H H, ¢!} on several function
spaces H. We can take H, for example, to be the completion of the space
C2([0,7],C") of twice continuously differentiable, complex-valued, vector
functions on the interval [0, 7] vanishing at £ = 0, , with respect to the
norm ||w|| = (w,w)'/2. Here (-,-) is the scalar product defined on functions
from CZ([0, 7], C") by

1 « g dw; dv; d21f)i d2vi>
w,v) = — W;0; + + de, A3
= Zi_l/o ( i & i ae )™ (48)

where pg > 0 is a constant to be specified later. By continuity, this scalar
product can be defined for all u,v € H. Thus the introduced space H is
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a Hilbert space.” Of course, (A.1), (A.2) also define a dynamical system
on the real subspace of H. Actually, any orbit of {R!, H, ¢!} with initial
point at ug € H belongs to C3([0,7],C") for t > 0, and

u(,t) = (Lau)(§)

is a classical solution to (A.1), (A.2) for ¢t > 0.
Obviously, ug(§) = 0 is a stationary solution of (A.1). The linear part of
(A.1) defines the linearized operator

d?v

Ma’U = l)dié_2

+ A(a)v, (A.4)
which can be extended to a closed operator M, in H. An operator defined
by
Mew— DY 4 AT A

tu= D+ AT (a)u (A.5)
can be extended to be a closed adjoint operator M} in H with the charac-
teristic property

(u, Mpv) = (Mu,v)

whenever both sides are defined. An eigenvalue A\ of M, is a complex
number such that M, v, = A\pYy for some eigenfunction vy. Equivalently,
the eigenvalues and eigenfunctions satisfy the following linear boundary-
value spectral problem:

d2
d;ék + A(a)hr = i,

VYr(0) = ¢p(m) = 0.

The spectrum of M, consists entirely of eigenvalues. There is a countable
number of eigenvalues. Any eigenfunction in this case has the form

’(/Jk (f) = Vk sin kf

for some integer k > 1. The vector Vj € C™ satisfies

D

(k2D + A(a))Vi = \iVi.

Suppose that at « = 0 the operator M, has a pair of imaginary eigenvalues
+iwy and all its other eigenvalues lie strictly in the left half-plane of C!.
Assume that the eigenvalues on the imaginary axis correspond to k = ko,
and that iwy is a simple eigenvalue of (—k3 D+ A(0)). The critical eigenspace
T° C H of My is spanned by the real and imaginary parts of the complex
function

q(§) = Vsinkog,

"Tts elements are continuous vector-valued functions defined on the interval.
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where V € C™ is the eigenvector corresponding to iwy.

For systems of the considered class, and, actually, for more general infinite-
dimensional systems, the Center Manifold Theorem remains valid (see the
bibliographical notes in Appendix 2). Under the formulated assumptions,
there is a local two-dimensional invariant manifold W C H of the system
{RY, H, !} defined by (A.1), (A.2) which depends on the parameter a.
The manifold is locally attracting in terms of the norm of H and is tangent
to T¢ at a = 0. Moreover, the manifold is composed of twice continuously
differentiable real functions. The restriction of the system onto the mani-
fold W is given by a smooth system of two ordinary differential equations
that depend on a. Thus, the restricted system generically exhibits the Hopf
bifurcation at « = 0, and a unique limit cycle appears for nearby parameter
values. The bifurcation is determined by the first Lyapunov coefficient. To
compute this coefficient, we need to know the restricted equations at o = 0
up to (and including) third-order terms. If the bifurcation is supercriti-
cal, the cycle that appears is stable within WS and, therefore, it is stable
as a periodic orbit of (A.1), (A.2) in the H-norm. This cycle describes a
spatially nonhomogeneous, time-periodic solution to the reaction-diffusion
system. Solutions of this type are sometimes called spatial-temporal dissi-
pative structures (standing waves).

Let us outline how the restricted equations can be derived. Formally, the
procedure will be exactly the same as that in Section 5.4.2. To proceed, we
need the adjoint eigenfunction p : M{jp = —iwgp. It is given by

p(&) = W sin k0§,

where (k2D + AT(0))W = —iwoW, W € C". We are free to choose V
and W such that
(pq) =1. (A.6)

There is a useful but simple property of the scalar product (A.3) involving
an (adjoint) eigenfunction; namely, such a scalar product in H is propor-
tional to the corresponding scalar product in Ls:

1
<pa u) = %(1 + kg + k§)<p7 U’>L2a

where

), =Y /0 " Bi(€)us(€) de.

Therefore, if we assume
po =1+ k§ + ky,

all the scalar products can be computed in Ly. The normalization (A.6)
implies

(W, V)en = 2. (A7)
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Now we can decompose any function v € H (and, in particular, smooth
functions corresponding to solutions of (A.1), (A.2)) as in Section 5.4.2,
since an analog of Lemma 5.3 is valid for the operator Mj:

u=2zq+zq+w,

where z € Ct,v € H, (p,v) = 0. Hence, we can write (A.1), (A.2) in the
form (5.54):

o= iwez 4+ (p,F(2q+24+0,0)),
vy = Mow + F(zq+ 23+ 0,0) (A8)
= (p.F(zq+ 23+ v,0))q '
— (P F(zq+ 27+ 0,0))q.
The center manifold W§ of (A.6) has the representation
1 1
v = §w20z2 4+ wi12Z + §w0222 +0(|2*), (A.9)

with w;; € H, (p,w; ;) = 0. The functions w;;(£) are the unique solutions
to the linear boundary-value problems

(2inE — Mo)’lUQo = Hzo,
—Mowin = Hun, (A.10)
(—inOE — Mo)w()g = H()Q,

where the functions on the right-hand sides are given by the expression

ot - _
H;; = 5705 F(zq+ zq,0) . — Gijq9 — G4,
with o
61’—"_] == . .
Gij = 59z P F'(za+22,0)) o itiz2

The boundary-value problems (A.10) can be written in a more “classical”
way:

d2w20

.D d§2 (5) -+ [A(O) — inOE]QUQo(f) = 7H20(£),
wyy
DEGHO+AOwn(©) = ~Hn),
2wz .
DEER () + [A0) + 2o Elun®) = —Hoale).

Here w;; vanish at & = 0, m. Notice that all the functions on the right-hand
side have the same spatial dependence

Hij(&) = (sin® ko€ — o sin ko&) hij,
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where h;; € C", while v = (ko) is determined by the critical eigenfunc-
tions. The boundary-value problems can be solved, for example, by the
Fourier method.

Substitution of (A.9) into the first equation of (A.8) gives an approxima-
tion to the restricted equations on the center manifold correct to third-order
and allows the computation of the Lyapunov coefficient I;(0).

5.7 Appendix 2: Bibliographical notes

The Center Manifold Theorem in finite dimensions has been proved by Pliss
[1964] for the attracting case ny = 0 and by Kelley [1967] and Hirsch et
al. [1977] in general. In the Russian literature the center manifold is often
called the neutral manifold. Proofs of the Center Manifold Theorem can be
found in Carr [1981] and Vanderbauwhede [1989]. Topological normal forms
for multidimensional bifurcations of equilibria and limit cycles are based on
the article by Shoshitaishvili [1975], where the topological versality of the
suspended system is also established, given that of the restricted system.
The first example showing that a C°° system may have no C*° center
manifold was constructed by van Strien [1979].

One-parameter bifurcations of limit cycles and corresponding metamor-
phoses of the local phase portraits in n-dimensional systems were known
to mathematicians of Andronov’s school since the late 1940s. Their de-
tailed presentation can be found in Neimark [1972] and Butenin, Neimark
& Fufaev [1976].

The existence of center manifolds for several classes of partial differential
equations and delay differential equations has been established during the
last two decades. The main technical steps of such proofs are to show that
the original system can be formulated as an abstract ordinary differential
equation on an appropriate (i.e., Banach or Hilbert) function space H, and
to use the variation-of-constants formula (Duhamel’s integral equation) to
prove that this equation defines a smooth dynamical system (semiflow) on
H. For such flows, a general theorem is valid that guarantees existence of
a center manifold under certain conditions on the linearized operator. See
Marsden & McCracken [1976], Carr [1981], Henry [1981], Hale [1977], and
Diekmann et al. [1995], for details and examples.

The projection technique, which avoids putting the linear part in nor-
mal form, was originally developed to study bifurcations in some partial
differential equations (mainly from hydrodynamics) using the Lyapunov-
Schmidt reduction (see, e.g., Iooss & Joseph [1980]). Our presentation is
based on the book by Hassard et al. [1981], where the Hopf bifurcation
in continuous-time (finite- and infinite-dimensional) systems is treated. An
invariant expression equivalent to (5.62) for the first Lyapunov coefficient
was derived by Howard and Kopell in their comments to the translation of
the original Hopf paper in Marsden & McCracken [1976]. Independently,
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it was obtained by van Gils [1982] and published by Diekmann & van Gils
[1984] within an infinite-dimensional context. This formula can also be ob-
tained using asymptotic expansions for the bifurcating periodic solution
(see, e.g., Nayfeh & Balachandran [1995]). Computational formulas for the
discrete-time flip case were given by Kuznetsov & Rinaldi [1991]. The for-
mula (5.74) to analyze the Neimark-Sacker bifurcation was first derived by
Tooss, Arneodo, Coullet & Tresser [1981] using asymptotic expansions for
the bifurcating invariant closed curve.
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Bifurcations of Orbits Homoclinic
and Heteroclinic to Hyperbolic
Equilibria

In this chapter we will study global bifurcations corresponding to the ap-
pearance of homoclinic or heteroclinic orbits connecting hyperbolic equi-
libria in continuous-time dynamical systems. First we consider in detail
two- and three-dimensional cases where geometrical intuition can be fully
exploited. Then we show how to reduce generic n-dimensional cases to the
considered ones plus a four-dimensional case. This remaining case is treated
in Appendix 1.

6.1 Homoclinic and heteroclinic orbits

Consider a continuous-time dynamical system {R' R™ ¢!} defined by a
system of ODEs

i=f(x), == (x1,29,...,2,)7 €R", (6.1)
where f is smooth. Let x¢, (1), and x(3) be equilibria of the system.

Definition 6.1 An orbit 'y starting at a point x € R™ is called homoclinic
to the equilibrium point xo of system (6.1) if 'z — wg as t — Foo.

Definition 6.2 An orbit I'g starting at a point x € R™ is called heteroclinic
to the equilibrium points x(1y and x(9) of system (6.1) if olr — x(1) as
t = —o0 and o'z — x(2) ast — +oo.

Figure 6.1 shows examples of homoclinic and heteroclinic orbits to saddle
points if n = 2, while Figure 6.2 presents relevant examples for n = 3.
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o

(€Y (b)

(€Y (b)

FIGURE 6.2. (a) Homoclinic and (b) heteroclinic orbits in three-dimensional
space.

It is clear that a homoclinic orbit I'y to the equilibrium zy belongs to
the intersection of its unstable and stable sets: Ty C W¥(xo) N W*5(xp).
Similarly, a heteroclinic orbit I'y to the equilibria z(;) and x() satisfies
Lo € W"(z1)) N W#(2(2)). It should be noticed that the Definitions 6.1
and 6.2 do not require the equilibria to be hyperbolic. Figure 6.3 shows,
for example, a homoclinic orbit to a saddle-node point with an eigenvalue
A1 = 0. Actually, orbits homoclinic to hyperbolic equilibria are of partic-
ular interest since their presence results in structural instability while the
equilibria themselves are structurally stable.

Lemma 6.1 A homoclinic orbit to a hyperbolic equilibrium of (6.1) is
structurally unstable. O

This lemma means that we can perturb a system with an orbit I'g that is
homoclinic to xg such that the phase portrait in a neighborhood of T'g U x¢
becomes topologically nonequivalent to the original one. As we shall see,
the homoclinic orbit simply disappears for generic C* perturbations of the
system. This is a bifurcation of the phase portrait.

To prove the lemma, we need a small portion of transversality theory.
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o

FIGURE 6.3. Homoclinic orbit I'y to a saddle-node equilibrium.

Definition 6.3 Two smooth manifolds M, N C R"™ intersect transversally
if there exist n linearly independent vectors that are tangent to at least one
of these manifolds at any intersection point.

For example, a surface and a curve intersecting with a nonzero angle at
some point in R? are transversal. The main property of transversal inter-
section is that it persists under small C' perturbations of the manifolds.
In other words, if manifolds M and N intersect transversally, so will all
sufficiently C'-close manifolds. Conversely, if the manifolds intersect non-
transversally, generic perturbations make them either nonintersecting or
transversally intersecting.

Since in this chapter we deal exclusively with saddle (or saddle-focus)
hyperbolic equilibria, the sets W* and W* are smooth (immersed) invariant
manifolds.! Any sufficiently C*-close system has a nearby saddle point, and
its invariant manifolds W** are C'-close to the corresponding original ones
in a neighborhood of the saddle.

Proof of Lemma 6.1:

Suppose that system (6.1) has a hyperbolic equilibrium z¢ with n eigen-
values having positive real parts and n_ eigenvalues having negative real
parts, ny > 0, ny +n_ = n. Assume that the corresponding stable and
unstable manifolds W*(zy) and W#(x) intersect along a homoclinic or-
bit. To prove the lemma, we shall show that the intersection cannot be
transversal. Indeed, at any point = of this orbit, the vector f(x) is tangent
to both manifolds W*(zq) and W?(x). Therefore, we can find no more
than ny +n_ —1 = n — 1 independent tangent vectors to these manifolds,
since dim W" = n,, dimW?* = n_. Moreover, any generic perturbation
of (6.1) splits the manifolds in that remaining direction and they do not
intersect anymore near I'y. O

"Meanwhile, the manifolds W*(zo) and W*(xo) intersect transversally at zo.
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Let us characterize the behavior of the stable and unstable manifolds
near homoclinic bifurcations in two- and three-dimensional systems in more
detail.

Case n = 2. Consider a planar system having a homoclinic orbit to a
saddle xg, as shown in the central part of Figure 6.4. Introduce a one-

p<0 =0 B>0

FIGURE 6.4. Split function in the planar case (n = 2).

dimensional local cross-section ¥ to the stable manifold W#(z() near the
saddle, as shown in the figure. Select a coordinate £ along 3 such that the
point of the intersection with the stable manifold corresponds to & = 0. This
construction can be carried out for all sufficiently close systems. For such
systems, however, the unstable manifold W*" generically does not return to
the saddle. Figure 6.4 illustrates the two possibilities: The manifolds split
either “down” or “up.” Denote by £" the £-value of the intersection of W™
with 3.

Definition 6.4 The scalar g = £* is called a split function.

Actually, the split function is a functional defined on the original and
perturbed systems. It becomes a smooth function of parameters for a
parameter-dependent system. The equation

B=0

is a bifurcation condition for the homoclinic bifurcation in R?. Thus, the
homoclinic bifurcation in this case has codimension one.

Remark:

There is a constructive proof of Lemma 6.1 in the planar case due to
Andronov. A one-parameter perturbation destroying the homoclinic (het-
eroclinic) orbit can be constructed explicitly. For example, if a system

{2 = fi(z1,22), (6.2)

= fo(w1,72),
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FIGURE 6.5. Split function in the case n = 3.

has a homoclinic orbit to a saddle, then the system

{ I fi(zr, z2) — afao(xr, z2), (6.3)
Ty = afi(ry,z2) + falwr, T2), )

has no nearby homoclinic orbits to this saddle for any sufficiently small
|a| # 0. System (6.3) is obtained from (6.2) by a rotation of the vector
field. The proof is left as an exercise to the reader.

Case n = 3. It is also possible to define a split function in this case.
Consider a system in R? with a homoclinic orbit Ty to a saddle xy. Assume
that dim W* = 1 (otherwise, reverse the time direction), and introduce a
two-dimensional cross-section ¥ with coordinates (£,n) as in Figure 6.5.
Suppose that £ = 0 corresponds to the intersection of ¥ with the stable
manifold W*# of xy. As before, this can be done for all sufficiently close
systems. Let the point (£“,n*) correspond to the intersection of W* with
3. Then, a split function can be defined as in the planar case before: g = £*.
Its zero

B=0

gives a condition for the homoclinic bifurcation in R3.

Remarks:

(1) The preceding cases are examples of nontransversal intersections of
the invariant manifolds W* and W?. One can construct a three-dimensional
system with a structurally stable heteroclinic orbit connecting two saddles:
This orbit must be a transversal intersection of the corresponding two-
dimensional stable and unstable manifolds.

(2) There are particular classes of dynamical systems (such as Hamilto-
nian) for which the presence of a nontransversal homoclinic orbit is generic.

¢

Thus, we have found that under certain conditions the presence of a
homo-/hetero-clinic orbit T’y to a saddle/saddles implies a bifurcation. Our
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goal in the next sections will be to describe the phase portrait bifurcations
near such an orbit under small C' perturbations of the system. “Near”
means in a sufficiently small neighborhood Uy of T'oUzg or To Uz (1) Um(a).
This task is more complex than for bifurcations of equilibria since it is not
easy to construct a continuous-time system that would be a topological
normal form for the bifurcation. In some cases ahead, all one-parameter
systems satisfying some generic conditions are topologically equivalent in a
neighborhood of the corresponding homoclinic bifurcation. In these cases,
we will characterize the relevant universal bifurcation diagram by draw-
ing key orbits of the corresponding phase portraits. This will completely
describe the diagram up to topological equivalence.

Unfortunately, there are more involved cases in which such an equivalence
is absent. In these cases no universal bifurcation diagrams can be presented.
Nevertheless, topologically nonequivalent bifurcation diagrams reveal some
features in common, and we will give schematic phase portraits describing
the bifurcation for such cases as well.

The nontransversal heteroclinic case is somehow trivial since the disap-
pearance of the connecting orbit is the only essential event in Uy (see Figure
6.6). Therefore, in this chapter we will focus on the homoclinic orbit bifur-
cations and return to nonhyperbolic homoclinic orbits and their associated
bifurcations in Chapter 7.

N A N I I
SN O N e

B<0 B=0 B<0

FIGURE 6.6. Heteroclinic bifurcation on the plane.

6.2 Andronov-Leontovich theorem

In the planar case, the homoclinic bifurcation is completely characterized
by the following theorem.

Theorem 6.1 (Andronov & Leontovich [1939]) Consider a two-dim-
ensional system
i = f(r,a), r€R?*® acRY (6.4)

with smooth f, having at @« = 0 a saddle equilibrium point xo = 0 with
eigenvalues A\1(0) < 0 < A2(0) and a homoclinic orbit T'y. Assume the
following genericity conditions hold:
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(H.2) 5'(0) # 0, where 3(«) is the previously defined split function.

Then, for all sufficiently small ||, there exists a neighborhood Uy of ToUxg
in which a unique limit cycle Lg bifurcates from I'y. Moreover, the cycle is
stable and exists for B > 0 if o9 < 0, and is unstable and exists for f <0
if o9 > 0.

The following definition is quite useful.

Definition 6.5 The real number o = A1 + A2 is called the saddle quantity.

LR

B<0 B=0 B>0
FIGURE 6.7. Homoclinic bifurcation on the plane (oo < 0).

LLOL

B<0 B=0 B>0
FIGURE 6.8. Homoclinic bifurcation on the plane (o9 > 0).

Figures 6.7 and 6.8 illustrate the above theorem. If o = 0, the system
has an orbit homoclinic to the origin. A saddle equilibrium point exists
near the origin for all sufficiently small || # 0, while the homoclinic orbit
disappears, splitting “up” or “down.” According to condition (H.2), the
split function 8 = [(«) can be considered as a new parameter.

If the saddle quantity satisfies og < 0, the homoclinic orbit at 3 = 0
is stable from the inside, and the theorem gives the existence of a unique
and stable limit cycle Lg C Uy for 8 > 0. For 8 < 0 there are no periodic
orbits in Uy. If the saddle quantity satisfies og > 0, the homoclinic orbit at
B = 0 is unstable from the inside, and the theorem gives the existence of
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a unique but unstable limit cycle Lg C Uy for 8 < 0. For 8 > 0 there are
no periodic orbits in Uy. Thus, the sign of g determines the direction of
bifurcation and the stability of the appearing limit cycle. As usual, the term
“direction” has a conventional meaning and is related to our definition of
the split function.

As |B] — 0, the cycle passes closer and closer to the saddle and becomes
increasingly “angled” (see Figure 6.9). Its period T tends to infinity as 5

Lg

FIGURE 6.9. A cycle near a homoclinic bifurcation.

approaches zero since a phase point moving along the cycle spends more
and more time near the equilibrium (see Figure 6.10). The corresponding

Tp

0 p

FIGURE 6.10. Period of the cycle near a homoclinic bifurcation.

time series (z1(t), z2(t)) demonstrates “peaks” of finite length interspersed
by very long “near-equilibrium” intervals.

Proof of Theorem 6.1:

The main idea of the proof is to introduce two local cross-sections near
the saddle, ¥ and II, which are transversal to the stable and the unstable
manifolds, respectively (see Figure 6.11). Then it is possible to define a
Poincaré map P on a half-section XV,

P:yYt 5y,
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FIGURE 6.11. Poincaré map for homoclinic bifurcation on the plane.

as a superposition of a near-to-saddle map A : ¥t — II and a map Q :
IT — ¥ near the global part of the homoclinic orbit:

P=QoA.

Finally, we have to take into account the usual correspondence between
limit cycles of (6.4) and fixed points of P. The proof proceeds through
several steps.

Step 1 (Introduction of eigenbasis coordinates). Without loss of generality,
assume that the origin is a saddle equilibrium of (6.4) for all sufficiently
small |a|. We consider 8 as a new parameter but do not indicate the pa-
rameter dependence for a while in order to simplify notation.

There is an invertible linear coordinate transformation that allows us to
write (6.4) in the form

{ 1 Az + g1(z1, x2), (6.5)
Ty = Aox2 + ga(x1, x2), ’

where 1 5 denote the new coordinates and g; 2 are smooth O(||z||?)-functions,
z = (v1,22)7, 2] = 2% + 23

Step 2 (Local linearization of the invariant manifolds). According to the
Local Stable Manifold Theorem (see Chapter 3), the stable and unstable
invariant manifolds W* and W™ of the saddle exist and have the local
representations

W 25 = S(z1), S(0) = S'(0) = 0;
We: 1 = Ulzs), U0) = U'(0) =0,

with smooth S, U (see Figure 6.12). Introduce new variables y = (y1,y2)7

near the saddle:
{ Yy = X1 — U($2),
Ya = T2 — S(:L‘l)
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W = {x,= Ux,)}

°={x,= S(x 1)}

X1

FIGURE 6.12. Local stable and unstable manifolds in z-coordinates.

This coordinate change is smooth and invertible in some neighborhood of
the origin.2 We can assume that this neighborhood contains the unit square
Q={y:—-1<y2 <1}, which is a matter of an additional linear scaling
of system (6.5). Thus, system (6.5) in the new coordinates takes in € the
form

(7 Ay + y1ha (Y1, y2), (6.6)
Y2 = A2y + y2ha(y1,y2),
where hy 2 = O(]|y||). Notice that (6.6) is a nonlinear smooth system with
a saddle at the origin whose invariant manifolds are linear and coincide
with the coordinate axes in ) (see Figure 6.13).

Step 3 (Local C*-linearization of the system). Now introduce new coordi-
nates (£,7) in © in which system (6.6) becomes linear:

{52 @

More precisely, we show that the flow corresponding to (6.6) is Cl-equivalent
in © to the flow generated by the linear system (6.7). To construct the con-

jugating map
{ 5 = So(ylny)’
n = ¥y, v2),
we use the following geometric construction. Take a point y = (y1,y2) €

Q and the orbit passing through this point (see Figure 6.14(a)). Let 7
and 7o be the absolute values of the positive and negative times required

2To be more precise, we have to consider a global invertible smooth change of
the coordinates that coincides with the specified one in a neighborhood of the
saddle and is the identity outside some other neighborhood of the saddle. The
same should be noticed concerning the map ® to be constructed later.
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FIGURE 6.13. Locally linearized stable and unstable manifolds in y-coordinates.

for such an orbit to reach the boundary of Q in system (6.6). It can be
checked (Exercise 7(a)) that the pair (71, 72) is uniquely defined for y # 0
within each quadrant of €2.> Now find a point (£,7) in the same quadrant
of 0 with the same “exit” times 73 and 75 for the corresponding orbit
of (6.7) (see Figure 6.14(b)). Let us take £ = n = 0 for y = 0. Thus,

Y2 n

@ (b)
FIGURE 6.14. Construction of C'-equivalence.
amap ® : (y1,y2) — (§,m) is constructed. It clearly maps orbits of the

nonlinear system (6.6) into orbits of the linear system (6.7), preserving
time parametrization. Map ® : 2 — € is a homeomorphism transforming

3For points on the coordinate axes we allow one of 71 2 to be equal to +oo.
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each component of the boundary of €2 into itself; it is identical along the
axes. To define a useful coordinate change it must be at least continuously
differentiable in Q. Indeed, the map ® is a C' map. Actually, it is smooth
away from the origin but has only first-order continuous partial derivatives
at y = 0 (the relevant calculations are left to the reader as Exercise 7(b)).

Step 4 (Analysis of the superposition). Using the new coordinates (£, 7), we
can compute the near-to-saddle map analytically. We can assume that the
cross-section X has the representation £ = 1,—1 < < 1. Then, n can be
used as a coordinate on it, and X7 is defined by £ = 1,0 < 7 < 1. The map
acts from X1 into a cross-section IT, which is defined by n = 1, -1 < £ < 1,
and has £ as a coordinate (see Figure 6.15). Integrating the linear system
(6.7), we obtain

ST
A: E=n X,
Notice that the resulting map is nonlinear regardless of the linearity of
system (6.7). We assumed £ = 0 for = 0 by continuity.

FIGURE 6.15. Poincaré map in locally linearizing coordinates.

The global map expressed in £ and 7 is continuously differentiable and
invertible and has the following general form:

Q: n=p+al+0(E,

where ( is the split function and a > 0 since the orbits cannot intersect.
Actually, A1 2 = M\12(8), a = a(f), but as we shall see below only values
at 8 = 0 are relevant. Fixed points with small |n| of the Poincaré map

A1
P:np—pB+an *2 +---

can be easily analyzed for small |3] (see Figure 6.16). Therefore, we have
existence of a positive fixed point (limit cycle) for 8 > 0 if o9 < 0 and for
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=0
=31

@ (b)
FIGURE 6.16. Fixed points of the Poincaré map: (a) oo < 0; (b) oo > 0.
B < 0 if gg > 0. Stability and uniqueness of the cycle also simply follow
from analysis of the map. O

Remark:

Until now we have considered only so-called “small” homoclinic orbits
in this section. There is another type of homoclinic orbits, namely, “big”
homoclinic orbits corresponding to the different return direction. All the

~___ Lp

B<0 B=0 B>0
FIGURE 6.17. Bifurcation of a “big” saddle homoclinic orbit.

results obtained are valid for them as well (see Figure 6.17, where a bifur-
cation diagram for the case oo < 0 is presented). ¢

Example 6.1 (Explicit homoclinic bifurcation) Consider the fol-
lowing system due to Sandstede [1997q]:

i o= —x+2y+ a2,
{ U (2—a)x—y—3m2+%xy, (6.8)

where « is a parameter.
The origin (z,y) = (0,0) is a saddle for all sufficiently small |a|. At
a = 0, this saddle has eigenvalues

M=1, dp=-3,
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with o9 = —2 < 0. Moreover, at this parameter value, there exists a homo-
clinic orbit to the origin (see Figure 6.18). Indeed, the Cartesian leaf,

y

v(X,y)
VHEXY)

Hxy)=0

FIGURE 6.18. The homoclinic orbit of (6.8) at o = 0.

a<0 a=0 a>0

FIGURE 6.19. Homoclinic bifurcation in (6.8): A stable limit cycle exists for
small a > 0.

H(z,y) =21 —z)—y* =0,

consists of orbits of (6.8) for @« = 0. One of these orbits is homoclinic to
the saddle 0 = (0,0). To verify this fact, we have to prove that the vector
field defined by (6.8) with o = 0,

T
3
v(z,y) = (—x—|—2y+x2,2x —y—32%+ 2xy> ,

is tangent to the curve H(x,y) = 0 at all nonequilibrium points. Equiva-
lently, it is sufficient to check that v is orthogonal along the curve to the
normal vector to the curve. A normal vector is given by the gradient of the
function H:

(VH)(z,y) = (22 — 322, 72y)T.
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Then, a direct calculation shows that
(v, VHY =0

along the curve H = 0 (check!).

Thus, system (6.8) has an algebraic homoclinic orbit at & = 0 with
o9 < 0. One can prove that the transversality condition 8’ # 0 also holds
at @ = 0 (see Exercise 13). Therefore, Theorem 6.1 is applicable, and a
unique and stable limit cycle bifurcates from the homoclinic orbit under
small variation of o (see Figure 6.19). &

Example 6.2 (Homoclinic bifurcation in a slow-fast system) Con-
sider the following system

L 2 03
{x = l4+zx—y—a*—2°, (6.9)

g = e[-14+(1—4a)x+4ay],

where « is a “control” parameter and 0 < ¢ < 1. We shall show that
the system undergoes a homoclinic bifurcation at some value of « close to
zero. More precisely, there is a continuous function ag = ag(e) defined for
sufficiently small € > 0, «((0) = 0 such that the system has a homoclinic
orbit to a saddle at o« = ap(g). Moreover, the genericity conditions of the
Andronov-Leontovich theorem are satisfied, and a unique and stable limit
cycle bifurcates from the homoclinic orbit under the variation of « for
o < ogp.

The nontrivial zero-isoclines of (6.9) are graphs of the following functions:

t=0: y=(z+1)(1—-2?

and
1—2x

4x
their shape at a = 0 is presented in Figure 6.20.

If o« = 0, the system has a saddle equilibrium point Ey : (z,y) = (1,0)
for all € > 0. It can easily be checked that near the saddle E, the sta-
ble invariant manifold W#(Ey) approaches the z-axis while the unstable
manifold W*(Ep) tends to the zero-isocline & = 0, as € — 0. The global
behavior of the upper branch W} of the unstable manifold as ¢ — 0 is also
clear. It approaches a singular orbit composed of two slow motions along
the isocline © = 0 (EgA and BC) and two fast jumps in the horizontal
direction (AB and CEjp; the latter happens along the z-axis) (see Figure
6.20). This singular orbit returns to Ey, thus forming a singular homoclinic
orbit.

This construction can be carried out for all sufficiently small a # 0 (see
Figure 6.21). The equilibrium point will shift away from the x-axis and will
have the y-coordinate equal to «. Despite this, a singular orbit to which
W tends as € — 0 still arrives at a neighborhood of the saddle along

y=0:y= + a;
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y
y=0
B A
£
1/2 ﬂ—:
C il/3 EO
1 »—\\l\ X
x= 0

FIGURE 6.20. Zero-isoclines of (6.9) and the corresponding singular homoclinic
orbit.

oa<0 a=0 oa>0

FIGURE 6.21. Singular homoclinic bifurcation in (6.9).

the z-axis. Therefore, there is a singular split function (o(a) measured
along a vertical cross-section near the saddle which equals a: Fp(a) = .
Obviously, 5;(0) > 0. Meanwhile, the singular orbit tends to a singular
limit cycle if a < 0.

Thus, we have a generic singular homoclinic bifurcation at o = 0 in the
singular limit € = 0. This implies the existence of a generic homoclinic
bifurcation at o = ag(e) for sufficiently small € > 0. One can show this
using nonstandard analysis. To prove it in a standard way, one has to check
that the split function 3(«,¢€) can be represented for all sufficiently small
>0 as

Ble,e) = fola) + p(a, ),
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where (o, €) (considered as a function of a for small |a|) vanishes uni-
formly with its first derivative as ¢ — 0. Then, elementary arguments*
show the existence of a unique continuous function ag(g), ap(0) = 0, such
that

6(00(5)’6) =0

for all sufficiently small € > 0. Actually, ag(e) is smooth for € > 0. There-
fore, the system has a homoclinic orbit at a = a(e) for all sufficiently small
. The corresponding saddle quantity og is negative and G, (ao(€), ) # 0,
thus, Theorem 6.1 is applicable to (6.9). ¢

More remarks on Theorem 6.1:
(1) Condition (H.2) of Theorem 6.1 is equivalent to the transversality of
the intersection of certain invariant manifolds of the extended system

z = f(z,«a),
{a — (6.10)

Let z¢(«) denote a one-parameter family of the saddles in (6.4) for small |«
This family defines an invariant set of (6.10) — a curve of equilibria. This
curve has two-dimensional unstable and stable manifolds, W* and W?*,
whose slices @ = const coincide with the corresponding one-dimensional
unstable and stable manifolds W* and W* of the saddle zo(«) in (6.4) (see
Figure 6.22). Condition (H.2) (meaning that W* and W split with nonzero

FIGURE 6.22. Transversal intersection of invariant manifolds W* and W?.

velocity as « crosses a = 0) translates exactly to the transversality of the
intersection of W* and W?* along I'y at @ = 0 in the three-dimensional

4The only difficulty that should be overcome is that ¢(c, €) is not differentiable
with respect to € at € = 0 (see Exercise 8).
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state space of (6.10). In Section 6.4.1 we will show that the transversality
is equivalent to the Melnikov condition:

oo L(0fL | Of Of2 of
- — 4+ —=]d —= —fo—=—)dt#0
foowl= [ v o] (n5e - 550 ) a e
where all expressions involving f = (f1, f2)? are evaluated at a = 0 along
a solution 2°(-) of (6.4) corresponding to the homoclinic orbit T'y.
(2) One can construct a topological normal form for the homoclinic bifur-

cation on the plane. Consider the (£, n)-plane and introduce two domains:
the unit square

and the rectangle

D ={En): 1<£<2, n| <1}

(see Figure 6.23). Define a two-dimensional manifold Q by glueing Qy and

-1

FIGURE 6.23. Topological normal form for homoclinic bifurcation.

) along the vertical segment {£ = 1, |n| < 1} and identifying the upper
boundary of g with the right boundary of ; (i.e., glueing points (&,1)
and (2,€) for |£] < 0). The resulting manifold is homeomorphic to a simple
band.

Consider a system of ODEs in 2 that is defined by

£ = M(a),
A 6
in Q4 and by

£ = -1,
{1'7 = Bla)n, (6.12)

in £, where A2 and 3 are smooth functions of a parameter o. The be-
havior of thus defined piecewise-smooth system in €2 is similar to that of
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(6.4) near the homoclinic orbit (cf. Figures 6.15 and 6.23). If \; < 0 < Ag,
the constructed system has a saddle at the origin. At § = 0 this saddle has
a homoclinic orbit Ty composed by two segments of the coordinate axes:
{£=0,0<n<1}and {n =0, 0 <& < 2}. Forsmall 5 # 0 this homoclinic
orbit breaks down, with the parameter § playing the role of the split func-
tion. Provided the saddle quantity oo = A1(0) + A2(0) # 0, a unique limit
cycle bifurcates from T'g. This can be seen from the Poincaré map defined
by the system (6.11), (6.12) in the cross-section {£€ =1, 0 <9 < 1}:

A
e By

Actually, the following theorem holds.

