Up: doc_matcont Previous: Bifurcations   Contents

Bibliography

1
E.L. Allgower and K. Georg, Numerical Continuation Methods: An introduction, Springer-Verlag, 1990 .

2
W.J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Yu.A. Kuznetsov, and B. Sandstede, Numerical continuation and computation of normal forms. In: B. Fiedler, G. Iooss, and N. Kopell (eds.) ``Handbook of Dynamical Systems : Vol 2", Elsevier 2002, pp 149 - 219.

3
C. De Boor and B. Swartz, Collocation at Gaussian points, SIAM Journal on Numerical Analysis 10 (1973), pp. 582-606.

4
A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT : A Matlab package for numerical bifurcation analysis of ODEs, ACM Transactions on Mathematical Software 29(2) (2003), pp. 141-164.

5
E. Doedel and J Kernévez, AUTO: Software for continuation problems in ordinary differential equations with applications, California Institute of Technology, Applied Mathematics, 1986.

6
E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede and X.J. Wang, AUTO97-00 : Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), User's Guide, Concordia University, Montreal, Canada (1997-2000). (http://indy.cs.concordia.ca).

7
Doedel, E.J., Govaerts W., Kuznetsov, Yu.A.: Computation of Periodic Solution Bifurcations in ODEs using Bordered Systems, SIAM Journal on Numerical Analysis 41,2(2003) 401-435.

8
Doedel, E.J., Govaerts, W., Kuznetsov, Yu.A., Dhooge A.: Numerical continuation of branch points of equilibria and periodic orbits, (preprint 2003) .

9
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, 2000.

10
Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1998.

11
Yu.A. Kuznetsov and V.V. Levitin, CONTENT: Integrated Environment for analysis of dynamical systems. CWI, Amsterdam 1997: ftp://ftp.cwi.nl/pub/CONTENT

12
MATLAB, The Mathworks Inc., http://www.mathworks.com.

13
W. Mestrom, Continuation of limit cycles in MATLAB, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands, 2002.

14
Morris, C., Lecar,H., Voltage oscillations in the barnacle giant muscle fiber,Biophys J. 35 (1981) 193-213.

15
A. Riet, A Continuation Toolbox in MATLAB, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands, 2000.

16
D. Roose et al., Aspects of continuation software, in : Continuation and Bifurcations: Numerical Techniques and Applications, (eds. D. Roose, B. De Dier and A. Spence), NATO ASI series, Series C, Vol. 313, Kluwer 1990, pp. 261-268.

17
Terman, D., Chaotic spikes arising from a model of bursting in excitable membranes, Siam J. Appl. Math. 51 (1991) 1418-1450.

18
Terman, D., The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2, (1992) 135-182.

19
Freire, E., Rodriguez-Luis, A., Gamero E. and Ponce, E., A case study for homoclinic chaos in an autonomous electronic circuit: A trip form Takens-Bogdanov to Hopf- Shilnikov, Physica D 62 (1993) 230-253.

20
Genesio, R. and Tesi, A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548.

21
Genesio, R., Tesi, A., and Villoresi, F. Models of complex dynamics in nonlinear systems. Systems Control Lett. 25 (1995), 185-192.

22
Champneys, A.R. and Kuznetsov Yu.A. 1994. Numerical detection and continuation of codimension-two homoclinic orbits. Int. J. Bifurcation Chaos, 4(4), 785-822.

23
Champneys, A.R., Kuznetsov Yu.A. and Sandstede B. 1996. A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcation Chaos, 6(5), 867-887.

24
Demmel, J.W., Dieci, L. and Friedman, M.J. 2001. Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci. Comput., 22(1), 81-94.

25
Doedel, E.J. and Friedman, M.J.: Numerical computation of heteroclinic orbits, J. Comp. Appl. Math. 26 (1989) 155-170.

26
Friedman, M., Govaerts, W., Kuznetsov, Yu.A. and Sautois, B. 2005. Continuation of homoclinic orbits in matlab. LNCS, 3514, 263-270.

27
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, 2000.