Theorem 6.2 Under the assumptions of Theorem 6.1, the system (6.4)
is locally topologically equivalent near the homoclinic orbit Ty for nearby
parameter values to the system defined by (6.11) and (6.12) in Q near Tg
for small |B8]. Moreover, all such systems with oy < 0 (o¢ > 0) are locally
topologically equivalent near the respective homoclinic orbits for nearby pa-
rameter values. O

The last statement of the theorem follows from the fact that, for og < 0,
the constructed system in Q is locally topologically equivalent near I'y for
small | 5] to this system with constant \y = —2, Ay = 1, while, for o¢ > 0,
it is equivalent to that with Ay = =1,y = 2. &

6.3 Homoclinic bifurcations in three-dimensional
systems: Shil’nikov theorems

A three-dimensional state space gives rise to a wider variety of homoclinic
bifurcations, some of which involve an infinite number of periodic orbits. As
is known from Chapter 3, the two simplest types of hyperbolic equilibria in
R? allowing for homoclinic orbits are saddles and saddle-foci. We assume
from now on that these points have a one-dimensional unstable manifold
W* and a two-dimensional stable manifold W* (otherwise, reverse the time
direction). In the saddle case, we assume that the eigenvalues of the equi-
librium are simple and satisfy the inequalities Ay > 0 > Ay > A3. Then, as
we have seen in Chapter 2, all the orbits on W* approach the equilibrium
along a one-dimensional eigenspace of the Jacobian matrix corresponding
to Ay except two orbits approaching the saddle along an eigenspace corre-
sponding to Az (see Figure 2.4(a)).

Definition 6.6 The eigenvalues with negative real part that are closest to
the imaginary azis are called leading (or principal) eigenvalues, while the
corresponding eigenspace is called a leading (or principal) eigenspace.
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Thus, almost all orbits on W* approach a generic saddle along the one-
dimensional leading eigenspace. In the saddle-focus case, there are two lead-
ing eigenvalues Ay = )3, and the leading eigenspace is two-dimensional (see
Figure 2.4(b)).

Definition 6.7 A saddle quantity o of a saddle (saddle-focus) is the sum
of the positive eigenvalue and the real part of a leading eigenvalue.

Therefore, 0 = A1 + A2 for a saddle, and o = A; + Re Ao 3 for a saddle-
focus.

The table below briefly presents some general results Shil’nikov obtained
concerning the number and stability of limit cycles generated via homoclinic
bifurcations in R3. The column entries specify the type of the equilibrium
having a homoclinic orbit, while the row entries give the possible sign of
the corresponding saddle quantity.

| || Saddle | Saddle-focus |

09 < 0 || one stable cycle | one stable cycle
oo > 0 || one saddle cycle | oo saddle cycles

The following theorems give more precise information.

Theorem 6.3 (Saddle, og < 0) Consider a three-dimensional system
i=f(r,a), v€R aeR (6.13)

with smooth f, having at o = 0 a saddle equilibrium point xo = 0 with real
eigenvalues A\1(0) > 0 > A2(0) > A3(0) and a homoclinic orbit T'y. Assume
the following genericity conditions hold:

(H.1) 09 = A1(0) + A2(0) < 0;

(H.2) A2(0) # A3(0);

(H.3) T'g returns to xo along the leading eigenspace;

(H.4) B'(0) # 0, where B(a) is the split function defined earlier.

Then, the system (6.13) has a unique and stable limit cycle Lg in a neig-
borhood Uy of T'g U xq for all sufficiently small 3 > 0. Moreover, all such
systems are locally topologically equivalent near T'o U xg for small |a]. O

The theorem is illustrated in Figure 6.24. The unstable manifold W*(z)
tends to the cycle Lg. The period of the cycle tends to infinity as 8 ap-
proaches zero. The (nontrivial) multipliers of the cycle are positive and
inside the unit circle: |u1 2] < 1. There are no periodic orbits of (6.13) in
Uy for all sufficiently small 8 < 0. Thus, the bifurcation is completely anal-
ogous to that in the planar case. The proof of the theorem will be sketched
later (see also Exercise 10).
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B<0 B=0 B>0
FIGURE 6.24. Saddle homoclinic bifurcation with o9 < 0.

Theorem 6.4 (Saddle-focus, oy < 0) Suppose that a three-dimensional
system
i=f(z,a), r€R? acR (6.14)

with a smooth f, has at a = 0 a saddle-focus equilibrium point xo = 0 with
eigenvalues A\1(0) > 0 > Re A23(0) and a homoclinic orbit T'y. Assume the
following genericity conditions hold:

(Hl) oy = )\1(0) + Re )\2’3(0) < 0;
(H.2) A2(0) # A3(0);
(H.3) B'(0) # 0, where 3(«) is the split function.

Then, system (6.14) has a unique and stable limit cycle Lg in a neighbor-
hood Uy of Ty U xq for all sufficiently small B > 0, as presented in Figure
6.25. O

B<0 B=0 B>0

FIGURE 6.25. Saddle-focus homoclinic bifurcation with oo < 0.

There are no periodic orbits of (6.14) in Uy for all sufficiently small
B < 0. The unstable manifold W*(zo) tends to the cycle Lg. The cycle
period tends to infinity as 8 approaches zero. The (nontrivial) multipliers
of the cycle are complex, pa = f71, and lie inside the unit circle: |u; o] < 1.

The analogy with the planar case, however, terminates here. We cannot
say that the bifurcation diagrams of all systems (6.10) satisfying (H.1)-
(H.3) are topologically equivalent. As a rule, they are nonequivalent since
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the real number
A1(0)

“Re v (0 2o3(0) (6.15)

Vg =
is a topological invariant for systems with a homoclinic orbit to a saddle-
focus. The nature of this invariant will be clearer later. Thus, although there
is a unique limit cycle for § > 0 in all such systems, the exact topology of
their phase portraits can differ. Fortunately, this is not very important in
most applications.

Before treating the saddle case with o9 > 0, we have to look at the
topology of the invariant manifold W#*(xy) near I'y more closely. Suppose
we have a three-dimensional system with a saddle equilibrium point 2y hav-
ing simple eigenvalues and a homoclinic orbit returning along the leading
eigenspace to this saddle. Let us fix a small neighborhood Uy of T'y N .
The homoclinic orbit 'y belongs to the stable manifold W#(xg) entirely.
Therefore, the manifold W?*(zy) can be extended “back in time” along I'y

FIGURE 6.26. (a) Simple and (b) twisted stable manifolds near a homoclinic
orbit to a saddle.

within the fixed neighborhood. At each point ¢!z € I'g, a tangent plane
to this manifold is well defined. For ¢ — 400, this plane is spanned by
the stable eigenvectors vy and ws. Generically, it approaches the plane
spanned by the unstable eigenvector v; and the nonleading eigenvector vs,
as t — —oo. Thus, generically the manifold W*(x) intersects itself near
the saddle along the two exceptional orbits on W*(xy) that approach the
saddle along the nonleading eigenspace® (see Figure 6.26). Therefore, the
part of W?*(xo) in Uy to which belongs the homoclinic orbit T'y is (generi-
cally) a two-dimensional nonsmooth submanifold M. As is well known from

5This property (often called the strong inclination property) was first estab-
lished by Shil’'nikov and is discussed in Exercise 9. See also Chapter 10, where
we describe how to verify this property numerically.
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elementary topology, such a manifold is topologically equivalent to either
a simple or a twisted band. The latter is known as the Mobius band.

Definition 6.8 If M is topologically equivalent to a simple band, the ho-
moclinic orbit Ty is called simple (or nontwisted). If M is topologically
equivalent to a Mdébius band, the homoclinic orbit is called twisted.

We are now ready to formulate the relevant theorem.

Theorem 6.5 (Saddle, og > 0) Consider a three-dimensional system
&= f(zr,a), zcR3 acR! (6.16)

with smooth f, having at o = 0 a saddle equilibrium point xo = 0 with real
eigenvalues A\1(0) > 0 > A2(0) > A3(0) and a homoclinic orbit T'y. Assume
that the following genericity conditions hold:

].) g — )\1(0) + )\2(0) > 0;

2) A2(0) # A3(0);

3) Tg returns to xo along the leading eigenspace;
4) Ty is simple or twisted;

H.5) 5'(0) # 0, where S(«) is the split function.

(H.
(H.
(H.
(H.
(

Then, for all sufficiently small ||, there exists a neighborhood Uy of T'oNxg
in which a unique saddle limit cycle Lg bifurcates from I'g. The cycle exists
for B < 0 if Ty is nontwisted, and for f > 0 if Iy is twisted. Moreover,
all such systems (6.16) with simple (twisted) Tg are locally topologically
equivalent in a neighborhood Uy of To Nxzq for sufficiently small |a]. O

B<0

FIGURE 6.27. Simple saddle homoclinic bifurcation with o¢ > 0.

The bifurcation diagrams to both cases are presented in Figures 6.27
and 6.28, respectively. In both (simple and twisted) cases a unique saddle
limit cycle Lg bifurcates from the homoclinic orbit. Its period tends to
infinity as @ approaches zero. Remarkably, the direction of the bifurcation
is determined by the topology of M.
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B<0 B>0

FIGURE 6.28. Twisted saddle homoclinic bifurcation with oo > 0.

If the homoclinic orbit is simple, there is a saddle cycle Lg for 5 < 0.
Its multipliers are positive: 3 > 1 > ps > 0. The stable and unstable
manifolds W**(Lg) of the cycle are (locally) simple bands.

If the homoclinic orbit is twisted, there is a saddle cycle Lg for 8 > 0.
Its multipliers are negative: 1 < —1 < pg < 0. The stable and unstable
manifolds W**(Lg) of the cycle are (locally) Mobius bands.

Sketch of the proof of Theorems 6.2 and 6.4:

We outline the proof of the theorems in the saddle cases. There are
coordinates in R? in which the manifolds W*(x¢) and W*(z) are linear
in some neighborhood of xy. Suppose system (6.13) (or (6.16)) is already
written in these coordinates and, moreover, locally: W*(zq) C {z1 = 0},
W¥(zg) C {ze2 = x3 = 0}. Let the zy-axis be the leading eigenspace and
the z3-axis be the nonleading eigenspace. Introduce a rectangular two-
dimensional cross-section ¥ C {zz = €2} and an auxiliary rectangular
cross-section II C {x1 = £1}, where €1 2 are small enough. Assume that Ty
intersects both local cross-sections (see Figure 6.29). As in the planar case,
define a Poincaré map P : ¥* — ¥ along the orbits of (6.13), mapping
the upper part X1 of ¥ corresponding to x; > 0 into . Represent P as a
superposition

P=QoA,

where A : ¥ — II is a near-to-saddle map, and @ : II — X is a map along
the global part of I'g. The construction can be carried out for all sufficiently
small |3].

The local map A is “essentially”® defined by the linear part of (6.13)
near the saddle. It can be seen that the image of ©1 under the action of
map A, AXT looks like a “horn” with a cusp on the zj-axis (on Ty, in
other words). Actually, the cross-sections ¥ and II should be chosen in such
a way that AXT C II. The global map @ maps this “horn” back into the

SUnfortunately, there are obstacles to C*-linearization with k& > 1 in this case.
For example, C'-linearization is impossible if Ao = A1 4+ A3 (see Appendix 2).



6.3 Shil’nikov bifurcations 219

2

z

FIGURE 6.29. Construction of the Poincaré map in the saddle case.

plane {xs = eo}. If Ty is simple, PX* intersects nontrivially with X% at
B = 0; otherwise, the intersection with ¥~ = ¥ \ 7T is nontrivial (see
Figure 6.29). Note that the transversality of the “horn” to the intersection
of W#(zg) with 3 follows from the orientability or nonorientability of the
manifold M.

According to the sign of the saddle quantity o¢ and the twisting of the
homoclinic orbit, there are several cases of relative position of PXT with
respect to X (Figures 6.30 and 6.31). A close look at these figures, actually,
completes the proof. If o9 < 0 (Theorem 6.2, Figure 6.29), the map P is a
contraction in ¥ for 3 > 0 and thus has a unique and stable fixed point in
PX7* corresponding to a stable limit cycle. If og > 0 (Theorem 6.4, Figure
6.30), the map P contracts along the x3-axis and expands along the “horn.”
Therefore it has a saddle fixed point in PX.T for 3 < 0 or 3 > 0, depending
on the twisting of the homoclinic orbit. O

Remark:

Because the map P always acts as a contraction along the x3-axis, the
fixed-point analysis reduces (see Exercise 10) to the analysis of a one-
dimensional map having the form

RS
T B4 Az 2 4

that is similar to that in the Andronov-Leontovich theorem but A can be
either positive (simple homoclinic orbit) or negative (twisted homoclinic
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p<0 B=0 B>0
FIGURE 6.30. The relative position of PX" with respect to ¥ in the case o¢ < 0.

orbit).

Actually, this analogy can be extended further, since in this case there is a
two-dimensional attracting invariant “center manifold” near the homoclinic
orbit (see Section 6.4).

The last case is the most difficult.

Theorem 6.6 (Saddle-focus, oy > 0) Suppose that a three-dimensional

system
= f(r,a), r€R} acRY (6.17)

with a smooth f, has at a = 0 a saddle-focus equilibrium point xo = 0 with
eigenvalues A\1(0) > 0 > Re A2 3(0) and a homoclinic orbit Ty. Assume that
the following genericity conditions hold:

(H.l) og = )\1(0) + Re )\273(0) > 0;
(H.2) A2(0) # A3(0).

Then, system (6.17) has an infinite number of saddle limit cycles in a
neighborhood Uy of Tg U xg for all sufficiently small |3]. O

Sketch of the proof of Theorems 6.3 and 6.5:

To outline the proof, select a coordinate system in which W*(zg) is (lo-
cally) the plane z; = 0, while W*"(x¢) is (also locally) the line 9 = 23 =0
(see Figure 6.32). Introduce two-dimensional cross-sections ¥ and II, and
represent the Poincaré map P : ¥T — ¥ as a superposition P = Q o A of
two maps: a near-to-saddle A : ¥* — II and a global @ : II — X, as in the
proof of Theorems 6.2 and 6.4.7

"Actually, in the case of the saddle-focus, there is a C' change of coordinates
that locally linearizes the system (see Appendix 2). It allows one to compute A
analytically.
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FIGURE 6.31. Relative position of PX1 with respect to ¥ in the case o > 0.

The image AXT of % on II is no longer a horn but a “solid spiral”
(sometimes called a Shil’nikov snake). The global map @ maps the “snake”
to the plane containing X.

Assume, first, that 5 = 0 and consider the intersection of the “snake”
image (i.e., PXT) with the local cross-section 3. The origin of the “snake”
is at the intersection of I’y with X. The intersection of ¥ with W*(z) splits
the “snake” into an infinite number of upper and lower “half-spirals.” The
preimages ¥; of the upper “half-spirals” P¥;, ¢ = 1,2,..., are horizontal
strips in X1 (see Figure 6.33). If the saddle quantity oo > 0, the inter-
section ¥; N PY; is nonempty and consists of two components for ¢ > ig,
where i is some positive number (ig = 2 in Figure 6.33(a)). Each of these
intersections forms a Smale horseshoe (see Chapter 1). It can be checked
that the necessary expansion conditions are satisfied. Thus, each horseshoe
gives an infinite number of saddle fixed points. These fixed points corre-
spond to saddle limit cycles of (6.17). If oy < 0, there is some ig > 0 such
that for ¢ > i the intersection ;N PY; is empty (ig = 2 in Figure 6.33(b)).
Thus, there are no fixed points of P in X7 close to I'y.

If B # 0, the point corresponding to I'g is displaced from the horizontal
line in X. Therefore, if og > 0, there remains only a finite number of Smale
horseshoes. They still give an infinite number of saddle limit cycles in (6.17)
for all sufficiently small |3|. In the case o¢ < 0, the map P is a contraction
in X% for 8 > 0 and thus has a unique attracting fixed point corresponding
to a stable limit cycle of (6.14). There are no periodic orbits if § < 0. O

Remarks:
(1) As in the saddle-focus case with op < 0, it cannot be said that the
bifurcation diagrams of all systems (6.15) satisfying (H.1)-(H.2) are topo-
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FIGURE 6.32. Construction of the Poincaré map in the saddle-focus case.

logically equivalent. The reason is the same: the topological invariance of 1
given by (6.15). Actually, the complete topological structure of the phase
portrait near the homoclinic orbit is not known, although some substan-
tial information is available due to Shil’nikov. Let Q(r) be the set of all
nonequivalent bi-infinite sequences

w = { ce,W_2,W_1,W0, W1, W2, .. '}7
where w; are nonnegative integers such that
Wit1 < Vwj

for all i = 0,+1,42,..., and for some real number v > 0. Then, at 5 =0
there is a subset of orbits of (6.17) located in a neighborhood Uy of T'o U xg
for all t € R', whose elements are in one-to-one correspondence with Q(v),
where v does not exceed the topological invariant vg. The value w; can
be viewed as the number of “small” rotations made by the orbit near the
saddle after the ith “global” turn.

(2) As [ approaches zero taking positive or negative values, an infinite
number of bifurcations results. Some of these bifurcations are related to
a “basic” limit cycle, which makes one global turn along the homoclinic
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FIGURE 6.33. Poincaré map structure in the saddle-focus cases: (a) oo > 0; (b)

oo < 0.
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T, Ty

@ (b)

FIGURE 6.34. Period of the cycle near a saddle-focus homoclinic bifurcation: (a)
oo < 0; (b) oo > 0.

orbit. It can be shown that this cycle undergoes an infinite number of tan-
gent bifurcations as |3] tends to zero. To understand the phenomenon, it
is useful to compare the dependence on 3 of the period T of the cycle
in the saddle-focus cases with og < 0 and o9 > 0. The relevant graphs
are presented in Figure 6.34. In the oy < 0 case, the dependence is mono-
tone, while if g > 0 it becomes “wiggly.” The presence of wiggles means
that the basic cycle disappears and appears via tangent (fold) bifurcations
infinitely many times. Notice that for any sufficiently small |G| there is
only a finite number of these “basic” cycles (they differ in the number of
“small” rotations near the saddle-focus; the higher the period, the more
rotations the cycle has). Moreover, the cycle also exhibits an infinite num-
ber of period-doubling bifurcations. The tangent and flip bifurcations are
marked by ¢ and f, respectively, in the figure. The flip bifurcations generate
double-period cycles. Each of them makes two global turns before closure.
These cycles themselves bifurcate while approaching the homoclinic orbit,
making the picture more involved. The basic cycle, as well as the secondary
cycles generated by period doublings, are stable or repelling, depending on
the sign of the divergence of (6.17) at the saddle-focus:

o] = (le f)(xo,()) =M+A+A3=XA +2Re /\273.

If o1 < 0 the basic cycle near the bifurcation can be stable (actually, there
are only short intervals of 8 within which it is stable). If o1 > 0 there
are intervals where the basic cycle is totally unstable (repelling). Thus, the
saddle cycles mentioned in the theorem and coded at 8 = 0 by periodic
sequences of () are not the only cycles in Up.

(3) Other bifurcations near the homoclinic orbit are due to secondary
homoclinic orbits. Under the conditions of Theorem 6.5, there is an infinite
sequence of 3; > 0, §; — 0, for which the system has double homoclinic
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orbits with different (increasing) number of rotations near the saddle-focus
(see Figure 6.35). Other subsidiary homoclinic orbits are also present, like
the triple making three global turns before final return.

(4) Recall that in this section we assumed n_ = dimW?® = 2 and
ny = dimW* = 1. To apply the results in the opposite case (i.e., n_ =
1,n4 = 2), we have to reverse the direction of time. This boils down to
these substitutions: A; — —\;, 0; — —o0y, and “stable” — “repelling.” &

Example 6.3 (Complex impulses in the FitzHugh-Nagumo mo-
del) The following system of partial differential equations is the FitzHugh-
Nagumo caricature of the Hodgkin-Huxley equations modeling the nerve
impulse propagation along an axon (FitzHugh [1961], Nagumo, Arimoto &
Yoshizawa [1962]):

ou 0?u

ar = 9.2 fa( )_ v,

ot Ox

Ov

— = bu,

ot
where u = wu(z,t) represents the membrane potential; v = wv(z,t) is a
phenomenological “recovery” variable; f,(u) = u(u —a)(u — 1), 1 > a >

0, b>0, —0o <z <400, t>0.
Traveling waves are solutions to these equations of the form

u(z,t) =U(E), v(z,t) =V (&), £ =x+ct,

where ¢ is an a priori unknown wave propagation speed. The functions U ()
and V(&) define profiles of the waves. They satisfy the following system of
ordinary differential equations:

u = w,
W = W+ f£U)+V, (6.18)
v o= by

where the dot means differentiation with respect to “time” £. System (6. 18)
is called a wave system. It depends on three positive parameters (a, b, c)

LEL

FIGURE 6.35. Basic (a) and double (b, ¢) homoclinic orbits.
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Any bounded orbit of (6.18) corresponds to a traveling wave solution of
the FitzHugh-Nagumo system at parameter values (a, b) propagating with
velocity c.

0.8 T T T
D, D

3 ' 2

1

"Dy

0.7
0.6
0.5
0.4
0.3

0.2

0.1 ' .
0.0 0.1 0.2 0.3

FIGURE 6.36. Bifurcation curves of the wave system (6.16):
b1 = 0.01; b2 = 0.005; bz = 0.0025.

For all ¢ > 0 the wave system has a unique equilibrium 0 = (0,0, 0) with
one positive eigenvalue A; and two eigenvalues Ay 3 with negative real parts
(see Exercise 2 in Chapter 2). The equilibrium can be either a saddle or a
saddle-focus with a one-dimensional unstable and a two-dimensional stable
invariant manifold, W**(0). The transition between saddle and saddle-
focus cases is caused by the presence of a double negative eigenvalue; for
fixed b > 0 this happens on the curve

Dy = {(a,c) : ¢*(4b — a®) + 2ac®(9b — 2a?%) + 27b* = 0}.

Several boundaries Dy, in the (a,c)-plane for different values of b are de-
picted in Figure 6.36 as dotted lines. The saddle-focus region is located
below each boundary and disappears as b — 0.

A branch W (0) of the unstable manifold leaving the origin into the
positive octant can return back to the equilibrium, forming a homoclinic
orbit Ty at some parameter values [Hastings 1976]. These parameter values
can be found only numerically with the help of the methods described in
Chapter 10. Figure 6.36 presents several homoclinic bifurcation curves Pb(l)
in the (a, ¢)-plane computed by Kuznetsov & Panfilov [1981] for different
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a

FIGURE 6.37. Parametric curves D, and Pb(l) for b = 0.0025.

oz
&) I

(b)
FIGURE 6.38. Impulses with (a) monotone and (b) oscillating “tails”.
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but fixed values of b. Looking at Figure 6.36, we can conclude that for
all b > 0 the bifurcation curve Pb(l) passes through the saddle-focus region

delimited by Dy (see Figure 6.37, where the curves D, and Pb(l) correspond-
ing to b = 0.0025 are superimposed). Actually, for b > 0.1, the homoclinic
bifurcation curve belongs entirely to the saddle-focus region. Any homo-
clinic orbit defines a traveling impulse. The shape of the impulse depends
very much on the type of the corresponding equilibrium: It has a monotone
“tail” in the saddle case and an oscillating “tail” in the saddle-focus case
(see Figure 6.38).

The saddle quantity o is always positive for ¢ > 0 (see Exercise 11).
Therefore, the phase portraits of (6.14) near the homoclinic curve Pb(l)
are described by Theorems 6.4 and 6.5. In particular, near the homoclinic
bifurcation curve Pb(l) in the saddle-focus region, system (6.18) has an
infinite number of saddle cycles. These cycles correspond to periodic wave
trains in the FitzHugh-Nagumo model [Feroe 1981]. Secondary homoclinic
orbits existing in (6.18) near the primary homoclinic bifurcation correspond
to double traveling impulses (see Figure 6.39) [Evans, Fenichel & Feroe
1982]. It can be shown using results by Belyakov [1980] (see Kuznetsov

N N

FIGURE 6.39. A double impulse.

& Panfilov [1981]) that secondary homoclinic bifurcation curves Pb(?j) in

(6.18) originate at points A o where Pb(l) intersects Dy, (see Figure 6.37 for
a sketch). ¢

6.4 Homoclinic bifurcations in n-dimensional
systems

It has been proved (see references in Appendix 2) that there exists a
parameter-dependent invariant center manifold near homoclinic bifurca-
tions. This allows one to reduce the study of generic bifurcations of orbits
homoclinic to hyperbolic equilibria in n-dimensional systems with n > 3
to that in two-, three-, or four-dimensional systems. In this section, we
discuss which homoclinic orbits are generic in n-dimensional case and for-
mulate the Homoclinic Center Manifold Theorem for such orbits. Then we
derive from this theorem some results concerning generic homoclinic bifur-
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cations in n-dimensional systems, first obtained by L.P. Shil'nikov without
a center-manifold reduction.

6.4.1 Regular homoclinic orbits: Melnikov integral

Consider a system
i=f(z,a), = _(x1,2s,...,2,)7 €R", a R} (6.19)

where f is C* smooth and n > 3. Suppose, that (6.19) has a hyperbolic
equilibrium zy at a = 0, and the Jacobian matrix Ay = f,(x0,0) has ny
eigenvalues with positive real parts

0< Red; < Reldy <---< Re Ay,
and n_ eigenvalues with negative real parts
Repn. < Repp_—1 <---< Repp <0.

For all sufficiently small |«, the equilibrium persists and has unstable and
stable local invariant manifolds W* and W* that can be globally extended,
dim W** = ny, ny +n_ = n. Assume that (6.19) has at a = 0 an orbit
I'g homoclinic to ¢ and denote by x°(¢) a solution of (6.19) corresponding
to Fo.

As we have seen in Section 6.1, the intersection of W#(zy) and W™ (z)
along Ty cannot be transversal, since the vector i%(ty) = f(2°(t9),0) is
tangent to both manifolds at any point 2°(to) € T'g. However, in the generic
case, i%(tg) is the only such vector:

Ty 1) W (0) N Tyo (1) W* (0) = span{i(to)}.
Thus, generically,
COdim(TwO(tO)WS (o) + TIO(tO)WS (z9)) = 1.

A generic perturbation splits the manifolds W#(xo) and W"(zg) by an
O(a)-distance in the remaining direction for a # 0. Such homoclinic orbits
are called regular.

As in Section 6.2, introduce the extended system:

z = f($,0[),
{d _— (6.20)

with the phase variables (z,a)” € R"1. Let 2¢() denote a one-parameter
family of the saddles in (6.19) for small ||, 20(0) = 2. This family defines
an invariant set of (6.20) — a curve of equilibria. This curve has the unstable
and stable manifolds, W" and W?, whose slices a = const coincide with
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the corresponding unstable and stable manifolds W* and W* of the sad-
dle zo(a). It is clear that the regularity of the homoclinic orbit translates
exactly into the transversality of the intersection of W* and W? along I
at & = 0 in the (n + 1)-dimensional phase space of (6.20):

T(IO(to)yo)Wu + T(:co(tg),O)Ws =R,

Figure 6.22 in Section 6.2 illustrates the case n = 2.
The transversality of the intersection of W* and W? can be expressed
analytically. Namely, consider the linearization of (6.20) around z°(t) at

a=0:
S 0 0
{ u = fx(2°(t),0)u+ fo(2°(t),0)pu, (6.21)
no= 0.
If (ug, p10)T is a vector tangent to either W* or W#, then the solution vector

(u(t), u(t))T of this system with the initial data (ug, uo)? is always tangent
to the corresponding invariant manifold. The vector function

(48)-()

is a bounded solution to (6.21) that is tangent to both invariant mani-
folds W* and W?* along the curve of their intersection.® We can multiply
this solution by a scalar to get another bounded solution to (6.21). The
transversality of the intersection of W* and W?* along I'g at o = 0 means
that (2°(¢),0)7 is the unique to within a scalar multiple bounded solution
to the extended system (6.21). Taking into account that the equation for
win (6.21) is trivial, we can conclude that 3°(¢) is the unique to within a
scalar multiple solution to the wvariational equation around I'y:

= A(t)u, ueR", (6.22)

where A(t) = f.(2°(t),0). This implies that the adjoint variational equation
around I'y:
v =—AT(tyv, veR", (6.23)

has the unique to within a scalar multiple bounded solution v(t) = 7(t).
Indeed, if X () is the fundamental matrix solution to (6.22), i.e., X (t) =
A)X(t), X(0) = I, then Y () = [XT(¢)]7! is the fundamental matrix
solution to (6.23), so equations (6.22) and (6.23) have the same number of
linearly independent bounded solutions. Actually, the vectors ((t) and 7(¢)
are orthogonal for each ¢t € R!. Using (6.22) and (6.23), we get

S0 = (,0)+ (1.C) = ~(ATw.C) + 1, AQ) = ~{n, AQ) + {n, AQ) =0,

8 Actually, this solution tends to zero exponentially fast as ¢ — oo since

(1) = F(2(1), 0).
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i.e., (n(t),((t)) = C. The constant C is zero, since both n(t) and ((t) tend
to zero exponentially fast as t — do0:

(n(t),C(t)) =0, teR.

Meanwhile, similar arguments show that n(t) is orthogonal to any vector
tangent to either W*(xg) or W*(zg). Moreover, the transversality is equiv-
alent to the condition

+oo
Ma0) = [ aft). fula(0),0)) e # 0. (6.24)

— 00

If the intersection of W*" and W? is nontransversal, there exists another
bounded solution (o(t),10)T to (6.21) with g # 0. Taking the scalar
product of (6.21) with n and integrating over time, we get

+o0 Fo0 .
o / (), fa(2°(1), 0)) dt =/_ (), o(t) — AB)Co(1)) dt

+oo

= OGO~ [0 + AT @0, G0) d = o

— 00

The integral in (6.24) is called the Melnikov integral. This condition al-
lows us to verify the regularity of the manifold splitting in n-dimensional
systems with n > 2. Moreover, one can introduce a scalar split function
M () that measures the displacement of the invariant manifolds W*(z)
and W*(z¢) near the point 2°(0) € I'y in the direction defined by the vector
1(0) and has the property

M (o) = M (0)ar + O(a?),

where M, (0) is given by (6.24).
In the two-dimensional case the Melnikov integral M, (0) can be com-
puted more explicitly. Write (6.19) in coordinates:

{3'31 = [z, ),

j?z = fg(l‘, Oé).

The solution ((t) to the variational equation (6.22) has the form

oy _ [ Fi(2°(t),0)
xO(t) = ( fz(xo(t),()) ) .

I
—~
~+
~—
I
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for some scalar function ¢(t). It is easy to verify that this function satisfies
the equation

o(t) = —(div f)(z°(2), 0)ep(2),

. (Ofr  Ofs
dlvf_(@a:l+8a:2>

is the divergence of the vector field f. Assuming ©(0) = 1, we obtain

where

o) = ¢ [Idiv £)@(r),0) dr

+oo Lrof 0fa 0 f2 of
(6.25)
where all expressions with f = (f1, f2)T are evaluated along the homoclinic

solution zY(+) at a = 0.

Remark:
Suppose that (6.4) is a Hamiltonian system at « = 0, and « is a small
parameter in front of the perturbation, i.e.,

&= J(VH)(z) +ag(z), €R?* acR

0 1 OH OoH\"
(o) v (5 o)
and H = H(x) is the Hamiltonian function. Then the Melnikov integral
(6.25) can be simplifyed further. In such a case, div f = 0 and the ho-
moclinic orbit T’y belongs to a level curve {x : H(z) = H(xo)}. Assume
that its interior is a domain Q = {H (z) < H(zo)}. Then, applying Green’s
theorem reduces the Melnikov integral along I'g to the following domain
integral:

where

Mo(0) = [ (v )(a"(0)) d.

6.4.2 Homoclinic center manifolds

To formulate the Homoclinic Center Manifold Theorem, it is useful to dis-
tinguish the eigenvalues that are closest to the imaginary axis (see Figure
6.40).

Definition 6.9 The eigenvalues with positive (negative) real part that are
closest to the imaginary axis are called the unstable (stable) leading eigen-
values, while the corresponding eigenspaces are called the unstable (stable)
leading eigenspaces.
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FIGURE 6.40. Splitting of the eigenvalues.

Definition 6.10 The stable and unstable leading eigenvalues together are
called central eigenvalues, while the corresponding eigenspace is called the
central eigenspace.

Almost all orbits on W*(W#) tend to the equilibrium as t — —oo
(t = +o0) along the corresponding leading eigenspace that we denote by
T“(T*). Exceptional orbits form a nonleading manifold W**(W*%) tangent
to the eigenspace T“*(T%%) corresponding to the nonleading eigenvalues.
The central eigenspace T°¢ is the direct sum of the stable and unstable
leading eigenspaces: T¢ = T @ T°. Denote by ¢ the minimal Re A; cor-
responding to the nonleading unstable eigenvalues and by po the maximal
Re p; corresponding to the nonleading stable eigenvalues (see Figure 6.40).
By the construction,

,u0<Re,u1<0<Re)\1<)\0,

where ) is a leading unstable eigenvalue and pu; is a leading stable eigen-
value. Provided both nonleading eigenspaces are nonempty, introduce two
real numbers:
s __ Ho u o >‘O

" Re ' g " Re A\

9

These numbers characterize the relative gaps between the corresponding
nonleading and leading eigenvalues and satisfy g®* > 1. If one of the non-
leading eigenspaces is empty, set formally ¢° = —oo or g% = 4o0.

Now notice that the variational equation (6.22) is a nonautonomous lin-
ear system with matrix A(t) that approaches asymptotically a constant
matrix, namely

t—too
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Therefore, for t — oo, solutions of (6.21) behave like solutions of the
autonomous linear system
v = Ao’U

and we can introduce four linear subspaces of R":

B (o) = { A e €T }
58 _ . . ’U(t) ss
B = {o o <7
B = {w: g ere],
B = {os g €71,

where v(t) = ®(vo, to, t) is the solution to (6.21) with the initial data v = vy
at t = tg, and @ stands for the direct sum of the linear subspaces. Finally,
define

E°(tg) = E°“(to) N E(to).

Now we can formulate without proof the following theorem.

Theorem 6.7 (Homoclinic Center Manifold) Suppose that (6.19) has
at a« = 0 a hyperbolic equilibrium xo = 0 with a homoclinic orbit

Io={rcR": z=2"), t e R'}.

Assume the following conditions hold:

(H.1) 9(0) € E<(0);
(H.2) E**(0) & E¢(0) & E%(0) = R™.

Then, for all sufficiently small |a|, (6.19) has an invariant manifold M,
defined in a small neighborhood Uy of T'g U xg and having the following
properties:

(i) 2(to) € Mg and the tangent space Tyo,) Mo = E°(to), for all
to € Rl;
(ii) any solution to (6.19) that stays inside Uy for all t € R belongs to
Ma;
(iil) each M, is C* smooth, where k > 1 is the maximal integer number
satisfying both
g* >k and ¢g“ >k O

Definition 6.11 The manifold M, is called the homoclinic center mani-
fold.
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Remarks:

(1) The conditions (H.1) and (H.2) guarantee that similar conditions
hold for all ty # 0. The first condition implies that the homoclinic orbit
T’y approaches the equilibrium zq along the leading eigenspaces for both
t — 400 and t — —oo. The second condition means that the invariant
manifolds W?*(zo) and W"(xg) intersect at o = 0 along the homoclinic
orbit Ty in the “least possible” nontransversal manner.

(2) The manifold M, is exponentially attracting along the E**-directions
and exponentially repelling along the E*“-directions. The same property
holds for M, for small |«| # 0 with E*%** replaced by close subspaces.

(3) The homoclinic center manifold has only finite smoothness C* that
increases with the relative gaps g**. The restriction of (6.19) to the invari-
ant manifold M, is a C*-system of ODEs, provided proper coordinates on
M, are choosen. This restricted system has an orbit homoclinic to zg at
a=0.

(4) Actually, under the assumptions of Theorem 6.7, the homoclinic cen-
ter manifold belongs to the class C* with some 0 < § < 0, i.e., can locally
be represented as the graph of a function whose derivatives of order k are
Holder-continuous with index 3. $

@ (b)
FIGURE 6.41. Homoclinic center manifold in R3.

The theorem is illustrated for R3 in Figure 6.41. Only the critical ho-
moclinic center manifold My at @ = 0 is presented. It is assumed that
all eigenvalues of z( are real and simple: ps < g3 < 0 < A;. The central
eigenspace T° of the saddle x is two-dimensional and is spanned by the
(leading) unstable eigenvector v1 (Agv; = Ajv1) and the leading stable
eigenvector wy (Agwy = piwy). The manifold My is two-dimensional, con-
tains I'g, and is tangent to T¢ at xg. It is exponentially attracting in the
E#s-direction. The manifold can be either orientable (Figure 6.41(a)) or
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nonorientable (Figure 6.41(b)). In this case, condition (H.2) is equivalent
to the strong inclination property (see Section 6.3), so the orientability of
M depends on whether the closure of W* near I'y is orientable or nonori-
entable (cf. Figure 6.26).

6.4.3 Generic homoclinic bifurcations in R™

Generically, the leading eigenspaces 1" are either one- or two-dimensional.
In the first case, an eigenspace corresponds to a simple real eigenvalue, while
in the second case, it corresponds to a simple pair of complex-conjugate
eigenvalues. Reversing the time direction if necessary, we have only three
typical configurations of the leading eigenvalues:

(a) (saddle) The leading eigenvalues are real and simple: p1 < 0 < Ag
(Figure 6.42(a));

(b) (saddle-focus) The stable leading eigenvalues are complex and simple:
11 = fig, while the unstable leading eigenvalue \; is real and simple (Figure
6.42(b));

(¢) (focus-focus) The leading eigenvalues are complex and simple: A\; =
A2, w1 = fie (Figure 6.42(c

o:p'l »
1 *
7\.1 i 3

H2

@ (b) (©
FIGURE 6.42. Leading eigenvalues in generic Shil’'nikov cases.

Definition 6.12 The saddle quantity o of a hyperbolic equilibrium is the
sum of the real parts of its leading eigenvalues.

Therefore,
o =Re A1 + Re pu1,

where ) is a leading unstable eigenvalue and pu; is a leading stable eigen-
value. Assume that the following nondegeneracy condition holds at o = 0:

(H.0) 09 # 0 and the leading eigenspaces T*" are either one- or two-di-
mensional.

The following theorems are direct consequences of Theorem 6.7 and the
results obtained in Sections 6.2-6.4.
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Theorem 6.8 (Saddle) For any generic one-parameter system having a
saddle equilibrium point xy with a homoclinic orbit T'y at o = 0 there exists
a neighborhood Uy of To U xg in which a unique limit cycle L, bifurcates
from Ty as « passes through zero. Moreover, dimW*(L,) = n_ + 1 if
00 <0, and dimW?*(L,) =n_ if 09 > 0. O

In the saddle case, the homoclinic center manifold M, is two-dimensional
and is a simple (orientable) or a twisted (nonorientable or Mébius) band. At
a = 0 the restricted system has a homoclinic orbit. The proof of Theorem
6.2 (see Section 6.2) can be carried out with only a slight modification.
Namely, the coefficient a(8) of the global map @ can now be either positive
(orientable case) or negative (Mobius case). In this case conditions (H.1)
and (H.2) imply that the W** intersects itself near the saddle along the
corresponding nonleading manifold W?*%**. In the three-dimensional case
this condition means that the homoclinic orbit I'g is either simple or twisted
(as defined in Section 6.3). Thus, we have an alternative way to prove
Theorems 6.2 and 6.4.

Theorem 6.9 (Saddle-focus) For any generic one-parameter system hav-
ing a saddle-focus equilibrium point o with a homoclinic orbit T'y at o =0
there exists a neighborhood Uy of T'g U xg such that one of the following
alternatives hold:

(a) if oo < 0, a unique limit cycle Ly, bifurcates from To in Uy as «
passes through zero, dim W*(L,) = n_ + 1;

(b) if oo > 0, the system has an infinite number of saddle limit cycles in
Up for all sufficiently small |a. O

In this case, the homoclinic center manifold M, is three-dimensional. At
a = 0 the restricted system has a homoclinic orbit to the saddle-focus, so
we can repeat the proof of Theorem 6.5 (in case (a)) and that of Theorem
6.5 (in case (b)) on this manifold.

Theorem 6.10 (Focus-focus) For any generic one-parameter system hav-
ing a focus-focus equilibrium point xy with a homoclinic orbit Ty at a = 0
there exists a neighborhood Uy of I'gUxq in which the system has an infinite
number of saddle limit cycles in Uy for all sufficiently small |o|. O

Here, the homoclinic center manifold M,, is four-dimensional and carries
a homoclinic orbit to the focus-focus at a = 0. Thus, the proof of Theorem
6.11 from Appendix 1 is valid.

The genericity conditions mentioned in the theorems are the nondegener-
acy conditions (H.0), (H.1), and (H.2) listed above, as well as the transver-
sality condition:

(H.3) the homoclinic orbit Ty is regular, i.e., the intersection of the tan-
gent spaces TypoyW* and TpoyW*™ at each point 20(t) € T is one-dimen-
sional and W* and W* split by an O(«) distance as o moves away from
zero.
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Recall that (H.3) can be reformulated using the Melnikov integral as
+oo 0
[ w0y a # o

where 7(t) is the unique to within a scalar multiple bounded solution to
the adjoint variational equation around T'y:

= —AT(t)u, ueR™

6.5 Exercises

(1) Counstruct a one-parameter family of two-dimensional Hamiltonian sys-

tems
x = Hy,
y = _H$7
where H = H(z,y,«) is a (polynomial) Hamilton function, having a ho-

moclinic orbit. (Hint: Orbits of the system belong to level curves of the
Hamiltonian: H(x,y,a) = const.)

(2) (Homoclinc orbit in a non-Hamiltonian system) Show that the
system

€ - Y,
y = 23 +ax+uay,

has a saddle at the origin with a “big” homoclinic orbit. (Hint: Use the
symmetry of the system under a reflection and time reversal: x — —z, t —
—t.) Is this orbit nondegenerate?

(3) Prove Lemma 6.1 in the planar case using rotation of the vector field.
(Hint: See Andronov et al. [1973].)

(4) (Heteroclinic bifurcation) Prove that the system

t

undergoes a heteroclinic bifurcation at a = 0.

o+ 2zxy,
1422 — g2,

(5) (Asymptote of the period) Find an asymptotic form of the cycle
period T'() near the homoclinic bifurcation on the plane. Is this result
valid for the n-dimensional case? (Hint: Use the fact that a point on the
cycle spends the most time near the saddle.)
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(6) (Multiplier of the cycle near homoclinic bifurcation) Show that
the (nontrivial) multiplier of the cycle bifurcating from a homoclinic orbit
in a planar system approaches zero as § — 0. Can this result be generalized
to higher dimensions?

(7) (C'-linearization near the saddle on the plane)

(a) Draw isochrones, T 2 = const, of constant “exit” times from the unit
square € for the linear system (6.7). Check that these lines are transversal.
How will the figure change in the nonlinear case? Prove that the map ®(y)
constructed in the proof of Theorem 6.1 is a homeomorphism.

(b) Prove that the map ®(y) has only first-order continuous partial
derivatives at y = 0. (Hint: ®,(0) = I, see Deng [1989].)

(8) (Dependence of orbits upon a singular parameter) Consider the
following slow-fast system:

Tz = $2 - Y,
y = -5,
where ¢ is small but positive. Take an orbit of the system starting at
zg = —(l+¢),
Yo = 1.

Let y1 = y1(e) be the ordinate of the point of intersection between the
orbit and the vertical line x = 1.

(a) Show that the derivative of y;(¢) with respect to £ tends to —oo as
e — 0. (Hint: yi(e) = —T(g), where T is the “flight” time from the initial
point (zg, yo) to the point (1,y1).)

(b) Check that the result will not change if we take g = —(1 + ©(¢))
with any smooth positive function ¢(¢) — 0 for € — 0.

(c) Explain the relationship between the above results and nondifferen-
tiability of the split function in the slow-fast planar system used as the
example in Section 2.

(d) Prove that, actually, y;(¢) ~ €2/3. (Hint: See Mishchenko & Rozov
[1980].)

(9) (Strong inclination property) Consider a system that is linear,

T = Mz,
Ta = oo,
¥z = A3x3,

where A7 > 0 > Ay > )3, inside the unit cube Q = {(z1,x9,23) : =1 <
x; <1, i=1,2,3}. Let ¢ denote its evolution operator (flow).

(a) Take a line lp within the plane x; = 1 passing through the zi-axis
and show that its image under the flow (i.e., I(t) = 'l with ¢ < 0) is also
a line in some plane z; = const passing through the same axis.
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(b) Show that the limit
lim 'l
t——o0
is the same for all initial lines except the line Iy = {x; = 1} N {x3 = 0}.
What is the limit?

(c) Assume that the system outside the cube  possesses an orbit that
is homoclinic to the origin. Using part (b), show that generically the sta-
ble manifold W#*(0) intersects itself along the nonleading eigenspace x1 =
z9 = 0. Reformulate the genericity condition as the condition of transversal
intersection of W#(0) with some other invariant manifold near the saddle.

(d) Sketch the shape of the stable manifold in the degenerate case. Guess
which phase portraits can appear under perturbations of this degenerate
system. (Hint: See Yanagida [1987], Deng [19934].)

(10) (Proofs of Theorems 6.2—6.4 revisited)

(a) Compute the near-to-saddle map A in the saddle and saddle-focus
cases in R? assuming that the system is linear inside the unit cube Q =
{(z1,22,23) : =1 < x; <1, i =1,2,3} and the equilibrium point is located
at the origin.

(b) Write a general form of the linear part of the global map @ : (z2,z3) —
(z1,x3) using the split function as a parameter. How does the formula re-
flect the twisting of the orbit that is homoclinic to the saddle?

(¢) Compose a superposition of the maps defined in parts (a) and (b)
of the exercise and write the system of equations for its fixed points in
the saddle and saddle-focus cases. Analyze the solutions of this system by
reducing it to a scalar equation for the zi-coordinate of the fixed points.

(11) Show that the saddle quantity g of the equilibrium in the wave system
for the FitzHugh-Nagumo model is positive. (Hint: 01 = A1 + Ag + A3 =
c>0.)

(12) (Singular homoclinic in R?)
(a) Check that the following slow-fast system (cf. Deng [1994]),

o= (z+1)+(1-2)[(z—-1) -yl
gy = (1-2)[(z—1)+y],
ez = (1-2)[z+1-m(x+1)]—ez,

has a homoclinic orbit to the equilibrium (1,0, —1) in the singular limit
e = 0, provided m = 1. (Hint: First, formally set ¢ = 0 and analyze the
equations on the slow manifolds defined by z = £1. Then plot the shape
of the surface z = 0 for small but positive ¢.)

(b) Could you prove that there is a continuous function m = m(e), m(0)
1, defined for € > 0, such that for the corresponding parameter value the
system has a saddle-focus with a homoclinic orbit for small € > 07 What is
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the sign of the saddle quantity? How many periodic orbits we one expect
near the bifurcation?

(c) If part (b) of the exercise is difficult for you, try to find the homoclinic
orbit numerically using the boundary-value method described in Chapter
10 and the singular homoclinic orbit from part (a) as the initial guess.

(13) (Melnikov integral) Prove that the Melnikov integral (6.25) is
nonzero for the homoclinic orbit I'g in the system (6.8) from Example 6.1.
(Hint: Find t1 = t4 () along the upper and lower halfs of T’y by integrating
the first equation of (6.8). Then transform the integral (6.25) into the sum
of two integrals over z € [0, 1].)

6.6 Appendix 1: Focus-focus homoclinic
bifurcation in four-dimensional systems

In this appendix we study dynamics of four-dimensional systems near an
orbit homoclinic to a hyperbolic equilibrium with two complex pairs of
eigenvalues (focus-focus). This case is similar to the saddle-focus homoclinic
case.

Consider a system

&= f(z,a), z€R acR (A1)

where f is a smooth function. Assume that at a = 0 the system has a hy-
perbolic equilibrium zg = 0 with two pairs of complex eigenvalues, namely,

)\12(0) = pP1 (0) + iw1 (0), )\3,4(0) = pQ(O) + iWQ(O),

where
pl(O) <0< /)2(0), w172(0) > 0,

(see Figure 6.43). Generically, the saddle quantity is nonzero:

(H.1) 00 = p1(0) + p2(0) # 0.
Actually, only the case

oo = p1(0) + p2(0) <0

will be treated, because we can reverse time otherwise. Since A = 0 is
not an eigenvalue of the Jacobian matrix f,(xo,0), the Implicit Function
Theorem guarantees the persistence of a close hyperbolic equilibrium with
two pairs of complex eigenvalues for all sufficiently small |a|. Assuming
that the origin of coordinates is already shifted to this equlibrium, we can
write (A.1) in the form

z=Al)x + F(z, ), (A.2)
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Ay

A,

FIGURE 6.43. Eigenvalues of a focus-focus.

where F = O(||z||?) and the matrix A(«) has the eigenvalues
M 2(a) = p1(a) £iwi(a), Aga(a) = pa(a) £ iws(a),

with p;(0), w;(0) satisfying the imposed conditions.

The focus-focus equilibrium has the two-dimensional stable and unsta-
ble manifolds W** that can be globally extended. Suppose that at a = 0
the manifolds W* and W?* intersect along a homoclinic orbit I'y. We as-
sume that the intersection of the tangent spaces to the stable and unstable
manifolds is one-dimensional at any point z € T'y:°

(H2) dim (T,W"NT,W*) = 1.

This condition holds generically for systems with a homoclinic orbit to a
hyperbolic equilibrium.
The following theorem by Shil’nikov is valid.

Theorem 6.11 For any system (A.2), having a focus-focus equilibrium
point xg with a homoclinic orbit Ty at o = 0 and satisfying the nondegen-
eracy conditions (H.1) and (H.2), there exists a neighborhood Uy of ToUxg
in which the system has an infinite number of saddle limit cycles in Uy for
all sufficiently small |a]. O

Sketch of the proof:

First consider the case a = 0. Write the system (A.2) in its real eigen-
basis. This can be done by applying to (A.2) a nonsingular linear transfor-
mation putting A in its real Jordan form. In the eigenbasis, the system at
a = 0 will take the form

1 = pr1z1 —wize + Gi(z),

T2 = wiz1 + p1xe + Ga(z), (A.3)
&3 = pow3 —wory + G3(x), '
Tq4 = WoXs+ pary + G4($),

9This intersection is spanned by the phase velocity vector f(z,0) for z € T'y.
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where old notations for the phase variable are preserved and G = O(||z||?).
Now introduce new coordinates y that locally linearize the system (A.3).

Due to a theorem by Belitskii (see Appendix 2) there exists a nonlinear
transformation

y=z+g(v),

where g is a C! function (g.(0) = 0), that locally conjugates the flow
corresponding to (A.3) with the flow generated by the linear system:

Y1 = pP1Y1 — wiy2,
Y2 = win + p1Y2, (A.4)
Ys = p2yYs — waYa,
Ya = ways + paya.

In the coordinates y € R* the unstable manifold W* is locally represented
by y1 = y2 = 0, while the stable manifold W* is given by y3 = y4 = 0.
Suppose that the linearization (A.4) is valid in the unit 4-cube {|y;| <
1, i =1,2,3,4} which can always be achieved by a linear scaling.

0,
\\ rz
\t FO
LR R kbt G 0,
/‘1 W u
1_[0
FIGURE 6.44. Cross-sections ¥ and Ip.
Write (A.4) in the polar coordinates
L= pir,
01 = wi, (A 5)
Ty = para, ’
92 = w2,

by substituting

Yi =7 COSQl, Y2 = T1 Sin@l, Yz = T2 COS@Q, Yg = T2 sinﬁg.

Introduce two three-dimensional cross-sections for (A.5):

E = {(T1,917T2,92) e = 1}7
II {(7’1,01,7"2,92) 1= 1}7
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and two submanifolds within these cross-sections, namely:

Yo = {(r,01,72,02) i1 <1, rp =1} C X,
Iy = {(r,0h,72,02) :r1 =1, ro <1} CIL

Yo and Il are three-dimensional solid tori that can be vizualized as in
Figure 6.44, identifying the left and the right faces. The stable manifold
W*# intersects X along the center circle r; = 0, while the unstable manifold
W™ intersects Il along the center circle ro = 0. Without loss of generality,
assume that the homoclinic orbit I'y crosses ¥ at the point with 6, = 0,
while its intersection with IIy occurs at 5 = 0.

As usual, define a Poincaré map P : ¥ — X along the orbits of the
system and represent this map as a superposition P = Q o A of two maps:
a near-to-saddle map A : ¥ — II and a map @ : IT — 3 near the global
part of the homoclinic orbit I'y. Now introduce a three-dimensional solid
cylinder S C %

S={(r1,01,r2,02): 11 <1, 1o =1, =6 < by <6}

with some 0 > 0 fixed (see Figure 6.44), and trace its image under the
Poincaré map P.

FIGURE 6.45. The image AS in Ilp.

The map A : 3 — II can be computed explicitly using (A.5). Namely,

o 0 111 L
_|_‘U7ni
Al B ls ] T T ] (A.6)
1 ,rlm
02 02 + £ 1In -

since the flight time from ¥ to II is equal to

1 1
T=—1In—.
f1 1
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FIGURE 6.46. The section of AS by the plane 6; = 0.

FIGURE 6.47. The image P(S) and the preimage S in X.
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=

P(S)

FIGURE 6.48. The image P(Sk) and the preimage Si in 3.

According to (A.6), the image AS C Il is a solid “toroidal scroll” sketched
in Figure 6.45. The section of the image by the plane #; = 0 is presented
in Figure 6.46.

The C! map @ : II — X places the scroll back into the cross-section ¥
by rotating and deforming it such that the image Q(AS) cuts through the
cylinder S (see Figure 6.47). The center circle ro = 0 of Iy is transformed
by @ into a curve intersecting the center circle r; = 0 of ¥y at a nonzero
angle due to the condition (H.2).

The geometry of the constructed Poincaré map P implies the presence
of three-dimensional analogs of Smale’s horseshoe. Indeed, let us partition
S into a series of solid annuli: S = U2, Sk, where

2m(k+1)po _27mkpo
Sk =14 (r1,01,7r2,02) : e w1 <ri<e Wi ry=1, 6] <6

Provided k is sufficiently large, Sj is mapped by P into a “one-turn scroll”
P(S)) that intersects Sy by two disjoint domains (see Figure 6.48). This
is a key feature of Smale’s example. Thus, at o = 0, the system (A.1)
has an infinite number of Smale’s horseshoes, each of them implying the
existence of a Cantor invariant set containing an infinite number of saddle
limit cycles.

If | is small but nonzero, the above construction can still be carried out.
However, generically, the manifolds W* and W* split by O(«) distance, so
the image of the center circle of II does not intersect that of 3y. Thus, only
a finite number of the three-dimensional horseshoes remain. Nevertheless,
they still give an infinite number of cycles near I'y.
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6.7 Appendix 2: Bibliographical notes

The homoclinic orbit bifurcation in planar dynamical systems was analyzed
by Andronov & Leontovich [1939] (an exposition with much detail can
be found in Andronov et al. [1973]). C!-linearization was not known to
Andronov; therefore he had to give delicate estimates for the near-to-saddle
map (see Wiggins [1988] for such estimates in the n-dimensional case). C*-
linearization near a hyperbolic equilibrium is studied by Sternberg [1957]
and Belitskii [1973, 1979], as well as by many other authors. A theorem by
Belitskii provides the C'-equivalence of the flow corresponding to a system
in R™ to the flow generated by its linear part near a hyperbolic equilibrium
with eigenvalues A1, Ao, ..., A, such that

Re A; # Re A\j + Re A

for all combinations of 4,5,k = 1,2,...,n. An elementary proof of C!-
linearization near a hyperbolic saddle on the plane, which is reproduced in
the proof of Theorem 6.1, is due to Deng [1989].

Integrals over homoclinic orbits characterizing splitting of invariant man-
ifolds first appeared in the paper by Melnikov [1963] devoted to periodic
perturbations of planar autonomous systems. If the unperturbed system has
a homoclinic orbit to a saddle equilibrium, the perturbed system (consid-
ered as an autonomous system in R? x S') will have a saddle limit cycle
with two-dimensional stable and unstable invariant manifolds. These man-
ifolds could intersect along orbits homoclinic to the cycle, giving rise to
the Poincaré homoclinic structure and associated chaotic dynamics (see
Chapter 2). In a fixed cross-section ¢ = tg, the points corresponding to
a homoclinic orbit can be located near the unperturbed homoclinic loop
as zeros of the so-called Melnikov function (see details in Sanders [1982],
Guckenheimer & Holmes [1983], Wiggins [1990]). The generalization of Mel-
nikov’s technique to n-dimensional situations using the variational and ad-
joint variational equations is due to Palmer [1984] (see also Lin [1990]).
In the papers by Beyn [1990b, 1990q] the equivalence of the transversal-
ity of the intersection of the stable and unstable manifolds in the extended
system (6.20) to the nonvanishing of the Melnikov integral (6.24) is proved.

Bifurcations of phase portraits near orbits homoclinic to a hyperbolic
equilibrium in n-dimensional autonomous systems were first studied by
Shil’nikov [1963] and Neimark & Shil'nikov [1965] under simplifying as-
sumptions. The general theory has been developed by Shil’nikov [1968,
1970] (there are also two preceding papers by him in which three- and four-
dimensional cases were analyzed: Shil'nikov [1965, 1967a]). The main tool
of his analysis is a representation of the near-to-saddle map as the solution
to a boundary-value problem (the so-called parametric representaion), see
Deng [1989] for the modern treatment of this technique. This parametriza-
tion allowed Shil’'nikov to prove one-to-one correspondence between the
saddle cycles and periodic sequences of symbols. A particular feature that
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makes Shil’'nikov’s main papers difficult to read is the absence of figures.
For example, the notion of “orientation” or “twisting” never appeared in
his original papers explicitly (it is hidden in the signs of some indirectly
defined determinants). A geometrical treatment of the saddle-focus case in
R3 can be found in Guckenheimer & Holmes [1983] and Tresser [1984]. In
the later paper the C'!-linearization near the saddle-focus is used. Wiggins
[1988, 1990] gives many details concerning homoclinic bifurcations in R?
and R*. Appendix 1 follows his geometrical approach to the focus-focus
homoclinic bifurcation.

Arnol’d et al. [1994] provide an excellent survey of codimension 1 homo-
clinic bifurcations. It includes a proof of topological invariance of vy, as well
as the construction of topological normal forms for the saddle homoclinic
bifurcation.

The bifurcations of the “basic” limit cycle near an orbit homoclinic to the
saddle-focus were studied by Gaspard [1983], Gaspard, Kapral & Nicolis
[1984], and Glendinning & Sparrow [1984]. The existence of the secondary
homoclinic orbits is proved by Evans et al. [1982]. Actually, basic results
concerning these bifurcations follow from the analysis of a codim 2 bifur-
cation performed by Belyakov [1980], who studied the homoclinic bifur-
cation in R?® near the saddle to saddle-focus transition (see also Belyakov
[1974, 1984] for the analysis of other codim 2 saddle-focus cases). Codim
2 homoclinic bifurcations in R? have recently attracted much interest (see,
e.g., Nozdrachova [1982], Yanagida [1987], Glendinning [1988], Chow, Deng
& Fiedler [1990], Kisaka, Kokubu & Oka [1993a, 1993b], Hirschberg &
Knobloch [1993], Deng [1993a], Homburg, Kokubu & Krupa [1994], and
Deng & Sakamoto [1995]).

Homoclinic bifurcations in n-dimensional cases with n > 4 were treated
in the original papers by Shil’'nikov and by Ovsyannikov & Shil’nikov [1987]
(see also Deng [1993b]). The existence of C*# center manifolds near ho-
moclinic bifurcations in n-dimensional systems have been established by
Sandstede [1993, 1995] and Homburg [1993].

There is an alternative method to prove the bifurcation of a periodic
orbit from the homoclinic orbit: a function space approach based on the
Lyapunov-Schmidt method [Lin 1990].

Homoclinic bifurcations in planar slow-fast systems were treated by Di-
ener [1983] in the framework of nonstandard analysis. An elementary treat-
ment of the planar case is given by Kuznetsov, Muratori & Rinaldi [1995]
with application to population dynamics. Some higher-dimensional cases
have been considered by Szmolyan [1991]. Many examples of three-dimensi-
onal slow-fast systems that exhibit homoclinic bifurcations are constructed
by Deng [1994].

Explicit examples of two- and three-dimensional systems having alge-
braic homoclinic orbits of codim 1 and 2 have been presented by Sandstede
[1997al.



7

Other One-Parameter Bifurcations
in Continuous-Time Dynamical
Systems

The list of possible bifurcations in multidimensional systems is not ex-
hausted by those studied in the previous chapters. Actually, even the com-
plete list of all generic one-parameter bifurcations is unknown. In this chap-
ter we study several unrelated bifurcations that occur in one-parameter
continuous-time dynamical systems

i=f(z,a), z€R", acR} (7.1)

where f is a smooth function of (x,«). We start by considering global bi-
furcations of orbits that are homoclinic to nonhyperbolic equilibria. As we
shall see, under certain conditions they imply the appearance of complex
dynamics. We also briefly touch some other “exotic” bifurcations generat-
ing “strange” behavior, including homoclinic tangency and the “blue-sky”
catastrophe. Then we discuss bifurcations occuring on invariant tori. These
bifurcations are responsible for such phenomena as frequency and phase
locking. Finally, we give a brief introduction to the theory of bifurcations in
symmetric systems, which are those systems that are invariant with respect
to the representation of a certain symmetry group. After giving some general
results on bifurcations in such systems, we restrict our attention to bifur-
cations of equilibria and cycles in the presence of the simplest symmetry
group Zs, composed of only two elements.
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7.1 Codim 1 bifurcations of homoclinic orbits to
nonhyperbolic equilibria

Let 2° = 0 be a nonhyperbolic equilibrium of system (7.1) at a = 0; the
Jacobian matrix A = f, evaluated at (2°,0) has eigenvalues with zero real
part. As in the hyperbolic case, we introduce two invariant sets:

Wo (%) = {z: o'z — 2%t — +oo}, W (2%) = {2 : 'z — 2%t — —o0},

where ¢! is the flow associated with (7.1); recall that W*(2°) is called
the stable set of z°, while W*(z?) is called the unstable set of z°. If these
sets are both nonempty, they could intersect; in other words, there may
exist homoclinic orbits approaching z" in both time directions. Since the
presence of a nonhyperbolic equilibrium is already a degeneracy, the codi-
mension of such a singularity is greater than or equal to one. As we can
easily see, if the equilibrium has a pair of complex-conjugate eigenvalues
on the imaginary axis, we need more than one parameter to tune in order
to get a homoclinic orbit to this equilibrium. Consider, for example, a sys-
tem depending on several parameters in R3, having an equilibrium z° with
one positive eigenvalue A3 > 0 and a pair of complex-conjugate eigenvalues
that can cross the imaginary axis. To obtain a Shil’nikov-Hopf bifurcation,
we have to spend one parameter to satisfy the Hopf bifurcation condition
A1,2 = Fiwp, and another parameter to place the unstable one-dimensional
manifold W*(z°) of the equilibrium on its stable set W#*(2°) (in fact, the
center manifold W¢(x?)). Thus, the Shil'nikov-Hopf bifurcation has codim
2. Therefore, since we are interested here in codim 1 bifurcations, let us
instead consider the case when a simple zero eigenvalue is the only eigen-
value of the Jacobian matrix on the imaginary axis. We will start with the
two-dimensional case.

7.1.1 Saddle-node homoclinic bifurcation on the plane

Suppose that for a = 0, system (7.1) with n = 2 has the equilibrium 2° = 0
with a simple zero eigenvalue \; = 0. According to the Center Manifold
Theorem (see Chapter 5), for & = 0 there is a one-dimensional manifold
W§(2%) tangent to the eigenvector of A corresponding to A; = 0. This
manifold is locally attracting or repelling, depending on the sign of the
second eigenvalue Ay # 0. The restriction of (7.1) to W§ at a = 0 has the
form )

§= a€2 + O(ﬁg)’ (72)
where, generically, @ # 0. Under this nondegeneracy condition, the system
is locally topologically equivalent at @ = 0 near the origin to the normal
form

{él = a{%,
& = o0&,
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(@ (b)
FIGURE 7.1. Planar saddle-nodes: (a) A2 < 0; (b) A2 > 0.

where o = sign Ay (see Figure 7.1, where the two cases with a > 0 are
shown). These equilibria are called saddle-nodes. Notice that in Figure
7.1(a) the stable set W*(z?) is the left half-plane & < 0, while the un-
stable set W*(20) is the right half-axis {£; > 0,& = 0}. In Figure 7.1(b)
the unstable set W*(z°) is given by {& > 0}, and the stable set W*(z?)
by {&1 < 0,&2 = 0}. There are infinitely many center manifolds passing
through the saddle-node (see Section 5.1.1 in Chapter 5); a part of each
center manifold W§ belongs to the stable set of the saddle-node, while the
other part belongs to the unstable set of the equilibrium.

If the restriction of (7.1) to its parameter-dependent center manifold W¢
written in a proper coordinate &,

£ = Bla) + a(a)&® + 0(£%), (7.3)

depends generically on the parameter, a fold bifurcation occurs: The saddle-
node equilibrium either disappears or bifurcates into a saddle ! and a node
2.

Consider the case a > 0,\s < 0, and assume that there is an orbit
'y homoclinic to the saddle-node 2°. Clearly, there may be at most one
homoclinic orbit to such an equilibrium, and this orbit must locally coincide
with the one-dimensional unstable set W*(z"). Thus, there is only one way
the homoclinic orbit can leave the saddle-node. However, it can return back
to the saddle-node along any of the infinitely many orbits composing the
stable set W*(x?). This “freedom” implies that the presence of a homoclinic
orbit to the saddle-node is not an extra bifurcation condition imposed on
the system, and therefore the codimension of the singularity is still one,
which is that of the fold bifurcation. Any of the orbits tending to the saddle-
node, apart from the two exceptional orbits that bound the stable set (the
vertical axis in Figure 7.1(a) or (b)), can be considered as a part of the
center manifold W¢(z?). Thus, generically, the closure of the homoclinic
orbit is smooth and coincides with one of the center manifolds near the
saddle-node.

If the parameter is varied such that the equilibrium disappears (8 > 0),
a stable limit cycle Lg is born near the former smooth homoclinic orbit I'y.
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This fact is almost obvious if we consider a cross-section transversal to the
center manifold. The Poincaré map defined on this section for g > 0 is a
contraction due to Ay < 0. Let us summarize the discussion by formulating
the following theorem.

Theorem 7.1 (Andronov & Leontovich [1939]) Suppose the system
i = f(z,a), z€R? acR

with smooth f, has at o = 0 the equilibrium z° = 0 with \y = 0, Ay < 0,
and there exists an orbit I'g that is homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at a = 0, so that
its restriction to the center manifold can be transformed to the form

£ =B(e) + a()&? + 0(&*),

where a(0) > 0 and §'(0) # 0;

(SNH.2) the homoclinic orbit I'y departs from and returns to the saddle-
node along one of its center manifolds, meaning that the closure of T'y is
smooth.

Then there is a neighborhood Uy of Ty U 20 in which the system has a
bifurcation diagram topologically equivalent to the one presented in Figure
7.2.0

%/, fel

p<o B=0 B>0

FIGURE 7.2. Saddle-node homoclinic bifurcation.

Remarks:

(1) Example 2.10 from Chapter 2 provides an explicit planar system
undergoing a generic saddle-node homoclinic bifurcation. It also happens
in Bazykin’s predator-prey system, which will be considered in Chapter 8
(Example 8.3).

(2) The saddle-node homoclinic bifurcation is a global bifurcation in
which a local bifurcation is also involved. Looking at only a small neigh-
borhood of the saddle-node equilibrium, we miss the appearance of the
cycle.
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(3) If we approach the saddle-node homoclinic bifurcation from param-
eter values for which the cycle is present (8 > 0 in our consideration), the
cycle period T tends to infinity (see Exercise 7.1). A phase point mov-
ing along the cycle spends more and more time near the place where the
saddle-node will appear: It “feels” the approaching fold bifurcation.

(4) The case Ay > 0 brings nothing new. The only difference from the
considered one is that the appearing cycle is unstable. Actually, this case
can be reduced to that in Theorem 7.1 by reversing time. <

7.1.2  Saddle-node and saddle-saddle homoclinic bifurcations
in R3

Now consider a system (7.1) in R? having at o = 0 the equilibrium z° = 0

with a simple zero eigenvalue and no other eigenvalues on the imaginary

axis. There are more possibilities for such equilibria to allow for different
kinds of homoclinic orbit.

Saddle-nodes and saddle-saddles

As in the planar case, at a = 0 there is a one-dimensional manifold W¢(z?)
tangent to the eigenvector of A corresponding to the zero eigenvalue. The
restriction of (7.1) to W§, at & = 0, in this case has the same form (7.2),

§=a®+0(&%),

where, generically, a # 0. Under this condition, the system is locally topo-
logically equivalent at v = 0 near the origin to the system

5:1 = af%v
& = o1&, (7.4)
& = 0283,

where (01,02) are the signs of the real parts of the nonzero eigenvalues.
Thus, we have three obvious possibilities (see Figure 7.3): (a) two nonzero

FIGURE 7.3. Three types of equilibria with Ay = 0.

eigenvalues are located in the left half-plane, 01 = o9 = —1; (b) two nonzero
eigenvalues are located in the right half-plane, o1 = 02 = 1; (¢) one of the
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nonzero eigenvalues is to the right of the imaginary axis, while the other is

to the left, 07 = 1,09 = —1. Suppose that a > 0; otherwise, reverse time.
In case (a), system (7.4) reads
é:.l = Clg%,
5.2 7527 (75)
& = —&s,

and has the phase portrait presented in Figure 7.4. The stable set W*(2°)

A23
wod M
€2
Q\Wu(xfﬁ
x° —
/// il

FIGURE 7.4. Saddle-node equilibrium with two stable eigenvalues.

is the half-space {£; < 0}, within which the majority of the orbits tend
to the equilibrium tangent to the & -axis. The unstable set W*(z?) is the
half-axis {£; > 0,& = &5 = 0}.

In case (b), system (7.4) has the form

é:-l = ag%»
5.2 = 527 (76)
& = &

Its phase portrait is presented in Figure 7.5. The stable set is now one-
dimensional, while the unstable set is three-dimensional. As in the planar
case, the equilibrium for either (a) or (b) is called a saddle-node. Note that
the nonzero eigenvalues can constitute a complex-conjugate pair. In such a
case, orbits of the original system within the corresponding half-space tend
to the equilibrium by spiraling.

In case (c), the system (7.4) turns out to be

éfl = Clé-%,
§2 = & (7.7)
& = —&.

Its phase portrait is presented in Figure 7.6. It can be constructed by taking
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FIGURE 7.5. Saddle-node equilibrium with two unstable eigenvalues.

into account that all the coordinate planes &, = 0,k = 1,2, 3, are invariant
with respect to (7.7). Notice that both the stable and the unstable sets are
two-dimensional half-planes approaching each other transversally:

WS:{S:é-lSvaQ:O}a Wu:{fflz(),fB:O}

In this case, the equilibrium z° is called a saddle-saddle.
Since the restriction of (7.1) to the center manifold has the form

£ = B(e) +a(@)&? + 0(&?),

a generic fold bifurcation takes place if a(0) # 0 and §'(0) # 0, leading
either to the disappearance of the equilibrium (for a(0)8 > 0) or to the
appearance of two hyperbolic ones (for a(0)8 < 0). In the case of a saddle-
node, one of the bifurcating equilibria is saddle, while the other is (stable
or unstable) three-dimensional node. On the contrary, in the saddle-saddle
case, both appearing equilibria are (topologically different) saddles.

Saddle-node homoclinic orbit

If there is an orbit 'y homoclinic to a saddle-node, then, generically, a
unique limit cycle appears when the equilibria disappear. The bifurcation
is similar to the planar one. The stability of the cycle is determined by the
sign of 01,2. More precisely, the following theorem holds.

Theorem 7.2 (Shil’nikov [1966]) Suppose the system
i = f(z,a), R acR

with smooth f, has at a = 0 the equilibrium x = 0 with Ay = 0,Re Ay 3 <0
(or Re Aa3 > 0), and there exists an orbit Ty that is homoclinic to this
equilibrium.

Assume that the following genericity conditions are satisfied:
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W) £s A3 A2

0 w(x9

€1

FIGURE 7.6. Saddle-saddle equilibrium.

(SNH.1) the system exhibits a generic fold bifurcation at a = 0, so that
its restriction to the center manifold can be transformed to the form

£ = Bla) +a(a)€ +0(&?),

where a(0) # 0 and §'(0) # 0;
(SNH.2) the homoclinic orbit Ty departs from and returns to x° along
one of its center manifolds, meaning that the closure of I'g is smooth.

Then there is a neighborhood Uy of Ty U 20 in which the system has a
unique stable (or repelling) limit cycle Lg for small |B| corresponding to
the disappearance of the equilibria, and no limit cycles for small |3 when
two hyperbolic equilibria exist. O

The theorem is illustrated in Figure 7.7, where a > 0 and the two stable
eigenvalues \g 3 are complex. In this case, the multipliers of the appearing
cycle Lg are also complex. The period of the cycle T3 — oo, as 8 — 0.

Saddle-saddle with one homoclinic orbit

If there is a saddle-saddle equilibrium 2° with a single homoclinic orbit T,
then, generically, a unique limit cycle appears when the equilibria disap-
pear. The cycle is saddle, since the Poincaré map defined on a transver-
sal cross-section to any center manifold is contracting in the direction of
the stable eigenvector of the saddle-saddle and expanding in the direction
of its unstable eigenvector. We also have to require that the stable set
W#(2°) intersects the unstable set W*(z%) along the homoclinic orbit T'g
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B<0 B=0 B>0
FIGURE 7.7. Saddle-node homoclinic bifurcation in R®.

transversally. These heuristic arguments can be formalized by the following
theorem.

Theorem 7.3 (Shil’nikov [1966]) Suppose the system
i = f(z,a), z€R3 acRY

with smooth f, has at o = 0 the equilibrium x = 0 with Ay =0, Ay > 0, A3 <
0, and there exists a single orbit I'g homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at o« = 0, such that
its restriction to the center manifold can be transformed to the form

€= Bla) +a(@)€? + 0(€%),

where a(0) # 0 and 5'(0) # 0;
(SNH.2) the homoclinic orbit T'g departs from and returns to x° along
one of its center manifolds, meaning that the closure of I'g is smooth.
(SNH.3) the stable set W*(2°) transversally intersects the unstable set
W (z%) along the homoclinic orbit Ty.

Then there is a neighborhood Uy of Ty U 20 in which the system has a
unique saddle limit cycle Lg for small || corresponding to the disappear-
ance of the equilibria, and no limit cycles for small |B| when two saddle
equilibria exist. O

The theorem is illustrated in Figure 7.8. Actually, all systems exhibiting
the bifurcation described by this and the previous theorem are topologically
equivalent in Uy for small |«.

Remark:

The topology of the stable and the unstable invariant manifolds of the
appearing cycle Lg is determined by the global behavior of the stable and
the unstable set of the saddle-saddle around I'g at a = 0. The transversality
of the intersection W*(z?) with W#(z°) implies that the closure of each
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B>0
FIGURE 7.8. Saddle-saddle bifurcation with one homoclinic orbit.
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of these sets in a tubular neighborhood Uy of I'y is either a nontwisted or
twisted two-dimensional band. In Figure 7.8, the manifold W*(z°) is shown
as orientable at § = 0. If these manifolds are nontwisted (orientable), then
the appearing limit cycle has positive multipliers: 0 < p; < 1 < pg. On
the contrary, if the manifolds are twisted (nonorientable), then the cycle
multipliers are both negative: 1 < —1 < o < 0. In the former case, the
stable and the unstable invariant manifolds of the cycle are also nontwisted,
while in the latter case, they are both twisted. {

Saddle-saddle with more than one homoclinic orbit

Since the stable and the unstable sets of a saddle-saddle are two-dimen-
sional, they can intersect along more than one homoclinic orbit. Such an
intersection leads to a bifurcation that has no analog in the planar systems:
It gives rise to an infinite number of saddle limit cycles when the equilibria
disappear. Let us formulate the corresponding theorem due to Shil’'nikov
in the case where there are two homoclinic orbits, I'y and I'y, present at
a=0.

Theorem 7.4 (Shil’nikov [1969]) Suppose the system
i = f(z,a), R acR

with smooth f, has at o = 0 the equilibrium x = 0 with Ay =0, Ay > 0, A3 <
0, and there exist two orbits, I'y and I's, homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at « = 0, such that
its restriction to the center manifold can be transformed to the form

€= B(a) +a(a)é® + 0(&),

where a(0) # 0 and 5'(0) # 0;
(SNH.2) both homoclinic orbits I'y o depart from and return to x° along
its center manifolds, meaning that the closure of each I'1 2 is smooth;
(SNH.3) the stable set W*(x°) intersects the unstable set W*(x°) transver-
sally along two homoclinic orbits I'y o.

Then, there is a neighborhood Uy of I'y U Ty U 2° in which an infinite
number of saddle limit cycles exists for small positive or negative (3, de-
pending on the parameter direction corresponding to the disappearance of
the equilibria.

Moreover, there is a one-to-one correspondence between the orbits located
entirely inside Uy for such wvalues of B, and all nonequivalent sequences
{wi ¥ of two symbols, w; € {1,2}.

Outline of the proof:

Introduce coordinates (£1,&2,€3) in such a way that, for « = 0, the

saddle-saddle is located at the origin and its unstable set W*(0) is given,
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within the unit cube
{5 : |§k| S lak = 172’3}a

by {& > 0,& = 0}; the stable set W*(20) is defined in the same cube by
{& <0,& = 0} (see Figure 7.9 and compare it with the phase portrait of

&
3 w3
:s Ar
0,
i B,
—
B o)
I,
1 m
rl

FIGURE 7.9. A saddle-saddle with two homoclinic orbits.

(7.7)). Consider two faces of the cube:

I ={£: & =1, &3] <1}, I ={¢: & =1, |63 <1}

Let Ay, By be the points where the orbits I'y, I's intersect with the plane ITy
as they enter the unit cube while returning to the saddle-saddle. Similarly,
denote by As, By the intersection points of I'y,T'y with the plane Iy as
these orbits leave the cube.

Take a small value of || with its sign corresponding to the disappearance
of the equilibrium. Then, the Poincaré map along orbits of the system
defined on IIy,

Pg : H1 — Hl,

can be represented as the superposition of a “local” map Ag : II; — Il
along orbits passing through the cube, and a “global” map Qg : IIs — II;:

Pg = QﬂOAg.

Notice that Ag is undefined for 8 = 0, as well as when there are hyperbolic
equilibria inside the cube.
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By solving the linearized system inside the cube, one can show that the
square II; is contracted by the map Ag in the £3-direction and expanded in
the &>-direction. Thus, the intersection of its image Agll; with the square
IT; would be a horizontal strip 3 = AglIl; NIl (see Figure 7.10(b)), which
gets thinner and thinner as § — 0 (explain why).

> 3
T, I1,
QpZ |
Al 21
Ag A, B, W'
= . .
QBZ\% az &2
———
\ |-
B, s, T=|AgM, NI,
we ~
Qs
@ (b)

FIGURE 7.10. Cross-section near a saddle-saddle.

The strip X contains the points Ay and Bs. Since for 8 = 0 the map Qg
sends the point A, into the point A; and the point By into the point By,

Qp(A2) = Ay, Qs(B2) = Bu,

there would be some neighborhoods of Ay, By in Ily, that () maps into
neighborhoods of A; and Bj in IIy, respectively, for |5] > 0. Therefore, the
image Qg(X) will intersect the square Iy in two strips, X1 and X, ¥1UXy =
QpXoNII; (see Figure 7.10(a)), containing A, and By, respectively. Due to
the transversality assumption, ¥, » intersect the vertical axis at a nonzero
angle near the points A; and By, respectively.

Thus, the intersection of the image of II; under the Poincaré map Pg =
Qp o Ag with II; has the standard features of the Smale horseshoe (see
Chapter 1). For example, applying the construction once more, we first
obtain two strips inside 3, and then two narrow strips inside each ¥; », and
so forth (see Figure 7.10). Inverting the procedure, we get vertical strips
with a Cantor structure. The presence of the Smale horseshoe implies the
possibility to code orbits near I'y U I'y by sequences of two symbols, say
{1,2}. Equivalent sequences code the same orbit. O

In the present context this coding has a clear geometrical interpreta-
tion. Indeed, let v be an orbit located in a neighborhood Uy of the ho-
moclinic orbits T'; o for all ¢ € (—o0,+00). Then it passes outside the
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.rz

FIGURE 7.11. A cycle corresponding to the sequence {...,1,2,1,2,...}.

cube near either I'; or I';. The elements of the corresponding sequence
w={ .., w_9,w_1,wp,wr,ws, ...+ specify whether the orbit v makes its
ith passage near I'y or I's; in the former case, w; = 1, while in the latter,
w; = 2. For example, the sequence

{..,1,1,1,1,1,...}
corresponds to a unique saddle cycle orbiting around I';. The sequence
{..,2,2,2,2,2,...}
describes a saddle cycle located near I's, while the periodic sequence
{...,1,2,1,2)1,2,...}

corresponds to a cycle making its first trip near I'y, its second near I's, and
so on (see Figure 7.11).

The case when there are more than two homoclinic orbits, I'y,I's, ..., 'y,
say, to the saddle-saddle at the critical parameter value can be treated
similarly. In such a case, orbits located entirely inside a neighborhood of
I UTyU---UT'y Ux® are coded by sequences of N symbols, for example,
w; € {1,2,,N}

We finish the consideration of nonhyperbolic homoclinic bifurcations by
pointing out that the results presented in this section for three-dimensional
systems can be generalized into arbitrary finite dimensions of the phase
space (see the appropriate references in the bibliographical notes).

7.2 “Exotic” bifurcations
Several other codim 1 bifurcations in generic one-parameter systems have

been analyzed theoretically. Let us briefly discuss some of them without
pretending to give a complete picture.
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7.2.1  Nontransversal homoclinic orbit to a hyperbolic cycle

Consider a three-dimensional system (7.1) with a hyperbolic limit cycle L.
Its stable and unstable two-dimensional invariant manifolds, W*(L,) and
W*(L,), can intersect along homoclinic orbits, tending to L, as t — +oo.
Generically, such intersection is transversal. As we have seen in Chapter
2, it implies the presence of an infinite number of saddle limit cycles near
the homoclinic orbit. However, at a certain parameter value, say a = 0,
the manifolds can become tangent to each other and then no longer in-
tersect (see Figure 7.12, where a cross-section to the homoclinic structure
is sketched). At oo = 0 there is a homoclinic orbit to Ly along which the

Loc LD La{

a<0 a=0 o>0

FIGURE 7.12. Homoclinic tangency.

manifolds W#(Lg) and W*(Lg) generically have a quadratic tangency. It
has been proved (see the bibliographical notes to this chapter) that an in-
finite number of limit cycles can exist for sufficiently small |a|, even if the
manifolds do not intersect. Passing the critical parameter value is accom-
panied by an infinite number of period-doubling and fold bifurcations of
limit cycles.

7.2.2  Homoclinic orbits to a nonhyperbolic limit cycle

Suppose a three-dimensional system (7.1) has at & = 0 a nonhyperbolic
limit cycle Ny with a simple multiplier g3 = 1, while the second multi-
plier satisfies |uo| < 1. Under generic perturbations, this cycle will either

disappear or split into two hyperbolic cycles, N&l) and ngz) (the fold bi-
furcation for cycles, see Section 5.3 in Chapter 5). However, the locally
unstable manifold W*(Ny) of the cycle can “return” to the cycle Ny at
the critical parameter value o = 0 forming a set composed of homoclinic
orbits which approach Ny as t — £o0o. There are two cases, depending on
whether the closure of W*(Ny) is a manifold or not.

(1) Torus case. If W*(Ny) forms a torus, two subcases are still possi-
ble (see Figure 7.13, where a global Poincaré section to Ny is used, so the
torus appears as two concentric curves). Depending on whether the torus
is smooth (Figure 7.13(a)) or not (Figure 7.13(b)), the disappearance of
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FIGURE 7.13. Homoclinic structure of a saddle-node cycle depicted via a global
Poincaré map: (a) smooth and (b) nonsmooth cases.

the cycle Ny under parameter variation leads either to the creation of a
smooth invariant torus or a “strange” attracting invariant set that con-
tains an infinite number of saddle and stable limit cycles. For systems in
more than three dimensions, there may exist several tori (or Klein bottles)
at the critical parameter value, leading to more diverse and complicated
bifurcation pictures.

FIGURE 7.14. The invariant “French horn” near a “blue-sky” bifurcation.

(2) “Blue-sky” case. A bifurcation known as a “blue-sky” catastrophe
appears in the case when W*(Ny) is not a manifold. More precisely, at
a = 0 the unstable set W*(Np) of the cycle Ny can become a tube that
returns to Ny developing a “French horn” (Figure 7.14). In a local cross-
section to the cycle Ny, the spiraling end of this horn appears as an infinite
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sequence of “circles” accumulating at the point corresponding to Nj.

When the cycle Ny splits into two hyperbolic cycles, no other periodic
orbits exist near the horn. On the other side of the bifurcation, when the
cycle Ny disappears, there emerges a unique and stable hyperbolic limit
cycle L, that makes one global turn and several local turns following the
horn. As « approaches o = 0, the cycle L, makes more and more turns
near the would-be critical cycle Ny. At the bifurcation parameter value,
L, becomes an orbit homoclinic to Ny, and its length and period become
infinite. Thus, the stable limit cycle L, disappears as its length [, and
period Ty, tend to infinity, while it remains bounded and located at a finite
distance from all equilibrium points. This bifurcation is called the “blue-
sky” catastrophe of L. In other words, the cycle L, is “broken” at the
critical parameter value by another cycle Ny that appears in a “transverse”
direction to L, and then splits into two hyperbolic cycles.

Example 7.1 (“Blue-sky” bifurcation model) Consider the follow-
ing system due to Gavrilov & Shilnikov [1996]:

& = x[2+p—ba®+y*)] +2° +y*+ 2y,
gy = —25—(y+1)=%2+y%+2y) —dx + py, (7.8)
o= 2X(y+1)+2?—¢,

where p, e are positive parameters and b = 10 is fixed. If 4 = & = 0, the
circle
Co={(z,y,2) :x=0, 22+ (y+1)* =1}

is an invariant curve of (7.8). It comnsists of two equilibria: Ey = (0,0,0)
and F; = (0,—2,0), and two connecting orbits: from Ey to F; and from F;
to Ey. The equilibrium FEj has one zero eigenvalue A\; = 0 and two purely
imaginary eigenvalues Ag 3 = iwg with wy = 2, while the equilibrium F,
has one zero eigenvalue A\; = 0 and two real eigenvalues Ay 3 < 0 (check!).
Thus, both equilibria are nonhyperbolic and should bifurcate when the
parameters change. One can prove that there is a curve B in the (p,¢)-
plane along which the system (7.8) has a limit cycle Ny with a simple unit
multiplier. This cycle shrinks to the equilibrium Ey when we approach the
origin of the parameter plane along B. Crossing the curve B near the origin
results in a generic fold bifurcation of this cycle: Two small hyperbolic
cycles (one stable and one saddle) collide, forming the cycle Ny at the
critical parameter values, and disappear. Moreover, for parameter values
corresponding to the curve B, the equilibrium FE; does not exist and the
two-dimensional unstable set W*(Np) returns to Ny near Cp forming a
“Fernch horn” configuration as in Figure 7.14. Therefore, there is another
limit cycle in (7.8) that stays near the circle Cy and undergoes the “blue-
sky” bifurcation if we cross B sufficiently close to (u,e) = (0,0). Figure
7.15 shows phase orbits of (7.8) corresponding to € = 0.02 at three different
values of . For pn = 0.4, there is a stable limit cycle L, that makes a number
of transversal turns near the origin. The blue-sky bifurcation happens at
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FIGURE 7.15. “Blue-sky” bifurcation in (7.8): (a) u = 0.4; (b) = 0.3; and (c)
= 0.25.
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u =~ 0.3. For p = 0.25, an orbit starting near the (invisible) saddle cycle

)

Nfbl) approaches the stable cycle N,(f and stays there forever. &

For systems with more than three phase variables, the “blue-sky” bifur-
cation may generate an infinite number of saddle limit cycles which belong
to a Smale- Williams solenoid attractor. When the parameter approaches
its critical value, the attractor does not bifurcate but the period and length
of any cycle in it tend to infinity.

7.3 Bifurcations on invariant tori

Continuous-time dynamical systems with phase-space dimension n > 2
can have invariant tori. As we have seen in Chapters 4 and 5, an invariant
two-dimensional torus T? appears through a generic Neimark-Sacker bifur-
cation. For example, a stable cycle in R3 can lose stability when a pair of
complex-conjugate multipliers crosses the unit circle. Then, provided there
are no strong resonances and the cubic normal form coefficient has the
proper sign, a smooth,! stable, invariant torus bifurcates from the cycle.
In this section, we discuss changes of the orbit structure on an invariant
two-torus under variation of the parameters of the system.

7.3.1 Reduction to a Poincaré map

Let T? be a smooth, invariant two-torus of (7.1) at a = 0. For simplic-
ity, we can think of a three-dimensional system. Introduce a cross-section
¥, codim ¥ = 1, to the torus (see Figure 7.16). The intersection T? N %

)y

FIGURE 7.16. Poincaré map on the torus.

'Finitely differentiable.
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is a closed curve S, topologically (or even (finite-)smoothly) equivalent to
the unit circle S'. Let us consider only the case when any orbit starting at
a point x € S returns to S. Then, a Poincaré map

P:5—- 8

is defined. Alternatively, we can consider a Poincaré map defined by (7.1)
on the cross-section . The closed curve S is obviously an invariant curve
of this map; its restriction to S is the map P introduced above. The map P
and its inverse are both differentiable. The standard relationship between
fixed points of P and limit cycles of (7.1) exists. All such cycles belong to
the torus.

Assume that the invariant torus T2 persists under small parameter vari-
ations, meaning that there is a close invariant torus of (7.1) for all « with
sufficiently small |a|. Then, the above constriction can be carried out for
all nearby «, resulting in a Poincaré map P, : S — S, smoothly depending
on the parameter.

Remark:

It can be proved (see the bibliographical notes) that a stable invariant
torus T2 persists as a manifold under small parameter variations if it is
normally hyperbolic, i.e., the convergence of nearby orbits to T? is stronger
than orbit convergence on the torus, provided proper measures of conver-
gence are introduced.

The problem now is to classify possible orbit structures of P, : S — S
and to analyze their metamorphoses under variation of the parameter. To
proceed, let us introduce canonical coordinates on T2. Namely, parametrize
the torus by two angular coordinates v, ¢ (mod 27). Using these coordi-
nates, we can map the torus onto the square,

U={(,p):0<1,p < 2r},

with opposite sides identified (see Figure 7.17). Assume that the intersec-
tion S = T? N X is given by ¢ = 0. Consider an orbit v on T? starting
at a point (0,¢g) on S. By our assumption, v returns to S at some point
(27, P(¢0)) = (0, P(pp)), where P : S' — St is a smooth function.? Since
orbits on the torus do not intersect,

P'(¢) >0,

so the map P preserves the orientation of S.

2We use the same notation for both the map of the curve S and the function
it defines on the unit circle S'.
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2

' / P(9,)
/

0 i 2n

@

FIGURE 7.17. An orbit « on the torus.

7.3.2  Rotation number and orbit structure

A fixed point @g of the map P, P(¢g) = g, corresponds to a cycle on T?
making one revolution along the parallel and some p revolutions along the
meridian before closure (see Figure 7.18(a)). A cycle of period ¢,

2n 2n
¢ o
0 v 2n 0 ) 2n
@ (b)

FIGURE 7.18. Cycles on the torus: (a) p=2, ¢=1; (b) p=1, ¢ =2.

{0, P(¢0), P*(¢0), - -, P1(0) = po},

corresponds to a cycle on T2 that makes ¢ revolutions along the parallel
and some p revolutions along the meridian (Figure 7.18(b)). Such a cycle
is called a (p, ¢)-cycle. The local theory of fixed points and periodic orbits
of P on S is the same as that for scalar maps. In particular, a fixed point
@ is stable (unstable) if P'(¢o) <1 (P'(po) > 1). Points with P’(¢g) # 1
are called hyperbolic. As usual, these notions can be extended to ¢-periodic
orbits by considering P, the gqth iterate of P. Clearly, if a stable (p, ¢)-cycle
exists, an unstable (p,g)-cycle must also exist, since stable and unstable
fixed points of P? have to alternate (see Figure 7.19).
The difference a(yp) = P(p) — ¢ is called the angular function.
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FIGURE 7.19. Stable and unstable (1, 2)-cycles on the torus.

Definition 7.1 The rotation number of P : S — S is defined by

Ly U9 +a(P(9) +---+a(P N (p))

=1
P or kb ke

One can prove that the limit in the definition exists and is independent of
the point ¢ € S. Thus, p is well defined. It characterizes the average angle
by which P “rotates” S. For a rigid rotation through angle 27v,

P(p) = ¢ + 27v (mod 27), (7.9)

we have p = v. The role of the rotation number is clarified by the following
two statements, which we give without proof.

Lemma 7.1 The rotation number of the map P : S — S is rational,
p= %, if and only if P has a (p, q)-periodic orbit. O

Note that Lemma 7.1 does not state that the periodic orbit is unique.

Lemma 7.2 (Denjoy [1932]) If the map P : S — S is at least twice
differentiable and its rotation number is irrational, then P is topologically
equivalent to rigid rotation through the angle 2mwp. O

Under the conditions of the lemma, any orbit of P on S is dense, as is
true for the rigid rotation (7.9) with irrational v. There are examples of
C' diffeomorphisms that do not satisfy Denjoy’s lemma. However, if the
right-hand side f of (7.1) is sufficiently smooth and its invariant torus T?
is also smooth enough, P must satisfy Denjoy’s differentiability condition.

7.8.8  Structural stability and bifurcations

Let us now address the problem of structural stability of systems on tori. We
can use Chapter 2’s definitions of the distance between dynamical systems
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and their structural stability simply by making the substitution T? for U.
This problem is equivalent to that for discrete-time dynamical systems on
the circle S. The following theorem provides the complete characterization
of structurally stable systems on S.

Theorem 7.5 A smooth dynamical system P : S — S is structurally stable
if and only if its rotation number is rational and all periodic orbits are
hyperbolic. O

If the rotation number is irrational, we can always introduce an arbitrary
small perturbation, resulting in a topologically nonequivalent system. Actu-
ally, such a perturbation will generate long-period cycles instead of dense
orbits, resulting in a rational rotation number. The phase portrait of a
structurally stable system on T? is therefore rather simple: There is an
even number of hyperbolic limit cycles of (p, ¢) type; all other orbits tend
to one of these cycles in the correct time direction. The gth iterate of the
Poincaré map reveals an even number of fixed points of P? on S having
alternating stability.

Consider a one-parameter map P, : S — S corresponding to system (7.1)
with an invariant torus. Let o = o provide a structurally stable system.
By Theorem 7.5 there is an open interval (o —¢,a" +¢) with € > 0 within
which the system has topologically equivalent phase portraits. What are
the boundaries of this interval? Or, in other words, how does the rotation
number change?

First of all, let us point out that bifurcations can take place even if the
rotation number is constant. Indeed, the system may have an even number
of hyperbolic (p, g)-cycles on the torus. While these cycles collide and dis-
appear pairwise under parameter variation, the rotation number remains

constant (p = g), provided that there remain at least two such cycles on

the torus. However, when the last two cycles (a stable and an unstable
one) collide and disappear, the rotation number becomes irrational un-
til another “structurally stable window” opens. Inside the windows, the
asymptotic behavior of the system is periodic, while it is quasiperiodic out-
side. In the former case, there are at least two limit cycles (possibly with
a very high period) on T?, while in the latter case, the torus is filled by
dense nonperiodic orbits.

The bifurcation from quasiperiodic behavior to periodic oscillations is
called a phase locking. In periodically forced systems this phenomenon
appears as a frequency locking. Suppose, for simplicity, that we have a
two-dimensional, periodically forced system of ODEs that depends on a
parameter. Assume that the associated period-return (Poincaré) map has
an attracting closed invariant curve. If the rotation number of the map
restricted to this curve is rational, the system exhibits periodic oscilla-
tions with a period that is an integer multiple of the forcing period. The
frequency of the oscillations is “locked” at the external forcing frequency.



272 7. Other One-Parameter Bifurcations

Remark:

Theorem 7.5 establishes a delicate relationship between “genericity” and
structural stability. Consider a map P, : S — 5, depending on a single
parameter. The set of parameter values for which P, is structurally stable
is open and dense. However, the measure of this set might be small com-
pared with that of the parameter set corresponding to irrational rotation
numbers. Thus, a map chosen “randomly” from this family would have an
irrational rotation number with a high probability.

7.8.4  Phase locking near a Neimark-Sacker bifurcation:
Arnold tongues

We can apply the developed theory to an invariant torus (curve) appearing
via a Neimark-Sacker bifurcation. Consider a two-dimensional discrete-time
system near such a bifurcation. This system can be viewed as generated by
the Poincaré map (restricted to a center manifold, if necessary) associated
with a limit cycle of a continuous-time system (7.1). This map can be
transformed, for nearby parameter values, by means of smooth, invertible,
and smoothly parameter-dependent transformations to the form

2z Az(1+d|2*) + O(|2]*), z€Ch, (7.10)
where A and d are smooth complex-valued functions of « (see Chapter
4). Consider, for a while, Re A and Im A as two independent parameters.
On the plane of these parameters, the unit circle |A\| = 1 corresponds to

the Neimark-Sacker bifurcation locus (see Figure 7.20). Assume that the

Im\A

D=1

0 1 Re A
FIGURE 7.20. Arnold tongues near the Neimark-Sacker bifurcation.

bifurcation occurs away from strong resonances and is supercritical. Then,
a stable closed invariant curve exists for nearby parameter values outside
the circle. Parameter regions in the (Re A,Im \)-plane corresponding to
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rational rotation numbers approach the circle [A\| = 1 at all rational points,

A=t =22

q
as narrow tongues.> These regions are called Arnold tongues. Recall that
our system (7.1) depends on a single parameter «. Therefore, it defines a
curve in the A-plane traced by A(«). Near the circle |A| = 1, this curve
crosses an infinite number of Arnold tongues corresponding to various ra-
tional rotation numbers. Therefore, near a generic Neimark-Sacker bifurca-
tion, an infinite number of long-periodic cycles are born and die as the pa-
rameter varies. Far from the Neimark-Sacker bifurcation curve, the tongues
can intersect. At such parameter values, the invariant torus does not exist*
and two independent fold bifurcations merely happen with unrelated re-
mote cycles.

Example 7.2 (Arnold tongue in the perturbed delayed logistic
map) Consider the following recurrence equation:

Tpy1 =rer(l — xr_1) + &, (7.11)

where x, is the density of a population at year k, r is the growth rate, and
¢ is the migration rate. For e = 0, this model was studied in Chapter 4 (see
Example 4.2).

As in Chapter 4, introduce yr = zr—1 and rewrite (7.11) as a planar

dynamical system
<x>}_}<rw(l—y)+€)' (7.12)
Y x

The analysis in Chapter 4 revealed a supercritical Neimark-Sacker bifurca-
tion of (7.12) at 7 = 2 for € = 0. There is a curve h(!) in the (r,e)-plane
passing through the point (r,e) = (2,0) on which the fixed point of (7.12),

1+¢
0o_,0_
Y _y 2 9

undergoes a Neimark-Sacker bifurcation. The curve h!) is given by the

expression
2
rY = = .
(re)ir =10

Tterating the map (7.12) with € = 0 for r slightly greater than 2 (e.g., at
r = 2.1 or r = 2.15) yields a closed invariant curve apparently filled by
quasiperiodic orbits. An example of such a curve was shown in Figure 4.11
in Chapter 4. However, taking r = 2.177 results in a stable cycle of period
seven. Thus, these parameter values belong to a phase-locking window.

3Their width w at a distance d from the circle satisfies w ~ d(q_Q)/Q, asd — 0.
4Otherwise, orbits on such a torus define two different rotation numbers, which
is impossible.
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FIGURE 7.21. Bifurcation diagram of period-seven cycles.

There is also an unstable (saddle) cycle of period seven, which is hard to
detect by numerical simulations. These two cycles are located on the closed
invariant curve. Actually, the curve is composed of the unstable manifolds
of the saddle cycle.

The seventh-iterate map (7.12), therefore, has seven stable fized points
and the same number of unstable fired points. While we increase or decrease
the parameter 7, keeping € = 0, the stable and unstable fixed points collide
and disappear at fold bifurcations. Plotting the coordinates of all the fixed
points against 7 reveals the peculiar closed curve shown in Figure 7.21.°
All seven stable fixed points collide with their respective saddle points
simultaneously at the fold points 7 2, since, actually, there are only two
period-seven cycles of the opposite stability, that collide at these parameter
values r1 2. Note that each stable fixed point of the seventh-iterate map
collides with one immediately neighboring unstable fixed point at the fold
bifurcation at r = r; and the other one at r = ry. Thus, each stable fixed
point can be thought to migrate between its two neighboring unstable fixed
points as r varies from r1 to ro.

In Chapter 10 we present a continuation technique by means of which the
fixed-point curve in Figure 7.21 is computed.
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The continuation of the boundary points of the phase-locking interval

gives two fold bifurcation curves, tg) and t(27), for cycles of period seven
(see Figure 7.22). They form a typical Arnold tongue, approaching a point

0.15

0.10

0.05

e 0.00

-0.05

-0.10

2.0

FIGURE 7.22. 1:7 Arnold tongue in (7.10).

on the Neimark-Sacker curve h(!) where the multipliers of the original fixed
point have the representation

pip = e* gy = 2£,
7

in accordance with the theory. Note that the point (r,e) = (2,0) is the
origin of another Arnold tongue, corresponding to cycles of period six (cf.
Example 4.2). This 1:6 tongue is not shown in Figure 7.22.

It is worthwhile mentioning that the stable period-seven cycle exhibits
a period doubling if € increases and passes a certain critical value, while
r is fixed. The critical parameter values form a curve f(7), also presented
in Figure 7.22. Above (and near) this curve, a stable cycle of period 14 is
present, while the closed invariant curve no longer exists. This is one of
the possible ways in which an invariant curve can loose its smoothness and
disappear. <
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7.4 Bifurcations in symmetric systems

In this section we touch on an important topic: bifurcations in systems with
symmetry. First we summarize some general results on symmetric systems,
including a symmetric version of the Center Manifold Theorem. Then, we
analyze bifurcations of equilibria and limit cycles in the presence of the
simplest discrete symmetry.

Symmetric systems appear naturally in many applications. Often the
symmetry reflects certain spatial invariance of the dynamical system or
its finite-dimensional approximation. Normal forms for many bifurcations
also have certain symmetries. As we shall see, some bifurcations can have
a smaller codimension in the class of systems with a specified symmetry,
and the corresponding bifurcations usually have some unique features. In
contrast, some bifurcations become impossible in the presence of certain
symmetries.

7.4.1 General properties of symmetric systems

Suppose we have a (compact) group G that can be represented in R™ by
matrices {7y}
Te=1, Tyg,=Tg Ty,

for any g12 € G. Here e € G is the group unit (eg = ge = g), while I is the
n X n identity matrix.

Definition 7.2 A continuous-time system
&= f(z), zeR", (7.13)

is called invariant with respect to the representation {T} of the group G
(or, simply, G-equivariant) if

Tyf(x) = f(Tyx) (7.14)

for all g € G and all x € R™.

Example 7.3. The famous Lorenz system

r = —ox+ oy,
Yy = rr—y-—zxz, (7.15)
z = —bz+axy,

is invariant with respect to the transformation

T:ly |—=| —y
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A matrix R corresponding to this transformation (R? = I), together with
the unit matrix I, forms a three-dimensional representation of the group
Zs (see Section 7.4.2). <

Equation (7.14) implies that the linear transformation
y=Tyz, g€G,
does not change system (7.13). Indeed,
§ =Ty =T, f(x) = f(Tyx) = f(y)-

Therefore, if 2(t) is a solution to (7.13), then y(t) = Tyx(¢) is also a solution.
For example, if (2¢(t), yo(t), 20(t)), where zg # 0, is a homoclinic solution
to the origin in the Lorenz system (7.15), then there is another homoclinic
orbit to the same equilibrium, given by (—zo(t), —yo(t), 20(t))-

Definition 7.3 The fixed-point subspace X¢ C R" is the set
X% ={zeR": Tyx =z, for all g € G}.

The set X is a linear subspace of R”. This subspace is an invariant set
of (7.13), because x € X implies & € X¢. Indeed,

Tyt =Tyf(x) = f(Tyz) = fz) = &

for all g € G. For system (7.15), we have only one symmetry transformation
T, so the fixed-point subspace is the z-axis, X¢ = {(z,9,2) : * = y = 0}.
This axis is obviously invariant under the flow associated with the system.

Let us explain the modifications that symmetry brings to the Center
Manifold Theorem. Suppose we have a smooth G-equivariant system (7.13).
Let 2° be an equilibrium point that belongs to the fixed-point subspace
X%, and assume the Jacobian matrix A = f, evaluated at 2° has ng
eigenvalues (counting multiplicity) on the imaginary axis. Let X¢ denote
the corresponding critical eigenspace of A. The following lemma is a direct
consequence of the identity T3 A = AT,, for all g € G, that can be obtained

by differentiating (7.14) with respect to x at = = a°.

Lemma 7.3 X°¢ is G-invariant; in other words, if v € X¢, then Tyv € X¢
forallge G. O

Therefore, it is possible to consider the restriction {Tg} of {Tg} on X¢.
If we fix some coordinates § = (&1,&2,...,&n,) on X¢, {Tg} will be given
by certain ng X ng matrices.

Theorem 7.6 (Ruelle [1973]) Any center manifold W€ of the equilib-
rium 2° € X of (7.13) is locally G-invariant.

Moreover, there are local coordinates & € R™ on W€ in which the re-
striction of (7.13) to W€,

E=19(¢), EcR™, (7.16)
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is invariant with respect to the restriction of {T,} to X°,
Tgo(6) = ¥(T46). O

Attraction properties of W€ are determined, in the usual way, by the
eigenvalues of A with Re A # 0. If (7.13) depends on parameters, one can
construct a parameter-dependent center manifold W$ by appending the
equation & = 0 to the system, as in Chapter 5. The restricted system
(7.16) depends on « and is invariant with respect to T at each fixed a.
Similar results are valid for G-equavaliant discrete-time systems.

7.4.2  Zy-equivariant systems

The simplest possible nontrivial group G consists of two distinct elements
{e,r} such that

r?=e re=er=r e =e.

This group is usually denoted by Zs. Let {I, R} be a linear representation
of Zs in R™, where I is the unit matrix and the n X n matrix R satisfies

RZ=1.

The matrix R defines the symmetry transformation: x — Rx.% It is easy to
verify (Exercise 3) that the space R™ can be decomposed into a direct sum

R" =X+ @ X",

where Rr = z for x € XT, and Rz = —x for € X~. Therefore, R is
the identity on X+ and a central reflection on X . According to Definition
7.4, X7t is the fixed-point subspace associated with G. Let n* = dim X+,
nt > 0,n" > 1. Clearly, there is a basis in R" in which the matrix R has

the form
| I+ 0
r=(g )

where I, is the m X m unity matrix. From now on, we can assume that such
a basis is fixed, and we can thus consider a smooth parameter-dependent
system

i = f(r,a), v€R" acRY (7.17)
that satisfies

Rf(xa a) = f(R.’E, Oé),

for all (x,a) € R™ x R, where R is the matrix defined above. The fixed-
point subspace X is an invariant set of (7.17).

There is a simple classification of equilibria and periodic solutions of the
Zs-invariant system (7.17).

5Sometimes, we will also use the symbol R to denote this transformation. In
such cases, I will mean the identity map.
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Definition 7.4 An equilibrium z° of (7.17) is called fixed if Rx® = 2°.

Thus, the symmetry transformation maps a fixed equilibrium into itself.
If an equilibrium is not fixed, Rz® = 2! # 2, then ! is also an equilibrium
of (7.17) (check!) and Rzl = 2°.

Definition 7.5 Two equilibria 2° and x* of (7.17) are called R-conjugate
if x' = Ra®.

Similar terminology can be introduced for periodic solutions.

Definition 7.6 A periodic solution x;(t) of (7.17) is called fixed if Rz ;(t) =
zs(t) for allt € RY.

Obviously, the closed orbit corresponding to a fixed periodic solution
belongs to X+ and is invariant under the symmetry transformation R (see
Figure 7.23(a)). It can exist if nT > 2. However, there is another type of

X~ X

7 K

@ (b)
FIGURE 7.23. Invariant cycles: (a) F-cycle; (b) S-cycle.

periodic solution that defines a closed orbit that is R-invariant but not
fixed.

Definition 7.7 A periodic solution x4(t) of (7.17) with (minimal) period
T is called symmetric if

for all t € RY.

Thus, a symmetric periodic solution is transformed into itself by applying
R and shifting the time by half of the period. The orbit corresponding to a
symmetric solution cannot intersect X and requires n~ > 2 to exist. Its
projection to X~ is symmetric with respect to the central reflection (see
Figure 7.23(b)). Notice that the X *-components of the symmetric periodic
solution oscillate with the double frequency.

We call a limit cycle L of (7.17) fixed (symmetric) if the corresponding
periodic solution is fixed (symmetric), and we denote them by F- and S-
cycle, respectively. Both F- and S-cycles are R-invariant as curves in R™:
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R(L) = L. We leave the proof of the following lemma as an exercise to the
reader.

Lemma 7.4 Any R-invariant cycle of (7.17) is either an F'- or an S-cycle.
O

Of course, there may exist noninvariant limit cycles, R(L) # L. If 2°(¢)
is a periodic solution corresponding to such a cycle, then x'(t) = Ra®(t) is
another periodic solution of (7.17).

Definition 7.8 Two noninvariant limit cycles are called R-conjugate if
two of their corresponding periodic solutions satisfy x*(t) = Rx°(t) for all
t € R

7.4.8 Codim 1 bifurcations of equilibria in Zso-equivariant
systems

Our aim now is to analyze generic bifurcations of equilibria in Zs-equivari-
ant systems. Clearly, the bifurcations of R-conjugate equilibria happen in
the same way as in generic systems, being merely “doubled” by the symme-
try transformation R. For example, two pairs of R-conjugate equilibria of
opposite stability can collide and disappear via the fold bifurcation. Thus,
one can expect new phenomena only if the bifurcating equilibrium is of the
fixed type. Let us analyze the following simple example.

Example 7.4 (Symmetric pitchfork bifurcation) Consider the scalar
system
t=ax—2% zcR' acRL (7.18)

The system is obviously Zs-equivariant. Indeed, in this case, Rr = —x
(reflection) and nt = 0,n~ = 1. At a = 0, system (7.18) has the fixed
equilibrium z° = 0 with eigenvalue zero. The bifurcation diagram of (7.18)
is simple (see Figure 7.24). There is always a trivial equilibrium z° = 0,
which is linearly stable for & < 0 and unstable for o > 0. It is fized
according to Definition 7.5. There are also two stable nontrivial equilibria,
212(a) = +/a, existing for a > 0 and R-conjugate, Rx!(a) = 2%(a).

Any Zs-equivariant system

i =ar—2® 4+ O0(x°)

is locally topologically equivalent near the origin to (7.18). Indeed, such a
system has the form
&= ax —2° + 2, (2?), (7.19)

with some 1, (2?) = O(x?), since any odd function vanishing at = = 0 can
be represented as x¢(z), where () is even and, thus, ¢(z) = ¥(2?). It is
clear that x = 0 is always an equilibrium of (7.19). The nontrivial equilibria
satisfy the equation

a— a2 + 1o (z?) =0,
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FIGURE 7.24. Symmetric pitchfork bifurcation.

which can easily be analyzed near (x,«) = (0,0) by means of the Implicit
Function Theorem. This proves that the number and stability of the equi-
libria in (7.18) and (7.19) are the same for corresponding small parameter
values with small |a|. The homeomorphism h, : R* — R! that identifies
the phase portraits of the systems can be constructed to satisfy

ho(—2) = —ha(x),

for all (z, ). In other words, the homeomorphism can be defined by an
odd function of x. &

This example has a fundamental meaning, due to the following theorem.

Theorem 7.7 (Bifurcations at a zero eigenvalue) Suppose that a Zs-
equivariant system

i = f(z,a), z€R", aecR!,

with smooth f, Rf(x,a) = f(Rz,a), R?> = I, has at o = 0 the fized
equilibrium x° = 0 with simple zero eigenvalue A\ = 0, and let v € R™ be
the corresponding eigenvector.

Then the system has a one-dimensional R-invariant center manifold W,
and one of the following alternatives generically takes place:

(i) (fold) If v € X, then WS C X for all sufficiently small |af, and
the restriction of the system to W¢ is locally topologically equivalent near
the origin to the following normal form:

E=p+¢&%

(ii) (pitchfork) If v € X—, then WEN X+ = 2 for all sufficiently small
||, and the restriction of the system to W is locally topologically equivalent
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near the origin to the following normal form.:
E=pe£e 0

In case (i), the standard fold bifurcation happens within the invariant
subspace X, giving rise to two fixed-type equilibria. The genericity condi-
tions for this case are those formulated in Chapter 3 for the nonsymmetric
fold.

In case (ii), the pitchfork bifurcation studied in Example 7.3 happens,
resulting in the appearance of two R-conjugate equilibria, while the fixed
equilibrium changes its stability. The genericity conditions include nonva-
nishing of the cubic term of the restriction of the system to the center
manifold at & = 0. We leave the reader to work out the details.

The presence of Zs-symmetry in a system having a purely imaginary
pair of eigenvalues brings nothing new to nonsymmetric Hopf bifurcation
theory. Namely, one can prove the following.

Theorem 7.8 (Bifurcation at purely imaginary eigenvalues) Suppo-
se that a Zo-invariant system

&= f(x,a), x€R", acR!

with smooth f, Rf(x,a) = f(Rx,a), R?> = I, has at a« = 0 the fived
equilibrium x° = 0 with a simple pair of imaginary eigenvalues \; 2 =
+iwg, wo > 0.

Then, generically, the system has a two-dimensional R-invariant center
manifold WS, and the restriction of the system to W§ is locally topologically

equivalent near the origin to the normal form:

&1 g -1 & 2 o[ &
(£)-(1 %) (&)rara(g)e

This normal form is the standard normal form for a generic Hopf bifur-
cation. It describes the appearance (or disappearance) of a unique limit
cycle having amplitude /3. There is a subtle difference, depending on
whether the critical eigenspace X¢ belongs to X+ or X—. If X¢ C X,
then W< C X%+ and the standard Hopf bifurcation happens within the
invariant subspace X . The bifurcating cycle is of type F. In contrast, if
X¢ C X, then WEN X+t = 2% and the system restricted to the center
manifold is Z-invariant with respect to the transformation

w(&)=-(8)

The bifurcating small-amplitude limit cycle is of type S.
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7.4.4 Codim 1 bifurcations of cycles in Zo-equivariant systems

As was the case for equilibria, bifurcations of noninvariant limit cycles
happen in the same manner as those in generic systems. Bifurcations of F-
and S-cycles are very different and have to be treated separately.

Codim 1 bifurcations of F-cycles

Consider a fixed limit cycle Lg of (7.17), and select a codim 1 hyperplane
¥ that is transversal to the cycle and R-invariant, R(X) = 3. Let P, be
the Poincaré map defined on ¥ near its intersection with L (see Figure
7.25).

X

z

RX

FIGURE 7.25. Poincaré map for an F-cycle.

Lemma 7.5 The Poincaré map P, : ¥ — X is G-equivariant,
RZOPa:PaOsz

where Ry, is the restriction of the map R to 3.

Proof:

Let an orbit 7 of (7.17) start at a point u € ¥ and return to a point v € £
close to u: v = P,(u). The R-conjugate orbit 4 = R(y) starts at the point
@ = Ry (u) and returns to ¥ at the point & = Ry (v). Since 0 = P, (), we
have

Ry (Pa(u)) = Po(Rs(u))
for all u € X such that both sides of the equation are defined. O

Therefore, the analysis of bifurcations of F-cycles is reduced to that
of fixed points in a discrete-time dynamical system (map) having Zo-
symmetry. Introduce local coordinates £ € R ! on ¥ so that & = 0 corre-
sponds to the cycle Lg. Let us use the same symbol R instead of Ry, and
decompose X by

LT=Xtgox,
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where ¢ € 2% if R¢ = 4£. Consider each codimension one case separately.
We give the following theorems, which are obvious enough, without proofs.

Theorem 7.9 (Bifurcations at u = 1) Suppose that a Zs-equivariant sys-
tem
i = f(z,a), z€R", acRY

with smooth f, Rf(x,a) = f(Rx,a), R?> = I, has at o = 0 an F-cycle
Lo with a simple multiplier 1y = 1, which is the only multiplier with |pu| =
1. Let v be the corresponding eigenvector of the Jacobian matrix of the
Poincaré map Py associated with the cycle.

Then the map P, has a one-dimensional R-invariant center manifold
WE, and the restriction of P, to this manifold is, generically, locally topo-
logically equivalent near the cycle to one of the following normal forms:

(i) (fold) If v € X7, then
= B+ £ 0%
(ii) (pitchfork) If v € X7, then
ne (1+B)n+n’. O

In case (i), WS C XF, and we have the standard fold bifurcation giving
rise to two F-cycles L1, Ly € X, with different stability (see Figure 7.26).

RX

B<0 B=0 B>0
FIGURE 7.26. Tangent bifurcation of an F-cycle.

In case (i), WSNET = 0, and we have the appearance (or disappearance)
of two R-conjugate limit cycles L1 9, Lo = R(L1), as the original F-cycle
changes its stability (see Figure 7.27).

Theorem 7.10 (Bifurcation at u = —1) Suppose that a Zs-equivariant
system

i = f(z,a), z€R", acR
with smooth f, Rf(x,a) = f(Rx,a), R? = I, has at a = 0 an F-cycle
Ly with a simple multiplier py = —1, which is the only multiplier with
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e
(7’ 'LZ

- X

B<0 B=0 B>0
FIGURE 7.27. Pitchfork bifurcation of an F-cycle.

|| = 1. Let v be the corresponding eigenvector of the Jacobian matriz of
the associated Poincaré map Py.

Then the map P, has a one-dimensional R-invariant center manifold
WE, and the restriction of P, to this manifold is, generically, locally topo-
logically equivalent near the cycle to the normal form:

n— —(1+B)n+n’.

Moreover, the double-period limit cycle corresponding to the fixed points
of P2 has F-type if v € X1 and S-type ifv e X . O

Theorem 7.11 (Bifurcation at complex multipliers |uq 2| = 1) Sup-
pose that a Zo-equivariant system

i = f(z,a), z€R", acR

with smooth f, Rf(x,a) = f(Rxz,a), R? = I, has at a = 0 an F-cycle
Lo with simple multipliers py 2 = et% which are the only multipliers with
lul = 1.

Then the map P, has a two-dimensional R-invariant center manifold
WE on which a unique invariant closed curve generically bifurcates from
the fized point corresponding to Ly. This curve corresponds to an invariant
two-torus T? of the system, R(T?) = T?. O

Remark:
The fold and pitchfork bifurcations are the only possible codim 1 bifur-
cations in generic, one-parameter, Zo-equivariant systems in R3.

Codim 1 bifurcations of S-cycles

As one can see, in this case the cross-section ¥ cannot be selected to be
R-invariant. Instead, one can choose two secant hyperplanes to the cycle
Lg, X1 and X, such that

R(%) = 3o,
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and the Poincaré map P, can be represented for all sufficiently small |a] as
the superposition of two maps Q((ll) 131 — Yo and Q&Q) : Y9 — Xy defined
near the cycle

P, = QEXQ) © Q((xl)

(see Figure 7.28).

FIGURE 7.28. Poincaré map for an S-cycle.

Lemma 7.6 There is a smooth map Q : X1 — 1 such that
P, = Q3. (7.20)

Proof:
In the proper coordinates the map Q,(f) coincides with Qg}). More pre-
cisely, due to the symmetry of the system,

Q((f) oR=Ro Q((xl)’
or, equivalently, ng) =Ro QS) o R~!. Now introduce a map
Qa = R_l o Q(()Ll)

transforming ¥, into itself: First we allow a point to fly along the orbit of
the system from ¥; to X and then apply the inverse symmetry transfor-
mation R~! placing it back to ¥;. We have

Po=RoQY oR"0Q) =Ro(RoR ) oQP o R oQl) =R*Q7,

that gives (7.20), since R?> = [. O

Consequently, the analysis of bifurcations of S-cycles is reduced to that
for fixed points of the map @, that has no special symmetry. However,
equation (7.20) imposes strong restrictions on possible bifurcations.
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Proposition 7.1 An S-cycle cannot have the simple multiplier p = —1.

Proof:
Let A and B be the Jacobian matrices of Py and Qg evaluated at their
common fixed point. Then (7.20) implies

A= B
If 1 is a simple real eigenvalue of A, then there exists a simple real eigenvalue
A of B. Therefore, = A2 > 0. O
Thus, only the cases 1 = 1 and p; 5 = €% have to be considered.

Theorem 7.12 (Bifurcation at u = 1) Suppose that a Zs-equivariant sy-
stem
i = f(z,a), z€R", acR!

with smooth f, Rf(z,a) = f(Rx,a), R?> = I, has at a = 0 an S-cycle Ly
with a simple multiplier 1 = 1, which is the only multiplier with |u| = 1.
Let v be the corresponding eigenvector of the Jacobian matriz A = B? of
the associated Poincaré map Py = Q3.

Then the map P, has a one-dimensional R-invariant center manifold
WE, and the restriction of P, to this manifold is, generically, locally topo-
logically equivalent near the cycle to one of the following normal forms:

(i) (fold) If Bv = v, then
e B+ £
(ii) (pitchfork) If Bv = —v, then
ne (1+B)n+n°

Outline of the proof:

In case (i), we have a standard fold bifurcation of @, (A = 1). Therefore,
on its center manifold (which is also a center manifold for P,) the map Q,
is generically equivalent to

Ery+EEn

The fixed points of this map correspond to S-cycles of the system. Its
second iterate

5,_>(2/74_...)+(1_|_...)§:|:(2_|_...)§2_|_...

is topologically equivalent to the normal form (i).
In case (ii), we have a standard flip bifurcation for Q, (A\; = —1,A3 = 1).
On its center manifold, the map @, is equivalent to

£ —(1+7)E£E
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The cycle of period two of this map corresponds to a pair of R-conjugate
cycles of the original system. The second iterate of this map,

Err (L4274 )6 F 2+ )8+,
is topologically equivalent to the normal form (ii). O

Theorem 7.13 (Bifurcation at complex multipliers |y 2| =1) Sup-
pose that a Zso-equivariant system

i = f(z,a), z€R", acR

with smooth f, Rf(x,a) = f(Rx,a), has at « = 0 an S-cycle Ly with
simple multipliers uy = e*%  which are the only multipliers with |u| = 1.

Then the map P, has a two-dimensional R-invariant center manifold
WE on which a unique invariant closed curve generically bifurcates from
the fixed point corresponding to Lqg. This curve corresponds to an invariant
two-torus T? of the system, R(T?) = T?. O

Remark:
A system in R3 that is invariant under the transformation Rx = —z, 2 €
R3 cannot exhibit the Neimark-Sacker bifurcation of an S-cycle.

7.5 Exercises

(1) (Asymptotics of the cycle period near saddle-node homoclinic
bifurcation) Find an asymptotic expression for the period T of the cycle
as a function of (3, when it approaches the homoclinic orbit at a saddle-node
bifurcation. (Hint: The leading term of the expansion is given by

1 dé—
Tﬁ”/_lme’

where ¢ is a coordinate on a center manifold W§ near the saddle-node.)

(2) (Arnold’s circle map) Consider the following two-parameter smooth
map P, : St — S8,

P,e(p) =9+ a+esinb,

where 0 < e < 1, ¢,a (mod 27). Compute asymptotic expressions for the

curves that bound a region in the (a,e)-plane corresponding to the map
having rotation number p = % (Hint: A rotation number p = % implies
the presence of cycles of period two, and the boundaries are defined by the

fold bifurcation of these cycles.)
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(3) (Symmetry decomposition) Let R be a real n x n matrix such that
R? = I. Prove that the space R" can be decomposed as R" = XT @ X,
where Rx = z forx € X, and Rz = —x for z € X . (Hint: Any eigenvalue
A of R satisfies A = 1.)

(4) (Hopf bifurcation in Zs-equivariant planar systems) Prove that
the Hopf bifurcation never happens in the planar systems invariant under

‘he ‘ransformation
y _y

(Hint: Any real matrix A satisfying AR = RA, where R is defined above,
is diagonal.)

(5) (Pitchfork bifurcation in the Lorenz system) Prove that the
equilibrium (z,y, z) = (0,0,0) of the Lorenz system (7.15) exhibits a non-
degenerate pitchfork bifurcation at ro = 1, for any fixed positive (o,b).
(Hints:

(a) Verify that at 7o = 1 the equilibrium at the origin has a simple zero
eigenvalue, and compute the corresponding eigenvector v. Check that Av =
—v, where A is the Jacobian matrix of (7.15) evaluated at x =y =2 =0
for r = 1, so that case (ii) of Theorem 7.6 is applicable.

(b) Compute the second-order approximation to the center manifold ¢
at ro = 1 and prove that it is R-invariant.

(¢) Check that the restriction of the system to the center manifold has
no quadratic term. Could one expect this a priori?

(d) Compute the coefficient of the cubic term as a function of (o, b) and
verify that it is nonzero for positive parameter values.)

(6) (Normal form for O(2)-symmetric Hopf bifurcation) Consider
the following smooth, four-dimensional system written as two complex
equations:

{2'71 = z1(B+iw(B) + A(B)|z1 ] + B(B)]22]*), (7.21)
Zy = z(B+iw(B) + B(B)lz1]? + AB)|22?), '

where [ is the bifurcation parameter, w(0) > 0, A(8) and B(f) are complex-
valued functions, and for a(8) = Re A(f8),b(5) = Re B(f),

a(0)b(0)(a*(0) — b*(0)) # 0.

This is a (truncated) normal form for the Hopf bifurcation with a four-
dimensional center manifold of O(2)-equivariant systems (see van Gils &
Mallet-Paret [1986], Kuznetsov [1984, 1985]. Notice that the critical pair
of eigenvalues +iw(0) is double.

(a) Verify that system (7.21) is invariant with respect to the representa-
tion of the orthogonal group O(2) in C? by the transformations

R(z1,2) = (22,21), Ty(z1,22) = (€?21,e7%2) (0 mod 27).  (7.22)
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(b) Write system (7.21) in polar coordinates z; = pre'?, k = 1,2, and
check that equations for py are independent of those for ¢y.

(c) Introduce ry, = pi, k = 1,2, and derive a quadratic planar system for
ri. Assume a(0) < 0 and obtain the bifurcation diagrams of the resulting
system as (3 varies. (Hint: There are three subcases: (i) b(0) < a(0); (ii)
b(0) > a(0),a(0) + b(0) < 0; (iii) b(0) > 0,a(0) + b(0) > 0. In all cases, the
amplitude system cannot have limit cycles.)

(d) Interpret the results of part (c) in terms of the four-dimensional
system (7.21). Prove that, besides the trivial equilibrium at the origin,
the system can have a pair of R-conjugate limit cycles, and/or a two-
dimensional R— and Ty-invariant torus foliated by closed orbits. Explain
why this structurally unstable orbit configuration on the torus persists
under parameter variations. Prove that when they exist simultaneously,
the cycles and the torus have opposite stability.

(e) Show that any smooth system

Z1
t
which is invariant with respect to the transformations (7.22) and has A(0) =
iw(0), can be reduced to within cubic terms by smooth and smoothly
parameter-dependent invertible transformations to the form (7.21), where
B = B(«). Verify that the resulting transformation preserves the symmetry
(i.e., is invariant under (7.22)).
(f) Prove that the limit cycles and the torus survive under adding any
O(2)-equivariant higher-order terms to the truncated normal form (7.21).
(g) Assume that (7.21) is a truncated normal form of the equations on
a center manifold of a reaction-diffusion system on a two-dimensional do-
main 2, having the spatial symmetry group O(2), composed of rotations
and a reflection. Convince yourself that the cycles in the system on the cen-
ter manifold correspond to rotating waves in the reaction-diffusion system,
while the torus describes standing waves in the system.

Ma)zy + fi(z1, 21, 22, Z2, @), (7.23)
M)z + fa(z1, 21, 22, 22, @), :

7.6 Appendix 1: Bibliographical notes

The saddle-node homoclinic bifurcation was described, among other pla-
nar codim 1 bifurcations, by Andronov in the 1940s (see Andronov et al.
[1973]). Multidimensional theorems on saddle-node and saddle-saddle ho-
moclinic bifurcations are due to Shil’'nikov [1963, 1966, 1969]. Our presen-
tation of the saddle-saddle multiple-homoclinic case follows a lecture given
by Yu. I’'yashenko at Moscow State University in 1987. Two-parameter
unfolding of a nontransversal homoclinic orbit to a saddle-saddle equilib-
rium has been analyzed by Champneys, Harterich & Sandstede [1996], who
also constructed a polynomial system having two orbits homoclinic to a
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saddle-saddle. Another codim 2 case, when the homoclinic orbit returns to
a saddle-node along the noncentral direction, was analyzed by Lukyanov
[1982] for planar systems and by Chow & Lin [1990] and Deng [1990] in
general.

Nontransversal intersections of the invariant manifolds of a saddle cy-
cle were studied by Gavrilov & Shilnikov [1972, 1973] who analyzed how
Smale horseshoes are created and destroyed near the critical parameter
value. Wiggins [1990] gives a readable introduction to this bifurcation. The
analysis of bifurcations of homoclinic orbits to a nonhyperbolic cycle was
initiated by Afraimovich & Shil’nikov [1972, 1974, 1982]. The “blue-sky”
problem was first formulated by Palis & Pugh [1975]. Medvedev [1980] has
constructed the first explicit example of this bifurcation on the Klein bottle.
However, the constructed limit cycle exhibited infinitely many fold bifur-
cations while approaching the “blue-sky” parameter value. The “French
horn” mechanism of the “blue-sky” bifurcation of a stable cycle is pro-
posed and analyzed by Turaev & Shil'nikov [1995]. Some authors naively
tend to consider any homoclinic bifurcation as a “blue-sky” catastrophe.

Bifurcations of continuous-time systems on tori and the associated bifur-
cations of maps of a circle is a classical topic dating back to Poincaré. A
good introduction to the theory of differential equations on the torus can
be found in Arnold [1983], including the proof of Denjoy’s theorem (see
Denjoy [1932] and also Nitecki [1971]). The persistence of normally hy-
perbolic invariant manifolds (including tori) under perturbations is proved
by Fenichel [1971]. When the normal hyperbolicity is lost, the torus can
break-up. Possible break-up scenaria are classified by Arnol’d, Afraimovich,
II’yashenko & Shil’nikov [1994]. For an example showing the complexity in
the bifurcation sequence leading to the break-up of an invariant torus, see
Aronson et al. [1982].

Bifurcation with symmetry is a huge and rapidly developing field. The
standard references here are the books by Golubitsky & Schaeffer [1985]
and by Golubitsky, Stewart & Schaeffer [1988]. Their reading, however,
requires a rather high mathematical sophistication. The Center Manifold
Theorem in the presence of a compact symmetry group was formulated by
Ruelle [1973]. Its generalization to the noncompact case has been proved
by Sandstede, Scheel & Wulff [1997]. The main results on limit cycles and
their bifurcations in the presence of discrete symmetries were obtained by
Fiedler [1988] and Nikolaev [1994]. Our presentation of cycle bifurcations
in Zs-equivariant systems closely follows Nikolaev [1992; 1995].
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8

Two-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

This chapter is devoted to bifurcations of equilibria in generic two-parame-
ter systems of differential equations. First, we make a complete list of such
bifurcations. Then, we derive a parameter-dependent normal form for each
bifurcation in the minimal possible phase dimension and specify relevant
genericity conditions. Next, we truncate higher-order terms and present the
bifurcation diagrams of the resulting system. The analysis is completed by
a discussion of the effect of the higher-order terms. In those cases where
the higher-order terms do not qualitatively alter the bifurcation diagram,
the truncated systems provide topological normal forms for the relevant
bifurcations. The results of this chapter can be applied to n-dimensional
systems by means of the parameter-dependent version of the Center Mani-
fold Theorem (see Chapter 5).

The reader is warned that the parameter and coordinate transforma-
tions required to put a system into the normal form can lead to lengthy
intermediate calculations and expressions that can make the theory seem
unnecessarily complicated. While many such expressions are included here,
the reader is advised against trying to follow the calculations “by hand.”
Instead, we strongly urge you to use one of the symbolic manipulation
packages, which are well suited for such problems (see Exercise 15 at the
end of the chapter and the bibliographical notes to Chapter 10).
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8.1 List of codim 2 bifurcations of equilibria
Consider a two-parameter system

= f(z,a), (8.1)

where 7 = (21,%2,...,2,)7 € R", a = (aj,a9)T € R?, and f is a suffi-
ciently smooth function of (z, cv).

8.1.1 Bifurcation curves

Suppose that at o = o, system (8.1) has an equilibrium z = z° for which
either the fold or Hopf bifurcation conditions are satisfied. Then, generi-
cally, there is a bifurcation curve B in the (aj,as)-plane along which the
system has an equilibrium exhibiting the same bifurcation. Let us consider
two simple examples.

Example 8.1 (Fold bifurcation curve in a scalar system) Assume

that at a = a® = (af,a9)? the system

= f(z,a), R, a=(a,a)’ €R? (8.2)

has an equilibrium z = 2% with eigenvalue A = f,(2° a") = 0. Consider
the following system of scalar nonlinear equations:

{ [

0,

0 (8.3)

This is a system of two equations in R3 with coordinates (x, oy, ). Gener-
ically, it defines a smooth one-dimensional manifold (curve) I' C R? passing
through the point (2°,a9,a3) (see Figure 8.1). Here “generically” means

that the rank of the Jacobian matrix of (8.3),

J — < fiE foq fozg )
fza: f:}cal fl‘OéQ ’
is maximal, i.e., equal to 2. For example, if the conditions of Theorem 3.1

(see Chapter 3) for the fold bifurcation are satisfied with respect to a; at
0
a’:

(A1) fru(2%,a®) # 0;
(A-2) fa, (2°,0%) #0;

then rank J = 2 at (2%, a°) since

f:v fal - 0 fal o
det( P )_det( e fom )— faxfor #0.
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Oy

FIGURE 8.1. A bifurcation curve I' and its corresponding bifurcation boundary
B.

In this case, the Implicit Function Theorem provides the (local) existence
of two smooth functions:

{of C oy

satisfying (8.3) and such that
X(af) =2" A(af) = af.

These functions define the curve I' parametrized by as near the point
(2°,aY). By continuity, the genericity conditions (A.1) and (A.2) will be
satisfied at nearby points on I'. Therefore, the construction can be repeated
to extend the curve farther.

If fo, = 0 but fu, # 0 at a certain point where f,, # 0, similar argu-
ments give the local existence of I parametrized by «a;. Even if f,, =0 at
some point, which would mean that the nondegeneracy condition (A.1) is
violated, system (8.3) can still define a curve, provided that

o o
det( Foor fro ) 70

At such a point, rank J = 2 as before, and the curve I' is locally parametrized
by x.

Each point (z,«) € T defines an equilibrium point z of system (8.2) with
zero eigenvalue at the parameter value « (see system (8.3)). The standard
projection

7w (z,0) =
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maps I' onto a curve B = 7l" in the parameter plane (see Figure 8.1). A
fold bifurcation takes place on this curve. &

Example 8.2 (Hopf bifurcation curve in a planar system) Con-
sider a planar system

&= f(r,a), v=(21,22)7 €R? a=(a1,az)’ € R? (8.4)
having, at a = a® = (af,a9)7, an equilibrium 2° = (29, 29)7 with a pair of
eigenvalues on the imaginary axis: A1 2 = Fiwy. Consider now the following
system of three scalar equations in R* with coordinates (1,2, a1, az):

f(xaa) - O7
{tr(fa:(x,a)) = 0, (8.5)

where tr stands for the sum of the diagonal matrix elements (trace). Clearly,
(29, a®) satisfies (8.5), since the trace equals the sum of the eigenvalues
of f,. We leave the reader to show that the Jacobian matrix of (8.5) has
maximal rank (equal to 3) at (2, a) if the equilibrium z° exhibits a generic
Hopf bifurcation at . Actually, the rank remains equal to 3 under less
restrictive assumptions. Therefore, system (8.5) defines a curve I' in R*
passing through (2°,a). Each point on the curve specifies an equilibrium
of (8.4) with A1 2 = =fiwg, wo > 0, as long as det(f,(x,a)) > 0. The
standard projection of " onto the (o, az)-plane yields the Hopf bifurcation
boundary B = 7T

Notice that the second equation in (8.5) is also satisfied by an equilibrium
with real eigenvalues

)\1 =T, )\2 = T,

where 7 > 0. In this case, det(f;(z,«)) < 0 and the equilibrium is called a
neutral saddle. For a neutral saddle, the saddle quantity o = A1 + A2 =0
(see Chapter 6). &

The constructions of Examples 8.1 and 8.2 can be generalized to an
arbitrarily high phase-space dimension n. Suppose, as before, that at a =
aV, system (8.1) has an equilibrium o = 20 satisfying either the fold or Hopf
bifurcation conditions. In each case, a smooth scalar function ¥ = ¥ (z, a)
can be constructed in terms of the elements of the Jacobian matrix f,.
Adding this function to the equilibrium equation yields the system

(i o &)

which, generically, defines a curve I' passing through the point (z°,a°) in
R™*2 with coordinates (z, ). I' consists of equilibria satisfying the defining
bifurcation condition. The standard projection of I" onto the a-plane results
in the corresponding bifurcation boundary B.



8.1 List of codim 2 bifurcations of equilibria 297

The function 1 is most easily constructed in the case of the fold bifurca-
tion. System (8.6), with

b= 1/%(557 a) = det(fm(x’a))v (87)

defines a curve of equilibria having at least one zero eigenvalue. Indeed, 1/, is
the product of all the eigenvalues of f, and thus vanishes at an equilibrium
with a zero eigenvalue. One can check that rank J = n + 1 at a generic
fold point (2°,a?), where J is the Jacobian matrix of (8.6) with respect to
(z, ).
A function ¥ = ¢y (x,«) can also be constructed for the Hopf bifurca-
tion. Namely,
Yy (z,a) =det (2fz(z, ) © 1), (8.8)

where ® denotes the bialternate product of two matrices. This product is a
certain square matrix of order %n(n —1). The function ¥y is equal to the
product of all formally distinct sums of the eigenvalues of f,:

Yy = H(Ai +Aj);

i>j

and it therefore vanishes at an equilibrium having a pair of eigenvalues
with zero sum. It can also be shown that rank J = n + 1 at a generic
Hopf bifurcation. We will return to the precise definition and practical
computation of the bialternate product in Chapter 10.

8.1.2  Codimension two bifurcation points

Let the parameters (aq, a2) be varied simultaneously to track a bifurcation
curve I" (or B). Then, the following events might happen to the monitored
nonhyperbolic equilibrium at some parameter values:

(i) extra eigenvalues can approach the imaginary axis, thus changing the
dimension of the center manifold W¢;

(ii) some of the genericity conditions for the codim 1 bifurcation can be
violated.

For nearby parameter values we can expect the appearance of new phase
portraits of the system, implying that a codim 2 bifurcation has occurred.
It is worthwhile to recall that the different genericity conditions for either
the fold or Hopf bifurcation have differing natures. As we saw in Chapter 3,
some conditions (called “nondegeneracy conditions”) imply that a certain
coeflicient in the normal form of the equation on the center manifold is
nonzero at the critical point. These coefficients can be computed in terms
of the Taylor coefficients of f(x,0) at the equilibrium. In contrast, there are
conditions (called “transversality conditions”) in which certain derivatives
of f(x,«) with respect to some parameter «; are involved. These two types
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of conditions play differing roles in the bifurcation analysis. The nonde-
generacy conditions essentially determine the number and stability of the
equilibria and cycles appearing under parameter perturbations, while the
transversality conditions merely suggest the introduction of a new param-
eter to “unfold” the bifurcation (see Chapter 3). Thus, only violating a
nondegeneracy condition can produce new phase portraits. For example, if

0
8ai

Re )\172(05) =0

at the Hopf bifurcation point, then, generically, the eigenvalues do not cross
the imaginary axis as «; passes the critical value. This results in the same
local phase portrait for both sub- and supercritical parameter values.

Let us first follow the fold bifurcation curve B;. A typical point in this
curve defines an equilibrium with a simple zero eigenvalue \; = 0 and no
other eigenvalues on the imaginary axis. The restriction of (8.1) to a center
manifold W€ has the form

£ =ag® +0(&%). (8.9)

The formula for the coefficient a was derived in Chapter 5. By definition,
the coefficient a is nonzero at a nondegenerate fold bifurcation point. While
the curve is being tracked, the following singularities can be met:

(1) An additional real eigenvalue Ay approaches the imaginary axis, and
W€ becomes two-dimensional:

)\1,2 =0

(see Figure 8.2(a)). These are the conditions for the Bogdanov-Takens (or
double-zero) bifurcation. To have this bifurcation, we need n > 2.

(2) Two extra complex eigenvalues Ay 3 arrive at the imaginary axis, and
W€ becomes three-dimensional:

Al = 07 )\273 = :l:in,

@ (b) (©
FIGURE 8.2. Linear singularities of codim 2.
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for wy > 0 (see Figure 8.2(b)). These conditions correspond to the zero-
pair or fold-Hopf bifurcation, sometimes called a Gavrilov-Guckenheimer
bifurcation. We obviously need n > 3 for this bifurcation to occur.

(3) The eigenvalue A\; = 0 remains simple and the only one on the imagi-
nary axis (dim W€ = 1), but the normal form coefficient a in (8.9) vanishes:

These are the conditions for a cusp bifurcation, which is possible in systems
with n > 1. Notice that this bifurcation is undetectable by looking at only
the eigenvalues of the equilibrium, since quadratic terms of f(x,0) are
involved in the computation of a. Bifurcations of this type are sometimes
referred to as “degeneracy of nonlinear terms.”

Let us now follow a Hopf bifurcation curve By in system (8.1). At a
typical point on this curve, the system has an equilibrium with a simple
pair of purely imaginary eigenvalues A2 = Fiwg, wp > 0, and no other
eigenvalues with Re A = 0. The center manifold W€ is two-dimensional in
this case, and there are (polar) coordinates (p, ¢) for which the restriction
of (8.1) to this manifold is orbitally equivalent to

(&2 610

The formula for the coeflicient l; was derived in Chapters 3 and 5. By
definition, I; # 0 at a nondegenerate Hopf point.

While moving along the curve, we can encounter the following new pos-
sibilities:

(4) Two extra complex-conjugate eigenvalues A3 4 approach the imagi-
nary axis, and W° becomes four-dimensional:

)\172 = iin, )\374 = iiwl,

with wg 1 > 0 (Figure 8.2(c)). These conditions define the two-pair or Hopf-
Hopf bifurcation. It is possible only if n > 4.

(5) Finally, the first Lyapunov coefficient I; might vanish while Ay, =
+iwg remain simple and, therefore, dim W¢ = 2:

)\172 = ﬂ:iwo, l1 =0.

At this point, a “soft” Andronov-Hopf bifurcation turns into a “sharp” one
(or vice versa). We call this event a Bautin bifurcation (see the bibliograph-
ical notes); it is often called a generalized (or degenerate) Hopf bifurcation.
It is possible if n > 2. As with the cusp bifurcation, the Bautin bifurca-
tion cannot be detected by merely monitoring the eigenvalues. We have to
take into account the quadratic and cubic Taylor series coeflicients of the
right-hand side of (8.1) at the equilibrium.
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Clearly, the Bogdanov-Takens bifurcation can also be located along a
Hopf bifurcation curve, as wy approaches zero. At this point, two purely
imaginary eigenvalues collide and we have a double zero eigenvalue. If we
continue to trace the curve defined by (8.6) with ) = ¢y given by (8.8),
we will follow a neutral saddle equilibrium with real eigenvalues \; = —\s.
Obviously, a zero-pair bifurcation can also be found while tracing a Hopf
bifurcation curve.

Thus, we have identified five bifurcation points that one can meet in
generic two-parameter systems while moving along codim 1 curves. Each of
these bifurcations is characterized by two independent conditions (and is
therefore of codim 2). There are no other codim 2 bifurcations in generic
continuous-time systems. The rest of this chapter is devoted to a systematic
study of these bifurcations in the least possible phase-space dimensions. The
analysis of each codim 2 bifurcation will be organized in a similar manner
to the study of codim 1 bifurcations:

(i) First, we derive the simplest parameter-dependent form to which any
generic two-parameter system exhibiting the bifurcation can be transformed
by smooth invertible changes of coordinates and parameters and (if neces-
sary) time reparametrizations. In the course of this derivation, certain non-
degeneracy and transversality conditions will be imposed on the system to
make the transformation possible. These conditions explicitly specify which
systems are “generic.”

(ii) Then we truncate higher-order terms and present bifurcation diagrams
of the resulting system, sometimes called the “approzimate normal form”
or “model system.” For this system to have a nondegenerate bifurcation
diagram, some extra genericity conditions might have to be imposed at this
stage.

(iii) Finally, we discuss the influence of the higher-order terms.

It turns out that for the cusp, Bautin, and Bogdanov-Takens bifurcations
the higher-order terms do not qualitatively affect the bifurcation diagrams,
and the model systems provide topological normal forms for the correspond-
ing bifurcations (see Chapter 2 for a definition). Notice that these are ex-
actly those codim 2 bifurcations possible in generic scalar or planar systems.
For the remaining codim 2 bifurcations (zero-pair and two-pair cases, with
minimal phase dimensions n = 3 and 4, respectively), the situation is more
involved, since higher-order terms do change bifurcation diagrams. We dis-
cuss which features of the behavior of the system will persist, if one takes
these terms into account, and which will not. In any case, the study of the
approximate normal form provides important information on the behavior
of the system near the bifurcation point.
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8.2 Cusp bifurcation

8.2.1 Normal form derivation

Suppose the system
= f(z,0), v€R' acR? (8.11)

with a smooth function f, has at a = 0 the equilibrium =z = 0 for which
the cusp bifurcation conditions are satisfied, namely A\ = f,(0,0) = 0 and
a= %fm (0,0) = 0. As in the analysis of the fold bifurcation in Chapter 3,
expansion of f(x,a) as a Taylor series with respect to x at = 0 yields

f(z,a) = fola) + fi(@)z + fola)z? + fa(a)z® + O(z?).

Since x = 0 is an equilibrium, we have f(0) = f(0,0) = 0. The cusp
bifurcation conditions yield f1(0) = f,(0,0) = 0 and f>(0) = 3 f4.(0,0) =
0.

As in Chapter 3, let us analyze the simplification of the right-hand side
of (8.11) that can be achieved by a parameter-dependent shift of the coor-
dinate

E=1x+d0(a). (8.12)
Substituting (8.12) into (8.11), taking into account the expansion of f(z, a),
yields
& = [fola) = fi(a)d+ (@, 0)] + [fi(e) = 2fa(@)8 + 6°d(, 0)] €
+ [fa(0) — 3f5(0)3 + 800, 8)] € + [fz(a) + 0(at, 5)) € + O(€")
for some smooth functions ¢, ¢, ¥, and . Since f(0) = 0, we cannot use the
Implicit Function Theorem to select a function §(«) to eliminate the linear
term in ¢ in the above equation (as we did in Chapter 3). However, there

is a smooth shift function (), d(0) = 0, which annihilates the quadratic
term in the equation for all sufficiently small |||, provided that

(1) F5(0) = & Fuea(0,0) # 0.

To see this, denote the coefficient in front of £2 by F(a,d):
F(a,0) = fo(@) = 3f3()d + 6% (a, 9).

We have

F(0,0) =0, = —3f3(0) # 0.

9 |(0,0)

Therefore, the Implicit Function Theorem gives the (local) existence and
uniqueness of a smooth scalar function § = §(«), such that §(0) = 0 and

F(a,6(e)) =0,
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for ||a|| small enough. The equation for &, with §(«) constructed as above,
contains no quadratic terms. Now we can introduce new parameters p =

(111, p12) by setting
{ pa (ev) fola) = fi(@)d(a) + 6 (@)p(er, 6(a)), (8.13)

p2(a) file) = 2f2(a)d(a) + 6% () (e, 6(av)). '
Here p11 is the £-independent term in the equation, while o is the coefficient

in front of £. Clearly, 4(0) = 0. The parameters (8.13) are well defined if
the Jacobian matrix of the map u = p(«) is nonsingular at a; = ag = 0:

8u> ( for )
C.2 det | — = det e o2
( ) < 80é a=0 fzocl fwag
Then the Inverse Function Theorem implies the local existence and unique-

ness of a smooth inverse function o = a(p) with «(0) = 0. Therefore, the
equation for £ now reads

€= pi1 + p2€ + c(p)€ + 0(Eh),

whdere c(p) = fs(a(w) +6(a(p)f(a(p), 5(a(p))) is a smooth function of p

£0.
0

a=

0(0) = £5(0) = & feaul0,0) 0

due to (C.1).
Finally, perform a linear scaling
n= d
le(p)]’
and introduce new parameters:
M1
61 = ’
|e(u)]
P2 = pa2.
This gives
0= B1+ Ban + sn® + O(n*), (8.14)

where s = sign ¢(0) = £1, and the O(n*) terms can depend smoothly on
B

Thus, the following lemma is proved.

Lemma 8.1 Suppose that a one-dimensional system
i = f(z,a), zcR' acR?

with smooth f, has at a« = 0 the equilibrium x = 0, and let the cusp
bifurcation conditions hold:

A:hmmyﬂxa:%hAmm:u
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Assume that the following genericity conditions are satisfied:

(C.1) fazz(0,0) # 0;
(CQ) (.fa1f$062 - fOégfIOél)(OaO) 7é 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

=P+ BmEn’+0n). O

Remarks:
(1) Notice that (C.2) implies that a unique and smooth fold bifurcation
curve I, defined by

[ fo =

passes through (x, ) = (0,0) in R3-space with coordinates (z,a) and can
be locally parametrized by x (see Section 8.1.1).

(2) Given f5(0,0) = fz5(0,0) = 0, the nondegeneracy condition (C.1)
and the transversality condition (C.2) together are equivalent to the reg-
ularity (nonsingularity of the Jacobian matrix) of a map F : R® — R3
defined by

Fi(z,0) = (f(z,0), fo(z, ), fou(z,0))
at the point (z,a) = (0,0). &

System (8.14) with the O(n*) terms truncated is called the approzimate
normal form for the cusp bifurcation. In the following subsections we study
its bifurcation diagrams and see that higher-order terms do not actually
change them. This justifies calling

0= p1+Pan£0°

the topological normal form for the cusp bifurcation.

8.2.2  Bifurcation diagram of the normal form

Consider the normal form corresponding to s = —1:

=P+ Pan— 1’ (8.15)

Its bifurcation diagram is easy to analyze. System (8.15) can have from one
to three equilibria. A fold bifurcation occurs at a bifurcation curve T on
the (81, B2)-plane that is given by the projection of the curve

I Bi+Ban—n* = 0,
' 62_3772 = 03
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0

FIGURE 8.3. One-dimensional cusp bifurcation.

onto the parameter plane. Elimination of n from these equations gives the
projection

T= {(51,52) : 453 - 275% = 0}~

It is called a semicubic parabola (see Figure 8.3). The curve T has two
branches, T} and T», which meet tangentially at the cusp point (0,0). The
resulting wedge divides the parameter plane into two regions. In region
1, inside the wedge, there are three equilibria of (8.15), two stable and
one unstable; in region 2, outside the wedge, there is a single equilibrium,
which is stable (Figure 8.3). As we can easily check, a nondegenerate fold
bifurcation (with respect to the parameter 3;) takes place if we cross either
Ty or Ty at any point other than the origin. If the curve T; is crossed from
region 1 to region 2, the right stable equilibrium collides with the unstable
one and both disappear. The same happens to the left stable equilibrium
and the unstable equilibrium at 75. If we approach the cusp point from
inside region 1, all three equilibria merge together into a t¢riple root of the
right-hand side of (8.15).

A useful way to present this bifurcation is to plot the equilibrium manifold
of (8.15),

M ={(n,B1,B2) : B1+ Pan—n® =0},

in R? (see Figure 8.4). The standard projection of M onto the (81, 32)-
plane has singularities of the fold type along I' except the origin, where a
cusp singularity shows up. Notice that the curve I' is smooth everywhere
and has no geometrical singularity at the cusp point. It is the projection
that makes the fold parametric boundary nonsmooth.
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FIGURE 8.4. Equilibrium manifold near a cusp bifurcation.

The cusp bifurcation implies the presence of the phenomenon known
as hysteresis. More precisely, a catastrophic “jump” to a different stable
equilibrium (caused by the disappearance of a traced stable equilibrium
via a fold bifurcation as the parameters vary) happens at branch T; or Ty
depending on whether the equilibrium being traced belongs initially to the
upper or lower sheet of M (see Figure 8.5). If we make a roundtrip in the
parameter plane, crossing the wedge twice, a jump occurs on each branch
of T.

The case s = 1 can be treated similarly or reduced to the considered
case using the substitutions t — —t,8; — —f1,83 — —(2. In this case,
the truncated system typically has either one unstable equilibrium or one
stable and two unstable equilibria that can pairwise collide and disappear
through fold bifurcations.

8.2.3 Effect of higher-order terms

The following lemma actually indicates that the higher-order terms in
(8.14) are irrelevant.

Lemma 8.2 The system

0= 61+ BanEtn®+0(n?
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X w
By
B,
N
T1 T2
0 B,

FIGURE 8.5. Hysteresis near a cusp bifurcation.

18 locally topologically equivalent near the origin to the system
=01+ Ben£n’. O

An elementary proof of the lemma is sketched in the hints to Exercise 2
for this chapter. We can now complete the analysis of the cusp bifurcation
by formulating a general theorem.

Theorem 8.1 (Topological normal form for the cusp bifurcation)
Any generic scalar two-parameter system

a'c:f(ac,a)

having at o« = 0 an equilibrium x = 0 ezhibiting the cusp bifurcation is
locally topologically equivalent near the origin to one of the normal forms

0=p1+FmEn® O

Remark:

If an n-dimensional system has a cusp bifurcation, the above theorem
should be applied to the equation on the center manifold (see Chapter 5).
Recall that ¢(0) (and thus the sign in the normal form) can be computed by
formulas (5.49) and (5.50) from Chapter 5. Shoshitaishvili’s theorem gives
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0

I AU

B,

1 @0 Bl

FIGURE 8.6. Cusp bifurcation on the plane.

the following topological normal forms for this case:

0= BB’
C.— = 7C—,
C+ = C+7

where (+ € R+, and n_ and n; are the numbers of eigenvalues of the
critical equilibrium with Re A > 0 and Re A < 0. Figure 8.6 presents the
bifurcation diagram for n = 2 in the case where ¢(0) < 0 and the second
eigenvalue at the cusp point is negative (n_ = 1,n. =0). &

8.3 Bautin (generalized Hopf) bifurcation

8.3.1 Normal form derivation

Assume that the system
i=f(r,a), v€R? acR? (8.16)

with f smooth has at & = 0 the equilibrium x = 0, which satisfies the
Bautin bifurcation conditions. More precisely, the equilibrium has purely
imaginary eigenvalues \; » = +iwg, wo > 0, and the first Lyapunov coeffi-
cient vanishes: [; = 0. Since A = 0 is not an eigenvalue, the equilibrium in
general moves as « varies but remains isolated and close to the origin for all
sufficiently small ||a|. As in the analysis of the Andronov-Hopf bifurcation,
we can always perform a (parameter-dependent) shift of coordinates that
puts this equilibrium at « = 0 for all a with ||| small enough, and assume
from now on that f(0,a) = 0.
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Lemma 3.3 from Chapter 3 allows us to write (8.16) in the complex form
2= (ula) +iw(a))z + g(z, z, a), (8.17)

where p, w, and g are smooth functions of their arguments, 1(0) = 0,w(0) =
wp, and formally

_ 1 _
9(z,%z,0) = Z ngl(a)zkzl

k+1>2

for smooth functions gx;(«).

Lemma 8.3 (Poincaré normal form for the Bautin bifurcation)
The equation

f=Ma)z + Y ﬁgkl(a)zkél+0(|z|6), (8.18)

2<k+I1<5

where A(a) = p(a) +iw(a), ©(0) =0, w(0) =we > 0, can be transformed
by an invertible parameter-dependent change of the compler coordinate,
smoothly depending on the parameters:

zZ=w + Z ' kl ki)l, h21(0[) = th(OL) = O7
2<k+l<5 o

for all sufficiently small |||, into the equation
W = Ma)w + ¢y (@)w|w|?* + ez (@)wlw|* + O(|w|®). O (8.19)

The lemma can be proved using the same method as for Lemma 3.6
in Chapter 3. By Lemma 3.6, we can assume that all the quadratic and
nonresonant cubic terms in (8.18) are already eliminated: gap = g11 = go2 =
g30 = g12 = go1 = 0, and %921 = c1. Then, by a proper selection of h;; with
i+ j = 4, we can annihilate all the order-four terms in (8.18), having the
coefficient of the resonant cubic term ¢;(«) untouched while changing the
coefficients of the fifth- and higher-order terms. Finally, we can “remove”
all the fifth-order terms except the resonant one shown in (8.19). These
calculations make a good exercise in symbolic manipulations.

The coefficients ¢ (a) and ca(«) are complex. They can be made simul-
taneously real by a time reparametrization.

Lemma 8.4 System (8.19) is locally orbitally equivalent to the system
W = (v(a) +i)w + L (@)w|w|* + Iy (a)w|w]* + O(|w|®), (8.20)

where v(a), l1(a), and la(«) are real functions, v(0) = 0.

Proof:
First, introduce the new time 7 = w(a)t. The direction of time is pre-
served for all sufficiently small |||, since w(0) = wy > 0. This gives
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(2—1: = (v(a) + D)w + di (@)w|w|? + dz(a)w|w|* + O(|w|?), (8.21)
with
v(@) =9 g (a) = Y g0 = 2

" w(a) YT Uay (@)’

w(a)’

Notice that v, d;, and ds are smooth and that d; o are still complex-valued.

Next, change the time parametrization along the orbits of (8.21) by in-
troducing a new time 6 such that

dr = (1 + e1(a)w]? + ez(a)w[*) db,
where the real functions e; o have yet to be defined. In terms of 6, (8.21)
can be written as

d
TZJ = (v+i)w+((v+i)e; +d1)w|w|2+((y+i)eg+eld1 +d2)w|w\4+0(|w|5).

Therefore, setting

e1(a) = —Im dy(a), ex(a) = —Im da() + [Im d; ()]

yields
dw . 2 4 5
=5 = (@) +dw+hi@wlw]” + (a)wlw]” + O(w]”),
where
1) = Re dy(@) — v(a) Im da o) = =t — ) ) (s.20)
is the first Lyapunov coefficient introduced in Chapter 3, and
lb(a) = Reds(a)—Redi(a) Im di(a)+v(a) (Im di(a)]® — Im da(e)) .

The functions v(«), l1(a), and la(«) are smooth and real-valued. O

Definition 8.1 The real function la(«) is called the second Lyapunov co-
efficient.

Recall that ¢; = ¢1(«) used in (8.22) can be computed by the formula
(see Chapter 3)

921 920911(2A+ ) g1 |? |go2|?

ATy 2\2 PRETCI NS TE

where A = A(a) and gx; = gri ().
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At the Bautin bifurcation point, where

Re ¢1(0 1 1
1(0) =0, 11(0) = Tl)() = % (Re g21(0) — o Im(920(0)911(0)> =0,
we obtain R 0
15(0) = Re 2(0)
wo

The following formula gives a rather compact expression for lo(0) at the
Bautin point

1
1212(0) = ;ORGQSQ

1 B _ 1 _
+ le (920331 — g11(4g31 + 3G22) — 3902 (910 + 13) — 9g30912]
0

1 1 1
+ F{Re [920(711 (3912 — G30) + go2 <912 - 3930> + §§02go3)
0

3 3
+ 3 Im(g20911) Im 921}

_ 5_ 1
+ g11(go2 (930 + 3912) + 5902903 — 4911930)]

1
+ o {Im [g11902 (930 — 3920911 — 4911)]
0

+ Im(gaog11) [3 Re(g20911) — 2[g02°] } (8.23)

where all the gi; are evaluated at o = 0. In deriving this formula, we have
taken the equation /;(0) = 0 (or, equivalently, Re g21 = wiohn(ggogu)) into
account.

Suppose that at a Bautin point

(B.1) 15(0) # 0.

A neighborhood of the point @ = 0 can be parametrized by two new
parameters, the zero locus of the first one corresponding to the Hopf bi-
furcation condition, while the simultaneous vanishing of both specifies the
Bautin point. Clearly, we might consider v(a) as the first parameter and
l1(cr) as the second one. Notice that both are defined for all sufficiently
small ||| and vanish at o = 0. Thus, let us introduce new parameters

(p11, p2) by the map
p = v(a),
8.24
SHAA) (524
assuming its regularity at a = 0:

v v Op  Op
dag  Oaz 1 Jay  Oag

(B.2) det = —det # 0.
oy ol wo oy oly

dar  das / |a—p OJar  Oaz / la=o
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This condition can easily be expressed in terms of p(a), Re ¢i(a), and
Im ¢; (), since wp # 0. It is equivalent to local smooth invertibility of the
map (8.24), so we can write « in terms of u, thus obtaining the equation

i = (1 + D)w + powlewl? + Lo(pywlwl* + O(wl®),

where La(p) = l2(a(p)) is a smooth function of u, such that Lo(0) =
12(0) # 0 due to (B.1). Then, rescaling

w = /|La(p)| u, ueC,

and defining the parameters

{ 61 = M1,
Ba = VILa(w)| pa,
yield the normal form
= (81 +i)u + Boulu|® + suul* + O(Jul®).

Here s = sign [3(0) = %1, where [3(0) is given by (8.23).
Summarizing the results obtained, we can formulate the following theo-
rem.

Theorem 8.2 Suppose that a planar system
i = f(z,a), z€R? acR?
with smooth f, has the equilibrium x = 0 with eigenvalues
Ar2(a) = p(a) +iw(a),

for all ||la|| sufficiently small, where w(0) = wy > 0. For a = 0, let the
Bautin bifurcation conditions hold:

1(0) =0, 11(0) =0,
where 11 («) is the first Lyapunov coefficient. Assume that the following
genericity conditions are satisfied:

(B.1) 12(0) # 0, where I3(0) is the second Lyapunov coefficient given by
(8.23);
(B.2) the map o~ (u(a), 11 ()T is regular at a = 0.

Then, by the introduction of a complex variable, applying smooth invertible
coordinate transformations that depend smoothly on the parameters, and
performing smooth parameter and time changes, the system can be reduced
to the following complex form:

i = (B1+1i)z + Baz|z|? + sz)z|* + O(]2]%), (8.25)
where s = sign [3(0) = +£1. O
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We will proceed in the same way as in analyzing the cusp bifurcation.
First, we will study the approximate normal form resulting from (8.25) by
dropping the O(]z|®) terms. As we shall then see, this approximate normal
form is also the topological normal form for the Bautin bifurcation.

8.8.2  Bifurcation diagram of the normal form

Set s = —1 and write system (8.25) without the O(|z|®) terms in polar
coordinates (p, ), where z = pe'®:
o = L :

The equations in (8.26) are independent. The second equation describes a
rotation with unit angular velocity. The trivial equilibrium p = 0 of the
first equation corresponds to the only equilibrium, z = 0, of the truncated
system. Positive equilibria of the first equation in (8.26) satisfy

Br+ Bap” —pt =0 (8.27)

and describe circular limit cycles. Equation (8.27) can have zero, one, or
two positive solutions (cycles). These solutions branch from the trivial one
along the line

H = {(f1,82) : B1 =0}
and collide and disappear at the half-parabola

T ={(B1,52) : B3+ 431 =0, By > 0}.

The stability of the cycles is also clearly detectable from the first equation
in (8.26). The bifurcation diagram of (8.26) is depicted in Figure 8.7. The
line H corresponds to the Hopf bifurcation: Along this line the equilibrium
has eigenvalues ;o = =i. The equilibrium is stable for 5; < 0 and un-
stable for #; > 0. The first Lyapunov coefficient l1(3) = (2. Therefore,
the Bautin bifurcation point 3; = 85 = 0 separates two branches, H_ and
H. ., corresponding to a Hopf bifurcation with negative and with positive
Lyapunov coefficient, respectively (i.e., “soft” and “sharp”). A stable limit
cycle bifurcates from the equilibrium if we cross H_ from left to right,
while an unstable cycle appears if we cross H in the opposite direction.
The cycles collide and disappear on the curve T', corresponding to a nonde-
generate fold bifurcation of the cycles (studied in Chapters 4 and 5). Along
this curve the system has a critical limit cycle with multiplier 4 = 1 and a
nonzero normal form coefficient a of the Poincaré map. The curves divide
the parameter plane into three regions (see Figure 8.7).

To fully understand the bifurcation diagram, let us make an excursion
on the parameter plane around the Bautin point counterclockwise, starting
at a point in region 1, where the system has a single stable equilibrium
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FIGURE 8.7. Bautin bifurcation

and no cycles. Crossing the Hopf bifurcation boundary H_ from region
1 to region 2 implies the appearance of a unique and stable limit cycle,
which survives when we enter region 3. Crossing the Hopf boundary H,
creates an extra unstable cycle inside the first one, while the equilibrium
regains its stability. Two cycles of opposite stability exist inside region 3
and disappear at the curve T through a fold bifurcation that leaves a single
stable equilibrium, thus completing the circle.

The case s = 1 in (8.25) can be treated similarly or can be reduced to
the one studied by the transformation (z, 3,t) — (z, -3, —t).

8.3.3 Elffect of higher-order terms
Lemma 8.5 The system

2= (1 + i)z + Baz|2|” £ 2[2* + O(|2|°)
is locally topologically equivalent near the origin to the system
2= (01 +i)z+ Poz|z|* £ 2)2|*. O

The proof of the lemma can be obtained by deriving the Taylor expan-
sion of the Poincaré map for the first system and analyzing its fixed points.
It turns out that the terms of order less than six are independent of O(|z|%)
terms and thus coincide with those for the second system. This means that
the two maps have the same number of fixed points for corresponding pa-
rameter values and that these points undergo similar bifurcations as the
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parameters vary near the origin. Then, one can construct a homeomor-
phism (actually, a diffecomorphism) identifying the parametric portraits of
the systems near the origin and a homeomorphism that maps the phase
portrait of the first system near the origin into that of the second system
for all parameter values (as in Appendix 1 to Chapter 3). Therefore, we
can complete the analysis of the Bautin bifurcation by stating the following
theorem.

Theorem 8.3 (Topological normal form for Bautin bifurcation)
Any generic planar two-parameter system

z = f(CE,Oé),

having at o = 0 an equilibrium x = 0 that exhibits the Bautin bifurcation,
s locally topologically equivalent near the origin to one of the following
complex normal forms:

i = (B + i)z + faz|z|* £ 2|21 O

This theorem means that the described normal form captures the topol-
ogy of any two-dimensional system having a Bautin bifurcation and satis-
fying the genericity conditions (B.1) and (B.2). In particular, although the
limit cycles in such a system would not be perfect circles, we can expect
the existence of two of them for nearby parameter values. Moreover, they
will collide and disappear along a curve emanating from the codim 2 point.

The Bautin bifurcation is the first example that demonstrates the ap-
pearance of limit cycle bifurcations near codim 2 bifurcations of equilibria.
In this case, by purely local analysis (computing the Lyapunov coefficients
Iy and ls at a Hopf point), we can prove the existence of a fold bifurcation
of limit cycles for nearby parameter values.

The multidimensional case of the Bautin bifurcation can be treated by a
center manifold reduction to the studied planar case. Then, (8.16) should
be considered as the equations on the center manifold. Notice, however,
that we need the Taylor expansion for the center manifold at the criti-
cal parameter values up to and including fourth-order terms, since certain
fifth-order derivatives of the right-hand side of (8.16) are involved in the
computation of l2(0).

8.4 Bogdanov-Takens (double-zero) bifurcation

8.4.1 Normal form derivation

Consider a planar system

i = f(z,a), z€R? acR? (8.28)
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where f is smooth. Suppose that (8.28) has, at a = 0, the equilibrium z = 0
with two zero eigenvalues (the Bogdanov-Takens condition), A1 2(0) = 0.

Step 0 (Preliminary transformation). We can write (8.28) at a = 0 in
the form
& = Aoz + F(z), (8.29)

where Ag = f;(0,0) and F(z) = f(z,0)—Apz is a smooth function, F'(z) =
O(||z||?). The bifurcation conditions imply that
A(0) =det Ag =0, o(0) =tr Ap = 0.
Assume that
(BT.0) Ay # 0,

that is, Ay has at least one nonzero element. Then there exist two real
linearly independent vectors, vg,1 € R2, such that

Ao’l)o = 0, Ao’Ul = 9. (830)

The vector vq is the eigenvector of Ay corresponding to the eigenvalue 0,
while v; is the generalized eigenvector of Ay corresponding to this eigen-
value. Moreover, there exist similar adjoint eigenvectors w2 € R? of the
transposed matrix Al

Alwy =0, ATwo = w. (8.31)

The vectors v; and wy are not uniquely defined even if vy and w; are fixed.!
Nevertheless, we can always select four vectors satisfying (8.30) and (8.31)
such that

<’U0,w0> = <U1,w1> = 1, (832)

where (-,-) stands for the standard scalar product in R? : (x,y) = x1y; +
9y2. The Fredholm Alternative Theorem implies

<U1,w0> = <’U0,w1> =0. (833)

If vy and v are selected as basis, then any vector z € R? can be uniquely
represented as
T = Y10 + Y21,
for some real y; o € R!. Taking into account (8.32) and (8.33), we find that
these new coordinates (y1,ys2) are given by

{yl - §$’w°>j (8.34)

Y2 =

!For example, if v; satisfies the second equation of (8.30), then v} = vy + yvo
with any v € R! also satisfies this equation.



316 8. Two-Parameter Bifurcations of Equilibria

In the coordinates (y1,y2), system (8.29) takes the form

1 0 1 (1 (F(y1v0 + y2v1), wo)
/ = . 8.35
{(Z/z ) (0 0)(3/2 )+( (F(y1vo + y2v1), w1) (8.35)
Notice the particular form of the Jacobian matrix, which is the zero Jordan
block of order 2.

Let us use the same coordinates (yi, y2) for all @ with ||| small. In these
coordinates, system (8.28) reads:

{( 0 > _ ( (f (yrvo + yav1, @), wo) ) (8.36)

Yo (f(y1vo + yov1, @), w1)

and for a = 0 reduces to (8.35). Expand the right-hand side of (8.36) as a
Taylor series with respect to y at y = 0:

1 = y2+ag(a)+ ao(@)yr + ao1(a)y2

+ 3a20(@)y} + a1 (a)y1y2 + sao2(@)y3 + Pi(y, ),
boo (@) + bio(@)y1 + o1 (a)y2

+ 3b20(a)yf + bra(@)yry2 + 5bo2(@)y3 + Pa(y, @),

(8.37)

Y2
where ag(a) and P 2(y, ) = O(||y||*) are smooth functions of their argu-
ments. We have

aoo(O) = alo(O) = a01(0) = boo(O) = blO(O) = b01(0) =0.

The functions ag;(«) can be expressed in terms of the right-hand side
f(z, @) of (8.28) and the vectors vg 1, wp,1. For example,

32

ago(a) = 907 5 (f(y1vo + yov1, @), wo)|
Y1 y=0
82

bao () 902 5 (f(y1vo + y2v1, @), wr)|
i y=0
82

bi1(a) = ——— Vo + Ya2v1, @), W

11( ) 8y18y2 <f(y1 0 T Y2U1 ) 1> o

Now we start transforming (8.37) into a simpler form by smooth in-
vertible transformations (smoothly depending upon parameters) and time
reparametrization. At a certain point, we will introduce new parameters.

Step 1 (Reduction to a nonlinear oscillator). Introduce new variables
(u1,uz) by denoting the right-hand side of the first equation in (8.37) by
us and renaming y; to be u;:

ur = Y1,
{ Uz = Y2+ apo + a1oy1 + ao1y2 + %azoy% +anyiy2 + %amy% + Pi(y, )
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This transformation is invertible in some neighborhood of y = 0 for small
||| and depends smoothly on the parameters. If & = 0, the origin y = 0 is
a fixed point of this map. The transformation brings (8.37) into

itl = Uug,
Uz = goo(@) + gio(@)ur + go1(a)usz (8.38)
+ 3920(@)u + grr(@)urus + Lgo2(@)u3 + Q(u, a),

for certain smooth functions gri(a), goo(0) = 910(0) = g01(0) = 0, and a
smooth function Q(u,a) = O(||u||?). We can verify that

920(0) = b20(0),
911(0) = a0(0) + b11(0), (8.39)
902(0) = bo2(0) + 2a11(0).

Furthermore, we have

goo(a) = boo(a) +
gio(a) = bio(a) + au( )boo () — bi1(a)ago(a) + -, (8.40)
goi(a) = bo1(a)+ aip(a) + agz(a)boo(c) '

— (a11(a@) + boz(a))ago () + -+ -,

where dots represent all terms containing at least one product of some
agt, by with k+1 <1 (i4j <1). Since ay;(a) and by () vanish at o =0,
for all £k 4+ 1 < 1, the displayed terms are sufficient to compute the first
partial derivatives of goo(c¥), g10(a), and go1 () with respect to (a1, as) at
a=0.

Note that system (8.38) can be written as a single second-order differen-
tial equation for w = wu:

W = G(w,a) + wH(w,a) + i Z(w,w, a),

which provides the general form for the equation of motion of a nonlinear
oscillator.

Step 2 (Parameter-dependent shift). A parameter-dependent shift of co-
ordinates in the u-direction

{u1 = v +d(a),

Uz = V2,
transforms (8.38) into

U1 = Vg,

vy = goo+ 9100 + O(6?)
+ (910 + 9206 + O(6%)) v1 + (go1 + 9116 + 0(62)) v
+ 3(920 + 0(8))vf + (911 + O(8))v1v2 + 5 (go2 +O( ))vs
+ O([[v]?)-
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Assume that

(BTl) 911(0) = GQQ(O) + bll(o) 75 0.

Then, standard arguments based on the Implicit Function Theorem provide
local existence of a smooth function
go1(a)
0=0(a) ~ — ,
( g11(0)

annihilating the term proportional to vy in the equation for v,, which leads
to the following system:

/l.]l = V2,
Vg = th(OZ) + hlo(()t)’t)l (841)
+ Lhoo(a)v? + ka1 (a)vive + Shoa(@)v3 + R(v, @),

where hy(a) and R(v, ) = O(||v||?) are smooth. We find

~ 920(0)

911(0)
where again only the terms needed to compute the first partial derivatives
with respect to (a1,a3) at @ = 0 are kept (see (8.40)). Clearly, hoo(0) =

h10(0) = 0. The only relevant values of hy;(«), k41 = 2, are, as we shall
see, at & = 0. These terms are given by

h20(0) = g20(0), h11(0) = g11(0), ho2(0) = go2(0), (8.43)

where gg;(0), k+1 =2, are determined by (8.39).

hoo(ar) = goo(a) + -+, hio(a) = gio(e) gor(a) +---, (8.42)

Step & (Time reparametrization and second reduction to a nonlinear
oscillator). Introduce the new time 7 via the equation

dt = (14 6vy) dr,

where 6 = 6(«) is a smooth function to be defined later. The direction of
time is preserved near the origin for small ||a||. Assuming that a dot over
a variable now means differentiation with respect to 7, we obtain

01 = vy +0vivy,
by = hoo+ (R1o + hoo8)v1 + 5 (hao + 2h100)vE + hi1v1ve + ho2v3
+ O([[0]?).

The above system has a similar form to (8.37), which is a bit discourag-
ing. However, we can reduce it once more to a nonlinear oscillator by a
coordinate transformation similar to that in the first step:

51 = 7,
& = vg+ Ovivg,
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mapping the origin into itself for all . The system in (7, £2)-coordinates
takes the form

& = &,
{ & foo(a) + fro(a)&r + 2 fao(@)&E + fri(@)éi&e + 5 foo(@)E3

(8.44)
where

foo(@) = hoo(a), fio(a) = hio(a) + hoo(a)f(c),

and

fgo(a) = hgo(Oé) -+ 2h10(0¢)0(0¢),
fu(a) = hi(a),
foe(a) = ho2(a) +20(c).
Now we can take hoa(a)
02(&
O(a) = — 5

to eliminate the £3-term, thus specifying the time reparametrization. Con-
sequently, we have

él = 52)
{8 2 fer s s + a0+ st o), 5

where
pi(ar) = hoo(a), p2(a) = hig(e) — %hOO(Oé)hoz(a% (8.46)
and

A(Oé) = (hgo(()&) — hlo(Oé)hOQ(Oé)) , B(Oé) = hll(a)- (847)

1
2

Step 4 (Final scaling and setting of new parameters). Introduce a new
time (and denote it by ¢ again)

Since B(O) = hll(O) = 911(0) = QQO(O) + bll(O) 7é 0 due to (BT.l), the
time scaling above will be well defined if we further assume

(BT.Z) 2A(0) = hgo(O) = 920(0) = bQQ(O) 75 0.
Simultaneously, perform a scaling by introducing the new variables

) _B(a)\ 2%a)
"= B 2T E <A<a>) B ()™
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Notice that the denominators are nonzero at oo = 0 because A(0) # 0 and
B(0) # 0. In the coordinates (11, 72), system (8.45) takes the form

m = 12,
{r’zz — B+ Bami + 02 + s + O(|nll®), (8.48)
with
s % — sion a20(0)+b11(0) -
SSIgn<A<0>) 8 < 20 0) )ﬂ’
and
40[
file) = edma)
fale) = i afa).

Obviously, £1(0) = (B2(0) = 0. In order to define an invertible smooth
change of parameters near the origin, we have to assume the regularity of
the map o — [ at a =0:

(BT.3) det (gg)

This condition is equivalent to the regularity of the map o — u at a =
0 and can be expressed more explicitly if we take into account formulas
(8.46), (8.42), and (8.40). Indeed, the following lemma can be proved by
straightforward calculations.

£ 0.
=0

a=

Lemma 8.6 Let system (8.37) be written as
j=Py.a), yeR’ aecR?

and the nondegeneracy conditions (BT.1) and (BT.2) are satisfied. Then
the transversality condition (BT.3) is equivalent to the reqularity of the map

() (Ploader (P20 ) e (200 )

at the point (y, ) = (0,0). O

The map in the lemma is a map from R?* to R?, so its regularity means
the nonvanishing of the determinant of its Jacobian matrix. Since the linear
change of coordinates z — y defined by (8.34) is regular, we can merely
check the regularity of the map

(r.0) = (e, () e (2L )

at the point (z,«) = (0,0).
Therefore, in this subsection we have proved the following theorem.
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Theorem 8.4 Suppose that a planar system
i = f(z,a), z€R? acR?

with smooth f, has at a = 0 the equilibrium z = 0 with a double zero

etgenvalue:
A1,2(0) =0.

Assume that the following genericity conditions are satisfied:

(BT.0) the Jacobian matriz A(0) = f.(0,0) # 0;
(BT].) ago(O) + bll(o) 75 0;
(BT.2) bao(0) # 0;
(BT.3) the map
(z,a) — <f(:c,a),tr (W) ,det <5f(aa;ja)>)

is regular at point (x,a) = (0,0).

Then there exist smooth invertible variable transformations smoothly de-
pending on the parameters, a direction-preserving time reparametrization,
and smooth invertible parameter changes, which together reduce the system
to

{ 771 = 72,
2 = i+ B+t +smme+ O(Inl),
where s = sign[bag (a0 (0) 4+ b11(0))] = £1. O

The coefficients asp(0), b2p(0), and b11(0) can be computed in terms of
f(z,0) by the formulas given after system (8.37).

Remark:

There are several (equivalent) normal forms for the Bogdanov-Takens
bifurcation. The normal form (8.48) was introduced by Bogdanov, while
Takens derived the normal form

{771 = m+ B + i+ O(|nl®), (8.49)
Mo = ﬂ1+377%+0(”77”3)’

where s = 1. The proof of the equivalence of these two normal forms is
left to the reader as an exercise. $»

8.4.2 Bifurcation diagram of the normal form

Take s = —1 and consider system (8.48) without O(||n||*) terms:

771 = 12,
. 8.50
{ no = B+ Lo +ni—mn. (8.50)
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FIGURE 8.8. Bogdanov-Takens bifurcation.
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This is the first case where the analysis of a truncated system is nontrivial.
More precisely, bifurcations of equilibria are easy to analyze, while the study
of limit cycles (actually, the uniqueness of the cycle) is rather involved.

The bifurcation diagram of system (8.50) is presented in Figure 8.8. Any
equilibria of the system are located on the horizontal axis, 7o = 0, and
satisfy the equation

Bi + Bomn +ni = 0. (8.51)

Equation (8.51) can have between zero and two real roots. The discriminant
parabola

T ={(B1,82) : 461 — 35 = 0} (8.52)

corresponds to a fold bifurcation: Along this curve system (8.50) has an
equilibrium with a zero eigenvalue. If By # 0, then the fold bifurcation is
nondegenerate and crossing 7" from right to left implies the appearance of
two equilibria. Let us denote the left one by F; and the right one by Es:

_ /R2 _
IR (77?,270) = < ek 2ﬁ2 4&’0) .

The point 8 = 0 separates two branches 7_ and T of the fold curve
corresponding to B2 < 0 and ([ > 0, respectively. We can check that
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passage through 7 implies the coalescence of a stable node F, and a saddle
point Es, while crossing 7'y generates an unstable node EF; and a saddle Fs.
There is a nonbifurcation curve (not shown in the figure) located at 31 > 0
and passing through the origin at which the equilibrium FE; undergoes a
node to focus transition.

The vertical axis #; = 0 is a line on which the equilibrium F; has a pair
of eigenvalues with zero sum: A\; + Ay = 0. The lower part,

H = {(p1,02): b1 =0, B2 <0}, (8.53)

corresponds to a nondegenerate Andronov-Hopf bifurcation (A2 = tiw),
while the upper half-axis is a nonbifurcation line corresponding to a neutral
saddle. The Hopf bifurcation gives rise to a stable limit cycle, since I; < 0
(Exercise 10(b)). The cycle exists near H for $; < 0. The equilibrium Es
remains a saddle for all parameter values to the left of the curve T and
does not bifurcate. There are no other local bifurcations in the dynamics
of (8.50).

Make a roundtrip near the Bogdanov-Takens point 3 = 0, starting from
region 1 where there are no equilibria (and thus no limit cycles are possible).
Entering from region 1 into region 2 through the component T_ of the fold
curve yields two equilibria: a saddle and a stable node. Then the node turns
into a focus and loses stability as we cross the Hopf bifurcation boundary
H. A stable limit cycle is present for close parameter values to the left
of H. If we continue the journey clockwise and finally return to region 1,
no limit cycles must remain. Therefore, there must be global bifurcations
“destroying” the cycle somewhere between H and T}.. We know of only
two such bifurcations of codim 1 in planar systems: a saddle homoclinic
bifurcation (Chapter 6) and a saddle-node homoclinic bifurcation (Chapter
7). Since the saddle-node equilibrium at the fold bifurcation cannot have a
homoclinic orbit, the only possible candidate for the global bifurcation is
the appearance of an orbit homoclinic to the saddle E5. Thus, there should
exist at least one bifurcation curve originating at 8 = 0 along which system
(8.50) has a saddle homoclinic bifurcation. As we trace the homoclinic orbit
along the curve P toward the Bogdanov-Takens point, the looplike orbit
shrinks and disappears.

Lemma 8.7 There is a unique smooth curve P corresponding to a saddle
homoclinic bifurcation in system (8.50) that originates at B = 0 and has
the following local representation:

P = {(61;52) B = —Q%ﬂ% +0(33), B2 < 0}. (8.54)

Moreover, for ||5] small, system (8.50) has a unique and hyperbolic stable
cycle for parameter values inside the region bounded by the Hopf bifurcation
curve H and the homoclinic bifurcation curve P, and no cycles outside this
region. O
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In Appendix 1 we outline a “standard” proof of this lemma based on a
“blowing-up” by a singular scaling and Pontryagin’s technique of pertur-
bation of Hamiltonian systems. The proof gives expression (8.54) (see also
Exercise 14(a)) and can be applied almost verbatim to the complete system
(8.48), with O(||n||®) terms kept.

Due to the lemma, the stable cycle born through the Hopf bifurcation
does not bifurcate in region 3. As we move clockwise, it “grows” and ap-
proaches the saddle, turning into a homoclinic orbit at P. Notice that the
hyperbolicity of the cycle near the homoclinic bifurcation follows from the
fact that the saddle quantity oy < 0 along P. To complete our roundtrip,
note that there are no cycles in region 4 located between the curve P and
the branch Ty of the fold curve. An unstable node and a saddle, existing
for the parameter values in this region, collide and disappear at the fold
curve T.. Let us also point out that at 8 = 0 the critical equilibrium with
a double zero eigenvalue has exactly two asymptotic orbits (one tending to
the equilibrium for ¢ — 400 and one approaching it as ¢ — —o0). These
orbits form a peculiar “cuspoidal edge” (see Figure 8.8).

The case s = 41 can be treated similarly. Since it can be reduced to the
one studied by the substitution t — —t, 1y — —n, the parametric portrait
remains as it was but the cycle becomes unstable near the Bogdanov-Takens
point.

8.4.3 Effect of higher-order terms

Lemma 8.8 The system

{ T’]l — 2,
2 = P+ Bamn +ni £ mnz+ O(n]?),

is locally topologically equivalent near the origin to the system

T.h — n2,
M2 = Bi+ Loy +1i £mne. O

We give only an outline of the proof. Take s = —1 and develop the
O(||n||?) term in system (8.48) into a Taylor series in 7;. This results in

mo= "2
e = P+ Bem +ni(L+m P, B) — mua(l+mQ(n, 8))
+ 03 (mR(n, B) +n28(n. B)),
(8.55)
where P, Q, R, and S are some smooth functions.

It is an easy exercise in the Implicit Function Theorem to prove the
existence of both a fold bifurcation curve and a Hopf bifurcation curve in
(8.55) that are close to the corresponding curves T and H in (8.50). The
nondegeneracy conditions for these bifurcations can also be verified rather
straightforwardly.
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An analog of Lemma 8.7 can be proved for system (8.55) practically by
repeating step by step the proof outlined in Appendix 1.2 Then, a home-
omorphism (actually, diffeomorphism) mapping the parameter portrait of
(8.55) into that of (8.50) can be constructed, as well as a (parameter-
dependent) homeomorphism identifying the corresponding phase portraits.

As usual, let us formulate a general theorem.

Theorem 8.5 (Topological normal form for BT bifurcation) Any
generic planar two-parameter system

z = f(a;,a),

having, at o = 0, an equilibrium that exhibits the Bogdanov-Takens bifur-
cation, is locally topologically equivalent near the equilibrium to one of the
following normal forms:

o= N2,
N2 = Bu+ Loy +17 £mne. O

As for the Bautin bifurcation, the Bogdanov-Takens bifurcation gives rise
to a limit cycle bifurcation, namely, the appearance of the homoclinic orbit,
for nearby parameter values. Thus, we can prove analytically (by verifying
the bifurcation conditions and the genericity conditions (BT.1)-(BT.3)) the
existence of this global bifurcation in the system. Again, this is one of few
regular methods to detect homoclinic bifurcations analytically.

The multidimensional case of the Bogdanov-Takens bifurcation brings
nothing new, since it can be reduced by the Center Manifold Theorem to
the planar case. Notice that linear approximation of the center manifold
at the critical parameter values is sufficient to compute the coefficients
az0(0), b20(0), and b11(0) involved in the nondegeneracy conditions. Essen-
tially, they can be computed by the formulas given in this section, if one
treats the vectors vg, v, wo, and w; in (8.30), (8.31) as n-dimensional. Of
course, Ag and f(z,0) should be treated similarly.

Example 8.3 (Bazykin [1985]) Consider the following system of two
differential equations:

T = 1T z?
1 = 1~ 7 —
14+ ax; b
. 172
Ty = —Yro+ - — — 51’% .
1+ axy

The equations model the dynamics of a predator-prey ecosystem. The vari-
ables x; and zo are (scaled) population numbers of prey and predator,

2To proceed in ezactly the same way as in Appendix 1, one has to eliminate
the P(n1, 3)-term from (8.55) by proper variable and time transformations. Then,
the equilibria of (8.55) will coincide with those of (8.50).
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respectively, while «, vy, €, and § are nonnegative parameters describing the
behavior of isolated populations and their interaction (see Bazykin [1985]).
If § = 0, the system reduces to a model that differs only by scaling from
the system considered in Chapter 3 (see Example 3.1). Assume that ¢ < 1
and v = 1 are fixed. The bifurcation diagram of the system with respect
to the two remaining parameters (o, ) exhibits all codim 2 bifurcations
possible in planar systems.
The system has two trivial equilibria,

0 =(0,0), Eo= (io)

The equilibrium O is always a saddle, while FEj is a stable node for & > 1—¢
and is the only attractor for these parameter values. At the line

k={(a,0): a=1-¢}

a nontrivial equilibrium bifurcates from Ey into the positive quadrant while
Ey turns into a saddle (transcritical bifurcation). Actually, the system can
have between one and three positive equilibria, E1, E5, E3, to the left of the
line k. These equilibria collide pairwise and disappear via the fold (tangent)
bifurcation at a curve t,

t = {(a,8): de(a—1)*+ [(a® — 20a — 8)e® + 2ae(a® — 11l + 10)
+ o*(a—1)*]§ —4(a+¢e)*6* =0} .

This curve delimits a region resembling “lips” which is sketched in Figure
8.9(a).3 Inside the region, the system has three equilibrium points (two
antisaddles Eq, F3, and a saddle E3). Outside the region, at most one non-
trivial equilibrium might exist. There are two cusp singular points, C; and
C5, on the curve t. One can check that the corresponding cusp bifurcations
are generic. While approaching any of these points from inside the “lips,”
three positive equilibria simultaneously collide, and only one of them sur-
vives outside.

Parameter values for which the system has an equilibrium with A\; + Xy =
0 belong to the curve

ho = {(a,0): defafa—1) +e(a+1)] + [2(e + 1)a® + (3e® — 26 — 1)a
+e(e®—2e+5)]0+ (a+e—1)%6"=0}.

The curve h has two tangencies with the curve t at points BT} and BT5

(see Figure 8.9(b)). For the corresponding parameter values there is an

equilibrium with a double zero eigenvalue. One can check that the system
exhibits generic Bogdanov-Takens bifurcations at these points. A part hg

3In reality, the region is much more narrow than that in Figure 8.9.
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FIGURE 8.9. Construction of the parametric portrait.

between the points BT} and BTy corresponds to a neutral saddle, while
the outer branches define two Hopf bifurcation curves, h; and hs. The last
local codim 2 bifurcation appears at a point B on the Hopf curve hs. This
is a Bautin point at which the first Lyapunov coefficient [y vanishes but the
second Lyapunov coefficient lo < 0. We have I; < 0 along hs to the right
of the point B, l; > 0 between points BT, and B, and I; < 0 to the left of
BT, . Negative values of [; ensure the appearance of a stable limit cycle via
a Hopf bifurcation, while positive values lead to an unstable cycle nearby.

Based on the theory we have developed for the Bautin and the Bogdanov-
Takens bifurcations in the previous sections, we can make some conclusions
about limit cycle bifurcations in the system. There is a bifurcation curve
T originating at the Bautin point B at which the fold bifurcation of limit
cycles takes place: A stable and an unstable limit cycle collide, forming
a nonhyperbolic cycle with multiplier 4 = 1, and disappear (see Figure
8.9(c)). Two other limit cycle bifurcation curves, P; and P», emanate from
the Bogdanov-Takens points BT} 5. These are, of course, the homoclinic
bifurcation curves, along which the “central” saddle E5 has a homoclinic
orbit around one of the “peripheral” antisaddles Ej 3.

The completion of the bifurcation diagram requires numerical methods,
as described in Chapter 10. The resulting parametric portrait is sketched
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o

FIGURE 8.10. Parametric portrait of Bazykin’s predator-prey system.

in Figure 8.10, while relevant phase portraits are presented in Figure 8.11.4
The homoclinic curves P; 2 terminate at points D; > on the fold curve t¢.
These points are codim 2 saddle-node homoclinic points at which the homo-
clinic orbit returns to the saddle-node along a noncentral manifold (see Fig-
ure 8.12(a)). The interval of the tangent curve ¢ between the point D; (Dz)
and the intersections between ¢ and hq(hs) correspond to a global homo-
clinic saddle-node bifurcation of codim 1 (studied in Chapter 7). Crossing
the curve t generates a unique limit cycle, stable near Dy and unstable near
D5. The homoclinic curves P o are tangent to ¢ at D; . A bit more surpris-
ing is the end point of the cycle fold curve 7T It terminates at a point in the
branch hg corresponding to a neutral saddle. This is another codim 2 global
bifurcation that we have not studied yet. Namely, the curve 7 terminates
at the point F', where hg intersects with another saddle homoclinic curve
Py. This curve Py corresponds to the appearance of a “big homoclinic loop”
(see Figure 8.12(Db)). It terminates at points D3 4 on the fold curve ¢, similar
to the points D 2. At the point F', there is a “big” homoclinic orbit to the
saddle Ey with zero saddle quantity oy (see Chapter 6). The stability of
the cycle generated via destruction of the big homoclinic orbit is opposite
along the two branches of Py separated by F. This leads to the existence
of a fold curve for cycles nearby. Numerical continuation techniques show
that it is the fold curve T originating at the point B that terminates at
F. The curves 7 and Py have an infinite-order tangency at the point F.

“The central projection of the plane (21, 2) onto the lower hemisphere of the
unit sphere z? + z2 + (z3 — 1)2 =1 is used to draw the phase portraits.
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FIGURE 8.11. Generic phase portraits of Bazykin’s predator-prey system.
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FIGURE 8.12. (a) Noncentral saddle-node homoclinic orbit; (b) “big” homoclinic
orbit.

The parametric portrait is completed, and we recommend that the reader
“walk” around it, tracing various metamorphoses of the phase portrait.
No theorem guarantees that the studied system cannot have more than
two limit cycles, even if ¢ <« 1 and v = 1. Nevertheless, numerous simula-
tions confirm that the phase portraits presented in Figure 8.11 are indeed
the only possible ones in the system for generic parameter values (a,d).
The ecological interpretation of the described bifurcation diagram can be
found in Bazykin [1985]. Let us just point out here that the system exhibits
nontrivial coexistence of equilibrium and oscillatory behavior. &

8.5 Fold-Hopf (zero-pair) bifurcation

Now we have a smooth three-dimensional system depending on two param-
eters:

i = f(r,a), z€R® aeR%: (8.56)

Suppose that at a = 0 the system has the equilibrium =z = 0 with one zero
eigenvalue A\; = 0 and a pair of purely imaginary eigenvalues Ay 3 = Fiwg
with wg > 0.

8.5.1 Derivation of the normal form

Expand the right-hand side of (8.56) with respect to  at = = 0:
& =ala)+ Ala)x + F(z,a), (8.57)

where a(0) = 0, F(z,a) = O(||x||?). Since the eigenvalues A\; = 0 and
A2.3 = fiwp of the matrix A(0) are simple, the matrix A(a) has simple
eigenvalues

M(@) = v(a), Aaa(a) = () + iw(a), (3.58)
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for all sufficiently small ||«||, where v, i, and w are smooth functions of «
such that
v(0) = u(0) =0, w(0) = wo > 0.

Notice that these eigenvalues are the eigenvalues of the equilibrium = = 0
at « = 0 but typically a(«) # 0 for nearby parameter values and the matrix
A(w) is not the Jacobian matrix of any equilibrium point of (8.57). Never-
theless, the matrix A(«) is well defined and has two smoothly parameter-
dependent eigenvectors go(a) € R? and ¢;(a) € C? corresponding to the
eigenvalues v(a) and A(a) = p(a) + iw(a), respectively:

Ala)go(@) = v()go(a), A(a)gi(a) = A@)qi(a).

Moreover, the adjoint eigenvectors po(a) € R? and pi(a) € C3 can be
defined by

AT(a)po(a) = v(a)po(a), AT(a)pi(a) = Me)pi(a).

Normalize the eigenvectors such that

(po, o) = (p1,q1) =1,

for all ||a| small.® The following orthogonality properties follow from the
Fredholm Alternative Theorem:

(p1,q0) = (Po,q1) = 0.
Now any real vector x can be represented as
x = uqo() + zq1 () + 2q1 (),
with

{u = (po(@), ),

z = (pi(a),z).
In the coordinates u € R! and z € C! system (8.57) reads

w = D(a)+vie)u+g(y, 2z ),
{ z2 = Qo)+ AMa)z+ h(u, z, 2z, @). (8.59)
Here
[(a) = (po(), a(a)), Qa) = (p1(a), a(a)), (8.60)
are smooth functions of a, I'(0) =0, Q(0) =0, and
g(u,z,i, a) = <p0<a)vF(uQ0<a) +zq1(a) +2@1<O‘)’a)>7 (8 61)
hu,z,z,a) = (p1(a), F(ug(a) + zq1(a) + zg1 (), a)), ’

5As usual, (v, w) = Brw1 + Vawz + Vsws for two complex vectors v, w € C3.
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are smooth functions of u, z, Z, « whose Taylor expansions in the first three
arguments start with quadratic terms:

_ 1 .
g(u,z,z,a) = Z mgjkl(a)ujz z,
GAk4+1>2
and .
> i ksl
hu,z,z,a) = Z Whjkl(a)ujz s
jHE+I>2

Clearly, v(«) is real, and since g must be real, we have g;u(a) = gjm(a).
Therefore, g1 is real for £ = [. Obviously, g;x; and hji; can be computed
by formal differentiation of the expressions given by (8.61) with respect to
u, z, and Z.

Using the standard technique, we can simplify the linear part and elim-
inate nonresonant terms in (8.59) by a change of variables.

Lemma 8.9 (Poincaré normal form) Assume

(ZH.1) g200(0) # 0.

Then there is a locally defined smooth, invertible variable transformation,
smoothly depending on the parameters, that for all sufficiently small ||c|
reduces (8.59) into the following form:

L — 7(04) + %Ggoo(a)UQ + G011(a)|w|2 + %Ggoo(a)’ug
+ Gu(a)v[w]* + O([[ (v, w, w)|[*),
W = Ala)w+ Hi(a)vw + 2 Hayo(a)v?w + 2 Hoor (@)w|w|?

+ Ol(0,w, @) ),
(8.62)
where v € RY, w € CY, and ||(v,w,w)||*> = v + |w|]?. In (8.62), v(a)
and Gjii(a) are real-valued smooth functions, while A(c) and Hjp (o) are
complez-valued smooth functions. Moreover, v(0) =0, A(0) = iwy,

G200(0) = 9200(0), Go11(0) = go11(0), H110(0) = h110(0), (8.63)

and
G300(0) = 9300(0) — u% Im(g110(0)h200(0)), (8.64)

G111(0) = 9111(0) — wio [2 Im(g110(0)h011(0)) + Im(go20(0)h101(0))],
(8.65)
Hj10(0) = hglo(o)
+ wio [7200(0)(P020(0) — 29110(0)) — |h101(0)|* — ho11(0)h200(0)] ,
(8.66)
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Hp21(0) = ho21(0)

7 1
+ = <h011(0)h020(0) — 59020(0)}1101(0) — 2[ho11(0)[?

- ;h002(0)|2> | (3.67)

Sketch of the proof:
Let us first prove the lemma for o = 0, which is that for ' = v = Q = 0.
Perform a nonlinear change of variables in (8.59)

v o= u+ 1Vo2o2? + 1Vooez? + Virouz + Vigruz,
w = z+ 3Wogou? + $Wo202? + $ Woo22? + Winuz (8.68)
+ Woi122,

where Vj;, and Wjy; are unknown coefficients to be defined later. The
transformation (8.68) is invertible near (u,z) = (0,0) and reduces (8.59)
into the form (8.62) up to third-order terms if we take

Vi — 9020 _ goo2 G110 Vi — gio1
020 = —o—, Voo2 = =, Viio = —"—, Vio1 = T,
21w 21w wo wo
and
Wor — haoo Woo — ho20 W — h101 _ hoo2 ho11
200 = ——» Wo20 = ——— Wio1 = 5-—, Woo2 , Woir = ——,
21wy 3 W

where all the g;z; and hji; have to be evaluated at oo = 0. These coefficients
are selected exactly in order to annihilate all the quadratic terms in the
resulting system except those present in (8.62). Then, one can eliminate all
nonresonant order-three terms without changing the coefficients in front of
the resonant ones displayed in (8.62). To verify the expressions for Gz (0)
and H,(0), one has to invert (8.68) up to and including third-order terms.®

To prove the lemma for a # 0 with small |||, we have to perform a
parameter-dependent transformation that coincides with (8.68) at a = 0
but contains a small affine part for a # 0 to counterbalance the appearance
of “undesired” linear terms in (8.62). For example, we can take

v = u+d(a)+d(a)u+da(a)z+ 03(a)Z
+ $Voz0(@)z% 4+ $Vooa ()22 + Viro(a)uz + Vipr(a)uz,
w = z+4+Ag(a)+ A(a)u+ Ag(a)z + Az(a)z

+ %Wgoo(a)U,Z + %Wogo(o()ZQ + %WOOQ(O&)ZQ + W1 (@)uz
+ Won(a)zz,
(8.69)

SA way to avoid explicitly inverting (8.68) is to compare the equations for ©
and w expressed in terms of (u,z) obtained by differentiating (8.68) and sub-
stituting (4, 2) using (8.59) with those obtained by substitution of (8.68) into
(8.62).
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with 65(0) = 0 and A,(0) = 0. To prove that it is possible to select the
parameter-dependent coefficients of (8.69) to eliminate all constant, linear,
and quadratic terms except those shown in (8.62), for all small ||«||, one
has to apply the Implicit Function Theorem using the assumptions on the
eigenvalues of A(0) and condition (ZH.1). We leave the details to the reader.
O

Making a nonlinear time reparametrization in (8.62) and performing an
extra variable transformation allows one to simplify the system further.
As the following lemma shows, all but one resonant cubic term can be
“removed” under certain nondegeneracy conditions.

Lemma 8.10 (Gavrilov normal form) Assume that:

(ZH].) GQOQ(O) 75 0;
(ZH.2) Go11(0) # 0.

Then, system (8.62) is locally smoothly orbitally equivalent near the origin
to the system

{it = (@) + Bla)u® + C(a)[2]* + O(||(u, 2z, 2)[|*),
2 = Y(a)z+ D(a)uz + E(a)uz 4+ O(||(u, 2, 2)||*),

(8.70)

where 0(a), B(a), C(a), and E(«) are smooth real-valued functions, while
Y(a) and D(a) are smooth complex-valued functions. Moreover, 6(0) =
0, %(0) = A(0) = iwp, and

B(0) = 5Ca0(0), C(0) = Gons(0), (8.71)
D(0) = Hi10(0) — iwo 36220000((00)), (8.72)
. 1 Re H, 21(0) G (0) G111(0)
BO) = 2 Re | H210(0) + Hio(0) ( G01(1)(0) - Gzzz(o) * G011(0)>
Ho21(0)G200(0)
- 2Go11(0) ] (879)

Proof:
As in the previous lemma, start with @ = 0. Make the following time
reparametrization in (8.62):

dt = (1 + eyv + eg|w|?) dr, (8.74)

with the constants e; o € R! to be determined. Simultaneously, introduce
new variables, again denoted by u and z, via

{u = v gent, (8.75)

z = w+ Kvw,
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where ez € R! and K € C! are “unknown coefficients.” The reparametriza-
tion (8.74) preserves the direction of time near the origin, and the transfor-
mation (8.75) is locally invertible. In the new variables and time, system
(8.62) takes the form (8.70) if we set

e = — G300(0) _ _ 2iwpes + Ho21(0)
3G200(0)’ 2G011(0)
G111(0)
es=2Re K —e; — ,
’ L Goni(0)

and then tune the remaining free parameter es to annihilate the imaginary
part of the coefficient of the u?z-term. This is always possible, since this
coefficient has the form

with a purely imaginary factor in front of e;. Direct calculations show that
Re ¥ = E(0), where E(0) is given by (8.73) in the lemma statement.

We leave the reader to verify that a similar construction can be carried
out for small o # 0 with the help of the Implicit Function Theorem if one
considers e 2 in (8.74) as functions of « and replaces (8.75) by

u = v+ eg(a)v+ Sez(a)v?,
z = w4+ K(a)vw,
for smooth functions es 4(), €4(0) =0, and K(«). O
Finally, by a linear scaling of the variables and time in (8.70),
B B3 E
E(a) Cl)E?*(a) B2 (a)

we obtain

{6 = fi(a) + € +sl¢? + O(I(E, ¢, Ol .
¢ = (Ba(@) +iw ()¢ + (0(e) +id(@))E¢ + £2¢ + O(II(&, ¢, NI,

(8.76)
for s = sign[B(0)C(0)] = +1 and
Ble) = i)
fale) = e S()
ba) +id(a) = oo
) = Dt (o)
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Since B(0)C(0) # 0 due to (ZH.1) and (ZH.2), we have only to assume
that

(ZH.3) E(0) #0,

for the scaling to be valid. Notice that 7 has the same direction as t only if
E(0) > 0. We should have this in mind when interpreting stability results.
We took the liberty of introducing this possible time reverse to reduce the
number of distinct cases. We can also assume that wy(a) > 0, since the
transformation ¢ — ¢ changes the sign of w;.

If we impose an additional transversality condition, namely,

(ZH.4) the map « > [ is regular at o = 0,

then (01, f2) can be considered as new parameters and 6 as a function of 3
(to save symbols). Condition (ZH.4) is equivalent to the regularity at « = 0
of the map a + (y(a), u(a))T (see (8.58) and (8.60)).

We summarize the results obtained in this section by formulating a
lemma.

Lemma 8.11 Suppose that a three-dimensional system
i = f(z,a), zcR3 acR? (8.77)
with smooth f, has at o = 0 the equilibrium x = 0 with eigenvalues
A1(0) =0, A23(0) = tiwg, wo > 0.
Let

(ZH.1) g200(0)

(ZH.2) go11(0)

(ZH.3) E(0) #
(8.73);

(ZH.4) the map a — (y(a), u(a))T is regular at o = 0.

# 0;
7 0;
0, where E(0) can be computed using (8.63)—(8.67) and

Then, by introducing a complex variable, making smooth and smoothly pa-
rameter-dependent transformations, reparametrizing time (reversing it if
E(0) < 0), and introducing new parameters, we can bring system (8.77)
into the following form:

{g’ = B+ €+ s+ O G D), ) 678)
C o= (Botiwn)C+ (0 +0)EC +EC+O(I(6,¢ O,

where £ € R! and ¢ € C' are new variables; 31 and [ are new parameters;
0=0(8), ¥ =9(8), wi =wi(B) are smooth real-valued functions; w1 (0) #
0; and

s = sign[g200(0)go11(0)] = £1,
_ Re hllo(O)' O

6(0) 9200(0)
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Ounly s and 6(0) are important in what follows. Assume that

(ZH.5) 6(0) # 0.
Remark:

It is a matter of taste which cubic term to keep in the normal form. An
alternative to (8.78) used by Gavrilov is the following normal form due to
Guckenheimer:

{g‘ = B+ €+ +0(IE DI, ] (5.75)
(= (Batiw)+ @+ + P HONECDIY,

with the (|¢|?>-term kept in the second equation instead of the £2(-term
present in (8.78). Of course, the alternative choice leads to equivalent bi-
furcation diagrams. <$»

8.5.2  Bifurcation diagram of the truncated normal form

In coordinates (&, p, p) with ¢ = pe®®, system (8.76) without O(]|-||*)-terms
can be written as

£ = Bi+&+sp
po= p(Ba+0¢+E2), (8.80)
Qb = w1 +19€7

the first two equations of which are independent of the third one. The
equation for ¢ describes a rotation around the ¢-axis with almost constant
angular velocity ¢ & wy, for || small. Thus, to understand the bifurcations
n (8.80), we need to study only the planar system for (&, p) with p > 0:

é = ﬂ1+£2+5p23
{p — p(Bot O+ £2). (8.81)

This system is often called a (truncated) amplitude system. If considered in
the whole (¢, p)-plane, system (8.81) is Zy-symmetric, since the reflection
p — —p leaves it invariant. The bifurcation diagrams of (8.81) correspond-
ing to different possible cases are depicted in Figures 8.13, 8.14, and 8.16,
8.17. In all these cases, system (8.81) can have between zero and three equi-
libria in a small neighborhood of the origin for ||| small. Two equilibria
with p = 0 exist for 31 < 0 and are given by

Bz = (603,0) = (¥v=51,0) .
These equilibria appear via a generic fold bifurcation on the line
S ={(61,52): 51 =0}

The bifurcation line S has two branches, Sy and S_, separated by the point
8 = 0 and corresponding to S > 0 and (2 < 0, respectively (see Figure
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8.13, for example). Crossing the branch S gives rise to an unstable node
and a saddle, while passing through S_ implies a stable node and a saddle.

The equilibria E 5 can bifurcate further; namely, a nontrivial equilibrium
with p > 0,

E3 = ( go)’péo)) = ( ﬁZ + o(f2), \/ (ﬁl + 52 0(55))) ;

can branch from either Ey or E2 (here we use the assumption (ZH.5) for
the first time). Clearly, (8.81) might have another nontrivial equilibrium
with

E=—0+---, P> =—s*+---,

where dots represent terms that vanish as 8 — 0. We do not worry about
this equilibrium since it is located outside any sufficiently small neighbor-
hood of the origin in the phase plane and does not interact with any of our
Ey, k= 1,2,3. The nontrivial equilibrium E3 appears at the bifurcation
curve

= {(ﬂl,ﬁz) By = —& + <62>}

If s6 > 0, the appearing equilibrium Fj5 is a saddle, while it is a node for
s < 0. The node is stable if it exists for 3> > 0 and unstable if the
opposite inequality holds.”

If s@ > 0, the nontrivial equilibrium Fj5 does not bifurcate, and the
bifurcation diagrams of (8.81) are those presented in Figure 8.13 (for s =
1, # > 0) and Figure 8.14 (for s = —1, 6 < 0).

Remark:

For s = 1, there is a subtle difference between the cases 6(0) > 1 and
0 < 6(0) < 1 that appears only at the critical parameter value 5 = 0 (see
Figure 8.15). ¢

If s6 < 0, the equilibrium FE3 has two purely imaginary eigenvalues for
parameter values belonging to the line

T ={(B1,02) : 2 =0, 051 > 0}.
We can check that the corresponding first Lyapunov coefficient is given by

Cy
0v005,

for some constant C'y > 0. Thus, the Lyapunov coefficient /; is nonzero
along T for sufficiently small ||3]] > 0. Therefore, a nondegenerate Hopf

Ih=—

"A careful reader will have recognized that a pitchfork bifurcation, as studied
in Chapter 7, takes place at H due to the Zz-symmetry of (8.81).
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FIGURE 8.13. Bifurcation diagram of the amplitude system (8.81) (s =1, 6 > 0).

bifurcation takes place if we cross the line 7" in a neighborhood of g = 0,
and a unique limit cycle exists for nearby parameter values. Its stability
depends on the sign of I;.

It can be proved that (8.81) can have at most one limit cycle in a suffi-
ciently small neighborhood of the origin in the (&, p)-plane for small ||3].
The proof is difficult and is omitted here.® The fate of this limit cycle is
rather different depending on whether s = 1 or s = —1 (see Figures 8.16
and 8.17).

If s =1 (and 6 < 0), the limit cycle is unstable and coexists with the
two trivial equilibria E; 5, which are saddles. Under parameter variation,
the cycle can approach a heteroclinic cycle formed by the separatrices of
these saddles: Its period tends to infinity and the cycle disappears. Notice
that due to the symmetry the £-axis is always invariant, so one orbit that
connects the saddles I » is always present. The second connection appears
along a curve originating at § = 0 and having the representation

P = {(51,@) 2 B = 3;%2@ +o(B1), b1 < 0}

(see Exercise 14(b)). The resulting bifurcation diagram is presented in Fig-
ure 8.15.
If s=—1 (and 6 > 0), a stable limit cycle appears through the Hopf bi-

81t is based on a singular rescaling and Pontryagin’s techniques of perturbation
of Hamiltonian systems (as in the Bogdanov-Takens case but more involved, see
Appendix 1 and Exercise 14(b)).
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FIGURE 8.14. Bifurcation diagram of the amplitude system (8.81)
(s=-1, 6<0).

~—_7 X

@ (b)
FIGURE 8.15. Critical phase portraits for s = 1: (a) 0 < 6(0) < 1; (b) 6(0) > 1.

furcation when there are no equilibria with p = 0. When we move clockwise
around the origin in the parameter plane, the cycle must disappear some-
how before entering region 3, where no cycle can exist since no nontrivial
equilibrium is left. A little thinking reveals that the cycle cannot “die” via
a homoclinic or heteroclinic bifurcation. To understand what happens with
the cycle born via the Hopf bifurcation, fix a small neighborhood Uy of the
origin in the phase plane. Then, as we move clockwise around 8 = 0 on
the parameter plane, the cycle “grows” and touches the boundary of Uj.
Afterward, the cycle becomes invisible for anyone looking only at the inte-
rior of Uy. We cannot get rid of this phenomenon, called cycle blow-up, by
decreasing the neighborhood Uy. We also cannot make the neighborhood
very big, since all of the previous analysis is valid only in a sufficiently
small neighborhood of the origin. Thus, for s = —1, there is a “bifurca-
tion” curve J, originating at # = 0 and depending on the region in which
we consider the system (8.81), at which the cycle reaches the boundary of
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FIGURE 8.16. Bifurcation diagram of the amplitude system (8.81)
(s=1, 0<0).

this region (see Figure 8.17). The strangest feature of this phenomenon is
that the cycle appears through the Hopf bifurcation and then approaches
the boundary of any small but fized region if we make a roundtrip along an
arbitrary small circle on the parameter plane centered at the origin § =0
(the curve J terminates at the origin). It means that the diameter of the
cycle increases under parameter variation arbitrarily fast when the radius
of the circle shrinks. That is why the cycle is said to exhibit a blow-up.
Now we can use the obtained bifurcation diagrams for (8.81) to recon-
struct bifurcations in the three-dimensional ¢runcated normal form (8.80)
by “suspension” of the rotation in ¢. The equilibria F; o with p = 0 in
(8.81) correspond to equilibrium points of (8.80). Thus, the curve S is a
fold bifurcation curve for (8.80) at which two equilibria appear, a node
and a saddle-focus. The nontrivial equilibrium Ej3 in (8.81) corresponds to
a limit cycle in (8.80) of the same stability as F3 (see Figure 8.18). The
pitchfork curve H, at which a small cycle bifurcates from an equilibrium,
clearly corresponds to a Hopf bifurcation in (8.80). One could naturally
expect the presence of these two local bifurcation curves near the zero-pair
bifurcation. The limit cycle in (8.81) corresponds to an invariant torus in
(8.80) (see Figure 8.19). Therefore, the Hopf bifurcation curve T' describes
the Neimark-Sacker bifurcation of the cycle, at which it loses stability and
a stable torus appears “around” it. This torus then either approaches a
heteroclinic set composed of a spherelike surface and the £-axis (see Figure
8.20) or reaches the boundary of the considered region and “disappears”
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FIGURE 8.17. Bifurcation diagram of the amplitude system (8.81)
(s=-1, 6 >0).

by blow-up.

8.5.3 Elffect of higher-order terms

Recall that the previous results concern the truncated normal form (8.80).
As we shall see, some of these results “survive” if we consider the whole
system (8.76), while others do not. In the majority of the cases, (8.80) is
not a normal form for (8.76).

Let us start with positive information. Writing system (8.76) in the same

g

¢ Wb w i)

(R

FIGURE 8.18. A nontrivial equilibrium corresponds to a cycle.
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FIGURE 8.19. A cycle corresponds to a torus.

€
g WY(Ey)
E, WS(Ey)
(o
\J 7 P
ES
E < WYE,)
! Wi(E) L
¢

FIGURE 8.20. A heteroclinic orbit corresponds to a “sphere”.

coordinates (&, p, ¢) as (8.80), we get

£ = Bi+&&+sp2+05(00),
po= p(Ba+05+E2)+Vs(Ep,0), (8.82)
(lb = w1 +19£+q)5(§?p7(p)7

where O3, U5 = O((£2 + p?)?), and 5 = O(£2 + p?) are smooth functions
that are 2m-periodic in ¢. Using the Implicit Function Theorem, one can
show that, for sufficiently small ||3]|, system (8.82) exhibits the same local
bifurcations in a small neighborhood of the origin in the phase space as
(8.80). More precisely, it has at most two equilibria, which appear via the
fold bifurcation on a curve that is close to S. The equilibria undergo the
Hopf bifurcation at a curve close to H, thus giving rise to a unique limit
cycle. If s6 < 0, this cycle loses stability and generates a torus via the
Neimark-Sacker bifurcation taking place at some curve close to the curve T'.
The nondegeneracy conditions for these bifurcations can be verified rather
simply. Actually, leading-order terms of the Taylor expansions for functions
representing these bifurcation curves in (8.82) coincide with those for (8.80).
Therefore, we can say that, generically, “the interaction between fold and
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Hopf bifurcations leads to tori.”

If s =1 and € > 0, one can establish more — namely that the accounting
for higher-order terms does not qualitatively change the whole bifurcation
diagram of (8.80).

Lemma 8.12 Ifs =1 and 0 > 0, then system (8.82) is locally topologically
equivalent near the origin to system (8.80). O

In this case, we have only the fold and the Hopf bifurcation curves on
the parameter plane. One of the equilibria in the £-axis is always a node.
The cycle born through the Hopf bifurcation is of the saddle type. No tori
are possible.

Moreover, in this case we do not need to consider the cubic terms at all.
Taking into account only the quadratic terms is sufficient.

Lemma 8.13 Ifs =1 and 6 > 0, then system (8.82) is locally topologically
equivalent near the origin to the system

£ = B+&+07
p = Pap+0&p, (8.83)
¢ = w+960

Moreover, the bifurcation diagram remains equivalent if we take wy =1
and substitute the functions 6(5) and 9(8) by constant values § = 6(0)
and ¥ = 0. Therefore, the following theorem can be formulated.

Theorem 8.6 (Simple fold-Hopf bifurcation) Suppose that a system
i = f(z,a), R acR?

with smooth f, has at a = 0 the equilibrium x = 0 with eigenvalues
A1(0) =0, A23 = tiwg, wo > 0.

Let the following genericity conditions hold:

(ZHOl) 9200(0)9011(0) > 0;

(ZH0.2)
o Re h110(0)

0y =
’ 9200(0)
(ZH0.3) the map o — (y(«), u(a))T is regular at o = 0.

> 0;

Then, the system is locally topologically equivalent near the origin to the
system

p = [Pap+6uCp,
e =1,
¢ = [Bi+C+07

where (p, v, () are cylindrical polar coordinates. O
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In all other cases, adding generic higher-order terms results in topologi-
cally nonequivalent bifurcation diagrams. The reason for this is that phase
portraits of system (8.80) have some degenerate features that disappear
under “perturbation” by generic higher-order terms.

Let us first explain why even another “simple” case s = —1, 6 < 0, is sen-
sitive to adding higher-order terms. In system (8.81) the £-axis is invariant,
since p = 0 implies p = 0. Then, in region 3 in Figure 8.13, system (8.81)
has two saddle-focus points with p = 0, one of them with two-dimensional
stable and one-dimensional unstable manifolds, while the other has one-
dimensional stable and two-dimensional unstable invariant manifolds. The
invariant axis connects these saddle-foci: We have a heteroclinic orbit for
all the parameter values in region 3.

On the contrary, the term Wz (&, p, o) = O((€% + p*)?) in (8.82) does not
necessarily vanish for p = 0. Then, the £-axis is no longer always invariant,
and the heteroclinic connection normally disappears.” Thus, generically,
the bifurcation diagrams of (8.80) and (8.82) are not equivalent.

Remark:

The situation with the invariance of the £-axis is more delicate than
one might conclude from the above explanation. By a suitable change
of variables, one can make the terms of the Taylor expansion of ¥g at
(&, p) = (0,0) proportional to p up to an arbitrary high order, retaining the
invariance of the axis in the truncated form. The “tail,” however, is still
not proportional to p in the generic situation. Such properties are called
flat, because we can decompose the function ¥ by

Us(€,p,0) = p 05 (€, 0, 0) + 0 (€, p, ),

with all the partial derivatives of W(1) with respect to p equal to zero at
p =0 (flat function of p). However, generically, \I/f;)(g, 0,0) #0. O

If s0 < 0, a torus is present in the truncated normal form (8.80) and the
situation becomes much more complex. The torus created by the Neimark-
Sacker bifurcation exists in (8.82) only for parameter values near the cor-
responding bifurcation curve. If we move away from the curve, the torus
loses its smoothness and is destroyed. The complete sequence of events is
unknown and is likely to involve an infinite number of bifurcations, since
any weak resonance point on the Neimark-Sacker curve is the root of an
Arnold phase-locking tongue (see Chapter 7).

More detailed information is available for the case s = 1, 8 < 0. Re-
call that in this case the truncated normal form (8.80) has the curve P
at which there exists a spherelike surface formed by the coincidence of the

9Since we need to tune two parameters to restore the connection, there might
be only isolated points on the (31, 32)-plane where this connection is still present
in (8.82).
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two-dimensional invariant manifolds of the saddle-foci. This is an extremely
degenerate structure that disappears when generic higher-order terms are
added. Instead, these invariant manifolds intersect transversally, forming a
heteroclinic structure (see Figure 8.21, where a cross-section of this struc-

WY(Ey)

W(E,)

FIGURE 8.21. (a) A cross-section of the intersecting stable and unstable mani-
folds; (b) a heteroclinic orbit connecting the saddle-foci.

ture is sketched together with a heteroclinic orbit I'12). Therefore, the torus
cannot approach the “sphere,” since it simply does not exist, and thus must
disappear before. It is also clear from continuity arguments that the region
of existence of the transversal heteroclinic structure should be bounded by
some curves corresponding to a tangency of the invariant manifolds along
a heteroclinic orbit connecting the saddle-focus equilibria.

Finally, let us point out that homoclinic orbits to a saddle-focus are also
possible and have actually been proved to be present in the generic case.
Such an orbit I'g; can begin by spiraling along an unstable two-dimensional
manifold of one of the saddle-foci, pass near the second one, and return
along the stable one-dimensional invariant manifold back to the first saddle-
focus (see Figure 8.22(a)). A homoclinic orbit to the opposite saddle-focus
is also possible. Actually, there are two curves that intersect each other
infinitely many times, emanating from the origin of the parameter plane,
which correspond to these two homoclinic bifurcations. One can check that
if a homoclinic orbit exists and

—2<0<0,

then the corresponding saddle quantity oo (see Chapter 6) satisfies the
Shil’nikov “chaotic condition” implying the presence of Smale horseshoes.
Moreover, one of these homoclinic orbits is located inside an attracting
region (see Figure 8.22(b)) bounded by the two-dimensional stable manifold
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W(E)

@ (b)

FIGURE 8.22. (a) An orbit homoclinic to the saddle E1; (b) boundary of attrac-
tion.

of the second saddle-focus.'® Therefore, a stable “strange” dynamics exists
near the zero-pair bifurcation in this case.

In summary, if s = 1, 8 < 0, system (8.82) may have, in addition to
local bifurcation curves, a bifurcation set corresponding to global bifurca-
tions (heteroclinic tangencies, homoclinic orbits) and bifurcations of long-
periodic limit cycles (folds and period-doubling cascades), which is located
near the heteroclinic cycle curve P of the truncated normal form (8.80).

Remarks:

(1) Actually, the truncated planar normal form (8.81) has a more fun-
damental meaning if considered in the class of systems on the (&, p)-plane,
which are invariant under the two-dimensional representation of the group
Zs: (&, p) — (&, —p). A perturbation of (8.81) by higher-order terms that
leaves it in this class of symmetric systems can be written (cf. Chapter 7)
as

{ £ = Bi+&+sp>+04(5 0%, (8.84)
/7 = P(ﬂZ +0£+£2) +p4\115(£,p2)’ ’

with ©g, p*WUs(E, p?) = O((€2 + p?)?). System (8.84) always has the in-
variant axis p = 0. It has been proved that (8.84) with sf # 0 is locally
topologically equivalent to (8.81). Moreover, the homeomorphism identify-
ing the phase portraits can be selected to commute with the transformation
(&, p) — (&, —p) for all parameter values.

Therefore, system (8.81) is a topological normal form for a generic Zs-

10Recall that all the objects we speak about will actually be attracting in the
original system only if F(0) > 0.
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symmetric planar system with the invariant axis x5 = 0,

1 G(z1,23, ),
o = xoH(x1,73,0),

having at a = 0 the equilibrium z = 0 with two zero eigenvalues.

(2) A careful reader might ask why the quadratic terms are not enough
for the analysis of the truncated system (8.81) if s6 < 0 and why we have
also to keep the cubic term. The reason is that in the system

{ £ = B+ +sp%
with sf < 0, the Hopf bifurcation is degenerate. Moreover, if s =1, 6 <0,
this bifurcation occurs simultaneously with the creation of the heteroclinic
cycle formed by the separatrices of the saddles £ 5. More precisely, the sys-

o

@ (b)
FIGURE 8.23. (a) s = 1,0 < 0; (b) s = —1,6 > 0.

tem is integrable along the “Hopf line” T', and for corresponding parameter
values the nontrivial equilibrium is a center surrounded by a family of closed
orbits. This family is bounded by the heteroclinic cycle for s = 1, 8 < 0
(see Figure 8.23(a)), but remains unbounded for s = —1, § > 0 (Figure
8.23(b)). Actually, the system is orbitally equivalent to a Hamiltonian sys-
tem for p > 0. Therefore, system (8.81) can be considered near the line T
as a “perturbation” of a Hamiltonian system by the (only relevant) cubic
term. This term “stabilizes” the bifurcation diagram by making the Hopf
bifurcation nondegenerate and splits the heteroclinic curve off the vertical
axis. These properties allow one to prove the uniqueness of the limit cycle
in the system and derive an asymptotic formula for the heteroclinic curve
P. The interested reader is directed to Appendix 1 and Exercise 14(b). {

The multidimensional case of the fold-Hopf bifurcation reduces to the
considered one by the Center Manifold Theorem. Notice that we need
only the linear approximation of the center manifold at & = 0 to com-
pute g200(0), go11(0), and Re h119(0) and thus to distinguish between the
“simple” and “difficult” cases. However, the second-order approximation is
required if we want to find E(0), since certain third-order derivatives must
then be evaluated (see (8.63)—(8.67) and (8.73)).
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8.6 Hopf-Hopf bifurcation

Consider a four-dimensional smooth system depending on two parameters:
&= f(z,a), v€R* acR (8.85)

Let (8.85) have at o = 0 the equilibrium =z = 0 with two distinct pairs of
purely imaginary eigenvalues:

)\1’4 = :I:iwl, )\2’3 = :|:iLU27

with wq > wy > 0. Since there is no zero eigenvalue, system (8.85) has an
equilibrium point close to z = 0 for all @ with ||«| small. Suppose that
a parameter-dependent shift of the coordinates that places the origin at
this equilibrium point has been performed, so that we can assume without
loss of generality that = 0 is the equilibrium of (8.85) for all small ||a]| :

£(0,0) = 0.

8.6.1 Derivation of the normal form
Write system (8.85) in the form
= A(0)z + F(z, ), (8.86)

where F(z,a) = O(||z||?) is a smooth function. The matrix A(a) has two
pairs of simple complex-conjugate eigenvalues

Ara(e) = pi(o) iwr(a), Aes(a) = po(a) £iws(a),

for all sufficiently small |||, where p1 2 and w; o are smooth functions of
o and
J751 (0) = /,1/2(0) =0, w (0) > (UQ(O) > 0.

Since the eigenvalues are simple, there are two complex eigenvectors, ¢1 2(c)
€ C*, corresponding to the eigenvalues Aj o(a) = py 2() + iws 2(a):

A(a)gi(a) = M(@)q (@), Ala)gz(a) = Aa(a)ga(@).

As usual, introduce the adjoint eigenvectors p; o(a) € C* by

AT (@)p1(a) = M(a)pi(a), AT(@)p2(a) = Xa(a)p2(a),

where T' denotes transposition. These eigenvectors can be selected to de-
pend smoothly on o, normalized using the standard scalar product in C*,

(p1,q1) = (P2, q2) = 1,

and made to satisfy the orthogonality conditions

<P2>Q1> = <p1,Q2> = Oa
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thus forming a biorthogonal set of vectors in C*. Note that we always use the
4 Co .

scalar product (v, w) = >, _; Upwy, which is linear in its second argument.

Any real vector z € R* can be represented for each small ||| as

T = 21q1 + 21q1 + 2292 + 22Q2,

where
21 = <p17x>a 22 = <p2,.T>,

are new complex coordinates, 212 € C! (cf. Section 3.5 in Chapter 3). In
these coordinates, system (8.86) takes the form

2.:1 - )\1((1)21 +g(21,21,22,§2,04)7 (8 87)
Zo = Ma(a)za + h(z1, 21, 22, 22, ), '
where
9(z1, 21,22, Z0, ) = (p1, F(z1q1 + 211 + 22q2 + Z2G2, @),
h(z1, 21,22, Z2,) = (p2, F(z1q1 + Z1q1 + 2292 + %202, @0))

(for simplicity, the dependence of py, ¢; on the parameters is not indicated).
The functions g and h are complex-valued smooth functions of their argu-
ments and have formal Taylor expansions with respect to the first four
arguments that start with quadratic terms:

9(21, 21, 22, 22, @) = Z Gikim ()27 2L 2h
JHk+I4+m>2
and
h(21, 21, 22, 22, @) = Z Rjrim ()28 24 2250
JHkHlFm>2
Lemma 8.14 (Poincaré normal form) Assume that
(HH.0) kw1(0) # lwa(0), k,1>0, E+1<5.

Then, there exists a locally defined, smooth and smoothly parameter-depen-
dent, invertible transformation of the complex variables that reduces (8.87)
for all sufficiently small ||« into the following form:

w1 = A(@)wr + Garo(a)wi|wi[* + Gror (@)wy |wa?
+ Gs200(@)wr |w1 |* + Ga111 (@)wr |wi|?|wa|* + Gro22 () wr [wo|*
+ O([[(wy, @1, wa, w2) %),
Wy = Ae(a)ws + Hipro(a)wa|w |* + Hopor (@) wa|ws|?
+ Hooro(a)wa|wi|* + Hiio1 (a)wa|w:|?|wa|* + Hoosa (a)wa|wo|*
+ O(”(wlvwlv’w?va)HG)v
(8.88)
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where wy 2 € C! and ||(wy, w1, wa, w2)||?> = |wi|? + |wa|?. The complez-

valued functions Gjgim(c) and Hjgm (o) are smooth; moreover,

) 1 _
G2100(0) = g2100 t+ ;9110092000 + ;(91010%100 - 91001h1100)
1 2
L h # h
2wy +w290101 0200 201 — s 90110712000
1 9 21 9
- — - , 8.89
o lg1100] 31 |90200] (8.89)
1 _
G1011(0) = gio11 + ;(91010%011 — 9100170011)
2

i ) )
+ Ul(29200090011 — 9110050011 — goo11ho110 — Goo111010)

21 3 21 L
o1 1 % gooo2ho101 o 2y goo20h1001
i 2 i 2
- — - — , 8.90
o1 — o l90110] o1 T s l90101] (8.90)
i _
H1110(0) = hi10+ w*(guoohlow - 91100h0110)
1
7 - _
+ ;(2h0020h1100 — hoo11h1100 — 910101100 — F1001P1100)
2
21 21
+ 2 gortoha000 — ————Gororh
o1 — g go110h2000 5o +w290101 0200
7 7
— ———|hioo1]* — ———|howo1/? 8.91
Ss —w1| 1001 P 2w2| o101]%, (8.91)
7 7
Hyp21(0) = hoo21 + J(goo1lh1o1o — goo11hoi10) + w*h0011h0020
1 2
‘ h : g h
Yy — w 9002071001 Yy + 01 goooz2/t0101
7 21
— —hoo11]* = =—|hoooz|?, 8.92
w2| 0011] 3w2| 0002] (8.92)

where all the gjrim and hjkm have to be evaluated at o = 0. O

Notice that the expressions in the last line of each of the preceding for-
mulas are purely imaginary. The lemma can be proved by the standard
normalization technique. The hint to Exercise 15 in this chapter explains
how to perform the necessary calculations using one of the computer alge-
bra systems. We do not give here the explicit formulas for the coefficients
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of the fifth-order resonant terms due to their length (see references in Ap-
pendix 2). As we shall see, the given formulas are enough to distinguish
between “simple” and “difficult” Hopf-Hopf bifurcations.

By the introduction of a new time and a variable transformation in which
cubic “resonant terms” are involved, one can simplify normal form (8.88)
further.

Lemma 8.15 Assume that:

(HHl) Re GQlOO(O) 7é 0;
(HHQ) Re G1011(0) 75 0
(HH3) Re Hluo(O) 7é 0;
(HH4) Re H0021(0) 7é 0

Then, the system

w1 = A(@)wr + Gargo(@)wr|wi* + Gror (@)wy |wsa?
+ Ga200(@)wr |wi |* + Ga111 (@)wr |wi|?|wa|* + Gro22 (@) wr |wo|*
+ O([[(wy, w1, wa, w2)|°),
Wy = Ae(a)ws + Hipro(a)wa|w [* + Hopor (@) wa|ws|?
+ Hooro(a)wa|wi|* + Hiio1 (a)wa|wi|?|wa|* + Hoosa (a)ws|wo|*
+ O(”(wh Wi, W2, EQ) H6)7
(8.93)
1s locally smoothly orbitally equivalent near the origin to the system

’[)1 = )\1(04)1)1 -+ Pll(a)l)1|1)1|2 —+ Plg(()é)1)1|’02|2
+ iRy (a)vr|vr|* + S1(a)vr|vg|*
+ O(||(U17517U2’@2)H6>7

Uy = /\2(0&)1}2 + Pgl(()é)’l}2|1)1|2 + PQQ(O&)U2|’U2|2
+ SQ(O{)U2|U1‘4 + iRQ(&)UQ‘U2|4
+ O(||(v1717177)27@2)”6)7

(8.94)

where v1 2 € C! are new complex variables, Pji(a) and Sk(a) are complex-
valued smooth functions, and Ry («) are real-valued smooth functions.

Proof:
Introduce a new time 7 in (8.93) via

dt =(1+ 61|w1|2 + eg\wg\z) dr,

where the real functions e; = ej(@) and es = ex(«) will be defined later.
The resulting system has the same resonant terms as (8.93) but with mod-
ified coefficients.
Then, perform a smooth invertible transformation involving “resonant”
cubic terms:
U1 w1 + Kywy|ws |?,
V2 wy + Kawa|ws|?,

(8.95)



8.6 Hopf-Hopf bifurcation 353

where K; = K;(«) are complex-valued functions to be determined. In the
new variables (v, vs) the system takes the form

: . el ] (8.96)
Vo Ao + Zj+k+l+m23 H jkimvi 010505,

. - A ksl
{ V1 = )\1'01 + Zj+k+l+m23 ijlmvl ’01’02’031,

where the dot now means a derivative with respect to 7, and
G2100 = G100 + Aier + (A1 + A1) Ky, Gioi = Gion + ez,

Hi110 = Hinio 4 Mee1, Hooor = Hooo1 + Maea + (A2 + A2) Ko,

and

G3200 = Gaaoo + Garooer + (Kihi — K1 )er

+ K1Ga100 — K1Ga100 — 2(A1 + M)KT — [Ki[*A1, (8.97)
Goii1 = Gainn + Gronier + Garoez + (M + Ar)ea K

+ 2K; Re Giou, (8.98)
Gioze = Giozz + Grories — 2hies Re Ko — 2G1011 Re Ko,
Hosio = Hoasio + Hitoer — 2Moer Re Ky — 2Hi110 Re K,
Huz = Huo + Hoozer + Hinnoes + (Ao + Ao)er Ko

+ 2K5 Re Hi1o0, (8.99)
Hoos2 = Hoosz + Hooziez + (Koda — Kado)es

+ KoHooo1 — KaHooa1 — 2(A2 + A2) K3 — [ K2|*X2.(8.100)

Notice that the transformation (8.95) brings in fourth-order terms, which
were absent in the Poincaré normal form. Elimination of these terms al-
ters the fifth-order terms in (8.96). However, due to the particular form
of (8.95), the annihilation of the fourth-order terms that appear in (8.96)
does not alter the coefficients of the fifth-order resonant terms given above
(check!). Then, these coefficients will not be changed by the elimination of
the nonresonant fifth-order terms. So, assume that such eliminations have
already been made from (8.96) so that it contains only the resonant terms
up to fifth order.

Taking into account (8.98) and (8.99), we can then make Go111 = 0 and
.If.rllzl =0 by setting

7G2111 + Gio11e1 + Gaiooea

K, = —
! ()\1 + )\1)62 + 2 Re G1011

and
_ Hiio1 + Hopz1€1 + Hinoe2

()\2 + ;\2)61 + 2 Re Hi119 '

Recall that K; 5 are functions of o. This setting is valid for all sufficiently
small ||e||, due to assumptions (HH.2) and (HH.3).

Ky =
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We still have two free coefficients, namely e; and e;. We fix them by

requiring
Re Hgpoz2 = 0, .

for all sufficiently small ||«|. We claim that there are smooth functions
e1,2(a) satisfying (8.101) for all sufficiently small ||||. To see this, note
that for &« = 0 we have 2 Re Aj o = A1 2+ 5\1,2 = 0, and the system (8.101)
reduces to a linear system for (e1(0), e2(0)) according to (8.97) and (8.100),
namely:

Re G2100(0)€1(0) = —Re G3200(0), (8 102)
Re Hop21(0)e2(0) = —Re Hypz2(0), '
with a nonzero determinant
G2100(0) 0
=G 0)H 0 0,
Gl 0 o) | = Gane0) Honma 0) #

due to (HH.1) and (HH.4). System (8.102) obviously has the unique solution

Re G'3200(0)

B ~ Re Hoo32(0)
Re G2100 (O) ’

61(0) - Re H0021(0).

e2(0) =
Therefore, by the Implicit Function Theorem, (8.101) has a unique solution
(e1(a), e2()) for all sufficiently small ||| with e 2(cr) depending smoothly
on a.

Thus, 61022 = 0, H2210 = 0, Re éggoo = O7 and Re 1310032 = 0 for all
small «, so system (8.96) has the form (8.94)A with P11 = Gai00, P12 =
Giou, P21 = Hino, Po2 = Hoo21, S1 = Giozz, Sz = Hazo, Bi =
Im G399, and Ry = Im Hgpz2. We easily check that

Re P11(0) = Re G2100(0), Re P12(0) = Re G1011(0), (8103)

Re P21(0) = Re H1110(0), Re PQQ(O) = Re Hoogl(O), (8104)
and

Re 51 (O) = Re G1022 (0)

Re H1121(0) Re H0032(0)
+ Re G 0 -2
¢ 1011( ) [Re H1110(0) Re H0021(0)
Re G3200<0) Re H0021(0):|
_ , 8.105
Re G2100(O) Re H1110(0> ( )
Re SQ (0) = Re H2210 (0)

Re Go111(0) 2Re G'3200(0)
Re G1011(O) Re G100 (O)
_ Re G2100(0) Re H0032(0)

Re G1011(0) Re Hopz1(0)

+ Re H1110(0) |:

} . (8.106)
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This proves the lemma. O
Let
vy = re'fl) vy = roe'??

In polar coordinates (r1,72, @1, p2), system (8.94) can be written as

i = 11 (pa(@) + pi(@)r? + pra()rs + s1(a)rs)
+ @1 (r1, 72, 01,02, @),

g = 7o (p2(@) + par(@)r] + paz(@)r3 + sa(a)ri)
+ ®o(r1,72, 01, P2,

@1 = wl(a)+\111(T1,T2,(,0178027@)a

Y2 = wala)+ Uy(ry,re, @1, 02, Q).

Here
Pjk = Re ijv Sj = Re Sjv jak = 1727

are smooth functions of «; the real functions ®; and ¥ are smooth func-
tions of their arguments and are 27-periodic in ¢;, &, = O((r} + r3)3),
U (0,0,01,02) =0, k=1,2.

If the map (o, a2) — (p1(a), pe(a)) is regular at o = 0, that is,

o
det
(5)
one can use (1, t2) to parametrize a small neighborhood of the origin of

the parameter plane and consider wy, pjk, sk, Px, and ¥y as functions of f.
We conclude this section by formulating the following lemma.

# 0,

a=0

Lemma 8.16 Consider a smooth system
z=f(z,a), x€ R*, o€ R?
which has, for a =0, the equilibrium x = 0 with eigenvalues
k(@) = pi(a) Liwg(a), k=1,2,

such that
(11(0) = p2(0) = 0, wy2(0) > 0.
Let the following nondegeneracy conditions be satisfied:

(HH.0) kwi(0) # lws(0), k,1>0, k+1<5;

(HH.1) p11(0) = Re G2100(0) # 0;
(HH.Q) p12(0 = Re 01011(0) 75 0
(HH3) p21(0) Re H1110(0) 75 0;
(HH4) pQQ(O) Re H0021(0) 7é O
where G2100 (O) G1011( ) H1110 (O), and H0021(0) are given by (8 89) (8 92)

and
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(HH.5) the map o — p(a) is reqular at oo = 0.

Then, the system is locally smoothly orbitally equivalent near the origin to
the system

F1o= ri(p 4+ pr(p)r? + prz2(p)rd + s1(p)rs) + ®1(r1, r2, 01, 02, 1),
re = ra(pe +p21(ﬂ)7"f + paa ()73 + s2(p)rt) + ®o(r1,72, 91, 2, 1),
Sbl = ( ) (T177n279017902wu')7
2 = walp) +Wa(r, 2,01, 2, 1),

(8.107)
where ®, = O((r} 4+ r3)3) and ¥y, = o(1) are 2w-periodic in @i, and the
coefficients p;i(0), and s(0), j,k = 1,2, can be computed using the for-
mulas (8.103)—(8.106), provided that the resonant coefficients Gxim (0) and
H;jim (0) are known for j+k+1+m=3 and 5. O

8.6.2 Bifurcation diagram of the truncated normal form

We now truncate higher-order te